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Abstract 

In this research work, we have presented an illustration of spatial ecological predictive 

modelling. We focused on the unique features that distinguish spatial data mining from classical 

data mining, and presented major accomplishments of spatial data mining research, especially 

regarding predictive modelling, spatial outlier detection, spatial co-location rule mining, and 

spatial clustering. 

In a very detailed research based study, we thoroughly investigated methods of mining patterns 

of a spatial data set (which generally describes any kind of data where the location in space of 

object holds importance) and made predictions based on the outcome of our analyses. We based 

this research on the analysis of some spatial characteristic of certain objects (that exist in an 

ecosystem). We began with describing the spatial pattern of events or objects with respect to 

their attributes, in other words and most specifically, we looked at how to describe the spatial 

nature/characteristics of entities in an ecological environment with respect to their spatial and 

non-spatial attributes. Secondly, we were able to predict likelihood of an object with a range of 

variables (using spatial analyst tools like – distance, interpolation, overlay, raster creation, 

reclass, multivariate analysis, maths, surface and conditional tools respectively) on a sample 

dataset and then we verified the model performance on the rest of the data. These feats were 

basically achieved using data visualization–which is the visual interpretation of complex 

relationships in multidimensional data – and statistical interpretations.  

Results: At the conclusive end of this project, we were able to build a prediction/suitability 

model for the prediction of plant species around a river area. The method illustrated in this 

research work suggests the use of mapping and statistical functions in the prediction of large 

spatial database. We have tried to achieve this by two (2) major stages – first stage is the spatial 

analysis, while the second stage is the statistical analysis. The advantages and shortcomings of 

this approach are discussed in the context of the need for further development of methodology 

and software 

This work is particularly useful to researchers in the field of data mining as it contributes a whole 

lot of knowledge to different application areas of data mining especially spatial data mining. It 

can also be useful in teaching and likewise for other study purposes 
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Chapter One 

INTRODUCTION 
 

The main purpose of this research work is to develop a generalised model for spatial pattern 

mining, capable of analysing data from a complex spatial system and then producing information 

that would be useful in various disciplines where spatial data form the basis of general interest. 

As acknowledged by Wilson (2002), complex spatial systems are defined as those systems 

described by many variables, with high levels of interdependence between elements, governed 

by non-linear processes and having significant spatial structures. One would have noticed that 

the major challenge in trying to build a general complex spatial system model would be; to be 

able to integrate the elements of these complex systems in a way that is optimally effective in 

any particular case. Spatial data mining organizes by location what is interesting as such, 

specific features of spatial data that preclude the use of general purpose data mining algorithms 

are: rich data types (e.g., extended spatial objects), implicit spatial relationships among the 

variables, observations that are not independent and spatial autocorrelation among the 

features. 

As highlighted by Shekhar et al. (2005), the explosive growth of spatial data and widespread 

use of spatial databases emphasize the need for the automated discovery of spatial knowledge. 

This is what motivates our research interest. Although there are some general purpose data 

mining tools such as Clementine and Enterprise Miner which are designed to analyse large 

commercial databases, (Shekhar et al, 2005), discovered that general purpose tools for spatial 

data mining (especially in the case of a complex spatial data) need also to be develop because 

extracting interesting and useful patterns from spatial data sets is more difficult than the patterns 

from traditional numeric and categorical data due to the complexity of spatial data types, spatial 

relationships, and spatial autocorrelation. As a result, we seek to develop a predictive model that 

produces spatial output patterns for spatial data mining. Krzysztof et al. (1996) added that 

mining spatial patterns is particularly interesting because it helps the researcher to discover the 

existing relationships between spatial and non-spatial data in a large spatial dataset. 
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1.1 Background 

The prediction of events occurring at particular geographic locations is very important in several 

application domains. Examples of problems which require location prediction include crime 

analysis, cellular networking, and natural disasters such as, droughts, vegetation diseases, and 

earthquakes.  

We seek to create an explicit spatial model for event prediction using basic spatial data mining 

algorithms and not any of the general purpose data mining algorithms. In essence we aim to look 

at modelling (predictive modelling/ knowledge management of complex spatial systems), 

querying and implementing a complex spatial database (using data structure and algorithms). 

Critically speaking, the presence of spatial auto-correlation and the fact that continuous data 

types are always present in spatial data makes it important to create methods, tools and 

algorithms to mine spatial patters in a complex spatial data set.  

The main goal of data mining is all about extracting patterns from an organization's stored or 

warehoused data. These patterns can be used to gain handful information about some aspects of 

the organization's operations, and to predict outcomes for future situations as an aid to decision-

making. 

The basic principles of data mining can be applied to any form of database including: relational, 

transactional, multi-dimensional, distributed, spatial, multi-media, data-stream, time-

series, text, and web data respectively. 

There are basically three types of complex systems as noted by Weaver (1948, 1958). These 

include the simple, the organised complexity and the disorganised complexity systems 

respectively. For the purpose and scope of our research work we are going to be considering the 

organised complex system and then move further into the disorganised complex system and 

complex adaptive systems in further research works. Organised complex systems are described 

by many variables, and all variables have strong interdependencies. Human beings, brains, 

economies, cities, ecosystems, and language all provide examples of organised complex systems. 

Organised systems are also characterised by the presence of nonlinearities (consider figure 1) 
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Figure 1: A diagrammatic view of different spatial data layer and data from such a system is handled for 

knowledge management in a complex organised system. 

 

In other to be able to analyse a complex spatial system such as been mentioned above, the major 

challenge one would have is not having too much data but having too much and too complex a 

database for the discovery and understanding structures, processes and relationships (Leung, 

2010).  In addition, Complex spatial dataset forms the basis of many organizational/geographic 

data (as we have cited earlier) as such; extracting unknown and unexpected information from 

such spatial dataset of unprecedented large size and high dimensionality requires efficient and 

effective methods such as the application of knowledge discovery methods like data mining to 

spatial data. Contemporary data mining methodologies are not suitable for mining spatial data 

because those methods do not consider location data and also they do not support implicit 

relationship between objects which now makes it pertinent to employ appropriate spatial data 

mining techniques for efficient patterns discovery in a spatial dataset. Pudi and Krishna (2009) 

also noted that in any spatial data, location in space of objects holds importance and also, the 

bulk of data in the real world has some spatial component such as Medical images of the human 

body, engineering drawing, architectural drawing e.t.c, it therefore becomes pertinent that these 

spatial data should be dealt with in a specialised manner for pattern discovery.    

 

1.1.1 Data Types 

 

Pudi and Krishna (2009) observed that in trying to discover pattern in real world data, the 

different models in which real world data is organised and the pattern discovery technique to be 

applied to this models must be considered. Data types of a spatial set are the major element of a 

spatial database. A spatial database according to Güting (1994) supports spatial predicates (such 

as equal, disjoint, intersect, touch, overlap, cross, within, contains e.t.c ) and offers spatial data 
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types in its data model and query language, and supports spatial data types in its implementation, 

providing at least spatial indexing and spatial join methods. Spatial data types, e.g. POINT, 

LINE, REGION, provide a fundamental concept for modelling the structure of geometric entities 

in space (The space of interest can be, for example, the two-dimensional abstraction of the 

surface of the earth – that is, geographic space, the most prominent example –, a man-made 

space like the layout of a VLSI design, a volume containing a model of the human brain, or 

another 3d-space representing the arrangement of chains of protein molecules) as well as their 

relationships. The types used may of course, depend on a class of applications to be supported. 

Without spatial data types a system does not offer adequate support in modelling (Güting 1994). 

In his view, Schneider in Schneider (2002) added that spatial data types provide a fundamental 

abstraction for modelling the geometric structure of objects in space; their relationships, 

properties and operations. He also added that there are more complex types such as partitions 

and graphs (networks). To a large degree he said, their definition is always responsible for 

successful design of spatial data models and the performance of spatial database systems and 

exercises a great influence on the expressive power of spatial query languages. Sherkar et al. 

(2005) focused on the unique features that distinguish spatial data mining from classical data 

mining and was able to classify them into the following four categories: data input, statistical 

foundation, output patterns, and computational process. Consideration of spatial predicates 

becomes very imminent when querying spatial databases; this is because spatial databases are 

sometimes faced with the presence of constraint (such as topological constraint) that makes 

current classical database solutions in appropriate (Clementini et al, 1994). Table 1 below gives 

a brief description of spatial data types. 
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Table 1: spatial data types, a brief description 

Types  Examples  Description 

 

Polygon/Areas  Locations of cities, 

object, factories,  

entities of study e.t.c 

Specific locations  that 

does not consider extent 

in any bearing 

Lines  Roads (networks), 

streets, distance 

between any two points 

around an object, rivers 

e.t.c 

Has a sequence of x, y 

coordinates, showing 

the distinct starting and 

ending points. 

Points  Land-cover, areas 

covering administrative 

boundary around a 

study zone e.t.c 

Linked lines bounded 

around an area (for 

xample you can 

measure perimeter e.t.c) 

 

Spatial can also be represented as continuous surfaces (e.g. elevation, temperature, precipitation, 

pollution, noise e.tc) using the grid or raster data Model in which a mesh of square cells is laid 

over the landscape and the value of the variable defined for each cell.  

 

1.1.2 Spatial Data – Features 

Data Input 

The data inputs of spatial Data Mining are more complex than the inputs of classical Data 

Mining because they include extended objects such as points, lines, and polygons. The data 

inputs of spatial Data Mining have two distinct types of attributes: non-spatial attribute and 

spatial attribute 

 

Statistical Foundation 

According to Chang (2004), spatial statistics arises when the data to be analysed are points in 

some Euclidean space, where the distance are usually represented by R
n 

in an n-dimension space. 

Also data that could be measured on some surfaces which consist of locations of points could 

also give rise to statistical analysis. Statistical analysis of spatial data can include finding of the 

likely variables present in a spatial data so as to be to create the parameters for an intended 
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model. Possible features like co-located objects, spatial outliers, spatial relationships and even 

spatial trends can be discovered using spatial statistics.  

 

Output Patterns 

According to Shekhar et al. (2003) some of the basic output patterns of a spatial process or 

spatial analysis based on literature, come in the forms listed below;  

» Predictive models which basically arise form spatial classification 

» Spatial outliers derived from spatial outlier detection 

» Spatial co-location/association rules derived from colocation mining of spatial datasets 

and  

» Spatial clustering 

 

Computational process 

Adhikary (1996) acknowledged that there are two major types of spatial operation that could be 

carried on a spatial dataset; spatial join and map overlay. Spatial join may be achieved using 

the R-Tree algorithm as suggested by Brinkhoff et al. (1993), but map overlay involves the 

combination of the features and attributes of two or more data layers on a spatial map (data 

frames) layout produce a desired output. Other operations as identified by (Güting 1994) can be 

grouped into four (4) major classes depending on the nature of data input. These algebraic 

operations groups include spatial operations; 

a. On a set of objects 

 Examples:  sum, closest 

b. Running numbers 

 Examples: distance, perimeter, area 

c. Returning atomic spatial data types 

 Examples: intersection, plus, minus, contour 

d. (Predicates) expressing relationships 

 Examples: inside, intersect, meets, adjacent, encloses 
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1.2 Knowledge/Pattern Discovery Task 

 

The main purpose of spatial data mining is to search for interesting, valuable, and unexpected 

spatial patterns; which can be useful in so many application domains. Most often than not the 

pattern discovered always provide a new understanding of the real world, but it is very obvious 

here that this search must be a non-trivial one and should be as automated as possible with a 

large search space of plausible hypothesis. 

Some of the pattern that one can discover in mining a spatial dataset would involve but not 

limited to those shown in table 2: 

Table 2: knowledge discovery task in spatial data mining 

Pattern Description Example 
Location Prediction 

Predict 

Trying to identify where a 

phenomenon will occur. 

 

 predicting location of protein 

sub cellular (Chou and Shen 

2007) 
 

 Predicting location of a 

mobile cellular networks user 

(Anagnostopoulos et. Al 

2012) 

 

Spatial Interactions The researcher is trying to find out 

which subsets of spatial phenomena 

interact? 

   Application of spatial 

information to mobile 

computing (Fröhlich et al, 

2007) 

 

   Applying spatial  

interactions 

to the analysis of crime 

incidents (Kakamu, 2008) 

Hot spot Finding which locations are 

unusual or share commonalities 

through spatial clustering 

 Detecting spatial hot spots in 

landscape ecology (Nelson 

and Boots, 2008) 

 
   Spatial Organization of 

DNA in the Nucleus May 
Determine Positions of 
Recombination Hot Spots 
(Razin and Laroaia, 2005) 
 

 Applying clustering 

techniques to crime hot-

spot analysis  (Estivill-

Castro and Lee, 2002)   

 

 Other application areas 
include earthquake analysis, 
vehicle crashes, agricultural 
situations …..      
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Spatial outliers’ detection 

 

Trying to identify abnormal 

patterns (outliers) from large data 

sets 

 

 
   Detecting Outliers in 

Gamma Distribution 
(Nooghabi et al. 2010)  
  

 Bearing Based Selection in 
Mobile Spatial Interaction 
(Strachan and Murray-

Smith, 2009)                           

 

 

1.3 Motivation/Justification of study 

 

The major motivating factor behind the modelling or mining of a spatial data lies in the 

differences that exit between spatial and non-spatial data. These differences as depicted in figure 

2 below, explains the typical nature of spatial and non-spatial data as they affect their 

computation process, query language, and mining techniques.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: difference between spatial and non-spatial data 

 

 

Spatial Data Non Spatial Data 
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Some other reasons why classical data mining methods cannot be used for mining spatial data 

are listed below: 

 The existence of spatial autocorrelation 

 The fact that space is continuous  

 Complex spatial data types 

 Seeking regional knowledge 

 Large dataset and many possible patterns 

 Importance of maps as summaries 

 

1.4 Research Objectives 

 

Because complex spatial systems are those with significant spatial structures, we shall concern 

ourselves majorly with three main tasks: these forms our major aims and objectives  

We are interested in investigating, examining and analysing the different range of disciplines 

where complex spatial data has a significant function and then we shall link some of these 

functions to the development of complex spatial dataset. We would also investigate existing 

models for representing these kinds of systems and then try to develop a better, general, and 

analytical/predictive model for such complex systems, by implementing and querying a given 

complex spatial database. We would then take an example from one of the various existing 

models (e.g. ecosystems analysis, accident analysis system, transport control system e.t.c) 

which will form an important antecedent of the programme of building general models of 

complex systems within the field of complex spatial data analysis system. 

Finally we shall make a conclusion based on what we have discovered from the proposed 

extensive study of complex spatial systems. However, the six (6) basic areas of interest of spatial 

data mining as listed below, would be a major term of reference to what we intend to achieve 

(and our major task would be to develop an algorithm for some of these tasks and then identify 

their application areas). 

1.   Predictive modelling/ Knowledge Management (for event prediction) 

2.  Spatial outlier detection 

3.  Spatial co-location rule/patterns mining 

4.  Spatial clustering. 
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5.  Spatial trend 

6. Spatial classification 

 

1.4.1 What needs to be represented? 

 

The main application driving research in spatial database systems are GIS. Hence we consider 

some modelling needs in this area which are typical also for other applications. Examples are 

given for two dimensional space (length and breadth), but almost everywhere, extension to the 

three - or more-dimensional case is possible. There are two important alternative views of what 

needs to be represented: 

(i) Objects in space:  We are interested in distinct entities arranged in space each of which has 

its own geometric description. 

(ii) Space: We wish to describe space itself, that is to say something about every point in space.  

Point (i) allows us to model, for example, cities, forests, or rivers, while (ii) is of thematic maps 

describing e.g. land use/cover or the partition of a country into districts. Since raster images say 

something about every point in space, they are also closely related to the second point. We can 

reconcile both views to some extent by offering concepts for modelling in point (i) for instance, 

single objects, and point (ii) can help us consider spatially related collections of objects. 

 

1.5 Research Methodology 

 

Research methodology describes the objectives of your study by determining the type of research 

which is (descriptive, co-relational and experimental) and then establishes the type of research 

design you need to adopt to achieve them. Because we are interested in finding out if an increase 

or decrease (or any form of change) in physical phenomena (e.g climatic structure) has an 

impact on the existence of objects in any given geographical space (e.g ecosystem - especially on 

plant and animal species), we have adopted the experimental method of research to achieve our 

objectives as you can see in figure 3 below.  
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The experimental method also known as the cause and effect method or the empirical research 

method is a data-based research method. Conclusions made at the end of the research are always 

capable of being verified with experiments or observations. It always involves two types of 

variable dependent and independent variables where the effect of substituting the value of one 

or more of the independent variable affects the outcome of the dependent variable based on a 

deliberate manipulation of one of them in other to learn its effects. 

  For example given an equation of the form 2x + v = y…….. 

  Where: 

   Y is the dependent variable 

   X is the independent variable 

    and V could be any constant of another independent variable 

For every value of x and v, y takes a new value. This kind of research is appropriate when all the 

researcher seeks to establish a proof that an independent variable always affects the dependent 

variable (as we saw in the equation above). In other words, there is always a necessity to start 

with the reality in the first place, starting from the foundation, and then actively go about doing 

certain things to stimulate the production of desired information. All this can be achieved by the 

presence of a working hypothesis which will state the possible result. 

 

 

Figure 3: our research methodology 
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1.6 Scope and limitation of the Study 

 

The scope of this study is limited to the peripheral computing of the complexity of spatial data 

mining; this is to give the common reader a clear understanding of the issues that surrounds the 

subject and field of spatial data mining. However, the study also entails a wide coverage of 

methods, techniques, theories, complex interactions among elements of a complex spatial system 

and examples of spatial data and spatial data mining. Thus, it will be useful both to the 

professional researcher and also for the amateur. The basic limitation of this study is the fact that 

the field of spatial data mining is very large and complex and as such time constraints may also 

limit the expected output of this research project (though we would give in all our best to achieve 

an effective system). So basically this project may not be able to look critically at the individual 

algorithms and techniques of spatial data mining in details but will mention each and every one 

of them with explanations, examples and typical applications. 

 

1.7 Organization of work 

 

1. Chapter one gives a detailed introduction of the project 

2. Chapter two starts by conducting an intensive literature review on Data mining, Spatial data 

mining, Complex systems, Spatial patterns mining, Complex spatial system, Methods for 

modelling and querying a spatial database, Predictive modelling/ Knowledge Management and 

Creating mathematical models for computer simulation based on spatial data and representing 

spatial data using graphical features. 

3. Chapter three undertakes a thorough analysis of existing models and algorithms for 

predictive modelling/ knowledge management of CSS. 

4.  Chapter four tries to work out a new and typical application model for modelling a complex 

spatial system and Design a system for visualization of event prediction result using Arcgis 10.1 

software 

5. Chapter five explains the analysis and design simulation system for complex spatial system 

prediction 

6. Chapter six gives detailed generalisation and interpretation of the prediction system 

7. Chapter seven explains all the design methods used 

8. Chapter eight discusses relevant professional and ethical issues in system development 

9. Chapter nine is an evaluation of the research  

10. Chapter ten is the Conclusion and future works. 
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1.8 Choice of programming language 

 

We have employed the functionalities of the Arcgis 10.1 software in this project for spatial 

analysis. The software is a geographical information (GIS) based system that can help us to 

analyse spatial data in form of maps. In a range of application, spatial data consist of geographic 

information which can be mapped and analysed; as such GIS(s) help us extract geographic 

information from a spatial data set, represent such information using map and then analyse the 

information that has been mapped to produce a required output. This output could be the final 

information that we sought (in which case it is documented and shared) or it could be an input 

for further spatial analyses. Arcgis 10.1 as a geographical information (GIS), has the 

functionalities that allows it to be able to manage geographic information system or a spatial 

database (which is always difficult using classical database management systems). 
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Chapter Two 

Literature review: Theoretical Framework for Mining Complex Spatial Dataset 

2.1 INTRODUCTION 

 

Data mining (DM) deals with extracting interesting knowledge from real-world, large and 

complex data sets; it is the core step of a broader process, called knowledge discovery in 

databases (KDD)- (see figure 4 below). In addition to the DM process, which actually extracts 

knowledge from data, KDD process includes several pre-processing (data preparation) and post-

processing (knowledge refinement) phases (Ghosh and Freitas, 2003). From the work of 

Leung (2010), we discovered that the problem of extracting knowledge is not the issue of not 

having enough data, but having too much and too complex a database for the discovery and 

understanding of structures, processes, and relationships this like we may expect has left 

useful knowledge often hidden in the sea of data that awaits discovery.    

Data mining bridges many technical areas, including databases, statistics, machine learning, 

and human-computer interaction. The set of data mining processes used to extract and verify 

patterns in data is the core of the knowledge discovery process (Hammawa and Sampson, 

2011). In their own view, Smyth et al. (2001) stated that data mining can be characterised as a 

secondary analysis tool which seeks to find unexpected and unforeseen information that could be 

hidden in a given data set. This means that for a large number of times, data miners and 

knowledge seekers are not typically involved directly with data collection process. A generic 

problem in data mining is to find relationship between variables; that is to say, is an action 

performed to a given data set, say z likely to affect the action performed to another data set x. 

The data set involved in a data mining process is known as a database which is a large record of 

data pertaining to a given discipline or field. According to Frawley et al. (1992), data mining or 

knowledge discovery in databases refers to the discovery of interesting, implicit, and previously 

unknown knowledge from a large database. Dasarathy (2003) noted that knowledge discovery is 

clearly one of the many potential objectives of information fusion process and then he described 

data mining as a means of accomplishing the objective of knowledge discovery. Contrary to 
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these conventional views, Imielinski and Mannila (1996) objected that “there is no such thing 

as discovery; it is all in the power of the query language”. 
1
 

 

 

 

Another important contribution to the research of databases and data mining processes is found 

in Fayyad et al. (996); here they stated that Data mining can be viewed as the automated 

application of algorithms to detect patterns in data.
2
 Bhandari et al. (1997) supported this idea 

by adding that the process of interpreting patterns represents knowledge discovery, and 

traditionally requires activity on the part of a domain expert. Cios (2000) stated that data mining 

is inherently associated with databases and as such data mining and knowledge discovery are 

tools that can help in dealing with the problem of the acute and widening gap between data 

collection and data comprehension; thus according to him, data mining methods are algorithms 

that are used on databases, after initial data preparation for model building or for finding patterns 

in a data set.
3
 Some of these data mining algorithms would be examined in section 2.2. 

 

                                                           
1 We could deduce from this proposition that an effective data mining process would involve a good database 

querying performance. 

 
2
 We believe this is the basic framework for all branches of data mining 

3
 This is the procedure we adopted in this project that has helped us to reach a conclusive end 

 

 

 

Figure 4: The process of knowledge discovery in a database 
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2.2 Data Mining methods and algorithms 

 

Data mining algorithms according to Cios (2000) are basically the building blocks of any 

database both for finding patterns and for building models. In Smyth et al (2001), data mining 

algorithms could be seen as some well-defined procedures that take data as input and produce 

output in the form of models and patterns. Wu et al. (2008) investigated on the top ten 

algorithms that are among the most influential data mining algorithms in the data mining 

research community. Amongst these algorithms are AdaBoost, C4.5, k-Means, EM, PageRank, 

kNN, SVM, Naive Bayes, A priori, and CART. These algorithms cover classification, clustering, 

statistical learning, association analysis, and link mining, which are all amongst the most 

important topics in data mining research and development. 

C4.5 algorithm creates a decision tree (that can then be tested against unseen labeled test data to 

quantify how well it generalizes) based on a set of labeled input data, it is robust in the presence 

of noise, it construct classifiers by taking as input a collection of cases, each belonging to one of 

a small number of classes and described by its values for a fixed set of attributes, and output a 

classifier that can accurately predict the class to which a new case belongs. 

Some other algorithms have been developed over the years as a product of intensive and 

continuous research in this all useful discipline of data mining. Based on the model-induction 

mode of data mining (which is a way of deducing a closed-form explanation based solely on 

observations, in other to infer models from data), Babovic (2000) developed a Special kind of 

evolutionary algorithm called genetic programming. Evolutionary algorithms according to him 

are engines simulating grossly simplified processes occurring in nature and implemented in 

artificial media—such as a computer. Explaining this approach of data mining, Babovic in 

Babovic (2000) gave an elucidation that in this process as the genetic programming, the 

evolutionary force is directed toward the creation of models that take a symbolic form and 

evolving entities are presented with a collection of data, and the evolutionary process is expected 

to result in a closed-form symbolic expression describing the data. Symbiotic Bid-Based Genetic 

Programming (SBB) has been described in Doucette et al. (2012) as an algorithm that employs 

cooperative and competitive co-evolution for discovering knowledge from large databases with 

many attributes. This method opposes to the filter or wrapper methodologies address both tasks 

simultaneously 
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2.3 Data Mining Tasks and Techniques 

 

Data mining according to Guo and Mennis (2009) encompasses various tasks (which include – 

classification (supervised classification), association rule mining, clustering (unsupervised 

classification)  and multivariate geo-visualization.) and for each task a number of different 

methods are often available, which be computational, statistical, visual, or some combination  of 

them.
4
  

The aim of data mining and knowledge discovery is to provide tools to facilitate the conversion 

of data into a number of forms, such as equations (or models) that provide a better understanding 

of the process generating or producing these data (Babovic, 2000).
5
 According to Raza (2012), 

the two "high-level" primary goals of data mining, in practice, are prediction and description.
6
 

However, the basic task of mining data for pattern discovery includes classification and 

clustering and the major difference between them is based on their specific requirements 

regarding the structure of their input data (Pudi and Krishna, 2009). These techniques help to 

analyse the observations made from physical systems in other to search for the information that 

they encode, they are basically categorised into two namely: numerical and knowledge based 

techniques. The numerical technique is further classified into three i.e statistical (where all 

analyses are treated as hypothesis tests or exercises in parameter estimation as stated by 

Hochachka et al. (2007)), heuristic (i.e the process of extracting patterns from data sets which 

are then used to gain insight into relational aspects of the phenomena being studied and to 

predict outcomes to aid decision making according to Flentje et al. (2007)) and deterministic 

respectively. The knowledge based techniques has to do majorly with data mining approaches 

whereby key data sets are assessed to establish inter-relationships with the primary training set.
7
 

We shall look at the various DM (Data Mining) tasks and the suitable tools/technique used for 

this task below. Generally, in trying to mine information from a given data store, four types of 

interactions is basically being aimed at:
8
 

Classes: Stored data is used to locate data in predetermined groups. For example, a restaurant 

chain could mine customer purchase data to determine when customers visit and what they 

typically order. This information could be used to increase traffic by having daily specials. 

                                                           
4
 We are going to be applying these three methods in carrying out the data mining tasks we have chosen in this 

project. 
5
 This has given us the insight to what we are trying to achieve in this project 

6
 This are the goals we are actually set to achieve 

7
 We shall apply both techniques in these research work (i.e the numeric and knowledge based technique) 

8
 We have already explored these in section 1.2 above 
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Clusters: Data items are grouped according to logical relationships or consumer preferences. For 

example, data can be mined to identify market segments or consumer affinities. 

Associations: Data can be mined to identify associations. An example of associative mining 

could be trying to relate the sale of a particular good to be determined by the sale of another non 

similar good when there seems to be a kind of relationship between both. 

Sequential patterns: Data is mined to anticipate behaviour patterns and trends. For example, an 

outdoor equipment retailer could predict the likelihood of a backpack being purchased based on 

a consumer's purchase of sleeping bags and hiking shoes. 

Based on these interactions as mentioned above the following techniques for mining data in a 

large database has been established: 

Classification -: Classification according Agrawal et al. (1993) is about grouping data items 

into classes (categories) according to their properties (attribute values). It requires a training set 

to train (or configure) the classification model, a validation set to validate (or optimize) the 

configuration, and a test set to evaluate the performance of the trained model. From Nisbet et al. 

(2009), classification involves the implementation of most of the tree based data mining 

algorithms as a way of making decisions based on the solution to a previous problem of the same 

nature. It involves structuring a decision tree as a sequence of simple questions. Whereby the 

answers to the first given question determines the next question that is posed, if there is any. The 

result is a network of questions that forms a tree-like structure. The "ends" of the tree are 

terminal "leaf" nodes, beyond which there are no more questions. Classification otherwise 

known as supervised learning is used Predictive Modelling that is being able to use 

observations to learn to predict. 

In classification, a collection of records (training set) is made whereby each record contains a set 

of attributes, and one of the attributes is the class. The main task here is to find a model for class 

attribute as a function of the values of other attributes. It is always important to note that in 

classification, a test set is used to determine the accuracy of the model.  

The given data set is divided into training and test sets, with training set used to build the model 

and test set used to validate it. Witten, I.H. (2008) describes classification as a way of using a 

set of classified examples (known as instances) to produce a method of classifying new 

examples by using a set of attributes (i.e a fixed set of features) of the instance class. The major 

characteristics of creating classes (which could be discrete or continuous) are to be able to arrive 
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at a model which describes how the decision of class group was made. Classification according 

to Wu et al. (2008) accurately predicts the class to which a new case belongs. In other words 

classification as a data mining (machine learning) technique used to predict group 

membership for data instances i.e it is a useful resource when prediction and forecasting future 

events/trends is of paramount importance. Some of the data mining techniques used for 

classification include: 

Decision Tree based Methods 

Rule-based Methods 

Memory based reasoning 

Neural Networks 

Naïve Bayes and Bayesian Belief Networks 

Support Vector Machines 

CART 

CHAID 

Classification by back propagation  

 

Clustering: - In data mining clustering (generally known as unsupervised classification) simply 

means the logical detecting and grouping of a set of similar subgroups among a large collection 

of cases and to assign those observations to the clusters (Wu et al., 2008). More practically, it 

will involve finding groups of objects such that the objects in a group will be similar (or related) 

to one another and different from (or unrelated to) the objects in other groups. For example, we 

group a set of related documents for browsing, group genes and proteins that have similar 

functionality, or group stocks with similar price fluctuations. Brendan and Delbert (2007) 

described clustering as a data mining technology that divides data objects into more than one 

class or classes. The major characteristics of the clustering techniques according to Ren and Yin 

(2010) includes the fact that it takes as input a sample matrix,
9
 which is to think a sample to be a 

point in the characteristic variable space. The output of the clustering algorithm is usually a 

cluster genealogy diagram to reflect all the classification. In clustering analysis, the Partitioning 

clustering methods organises a data item is assigned to the ‘‘closest” cluster based on a 

proximity or dissimilarity measure while the hierarchical clustering, on the other hand, organizes 

                                                           
9
 We shall be doing in the modelling section 
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data items into a hierarchy with a sequence of nested partitions or groupings (Jain and Dubes, 

1988). However, clustering as a data mining technology is used when we need to find the 

number of clusters as well as the members of each. The clusters are assigned a sequential 

number to identify them in results reports. Cases within a group should be much more similar to 

each other than to cases in other clusters. Data mining techniques used for clustering purposes 

include: 

 k-Means clustering  

 EM (Expectation-Maximization)cluster analysis 

 

Associations: - Data mining like we mentioned earlier seeks to find all forms of pattern which 

could be hidden in a database in other words data mining is a process to extract the implicit, not 

known in advance and potentially useful information and knowledge from a large number of 

incomplete, noisy, vague and random practical application data. It is a reliance on the 

application, and thus different applications may require different data mining techniques. Mining 

associations according to Agrawal et al. (1993) is intended to discover regularities between 

items in large transaction databases by finding all rules from transaction data satisfying the 

minimum support and the minimum confidence constraints. Association rule mining is one of 

most popular data analysis methods that can discover associations within data.  It is used for 

creating Link Analysis that is, presenting links between individuals rather than characterising 

whole. An association rule is an expression denoted by (Association Rule – X  Y; 

   YXIYIX  and ,   as stated by Agrawal and srikant (2003) )X ⇒ Y, where 

X and Y are sets of items typically in association rule mining, support and confidence are used to 

measure the significance and certainty of a rule (Peng, 2010). Association mining in data mining 

activities has been very imperative in mining the significant association rules between items in a 

trade database, which have reflected the behaviour mode of the customers. An association rule 

can also be applied to website's structure optimization, storage planning, network accident 

analysis, designing of business catalogue, add to sales, etc. The rule is given as the following 

statement;  

“Let j = j1, j2… jm (where m may range from 0 to ∞) be a set of items. Given a database D of 

transactions, where each transaction t is represented as a set of items, with t[j] = 1 if t bought 

the item ji and t[j] = 0 otherwise. Let x be a set of some items in j (for instance if j represents 
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bags x may be used to represent sizes of the bags or other bag attributes). We say that a 

transaction t satisfies x if for all items ji in x, t[jx] = 1 if an item x is bought and t[jx] = 0 

otherwise” (Furong et al, 2010).  

Having mentioned earlier that the goal of association rules mining is to detect and analyse 

relationships or associations between specific values of categorical variables in large data sets, 

we wish to add that the technique can be used to analyse simple categorical variables, 

dichotomous variables, and/or multiple target variables. When Agrawal et al. (1993) first 

proposed the mining of association rule in a transaction database; they presented a case study in 

this form:  

“Suppose you are given a large database of customer transactions. Each transaction consists of 

items purchased by a customer in a visit. Present an efficient algorithm that generates all 

significant association rules between items in the database. The algorithm should incorporate 

buffer management and novel estimation and pruning techniques. Also present results 

of applying this algorithm to sales data obtained from a large retailing company, which shows 

the effectiveness of the algorithm” Agrawal et al. (1993)  

Solution idea for the above problem from Agrawal and srikant (2003):  

“Association Rule – X  Y;    YXIYIX  and ,  

 Say ABCD and  AB are large item-sets  

 Compute conf = support(ABCD) / support(AB) 

 If conf >= minconf  

       AB  CD holds. 

Important note for confidence and support: 

 Association rule XY has confidence c,  

 c% of transactions in D that contain X also contain Y. 

 Association rule XY has support s, 

 s% of transactions in D contain X and Y” (Agrawal and srikant 2003).  

  
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Existing algorithms used for mining association rules include: 

 Fitting of function e.t.c 

 AprioriTid Algorithm 

 Knowledge Discovery 

 Induction of Classification Rules 

 Discovery of causal rules 

 Apriori  

 

2.3.1 Applications of data mining 

 

Data mining applications have proved highly effective in addressing many important areas of 

human activities and endeavours; we expect to see the continued construction and deployment of 

KDD applications for crucial decision support systems. Exemplary applications employing data 

mining analytical techniques require the KDD technical community to keep improving the 

underlying techniques for model building and model understanding (Chidanand et al., 2000). 

For instance in Chidanand et al. (2002); Soares et al (2008); Kohavi and Provost (2001), data 

mining techniques has been applied to business management especially in the area of electronic 

commerce and e-business transaction generally. Raza in Raza (2012) explored the application of 

data mining in bioinformatics and the application of data mining techniques in 

pharmacovigilance was examined in Thabane and Holbrook (2004). A particular active area of 

research in human health, psychology and well-being is the application and development of data 

mining techniques to solve real-world human health related problems for example in 

Bhramaramba et al (2011) a data set taken from protein data pertaining to diabetes mellitus 

obtained from a genomic database was mined in search of useful patterns and information using 

data mining techniques on diabetes related proteins. Using data mining techniques for evaluating 

the psychological performance of human mental health has been examined in Hengqing and Li 

(2008) by using a generalized linear regression model (an Evaluation Model in which the 

dependent variable and regression coefficients all are unknown) with convex constraint. Li et al 

(2010) adopted an improved frequential pattern algorithm of data mining to increase the 

mining speed of intrusion detection systems which are used to identify any activities of damage 

to the computer system security, integrity and confidentiality. In Huang et al (2009) data 

mining was used for automatic frog identification by using DM techniques in identifying frog 

calls (frog calls are sounds that can be seen as an organized sequence of brief sounds from a 
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species-specific vocabulary) during an online consultation. It is well known that the number and 

variety of application areas of data mining is growing drastically as such had made it impossible 

to exhaust the various area in which it is applied.  

Nonetheless other major areas where the advantageous use of data mining techniques applied 

includes human resources management and control, engineering, pharmaceutics, health, 

government, medicine, manufacturing, design, telecommunication, education e.t.c 

However, despite these specific application domains where data mining approaches seem ideally 

suited for, the extensive knowledge discovery capabilities of data mining techniques have also 

been evident and very pervasive in several other general data analysis activity. Analysing and 

mining data models such as listed below are some of the implications of the usefulness of data 

mining intelligence applied in knowledge discovery being functional in exploring the possibility 

of hidden knowledge that resides in these data: 

 Relational data 

 Transactional data 

 Multi-dimensional data 

 Distributed data 

 Spatial data 

 Multi-media data 

 Time-series data 

 Text data and 

 Data streams and web data  

 

2.4 Knowledge discovery process in data mining 

 

According to Fayyad et al (1996), The general task of discovery knowledge from a database 

involves the process of retrieving the data from a large data warehouse (or some other source); 

selecting the appropriate subset with which to work; deciding on the appropriate sampling 

strategy; selecting target data; dimensionality reduction; cleaning; data mining, model selection 

(or combination), evaluation, and interpretation; and finally, the consolidation and putting into 

practical use of the extracted “knowledge.” 
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2.4.1 Spatial Data mining 

 

Attention to location, spatial interaction, spatial structure and spatial processes lies at the heart of 

activities in several disciplines today and as such demands the urgent development of tools 

capable of analysing and managing such data which typically can only be represented by means 

of geometric features, for instance, consider the examples of spatial data described by Perry et 

al. (2002) as given below;  

1) Percentage cover of woody plants along a line division;  

2) Land cover from some rangeland types within a specified area of a coastal region; these 

include some special cases of spatial data. Finding implicit regularities, rules or patterns hidden 

in spatial databases is an important task, e.g. for geo-marketing, traffic control or environmental 

studies Esther et al. (2001). The ultimate goal of spatial data mining is to integrate and further 

extend methods of traditional data mining in various fields for the analysis and management of 

large and complex spatial data. The underlying concept is based on the fact that spatial data types 

(e.g points, lines, polygons and regions) are not supported by the conventional database 

management system.
10

 Studying spatial data management helps us to discover the relationship 

between spatial and non-spatial data and to be able to build and query a spatial knowledgebase. 

Geospatial data is the data or information that identifies the geographic location of features and 

boundaries on earth (such as natural or constructed features), oceans e.t.c. spatial data are usually 

stored as co-ordinates and topology that can be mapped. They are often accessed, manipulated 

and analysed through geographic information system.
11

 Spatial data mining and geographic 

knowledge discovery has emerged as an active research area focusing on the development of 

theory, methodology, and practice for the extraction of useful information and knowledge from 

massive and complex spatial databases, Therefore, there is an urgent need for effective and 

efficient methods to extract unknown and unexpected information from spatial data sets of 

unprecedentedly large size, high dimensionality, and complexity (Mennis and Guo 2009).
12

 

According to Gunther and Buchmann (1990) geographic information systems contain high 

level spatial operators that are uncommon in conventional database management system (DMS). 

This has led to an increased development of research issues that focus on technologies, 

techniques and trends that identifies properties that a spatial data model, dedicated to support 

spatial data for cartography, topography, cadastral and relevant applications, should satisfy. 

                                                           
10

 This has been highlighted in section 1.3 figures 2. 
11

 Which is why we have used the Arcgis 10.1 geographic information system software for spatial analyses 
12

 Which is the main reason we are working on this project 
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These properties concern the data types, data structures and spatial operations of the model 

(Papadopoulos et al. 2004). In their work, Koperski and Han (1995) asserted that the for every 

spatial data object, the attribute data are referenced to a specific location; which means that they 

are highly dependent on location and also influenced by neighbouring object (which has given 

rise to the mining of collocation pattern between spatial objects).  

 

2.4.2 Spatial database 

 

The term spatial database system is associated with a view of a database as containing sets of 

objects in space rather than images or pictures of a space. The basic element for querying a 

spatial database is to connect the operations of a spatial algebra (including predicates to express 

spatial relationships) to the facilities of a DBMS query language. Existing DBMS do not support 

complex spatial relations that exist between spatial objects thus to achieve this, the 

functionalities of the DBMS should be extended to incorporate the facilities of these complex 

spatial relations into their query language by providing for the DBMS a model of how to process 

and optimize queries over spatial relations (Clementini et al., 1994). Wide application of remote 

sensing technology and automatic data collection tools has made it possible for tremendous 

amount of spatial and non-spatial data to be collected and stored in large spatial databases. 

Spatial database management refers to the extraction of implicit knowledge, spatial relations or 

other patterns not explicitly stored in spatial databases. Traditional data organisation and 

retrieval tools can only handle the storage and retrieval of explicitly stored data (Koperski and 

Han, 1995). 

The interest of managing a spatial database derives from the need to deal with geometric, 

geographic or spatial data (i.e data related to space). One remarkable feature of a spatial database 

is based on the fact that the management of geographic data is split into two distinct types of 

processing, one for the spatial data and another for the attributes of conventional data and 

their association with spatial data Papadopoulos et al (2004). Some of the properties that 

should be considered in a spatial database would include the data types the data structures 

used, the operations supported by the data model for the management of cartography, 

topography, cadastral and relevant applications. Spatial database management system works with 

an underlying traditional database management system which supports: 

 



GRACE SAMSON    U1251405 An Effective Approach for Mining Complex Spatial Data SUPERVISOR – JOAN LU  

35 
 

 Spatial data models 

 Spatial abstract data types and a query language from which these data types are callable 

 Spatial indexing, efficient algorithm for processing spatial operations/join and domain 

specific rules for query optimization. 

In general spatial database systems offer the fundamental database technology for geographic 

information systems and other applications and querying this database is to connect the 

operations of a spatial algebra (including predicates to express spatial relationships) to the 

facilities of a DBMS query language (Güting 1994). 

 

2.4.3 Spatial data representation 

 

Basically, geographical data can be described in two categories; spatial data and attribute data. 

Spatial data describes the location of the object of concern while attribute data tries to specify 

characteristics at that location (e.g how much, when e.t.c). However representing these data in 

the form that the computer would understand requires grouping the data into layers according to 

the individual components with similar features (example layer could be waterlines, elevation, 

temperature, topography e.t.c).
13

 Nonetheless, the data properties of each layer (such as scale, 

projection, accuracy, and resolution) needs to be set by selecting appropriate properties for each 

of these layers. In general, two distinct data structures are considered when representing spatial 

data digitally; (i) raster data structure (ii) vector data structure. 

Raster data structure: - Raster data structure according to Gregory et al. (2009), is similar to 

placing a regular grid over a study region and representing the geographical feature found in 

each grid cell numerically: for example, 1 for loamy, 2 for clay and so on (in the study of land 

use/cover or the study of soil types over a region as shown in figure 5 below). Rasters are 

associated with remote sensing, image processing and dynamic modelling, and are easily 

manipulated using map algebra (e.g. multiplying geographically corresponding cell values in 

two or more datasets) and neighbourhood functions (e.g. returning the sum of values in a 3 by 3 

cell window). Rasters are simple but often voluminous. Patterns in the data are therefore 

compressed using run length encoding, quadtrees or wavelets. Raster data represents geographic 

data by discretizing it equally spaced and quantizing each raster cell. A raster cell is usually a 

square, but could theoretically be another regular polygon that is able to fully cover an image 

                                                           
13

 This has been clarified in chapter 4 of this project work 
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area without leaving holes in the covered region, e.g. a triangle, hexagon or rectangle (Neuman 

et al. 2010). A raster consists of a matrix of cells (or pixels) organized into rows and columns (or 

a grid) where each cell contains a value representing information, such as temperature. Data 

stored in a raster format represents real-world phenomena, such as; Thematic data (also known 

as discrete), representing features such as land-use or soils data and Continuous data, 

representing phenomena such as temperature, elevation or spectral data such as satellite images 

and aerial photographs ESRI (2010).
14

  Raster data structures are the pixels of an object in a 

raster representation. The main reason for storing spatial data as a raster data is that: 

1. Raster data structure is a simple data structure—A matrix of cells with values 

representing a coordinate and sometimes linked to an attribute table 

2. The raster data model is a powerful format for advanced spatial and statistical analysis 

3. Raster data has the ability to represent continuous surfaces and to perform surface 

analysis 

4. It has the ability to uniformly store points, lines, polygons, and surfaces and also  

5. Raster data can perform fast overlays with complex datasets. 

Application of raster data structure: Raster data structure can be used for; 

 Modelling Elevation (DEM) 

 Land-cover Analysis 

 Modelling Terrain 

 Hydrologic modelling and Analysis 

 General GIS surface modelling and analysis of continuous surfaces.
15

 

 

 

 

 

 

                                                           
14

 Retrieved from http://webhelp.esri.com/arcgisdesktop/9.2/index.cfm?TopicName=What_is_raster_data%3F 
15

 This is exactly what we will be doing in the analysis phase. 

javascript:DictionaryPopup('continuous_raster')
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Vector data structure:-  

Vector data structure represents geographic objects with the basic elements points, lines and 

areas, also called polygons. From the description given by Gregory et al. (2009), vector data is 

based on recording point locations (zero dimensions) using x and y coordinates, stored within 

two columns of a database. By assigning each feature a unique ID, a relational database can be 

used to link location to an attribute table describing what is found there. Line segments (one 

dimensional) have two points: a start and end node. Polylines are connected line segments; for 

polygons (two-dimensional) the start and end node is the same. We can also use the vector data 

structure to encode topological information.  Every element in a vector model is described 

mathematically and bases on points that are defined by Cartesian coordinates (Neuman et al. 

2010). Vector objects are discrete but sometimes represent continuous fields; for example, as 

contours. Esther et al. (2001) viewed a vector data structure as a data structure used for 

representing a polygon (area) by its edges or by the points contained in its interior. The most 

important characteristics of representing data as vectors is that the vector data model can be used 

to render geographic features with great precision (although this may increase the complexity in 

data structure which translates to slow processing speed). The reasons for storing spatial data as 

vector are as follows: 

 Small amount of data 

• Easy to update 

• Logical data structure 

• Attributes are combined with objects 

• Preserves quality after interactivity (e.g. scaling) 

• More sophisticated in spatial analysis 

1 1 1 1 1 1 2 2 2 

1 1 1 1 1 2 2 2 2 

1 1 1 1 1 2 2 2 2 

3 3 3 3 1 2 2 2 2 

1 1 1 3 3 2 2 2 2 

1 1 1 1 3 3 3 2 2 

Figure 5: example raster data representation 
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Figure 6: example vector data representation 

 

2.5 Knowledge discovery task in spatial data mining 

 

The essence of data mining is to demonstrate the possible contribution of general KDD methods 

that are not specifically designed for spatially referenced data. Knowledge discovery in a spatial 

database involves finding implicit regularities, rules or patterns hidden in spatial databases. 

These are grouped under several basic categories in terms of the kind of knowledge to be 

discovered. Spatial data mining encompasses various tasks and, for each task, a number of 

different methods are often available, which could be computational, statistical, visual, or some 

combination of them.
16

 Some common spatial data mining task includes: 

• Spatial classification/prediction 

• Spatial association rule mining 

• Spatial cluster analysis 

• Geo-visualization e.t.c 

                                                           
16

 We have mentioned this earlier in section 2.3, and have also established that we are going to be carrying out all 

these tasks. 
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Figure 7: hierarchical view of spatial data mining knowledge discovery: this shows the types of patterns that could 
be discovered from each different kind of task 

 

 

2.5.1Spatial classification 

 

Sumathi et al (2001) described spatial classification as predictive spatial data mining, because it 

involves the initial task of creating a model according to which the whole dataset is analysed. 

Spatial classification methods extend the general-purpose classification methods to consider not 

only attributes of the object to be classified but also the attributes of neighbouring objects and 

their spatial relations (Guo and Mennis, 2009; Ester et al, 1997).
17

 For example Andrienko 

and Andrienko (1999) considered applying techniques of knowledge discovery in databases 

(KDD) to spatially referenced data by combining such techniques with various methods of 

interactive classification of spatial objects supported by map displays (using Descartes for 

visualization and Kepler knowledge discovery process). In that study, they presented an 

interactive visual (map presentation) method of preparing data for mining and interpreting the 

result of the C4.5 KDD classification learning algorithm when applied to spatially referenced 

data. In essence they were able to achieve a synergy of two approaches to exploration of spatial 

data, visual analysis with the use of interactive cartographic displays and KDD methods. In their 

                                                           
17

 This is the major distinguishing facts about spatial data 
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work Wu and Sharma (2012) examined the role spatial contiguity in housing submarket 

classification, in this study, they obtained a spatially integrated housing market segments by 

applying a spatially constrained data-driven submarket classification methodology, the outcome 

of the study is meant to improve the decision making ability of current and future homeowners 

on their residential choices 

 

2.5.2 Spatial clustering 

 

Spatial clustering algorithms according to Sumathi et al (2001) can be separated into four 

general categories: partitioning method, hierarchical method, density-based method and grid-

based method. 

Partitioning Method: - partitioning algorithm organizes the objects into clusters such that the 

total deviation of each object from its cluster centre is minimized. 

Hierarchical Method: - Hierarchical method hierarchically decomposes the dataset by splitting 

or merging all clusters until a stopping criterion is met. 

Density-Based Method: - The method regards clusters as dense regions of objects that are 

separated by regions of low density (representing noise). In contrast to partitioning methods, 

clusters of arbitrary shapes can be discovered. Density-based methods can be used to filter out 

noise and outliers. 

Grid-Based Method: - Grid-based clustering algorithms first quantize the clustering space into 

a finite number of cells and then perform the required operations on the grid structure. Cells that 

contain more than a certain number of points are treated as dense.  

Also, Fangju and Sun (2002) described spatial clustering as the grouping together of similar 

object so that they can be stored together based on the grouping and then referenced together as 

similar object, the main highlight of this study is to reveal spatial buffering as a means of 

carrying out spatial clustering in other to overcome the complex data structure of spatial objects. 

According to Deng et al. (2012), there are two (2) types of clustering methods, i.e spatial 

clustering based on spatial attributes of points only (the geometric coordinates) and spatial 

clustering that considers mutually, spatial and non-spatial attribute of points. In their own 

description, they stated that spatial clustering is a technique designed for the classification of a 

spatial database into several clusters whereby points in the same cluster are similar while points 

in different clusters are not similar to each other.  This classification is done without any 

previous knowledge (example, probability distribution and the number of clusters). In addition, 
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Thirumurugan and Suresh (2008) identified an advantage for the use of the clustering method 

over other method of spatial data mining and they pointed out that so much like the unsupervised 

learning, the clustering method does not require any prior knowledge in finding interesting 

structures or clusters. 

 

2.5.3 Spatial association rule mining 

 

Chen et al. (2012) described spatial association rule mining as the discovery of interesting 

meaningful rule from a spatial database without considering the presence of autocorrelation 

among the spatial data involved. In Agrawal et al. (1993), association rule mining was described 

as a tool for computing the statistical significance of any discovered relationship proximity 

relationship between spatial entities. Spatial association rule Bembenik and Rybiński (2009) 

can be used to discover interesting, useful and hidden patterns in any given spatial database. In a 

detailed explanation, Ding et al. (2011) characterized spatial association rule mining/scoping as 

consisting of three steps which they listed as (i) Discovery (ii) Rule Mining (iii) and scoping. 

Discovery according to them has to do with identifying interesting associations rule among the 

region of study, rule mining depicts mining association rules between the patterns discovered 

and scoping simple entails determining the scope of the association rule in any given region. 

Identifying spatial association rule mining as the most important key task of spatial data mining, 

Fang et al. (2008) pointed out that there are specifically two types of spatial association rule that 

currently needs to be solved (i) lengthways and (ii) transverse spatial association; both of which 

they said must be computed in any spatial data mining process in other to avoid debasing the 

efficiency of the system of study. 

 

2.6 Application of spatial data mining 

 

Spatial data mining has been applied to various fields of discipline and human-based activities in 

general. Sumathi et al. (2001) presented two (2) basic application areas of spatial data mining; 

these include (i) Trend Detections in GIS and (ii) Characterization of Interesting Regions. In 

Franklin (1995) spatial data mining was applied to predictive vegetation mapping; which 

focused on the development of a remote sensing-based vegetation mapping; a method that was 

used to illustrate and model the relationship between vegetation and its dependency on 

ecological niche. Franklin also considered the prediction of plant species distribution, vegetation 
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pattern over a given region and their dependencies on some environmental constraint e.g 

precipitation, rainfall, climate, soil e.t.c. Spatial data mining was applied in ecological analysis 

and in the generally discovery of spatial patterns by Legendre and Fortin (1989). In that work, 

they were able to demonstrate that lots off basic statistical methods used in ecological analyses 

are compromised by the presence of autocorrelation thus, they presented better ways of 

performing statistical test irrespective of the spatial contiguity constraint. Brown (1994) applied 

spatial data mining techniques in predicting vegetation types around a tree line. In that study, he 

was able to present tools and techniques for predicting land-scape vegetation patterns and testing 

hypothesis about spatial controls on such patterns. Other applications of spatial data mining also 

exist in other fields that do not have to do with ecosystem study or environmental study for 

instance Chen and Chen (2010) applied spatial data mining in the mining information about the 

heterogeneity of foreclosed mortgages. They were able to apply spatial data mining techniques to 

determine the heterogeneity of the portfolio across region in other to make an accurate 

assessment of the credit risk associated with each of the loan portfolio. Gaixiao et al. (2010) 

applied spatial data mining techniques to marine geographic information system and the output 

of their work is a new direction for the survey of hydrographic research area. Pérez-Ortega et 

al. (2010), applied SDM techniques in a population – based study of cancer data warehouse. 

They proposed a spatial clustering algorithm that can generate patterns of stomach cancer this 

was used as a means of applying data mining to the study of epidemiology. SDM has also been 

applied to image analysis as we can see in the study of Lee et al. (2007). They proposed a novel 

spatial data mining algorithm that can mine the spatial association rules from an image database. 

In the algorithm called 9DLT-Miner, the image itself is described by the 9DLT representation. 

Fang et al. (2008) applied the proficient power of data miming to the extraction of spatial 

association among correlation between spatial data and location. This extraction provides 

potential and useful information for a mobile intelligent client in the field of mobile computing. 

Conclusively, we would state that every other discipline that depends on complex decision 

making (especially when the decision is based on some spatial properties) has benefitted from 

the tools presented by spatial data mining research.  
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2.7 Challenges of spatial data mining 

 

In section 1.3, we have highlighted the major challenges faced by a spatial data miner (which we 

depicted using a diagram) which includes the facts that space is continuous and so on. Other 

challenges that spatial data mining can contend with has to do generally with modelling spatial 

data which in most cases has to deal with not only the geographically aspect of the data to be 

analysed but also the induced complexity caused by change in pattern and time of the spatial data 

we are considering. Bailey-Kellogg et al. (2006) noted that; and they quote: 

“There is a complex interplay between ‘spatial’ in the geographical sense and ‘spatial’ according 

to distance in a social network – propagation in one context appears as a discontinuous jump in 

the other” (Bailey-Kellogg et al., 2006).  

Also Shekhar et al. (2002) pointed out that spatial context such as autocorrelation is the key 

challenge in spatial data mining especially in the area of spatial classification.  And then we saw 

the most obvious challenge of spatial data mining (which is a general problem in field on data 

mining) in Wang (2003) as missing data. Wang acknowledged that since data mining process 

deals greatly with the development of association rule, patter recognition, classification, 

estimation and prediction, it will be very pertinent to have serious concern on the accuracy of the 

database to be modelled and on the sample data chosen for building a training set, in other 

words, the issue of missing data must be addressed since ignoring this problem can lead to a 

partial judgement of the models being evaluated and then finally lead to inaccurate data mining 

conclusions. 

 

2.8 spatial data mining versus traditional data mining 

 

The complexity of spatial data and intrinsic spatial relationships limits the usefulness of 

conventional data mining techniques for extracting spatial patterns. Efficient tools for extracting 

information from geo-spatial data are crucial to organizations which make decisions based on 

large spatial datasets. Waller and Gotway (2004) specified spatial information as being 

comprised of data that can be located or considered in two, three or more dimensions.  Waller 

and Gotway also added that the major difference between a spatial and a relational database is 

in the mode of operations performed on their data. A spatial database not only queries data based 

on their attributes alone, but also has the ability to query data elements with respect to their 

locations. According to (Bolstad, 2002), Non-spatial attributes are used to characterize non-
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spatial features of objects, such as name, population, and unemployment rate for a city. They 

are the same as the attributes used in the data inputs of classical data mining. Spatial attributes 

are used to define the spatial location and extent of spatial objects (see table 3). The spatial 

attributes of a spatial object most often include information related to spatial locations, e.g., 

longitude, latitude and elevation, shape, area e.t.c. Relationships among spatial objects are 

often implicit, such as overlap, intersect, behind …. This is quite unlike that of non-spatial 

objects that are explicit in data inputs according to Agrawal and Srikant, (1994); Jain and 

Dubes, (1988). One feasible way to deal with implicit spatial relationships is to materialize the 

relationships into traditional data input columns and then apply classical data mining techniques 

- although the materialization may result in loss of information.  

Spatial and non-Spatial Data features 

Spatial data       Non-spatial  

Multidimensional       One dimensional 

Auto-correlated       Independent 

 

Spatial and non-Spatial Data Processing 

Spatial data       Non-spatial  

Nearby        Sorting 

Nearest neighbour        

 

Spatial and non-Spatial Data Characteristics 

Spatial data        Non-spatial  

Location        Features 

Shape         Age 

Size         Income 

Orientation 

 

A simple illustration to differentiate between spatial and non-spatial data could be given in the 

example below consider two cases of similar objects for instance climate and climate change, 

how do we classify them into spatial and non-spatial; we would observe that climate has 
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characteristics which does not have anything to do with the location (like climate type, name…) 

while climate change is dependent on the location of consideration.  

 

Table 3: characteristics of spatial and non-spatial datasets 

 Non spatial data mining Spatial data mining 

Attributes  Example: Name, age, 

height…, 

Example: spatial location 

(e.g longitude, latitude and 

elevation, shape), extent of 

spatial objects 

Relation Example: join, relate …. Example: Overlap, 

intersect, behind, near, 

distance e.t.c 

Data types Example: attributes,  Example: Points, areas or 

polygon,  and lines 

Operations  Example: insert, delete, 

update e.t.c 

Example: Some of the basic 

operations in mining a 

spatial database include ; 

spatial query, 

layering/overlaying, 

buffering 

 

  

Spatial data mining 

versus traditional data 

mining 
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Chapter Three 

Application of spatial data mining and spatial analysis to the study of 
ecological behaviour: 

 

INTRODUCTION 
 

The nature of living things and their environments is based on the complex spatial relationships 

between both entities as such, patterns that are generated from this complexity can only be easily 

handled by projecting the extracted information into a geographical map which is superimposed 

to migration patterns or correlated to environmental factors; thus incorporating these 

environmental, spatial and complex data into models of geographic framework requires a 

geographic information system (Sloan et al., 2009). The Geographic Information Systems (GIS) 

is used to integrate these multiple layers of information as a set of powerful hardware and 

software for inputting, managing, displaying and analysing geographically referenced 

information Urbach and Moore (2011). The technique or method that is applied to such 

analysis or data integration is referred to as spatial data mining. 

Spatial data mining is the quantitative study of phenomena that is located in space. This means 

that there is an explicit consideration of the location and spatial arrangement of the object to be 

analysed (Gatrell and Bailey, 1995). The spatial heterogeneity of populations and communities 

plays a central role in many ecological theories, for instance the theories of succession, 

adaptation, stability, competition, predator-prey interactions, parasitism, epidemics and other 

natural catastrophes and so on (Legendre and Fortin, 1989). In this research we adopted the 

Hochachka et al. (2007) view of a combination of data mining and statistical analyses method 

in the analyses of our ecological data so as to extract as much insight as possible this is accepted 

because according to (Legendre and Fortin, 1989) many of the fundamental statistical method 

used in ecological study are impaired on auto-related data. This preposition is supported by 

Hochachka et al. (2007) in adding that most ecologists use statistical methods as their main 

analytical tools (although the data mining method would have been more appropriate in 

circumstances where the researcher have little or no knowledge of the system of study) when 
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analysing data to identify relationships between a response and a set of predictors;
18

 thus, they 

treat all analyses as hypothesis tests or exercises in parameter estimation.  

 

3.1 Spatial Analyses 

 

3.1.1 Spatial Data Model: 

 

Spatial data can be analysed by classifying them generally into two distinct categories, known as the 

raster and vector data models respectively; these classification is done based on similar 

characteristics/feature possessed by the entities of the spatial dataset. Detailed explanation of this has 

been given in section 2.5.2 above. 

 

3.1.2 Spatial autocorrelation 

 

According to Legendre and Fortin (1989) Spatial autocorrelation frequently occurs in 

ecological data, and many ecological theories and models implicitly adopt an underlying spatial 

pattern in the distributions of organisms and their environment. Autocorrelation arises from the 

fact that elements of a given population or community (or even the geographic/social 

environment as a whole) that are close to one another in space or time are more likely to be 

influenced by the same generating process. According to Chen et al. (2011) spatial 

autocorrelation shows correlation of a variable with itself through space. In their own view, 

Rossi and Queneherve, (1998); Legendre, (1993) acknowledged that spatial autocorrelation 

measures the similarity between samples for a given variable as a function of spatial distance. 

Dale and Fortin (2009) Spatial autocorrelation as seen by simply portrays self-dependence of 

spatial data ( meaning that the individual observations made from the chosen samples include 

information present in other observations, so that the effective sample size, say n, is less than the 

number of observations, n ); this dependence according to them poses a great problem that 

affects the significance rates of statistical test when it is positive and as such must be corrected in 

  other to produce a better measurement of goodness-of-fit.

“Ecological phenomena often are patchy and give data with a wave structure, producing 

autocorrelation that cycles between positive and negative with increasing distance, further 

complicating the situation” (Dale and Fortin,  2009). Furthermore, Koenig (1999) added that 
                                                           
18

 We have used this to achieve the identification for cause and effect variables for our prediction model. 
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the simultaneous fluctuation of ecological variables over wide geographical area is the best 

explanation for spatial autocorrelation. Consequently we would therefore accept Getis (2007) 

proposition that the concept of spatial autocorrelation (a special case of correlation - but differs 

in the sense that it goes ahead to show the correlation within variables across space), is central 

to many concerns and is very evident and expressed especially in Regional Science  

 

3.2 The knowledge discovery process 

 

The process of KDD is interactive and iterative, involving several steps such as data selection, 

data reduction, data mining, and the evaluation of the data mining results. 

 

3.2.1 Data selection: 

Why use point pattern analysis: 

We have chosen to use the point pattern analysis for our study, because according to Booth et al, 

(2006), measuring per cent occurrence of objects from digital images can save time and expense 

relative to conventional field measurements also Levy, (1927) and Levy and Madden (1933), 

ascertained that ecological assessments incorporating ground-cover (the area, usually expressed 

as a percentage, of ground covered by the vertical projection of vegetation, litter, and rock) 

measurements have relied on point sampling using point frames or according to ITT (1996) 

transect methods.  

The measurement of ground cover from images has several potential advantages, including 

acceleration of field work, increased flexibility, repeatability, and convenience in the time and 

place actual measurements are made 

Point pattern terminology: 

  Point is the term used for an arbitrary location 

 Event is the term used for an observation 

 Mapped point pattern: all relevant events in a study area R have been recorded 

 Sampled point pattern: events are recorded from a sample of different areas within a 

region 
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3.3 Data Mapping 

 

A reasonable quantitative study of the spatial structure of an ecosystem will require a good 

mapping of the ecological variables. Good maps of environmental suitability for vegetation 

growth and retention have proved to be an important tool for analysis, and prediction of plant 

species in an ecological environment. The production of such maps relies on modelling to predict 

the vulnerability for most of the map, with actual observations of an “event” (the occurrence of a 

patch/bit of plant) usually only known at a limited number of specific locations. Estimation is 

complicated by the fact that there is often local variation of risk that cannot be accounted for by 

the known covariates and because data points of measured occurrence of a patch/bit of plant are 

not evenly or randomly spread across the area to be mapped. In most cases, these maps derive 

from samples obtained from a surface (like we used in these study), where by intermediate 

values are being estimated by interpolation. 

 

3.4 Data representation 

 

We shall employ the raster data model for our data analysis because raster is well suited for 

representing data that changes continuously across a landscape (surface). Raster provides an 

effective method of storing the continuity as a surface. They also provide a regularly spaced 

representation of surfaces. We shall represent the Elevation, temperature, precipitation values 

(from our dataset) measured from the space around the Yunnan three parallel river as a surface 

maps raster so that we can spatially analysed them. The raster below displays elevation—using 

green to show lower elevation and red, pink, and white cells to show higher elevation. 

 

3.5 Analyses 

 

Legendre and Fortin (1989) discovered that the spatial structure we find in nature are most of 

the time gradient of patches, going by this we have based our analyses on the fact that area 

around the three parallel river are patches of regions containing bits of species of different plant 

in a given ecosystem. 
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3.5.1 Attribute analyses 

 

The variation in specific properties of natural phenomenon e.g vegetation, can be described 

using variables (Stein et al 2002); each variable relating to some properties. A variable therefore 

can take different values, on the basis usually of the properties at the earth surface. We 

distinguish two types of variables; Continuous variables (variables that take values at a 

continuous scale); examples are temperature and rainfall. Discrete variables are variables that 

take only a limited number of distinct values; example - land suitability. Occurrences of these 

variables can be labelled and can then be given a name. 

In measuring the average relationship between two (2) or more of these variables according to 

Chikkodi and Satyaprasad (2010) in terms of their initial units of data, we normally classify 

the variables into two (2) categories (dependent and independent). Independent variables (also 

known as explanator, predictor, or regressor), possess the value that influences that value of the 

other variables while the Dependent variables (also known as explained, predicted, or 

regressed- which in own case is the species), depends on the independent variable to gain its 

value. 

Attributes of a spatial data are grouped into three main types, which determine the nature of 

analysis and processing that could be carried out on the data. This classification is listed below 

 Uni-variate (one variable or column) 

The analysis could be done based on a uni-variate (single independent) variable. In this kind of 

analysis, we can easily calculate the mode, mean and median of the distribution as a sign of the 

central tendency; we could also calculate measures of dispersion which may include maximum 

value, minimum value or standard deviation of each observation point from the mean. Anderson 

(2001) added that another analysis that could be done with uni-variate data is the analysis of 

variance. 

 

 Bivariate (relating two variables or columns) 

 Bivariate analysis considers attribute of two (2) data variables 

 

 

 



GRACE SAMSON    U1251405 An Effective Approach for Mining Complex Spatial Data SUPERVISOR – JOAN LU  

51 
 

 Multivariate (more than two variables) 

Multivariate analysis basically deals with the situation where the dependent variable can be 

expressed mathematically as a combination of any number of independent variables, either lin-

early or non-linearly (Kestin 2006). In most cases, this kind of analysis would usually require 

external statistical packages such as SPSS or SAS. The study we are involved in deals with more 

than two variables as such we have carried out multivariate analysis using SPSS (see chapter 6).  

Anderson (2001), acknowledged that the analysis of multivariate data in ecology is one of the 

major task ecologist face when testing the hypotheses concerning the effects of experimental 

factors a on a whole collections of species at simultaneously, this is why a strong statistical 

package like SPSS became useful. 

Using the scientific method of project development according to Riffenburgh (2006), we have 

carried out this work in three (3) stages 

(1)  Describing the events (using descriptive statistics)  

(2)  Explaining these events (using statistical testing) 

(3) Predicting their occurrence (statistical modelling, regression and spatial analysis).  
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3.6 Existing Solutions 

 

The table below summarises some of the solutions for spatial data analysis and design and also 

for mining useful patterns from spatial data. 

Table 4: Example of existing systems in spatial data mining (application of spatial data mining techniques in various 
disciplines) 

Model Input Method Variables Output Issue 
GIS-based prediction 

model 

(van Horssen et 

al.,1999) 

Spatial patterns 

 

Geostatistical 

spatial interpolation 

- (kriging). 

land use, soil type, 

and some hydrological 

processes ( ground 

water data, surface 

water data and water 

quality) 

Spatial Response of 

wetland plant 

species 

Species distribution 

model, process-based 

model and Habitat 

models  

(Thuiller et at 2008) 

species’ 

interactions, 

interaction between 

of climate, land-use 

and demography 

exploration of 

existing prediction 

models and 

implementation of 

model by  

incorporating 

species’ migration 

into model 

Climatic conditions 

(climate data) 

Environmental 

conditions (land-use 

data) 

 

trailing edge 

response 

Species 

distribution/migr

ation and species 

probability 

Review of existing 

models. 

Pausas and Austin 

(2001) 

  

 Measurement and 

comparism of 

multivariate 

environmental 

gradient by 

considering 

different 

types and lengths of 

gradients 

Temperature, Rainfall 

Nutrients, Calcium, 

Water, light, 

Environmental 

heterogeneity, 

Disturbance, altitude, 

latitude, distance 

from the coast. 

 Patterns of plant 

species richness 

along 

environmental 

gradients 

Niche-based model,  

(Pearson et al.,  2006) 

 Extrapolation 

through model 

fitting  

Min temperature, 

heat, evaporation, soil 

moisture,  

Impact of 

niche based 

modelling to 

prediction, 

Species range 

prediction 

Generalized additive 

model and Generalized 

linear model 

(Bio et al., 2002) 

Site conditions Krigging 

(interpolation) 

Soil type, 

management regime 

(site mowing), 

Groundwater, 

Regression 

models 

Species response 

to site conditions 
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Process-convolution 

model 

Cressie et al (2006) 

Functional spatial 

variables (e.g.  pH) 

and gross 

production of all 

variables Biological 

population and 

Communities 

Geostatistics 

(ordinary and 

constrained kriging), 

Spatial moving 

average. Mantel 

test, mapping,  

statistical method 

Water temperature, 

acidity, 

microinvertebrate 

index, oxygen 

concentration  

 Change of 

dissolved oxygen 

around a river 

network and its 

effect on 

exceedances. 

 

3.7 Requirements Analysis 

 
For the nature of our research, the type of requirement to consider is the non-functional requirements 

which could be summarised as follows: 

– Physical environment (event locations, multiple sites  , etc.). 

– Interfaces (interaction medium .).   etc

– Physical or human factors ( ).  what variables would represent suitability factors

– Performance (how well is the algorithm or model functioning in term of 

s).  prediction

– Data ( ).  qualitative substance

– Resources (finding, physical space  ). 
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Chapter Four 
MATERIALS AND METHOD 

 

4.0 System Development Methodology 
 

The framework that is used to structure, plan, and control the process of developing an 

information system in software engineering is known as software/system development 

methodology. These specialised techniques can be utilised for finding scientific truth, making 

good interpretations of social phenomena, and designing effective systems.  

SDLC Processes: the software development life cycle (SDLC) describes the various stages 

involved in every information system development project, from an initial feasibility study 

through maintenance of the completed application. The basic step/processes involved in every 

software development life cycle include: 

 The existing system is evaluated/assessed 

 The new system requirements are defined 

 The proposed system is designed 

 The proposed system is developed 

 The system is put into use/Implemented 

 The new system is tested 

 The new system is maintained 

 

 

 

 

Figure 8: diagram showing the main stages in a software developmental system 

 

 

 

 

 

 

Evaluate Maintain Implement Develop Define Design Test 



GRACE SAMSON    U1251405 An Effective Approach for Mining Complex Spatial Data SUPERVISOR – JOAN LU  

55 
 

4.1 SDLC Models: 

 

The software development life cycle model is a framework that describes the activities 

performed at each stage of a software development project and there are various models that 

exist.  Some of these models include:  

 Waterfall model: a linear framework 

 

Figure 9: diagram showing the stages in a waterfall model 

 

 Prototyping: an iterative framework 

 

 

 

 

 

 

 

 

Figure 10: diagram showing the stages in a prototype model 

The prototype software development methodology consists of series of bidirectional activities 

that constitutes the main body of the method. These activities include: (a) building theories using 

mathematical models (b) developing the system by defining all necessary fields (c) working out 

an experiments; for example through evaluation or by using field data and then (d) observation 

which may involve case studies, survey studies or field studies. 

 Incremental model: a combined linear-iterative framework 

 

 

 

 

Observation 

System 

Developme

nt 

Experimentation 

Theory 

Building 
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 Spiral model: a combined linear-iterative framework 

 

Figure 11: diagram showing the stages in spiral model 

 

 Agile Methods: - Nuevo et al. (2011) pointed out that software development in a 

distributed way leads to multiple complications such as deteriorated 

communication; this has led to the development of another process development 

methodology known as the agile system. The Agile model is very useful in the 

handling of problems that are characterized by change, speed and turbulence 

(Highsmith, 2002).  The agile SDLC model is very expedient as we can see from 

the points listed below; 

 FDD  (Feature Driven Development) 

 Crystal Clear 

 DSDM  (Dynamic Software Development ) 

 RAD  (Rapid Application Development):  

 XP  (Extreme Programming) 

 RUP (Rational Unify Process).  

 

 

 

 

 

 



GRACE SAMSON    U1251405 An Effective Approach for Mining Complex Spatial Data SUPERVISOR – JOAN LU  

57 
 

4.1.1 Our system development methodology:  

 

The methodology adopted for this work is the prototyping model; this was chosen primarily 

because it well suits our objectives (considering the explanation given in the prototype model 

description and figure 10 above). We considered other methods including the traditional (a) 

water-fall model, (b) the agile model, (c) the spiral model and the incremental model and we 

have stated our findings in the table below. 

 

 

Method  Stages  fit  Category 
WATERFALL 6 Suitable for large scale 

plan driven  project 

Traditional hierarchical 

method 

 

PROTOTYPING 

(chosen method)  

 

4 
 

Suitable for building a 

working baseline model 

 

Traditional iterative 

method 

SPIRAL  4  high risk projects A business 

management 

structure 

 

SCRUM 

 

7 
 

Business management 
 

Agile 
 

DSDM 

 

7 
 

High business 

management 

 

Agile 

 

XP 

 

3 
 

Small technical 

projects: (assumes that 

participants has 

interchangeable skills) 

 

Agile 

    

 

4.2: Choice of Software 

 

The software adopted for this project is an open source application software known as Arcgis 

10.1. This was chosen based on the fact that spatial data mining incorporates the features of 

classical data mining in its database creations but in addition to this it also considers space and 

spatial distribution, as such a database management system that can manage and query the 

content of a geodatabase would be very necessary; that is why we chose Arcgis 10.1. more 

explanations about this has  been given in section 1.8 above. 

 

 

Table 5: software development models and their application areas 
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4.3: Data Preparation 

 

Key Point: Tools used in this analysis are based on (1) spatial analysis using the point 

interpolation method and (2) spatial statistics technique based on modelling the presence of 

auto-correlation; we used the interpolation tool because it is one of the spatial analysis tools 

used to predict cell values for locations that are not included in a given sample points. Of the 

three main sites covering the three parallel rivers zone, we derived sample points from the 

Lacang site (this is logically correct because interpolation considers sample points for the 

prediction of non-sampled and infinite number of points). While spatial analysis bases on the 

location of the cell on the raster layer, statistics based analysis depends on the attribute value of 

each layer. Because of the presence of autocorrelation, we used spatial statistics to discover the 

nature of the pattern that exist among the various plant species and the ecological environment, 

and then we were able to establish the trend and relationship that exist among them. 

Our work is based on the study and analysis of a given geographic surface using point pattern 

analysis. Surfaces represent phenomena that have values at every point across their extent (this 

forms the basis of our study of a spatial system i.e studying object that are related to space). In 

this case; an aerial photo of one of the major sites around the three parallel rivers (the Lacang 

River zone) was digitised and georeferenced and then some points were taken around some 

known and identified objects in other to map the land-cover around the river area for 

interpolation. Based on the fact that the values of points close to sampled points are more likely 

to be similar to each other that the points farther apart from each other, point interpolation was 

used to get the value of this set of sample points which was then used to derive the value of the 

points around the total surface area. The underlying stimulation behind the operation above 

is the fact that elements of an ecosystem that are close to one another in space or in time 

. These is a way of mapping are more likely to be influenced by the same generating process

ecological variables in other to produce either a uni-variate map by interpolation, trend surface or 

krigging or to produce a map for multivariate data  by constrained clustering (Legendre and 

Fortin, 1989). 
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4.3.1 Study area:  

 

The study area used in this work is Located in the mountainous north-west of Yunnan Province 

in China (as shown in figure 12 below), it is known as the “Three Parallel Rivers of Yunnan 

Protected Areas”. This area consists of eight geographical clusters of protected areas within the 

boundaries of the Three Parallel Rivers National Park, in the mountainous north-west of Yunnan 

Province, the 1.7 million hectare site features sections of the upper reaches of three of the great 

rivers of Asia: the Yangtze (Jinsha), Mekong (Lancang) and Salween Nu jiang run roughly 

parallel, north to south, through steep gorges which, in places, are 3,000 m deep and are bordered 

by glaciated peaks more than 6,000 m high. In addition, due to its location near the boundaries of 

three major bio-geographic realms, East Asia, South-East Asia and the Tibetan plateau, the park 

has 22 vegetation subtypes and 6,000 plant species (UNESCO, 2010).  

 

 

 

The Three Parallel Rivers of Yunnan Protected Areas is a natural serial property consisting of 15 

protected areas, grouped into eight clusters. The Property contains an outstanding diversity of 

landscapes, such as deep-incised river gorges, luxuriant forests, towering snow-clad mountains, 

glaciers, and alpine karst, reddish sandstone landforms (Danxia), lakes and meadows over vast 

vistas (unesco, 2010). 

 

Upper Yangtze (Jinsha) 

Upper Mekong (Lancang) 

Upper Salween (Nujiang) 

Figure 12: study area in eastern part of China 
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Figure 13: study area in eastern part of China 

 

  

Figure 14: study area in showing the north-western area of Yunnan province under study. 

 

According to Wang et al. (2007), the ecological environments are believed to contribute to the 

plant species distribution and diversity around this river area; these environmental factors 

include climate (e.g temperature, precipitation), elevation, topography, e.t.c as shown in table 6.  
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Table 6: Basic data set for our ecological study (adopted from Wang et al., 2007) 

 

 

4.4: Method of Data Collection 

 
Step 1: A real world presentation of the land cover classification based on the scope of our study. 

Tree
Tree

Public house

 

Figure 15: real life representation of our study area 

 

Step 2: Preparing the data 

While we used the table above to perform statistical analysis, we have chosen for spatial analysis 

of this study, a raster dataset derived from an image of an areal photograph of the study area as 

shown in figure 16 below. 

 

Figure 16: site representing the Arial view of the Lacang section of the three parallel 

rivers zone 
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Step 3: prepare a training set for the logical classification.  

 

 

Figure 17: supervised Classification  Figure 18: Classification of the study area according to land-cover 

 

Step 4: Using the training set, the image of the physical map in figure 14 was classified into six 

different classes as we can see below: 

   

Figure 19: supervised classification of the Yunnan District according to Land Cover (based on geographical map) 

 

Using a similar classification signature file, we are able to transforms the physical map of our 

study area to the following raster image as presented in our base map in figure 20; 

River                        Forest                                    

 

Unvegetated     Built_Up areas               

             

                 Pastures                   Agriculture  
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Figure 20: supervised classification of the aerial photo in figure 16 (Lacang zone of the three parallel river - based on 
satellite image fig 16 above). 
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Chapter 5:  

Data Analysis and Design 

5.1: Data Analysis 

 

The relationship between terrain, climate and vegetation is the main concern of an ecological 

study (Hao and Lu, 2010) and the main goal of that study is to discover the existing association 

pattern between the plants and those ecological variables in other to be able to retain rare and 

endangered species of plants or even animals in that area of interest (Wang 2008). Hara et al. 

(1996) and Qv (1984) also added that the results of plant ecology, both climatic factor and 

terrain factor (as we have listed above) are main conditions of the spatio-temporal 

heterogeneity of vegetation. The former is largely water - precipitation, heat - temperature and 

their combination, while the latter takes effect by reallocating the combination of water and heat. 

For our study of the distribution on plants species around the three parrarel rivers of Yunnan 

province china, we have classified the study are into (i) water (ii) forest (iii) bare-soil (iv) 

pasture (v) roads (vi) river edges; as shown in figure 15 above. 

 

5.2 Finding the spatial pattern: 

 

The spatial pattern of an ecosystem is the spatial regular distribution structure of ecological 

variables; this has proved to be one of the most embodiment patterns of spatial heterogeneity 

(Wang, 1999; Wu 2000). The first step of our analysis sets out to describe the spatial pattern of 

plant species patches with respect to some attributes which can be seen from the figure 21 below. 

These points were derived using Arcmap GIS software by sampling points from different 

locations on the aerial image of our study site given in figure 16 above. 
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Figure 21: showing attributes of plant species patches as located around the mountainous north-west of 

Yunnan Province in China – specifically, around the Lacang river  

 

As we can see from table 6 above, vegetation on and around the zone is dominated by Camellia 

and Water-lily at upper elevations, and orchids at lower elevations. The temperate desert 

climate at the zone averages of 109.4 x 0.1
0
c (as in table 6) monthly average precipitation 

sometimes falls as low as 0 x 0.1mm (almost falling as snow) during extreme weather 

conditions. 

We are interested in eight (8) species of the plants from the study site of the three parallel river 

protected zone (which is represented by r1 through r8 in table 6) and we have also considered 

two (2) types of criterion variables that characterises the heterogeneity of these vegetation types 

namely climatic and topographic as shown in figure 18 below. 

 

Climatic         Topographic 

 

Temperature       precipitation    elevation       terrain 

                   Slope       

Figure 22: showing main ecosystem variables. 
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The figure below shows the various points on the study surface where point where collected, 

which gave rise to the figure 

 

5.2.1 Points sampling: 

 

Figure 23: showing locations where sample point where selected on our basemap 

 

5.2.2 Sampling methods: 

 

According to Chikkodi and Satyaprasad (2010), sampling could be seen as the selection of 

typical and adequate fraction (finite subset) of the universe, population or bulk. This method or 

technique depends on the nature of the data, source of the data and the purpose of the enquiry. 

Ayala et al (2006) acknowledged that spatial point patterns often arise as the natural sampling of 

information in many problems.  

“The main aim of the analysis of mapped point data is to detect patterns (i.e., to draw inference 

regarding the distribution of an observed set of locations)” Waller and Gotway (2004). There 

are basically two (2) types of techniques Chikkodi and Satyaprasad (2010) available for 

analysing collecting spatial data (a) census and (b) sampling. We have adopted the sampling 

method of data collection, because we are dealing with data that change across a surface over a 

period of time e.g temperature, precipitation, e.t.c. 
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Particular, what we want to achieve in this project is to detect whether the set of locations of 

plants around the three parallel rivers observed, contains clusters of events reflecting areas with 

associated increases in the likelihood of occurrence (example unusual aggregations of cases of a 

particular type of species; or whether these sets of locations contain outliers of events that are 

possess a large degree of spatial heterogeneity see figures 35 - 37.  

5.3: Stating the research hypothesis 

Research Hypothesis:  

 

In this research project, our objective is to be able to describe the spatial pattern of plant or 

animal species in an ecosystem with respect to some ecological attributes, therefore going by the 

research methodology which we have adopted, we shall stating our research hypothesis thus: 

Ho: - Plant species types around the three parallel river parks are not significantly auto-correlated 

with the environmental factors/predictors of that eco-site (if this is true, then we can use the 

parametric statistical test; Legendre and Fortin (1989)). 

H1: - Plant species types around the three parallel river park are significantly auto-correlated 

with the environmental factors/predictors of that eco-site; this means that there is a significant 

spatial autocorrelation thus, the value of the I coefficient would be significantly different from E 

(I) which is equal to – (n-1) 
-1

; which is approximately zero 
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5.3.1 Analysing pattern 

 

Step 1: modelling the suitability of the Lacang zone for plant species through spatial analysis 

techniques. What we try to derive is a function that satisfies the typical scenario given below 

 

 

      

     

Figure 24: structure of our Prediction model 

 

This evolve from deriving such variables as   

 Slope from the elevation dataset 

 Creating the land cover dataset  

 Calculated distance data for the nearest species neighbour 

 Calculated distance data for river 

 Solar radiation derived from temperature data 

 Watershed derived from precipitation data 

The above derivation implies that the availability of a species AS (or the suitability of a given 

point location) is a function of the Sum of the weight of all the predictors multiplied by the 

product of the distant of the species from the river and the distance of the species to the next 

species as shown in the equation below: 

 

 

 

 

 

 

Species

s 

Elevatio

n 
Temperatur Precipitatio

 

Distance to water Distance to the next plant  

= - + 

x x 
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             



n

k

k

n

i
ii

DASxf pw
11

)( …………………………..(1) 

             

Where: AS = availability of a species AS (or the suitability of a given point location) 

 Wi = weight of the predictors i (pi) as parts of the condition or criteria for suitability 

 Pi = each i
th

 predictor criterion for suitability 

 Dk = all constraint including space 

Expanding the first part of the equation


n

i
ii pw

1

, we have 

 specnighbdistspecneigbdistwaterdistwaterdistluluss cwcwcwpwAs __*__*__** …………………. (2) 

Where s stand for slope as derived from the elevation data shown above and sw stand for the 

weight assigned to it. lu stands for land_use as one of the criteria, while luw stands for the weight 

assigned it, likewise, dist_water stands for the distance of the a given species occurrence from the 

nearest river network and  dist_waterw is the weight of that distance. Similarly, dist_neighb_spec is the 

distance between any two neighbours of an instance of a given species, while wdist_neighb_spec is 

the weighting assigned to it. 

The equation 1 above gives us a clear picture of the measurement of the suitability of an 

ecosystem for a given plant or animal species. This model can be applied to any form of spatial 

dataset in other to model or predict the occurrence of any event of interest. 

For this analysis, we have chosen some areas where there would naturally be constraints of plant 

species as areas which include rivers, road and built-up areas which was represented in the 

equation 2 above as kC . 

If we then expand



n

k

kC
1 , we would have  

kC
 = 

riverupbuiltroad CCC **
_ …………………. (3) 

Where roadC
 upbuiltC _  riverC
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kC  = constraints  

roadC  = constraint caused by road 

upbuiltC _  = constraint caused by built_up areas 

riverC  = constraint caused by built_up river 

 

5.3.2 Deriving the constraint variables using spatial analysis  

 

Table 7 below shows the output of creating a buffer zone for the constraint variable in other to determine 

the distance from each point (representing the species sample) to the nearest water line. This is a 

measure of the degree of unsuitability or suitability of a particular location (for the existence of a plant 

species) around the river zone based on distance. 

Table 7: minimum and maximum buffer distance for the constraint 

Constraint 

Source 

Min Buffer Distance  

(m) 

Max Buffer Distance (m) Buffer for analysis (m) 

Roads 20 200 20 

River 10 150 10 

 

Using the above table, we would be able to achieve a new matrix dataset of the form shown below. This 

in represents an identity raster (or - (Boolean/Probability);  

Where:  

1 represents a cell that is viable  

0 represents a cell with constraint 

And the resulting data is a Boolean raster. 

Table 8: output matrix from constraint model 

1 0 1 1 

1 1 1 0 

1 0 1 0 
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The raster represents the input to the mapping function used for spatial analysis and then it 

produces the new raster image in figure 31. 

 

5.4 Building the Prediction Model 

 

Models are simplifications of reality and they often contribute in system development or research 

process by helping researchers to formalize their understanding of a particular process or pattern 

of interest (Thuiller et al., 2008). For example according to Cressie et al. (2006), spatially 

predicting whether nutrient loads exceed pre-specified limits involves an indicator function, 

which is nonlinear. So by creating a model, one can easily predict the outcome of such a process 

instead of having to run an experiment every time a similar result is desired. 

 

5.4.1 Field data description 

 

We included input maps for the variables of land cover (obtained from maximum likelihood 

classification of the base map), roads and water-line (which of which we obtained by digitizing 

information from existing maps – base map), then spatial maps of distance to water and distance 

to the closest neighbour were constructed manually from information obtained spatial point 

distribution of the base map using the spatial analysis tool – Euclidean Distance – this gave us 

the nearest neighbour value for two nearest species which cell were closest to each other (cell 

distributions were characterized by the number of occupied grid cells known as occupancy as 

illustrated by Segurado and Arau´ jo, (2004). And then the distance of a given plant instance to 

the nearest water line (was calculated based on the straight-line distance between the two most 

distant occupied grid cells known as extent of occurrence (Segurado and Arau´ jo, 2004)). The 

other process in the prediction process is described below from steps 1- 4 of section 5.4.1 and 

steps 1 – 3 of section 5.4.2.  
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5.4.2 Computing the product of the constraint variables as shown by the equation 


n

k

kC
1

 

Symbol representation 

 

      Projected or proposed data 

      Tool applied to projected or proposed data 

                                        The derived data 

 

Step1: 

Create the buffer zone around the water_line and the road areas  

  

Figure 25: showing output of road and water_line buffer zone 

 

Step2: 

Convert the Road and Water_line features for the analysis 

 

Figure 26: showing road and water_line buffer zone 
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Step3: 

Convert the raster to a Boolean raster. In other to do this we convert NoData cells to 0 and 

convert the viable cells to 1 so as to achieve the matrix (Boolean/Probability) raster described 

above in section 5.3.2. 

 

Figure 27: showing the computation of the NoData (null) cell 

 

Step 4: 

Multiply all the constraint to according to the constraint function 


n

k

kC
1

  = riverupbuiltroad CCC **
_

from equation (1) and (3) above, this will give us the  

 

Figure 28: showing the end of the computational model with a final output raster that stand for the anticipated 

product of constraint as depicted in the map below. 
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5.4.3 Computing the sum of the prediction variables multiplied by the weight assigned to each 

as shown by the equation


n

i
ii pw

1 . 

 

 

Step 1: weighting all prediction variables 

 

Our prediction model above has been based on the fact that the criteria for suitability for any 

given plant species around the lacing zone of the three parallel river of the Yunnan northwest 

district is assumed to be the following: 
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Table 9: prediction criteria weighting 

 

 Temperature around the area 

 Precipitation rate 

 Elevation 

 Distance to the nearest water body 

Distance to the nearest species of common    

family 

 

 

 

solar radiation 

  watershed 

slope    

  Dist_Water  

Dist_Neighb_spec 

 

 

 

30%  

30% 

  20% 

  10% 

10% 

10% 

 

 

 

Step 2: Scaling  

The scaling range is based on the range of 1- 8 which is a typical classification of sample species 

chosen for the purpose of this study 

 

 Step 3: Overlay all layers based on weight and scale according to its important – so as to 

derive viability based on the criteria 

 

 

Figure 29: showing the computation of the overlay (which is a form of superimposing a data against another) 
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Figure 30: showing the final outcome of the prediction process with a map showing suitable area that plant can 
grow 
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CHAPTER 6 

Generalisation and Interpretation (Analyses and Result) 

 

6.1 Spatial Analysis 
 

Although Pausas and Austin (2001) suggests that Patterns of species richness along some 

environmental gradients (such as altitude, latitude or distance from the coast/water) do not have 

any direct causal relationship to plant growth, they also acknowledged the fact that richness with 

temperature and water availability always show a tendency towards an increase in species in an 

ecosystem, as such we have considered such distances because what we are interested in is the 

spatial nature of the ecosystem and its effect to plant probability. 

Thus, since the obvious regional difference of spatial heterogeneity of vegetation is induced by 

the complicated topographical terrain and monsoon climate system, which cause various river 

hydrology characteristics, soil types, vegetation types, etc as discovered by Hao and Lu (2010), 

we shall therefore conclude based on Ritchie (2009) Proposition that that predicting species 

diversity alongside its major patterns from underlying mechanism such as spreading and 

resource consumption is the main task to be carried out in the analysis of the study of an eco-

system.  

Based on the discussion above, we want to present the basis of our analysis at this point. What 

we are trying do is to carry out a surface analysis in this case, we shall use the calculation made 

from the surface distances between the species and the river as input for the constraints factors, 

this in conjunction with the input value from the computed variables from temperature, 

precipitation and elevation. It was discovered from this at the end of the model that the close 

distance from the stream is an important consideration when modelling the water-lily species and 

that a farther distance from the stream would be a factor to consider for species like camellia. 
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6.1.1 Result of spatial analysis 

  

Figure 31: A raster image representation of the table in table 3 above, where 0 represent restricted area and 1 
represent viable areas 

 

  

Figure 32: A general raster image representation of figure 27, showing the whole study area as classified by our 
model obtained by overlaying all the constraint and criteria variables   
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6.1.2 Result of the prediction model (predicting the presence of plant species around the 

river) 

  

Figure 33: A raster image representation of image 28 above showing a prediction value 

 

 

  

Figure 34 : final suitability model showing only areas that is suitable for any plant species to grow 
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6.1.3: Analysis 

 

The maps above represents the outcome of the prediction analysis as carried out in chapters five 

(5) and six (6). The results are explained by the map legends besides each of them and they all 

show the suitability of the lacing zone of the parallel rivers initially represented in figure 16. 

 

 

The next thing we shall embark on is the second stage of the analyses - statistical analysis; the 

statistical analysis helps us to identify patterns that exist among the variables of the elements of 

the three parallel rivers area. 

Some of the variable as identified from the table 6 in chapter 4 above include; temperature, 

precipitation, and elevation. Using a statistical analysis tool like the SPSS, we wish to determine 

which of the attributes of an ecosystem affects the species of that ecosystem, the degree of 

effectiveness and non-effectiveness. 
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6.2 Statistical analysis 

 

6.2.1 The resulting table from the process of spatial analysis (this will form the input data 

for our statistical analysis) 

 

Table 10: prediction criteria weighting 

 

 

6.2.2 Problem Statement: 

 

What we are trying to do is to analyse the relationship between the time series data, and then see 

how they are related or how they affect the plant species.  

Given:  

Data                                                        Time Series (Temperature, Precipitation) 

           

Problem      

             

Test                                                         Statistic test using the Durbin-Watson test Statistic  

 

 

Non-stationarity)/Autocorrelation 
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6.2.3 Describing variable data 

 

We would be using the table below for our analyses (the table is derived from the summary of 

the table in section 6.2.1, which contains only the Independent and Dependent variables -IVs and 

DVs- necessary for statistical analysis) 

Table 11: prediction criteria weighting 
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If we assume that q independent variables (e.g temperature, precipitation) are potentially 

related to the a dependent variable (species), and If we have N sample points, we calculated the 

covariance of the x, y points (temperature, precipitation in our own case), using T to stand for 

temperature, S for species and P for precipitation, we need to calculate autocorrelation because 

we are trying to predict how these data change over time and how they affect the plant species 

around the zone. We present the result of the descriptive statistics as below; 

 

Table 12: description of variables and their statistical description 

 

 

6.2.4 Finding Patterns 

 

 

Figure 35: diagram of the spatial auto-correlation of temperature data showing the nature of the pattern of 

temperature around the river zone – this explains phenomenon like outliers, collation, and association rule 

e.t.c. 

Example 

outliers 
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Figure 36: diagram of the spatial auto-correlation of the precipitation data against itself – showing a linear 
positive relationship 

 

 

Figure 37: diagram of the spatial auto-correlation of the elevation data, the curve depicts inconsistency suggest 

that there is no defined linear relationship among the data 

 

Co-

location/associatio

n pattern 

Trend 

Positive 

relationship 



GRACE SAMSON    U1251405 An Effective Approach for Mining Complex Spatial Data SUPERVISOR – JOAN LU  

85 
 

 

Figure 38: using a chart to show patterns that exist between the ecological variables and the species type 

 

This chart above shows the basic trend that exists between the ecological variables and the 

species type around the three parallel river zones, with low temperature around the zone, high 

elevations and high precipitation can be perceived. The chart also shows that the Orchid grows 

basically around areas of average precipitation and low temperature while Camellia and Water- 

lily enjoy higher precipitation and higher elevation; see clarification of patter in figure below. 

 

 

Figure 39a: how precipitation affects the species around the river zone 
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Figure 40b: how Temperature affects the species around the river zone 

 

 

 

Figure 41c: how elevation affects the species around the river zone 
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6.2.5 Graphical representation of the time series data 

 

 

Figure 42: time series diagram for precipitation data 

 

 

 

 

Figure 43: time series diagram for elevation data 
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Figure 44: time series diagram for temperature 
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6.2.6 Testing for autocorrelation among the variables 

 

The correlation of a time series data with its own historical and future value can simply be 

termed autocorrelation. This has been presented using the diagrams below; each diagram 

explains the nature of the pattern that exists in a given eco-site – showing outliers and trends.  

According to Nerlove and Wallis (1996), in other to use the Durbin-Watson test Statistic for 

testing auto-correlation, the null hypothesis states that there is a significant serial independence 

among the residuals of a regression analysis but the alternative hypothesis states that there is a 

positive autocorrelation among the regressor variables – although this power is being limited by 

the presence of lagged dependence among the regressor variables ( this explains the concept of 

spatial outliers – a case of error variables which are not considered in the mining process).  

We used the Durbin-Watson test Statistic for testing for the presence of autocorrelation. 

Because we are dealing with multiple time series data which always shows sign of positive 

autocorrelation, the test is considered significant in our study because it considers the fact that 

residuals from a multiple regression analysis are independent. This helps us accept our null 

hypothesis below and then reject the alternative or vice versa. Generally, the Durbin Watson test 

is of the form: 

 H0: q = 0 

H1: q > o 

This means that H0, then we are saying that the residual of the regression analysis q equals 0 

H0: - Plant species types around the three parallel river parks are not significantly auto-correlated 

with the environmental factors/predictors of that eco-site (if this is true, then we can use the 

parametric statistical test; Legendre and Fortin (1989)). 

H1: - Plant species types around the three parallel river park are significantly auto-correlated 

with the environmental factors/predictors of that eco-site; this means that there is a significant 

spatial autocorrelation thus, the value of the I coefficient would be significantly different from E 

(I) which is equal to – (n-1) 
-1

; which is approximately zero. 

 We can summarise the test as below according to white (1992): 

Given that t is the position of each species that occurs at a given location around the study space, 

y(t) is the value of the response variable obtainable in position t, which is affected by the value 
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xt at a specific point in time  in xi where i the number of predictor variables  = 1….. k and n is the 

total number of observations obtainable by number of sample points, then the Durbin-Watson 

test Statistic  can be given as: 

 

 

   
 ∑               

 
   

∑   
  

    
……………………………………………….eqn. (1) 

Where ei the ith residuals equals (=) the value of the observed yt at the ith observation of  the 

response variable minus (-) the predicted yt at that observation, d is the value of the test of 

significance which is Durbin Watson’s value in this case. We shall reject the null hypothesis 

that there is no significant autocorrelation between environmental factors of an ecosystem and 

the existence of a given plant species, if the value of the test statistics q is less that the significant 

confident level which we have chosen as ….  

This means:  

Reject H0 if d is less than d (<) (dL) 

Accept H0 if d is greater than (>) (dU) 

Otherwise result will remain inconsistent. 

    Table 10: summary statistics of proposed model 

 

         

 

 

It is very obvious from the value of the regression analysis above that each value of the Ith 

coefficient is significantly different from the “Expected I” = 0.00323 

Our model accounts 

for 26.5% of the 

variance in species 

If we apply the model 

to similar situation 

then the predicting 

power reduces from 

26.5 to 18.6% 

 R = 69.6 shows that 
there is a significant 
autocorrelation 
among the predictor 
variables 
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Where the value of the I
th coefficient = 0.515. Thus this shows that Plant species types around 

the three parallel river park are significantly auto-correlated with the environmental 

factors/predictors of that eco-site. 

 

 

 

 

Starting with  

k = 3 (number of predictors) 

D (Durbin Watson test statistic) = 0.696 

N = 32 

α =0.01 

dL = 1.01,  dU = 1.42 

Error rate = 1% type 1 error rate 

 

The p value of 0.01 is a good line of demarcation for us to make a judgment. Confidence = 1-p = 

1 – 0.01 = 0.99. So we have a 99% confidence that we are making the correct decision.  

Note: the type of test we carried out was the Durbin Watson test statistic for spatial auto- 

correlation with our hypothesis as stated above, the significance level we have taken as 0.01 

giving our level of significance at 99%. So we reject the null hypothesis that there is no 

significant auto-correlation between the ecological factors f an ecosystem and the plant species 

present in the region. We computed sample test statistic and come up with the value 0.696.then 

we choose and computed our p value to be 0.01 and then the model was developed based on the 

decision made in the outcome. 
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6.2.7 Building the prediction model 

Hypothesis: 

 

H0: - Plant species types around the three parallel river parks are not significantly auto-correlated 

with the environmental factors/predictors of that eco-site.  

 

H1: - Plant species types around the three parallel river park are significantly auto-correlated 

with the environmental factors/predictors of that eco-site; this means that there is a significant 

spatial autocorrelation. Thus the value of the I coefficient would be significantly different from E 

(I) which is equal to – (n-1) 
-1

; which is approximately zero (Legendre and Fortin, 1989). 

Also from champion et al. (1998), then if we take the positions t of the species in a sample of n 

observations, i.e n = 32 in our own case, we can then obtain a series in the form: 

[t, y(t)]; t = 1,2,3…….n …………………………………….eqn. (2) 

Where y(t)  is a function based on t position. 

If we superimpose eqn. (2) into a regression model, we would have that: 

y(t) = g(i)t + et for i ≥ 0, t ≥ 1…………………………………….eqn. (3) 

Where et is the expected value of the i
th

 coefficient, which is equal to – (n-1)
-1   

 

Then for series i = 0…k, k = 3 (three (3) predictor variables) and i = each value of k at t position, 

t = 1…. n and g is the correlation coefficient (R) of the predictor variables of we would then 

have:  

y(t) = g(0)t + g(1)t + g(2)t +  g(3)t + et  for i ≥ 0……………………… eqn. (4) 

This fits into the general regression formula y = gx +a…………….eqn. (5) 

 

 Here y = predicted (response) variable, 

g = slope of line – which in this case is the correlation coefficient of ith value at position t  

x = known variable (predictor), 

a = y intercept of the linear regression line 
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Using statistical analysis method, we were able to test our hypotheses statistically by three 

standard methods; anova, correlation and regression and the result is shown below. 

 

 

 

IVs = Independent Variable 

 

 

The regression analysis has indicated that the elevation (though not zero from the t- statistic) of 

the three parallel river geographical locations does not have a significant relationship with the 

existence of plant species around the three parallel rivers, as we can see in figure 39 above. 

Table 13: the correlation between precipitation, temperature and species 

The model is 
generally 
significant at α = 
0.05 

Shows the level 
of significance, 
indicating that 
ELEV is not a 
significant 
variable in the 
model 

The bounds 
indicates that we 
have confidence 
that each value 
of the IVs are 
between the 
given intervals 

t statistics, 
showing us that 
actual values of 
the IVs are not 
zero (0) at  α = 
0.05 

 

Showing standard 
deviation of IV 
value from the 
population mean 

Correlation 
coefficients of all 
the IVs 

Figure 45: statistical analysis of the prediction model 

26.5% variance of Species 
around the river zone can be 
predicted by all the IVs 

51.5% correlation among 
the variables used in the 
prediction model 
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Statistics Elevation (R -coef) Precipitation (R- coef) Temperature (R - coef) 

Coefficient 0.00001 0.005 -0.045 

Confidence Level 95% 99% 95% 

Significance 0.05 0.01 0.05 

 

Applying the value of the unstandardized coefficients to our own regression equation, we obtain 

the new values for equation (5) –  

y = gxj t +a   becomes: 

 

 

    

 

 

Dependent variable (predicted) 

 

 

6.2.8 Model interpretation 

 

The raw equation (shows the effects of the predictors to the predicted variable but 

does not show which is stronger): 

Y (species) = bx + a 

 Species (id) = 0.00001 elevation + 0.005 precipitation – 0.045 

temperature + 8.388 

 

 

 

 

Independent (known) variable (predictor) 

 
The slope of the equation  

The y intercepts (the constant value) 
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The standardized equation shows which of the IVs has the strongest effect on the 

species   =  Precipitation 

Y (species - id) = βx 

oR 

Y (species) = bx1 +bx2+bx3…. 

 Species = .000 elevations + 0.005 precipitations – 0.045 

temperature…… 

 

The model is generally significant at α =0.05 with a 95% confident level and F = 0.033 

(remember according to the explanations in section 3.1.2, the poor significance rate of 0.033 is as 

a result of the problems posed by the self-dependent nature of spatial data which gives rise to 

autocorrelation and thus making the effective sample size less than the number of observations – 

 especially because F is positive). 

We shall accept the alternative hypothesis (with type 1 error) that the environmental factors of 

an ecosystem are significantly auto-correlated with the species around the ecosystem. This is so 

because all the values of the I
th 

coefficient were significantly different from E (I) which is equal 

to – (n-1) 
-1

; which is approximately zero. 

We therefore conclude that the plant species types around the three parallel river park (using the 

Lacang zone) are significantly dependent on some environmental factors/predictors (such as 

temperature and precipitation – we saw that elevation on the areas around that site has no 

significant influence on the species) of that eco-site; this means that there is a significant spatial 

autocorrelation among the independent variables (IVs) and the dependent variables (DVs).  

Based on the above conclusion our final model for the prediction of plant species around the 

three parallel rivers will be stated as: 

 

 Species (id) = 0.00001 elevation + 0.005 precipitation – 0.045 

temperature + 8.388 *dist to the water * dist to neighbour 
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Chapter 7: 

System Design 

7.1 Basic Algorithm for Mining a Complex Spatial Dataset 

 

The 8 steps below are suggestions of basic steps to mining spatial data; these would be improved 

on in further research: 

1. Get data from survey, observation or digitized map layer  

2. Identify all attribute data present in all objects 

3. Test for auto-correlation; using moran I for single variables and statistical packages for 

multivariate data 

4. If autocorrelation is present, identify the nature of pattern that exist 

5. Using appropriate tool derive variables that are most likely the event predictors 

6. Test for cause and effect impacts 

7. Derive the prediction model by explaining  some events occurrence through analysis and 

exploration of data 

(a) form a set of hypothesis about these variables which are likely to cause these 

events 

(b) test statistical significance of the hypothesis 

(c) model more precisely, any quantitative nature of the relationship that may exist 

using linear regression  or any other tool for multivariate data. 

8. Evaluate your model. 

 

 

 

 

 



GRACE SAMSON    U1251405 An Effective Approach for Mining Complex Spatial Data SUPERVISOR – JOAN LU  

97 
 

7.2 Process model for mining data in a spatial dataset in a programming context 

start

present

Get data 

for 

analysis

Identify 

objects and 

their 

attributes

Test for 

autocorellation

Find existing 

pattern

Identify cause 

and effect 

variables

State hypothesis

Hypothesis 

significant

Build 

prediction 

model

stopl

Evaluate 

model

 

Yes No 

Yes 
No 
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7.3 System Design based on Data Mining Methods 

 

In a brief description, what we have achieved in this process could be easily described using a 

fish bone diagram (figure 43 below) which shows a cause and effect scenario (Category 1 and 

2) of the factors that can contribute to the existence of a plant species in any eco-habitat: 

 

 

Figure 46:  Fish bone diagram showing cause and effect 

 

 

Category 1 causes as shown in the diagram was used for the data mining technique based 

analyses (for the purpose of prediction), while the section in category 2 was used for statistical 

analyses (for finding patterns and relationships and also for determining the presence of absence 

of autocorrelation).  
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7.4 THE CONCEPTUAL MODEL: 

Step 1: Stating the problem 

 

 

 

 

Step 2: Breaking the problem down 

Measurement:- what is the best point for a particular species to grow, would it preferable breed 

near or far away from the river, what degree of slope would be more suitable, what intensity of 

solar radiation and quantity of precipitation will determine viability or otherwise. Other 

objectives that could be included in this example could be plants existing in an area with highest 

density of similar species. In addition, consideration should also be made of areas where plants 

cannot breed like un-vegetated areas, rivers and built up parcels. 

 

 

 

 

 

 

 

 

 

Figure 47:  using a conceptual model to understand the sub-systems involved 

 

 

 

 

 

 

Predict the presence of plant species in 

an ecosystem based on the suitability of 

any given location around a river area. 

Predict the presence of plant species in an 

ecosystem based on the suitability of any given 

location around a river area 

Close to the river The amount of 

precipitation 

must be….. 

Solar radiation 

should not 
exceed…. 

Close to speciess 

of the same 

family 

Slope should be 

less than  

And the location 

should be a suitable 
land_cover 
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Step 3: Defining classes and process, and Computation of variables 

Where are locations lower slope 

 Input the elevation data set 

Does the land cover in the above locations suitable for plant breeding? 

 Input the land cover data set (but you need to consider land cover suitability factor e.g 

forest, pastures, agricultural and river areas would do better than un-vegetated and 

built-up areas). 

Are they (the locations) near enough to the location of other family members 

 Input location dataset for the nearest species neighbour 

Are they (the locations) near enough to the river area? 

 Input the location of the river (and create a buffer for restriction) 

Is there enough sunlight for maximal radiation? 

 Input solar radiation 

Is there enough sunlight for maximal radiation? 

 Input watershed 
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Figure 48:  A conceptual model to define classes and process, and computation of variables 
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Step 4: Describing the Dataset: 

 Elevation: - Dataset representing the elevation of the area 

 Land cover: - Dataset representing the land-cover types over the area 

 Dist_Water: - Feature class representing the of river network which was calculated by 

creating a 10 meter buffer zone around the water_line feature) 

 Dist_Neigb_Spec: - Feature class representing point locations of species sample sites 

(basically three types chosen for our). This is used to show the nearest species neighbour 

within the shortest distance and it was calculated using the euclidean distance tool in 

arcgis spatial analyst extension. 

 Temperature: - Feature class representing sampled point locations sites for temperature 

data collection 

 Precipitation: - Feature class representing sampled point locations sites for precipitation 

data collection 

 Reclass  
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Step 5: Reclassification: 
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Figure 49: A conceptual model to showing reclassified classes 
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7.2.1 Reclassification explained: 

 

The process of reclassification applied in spatial data analysis involves weighing or grouping of 

values based on certain criteria; this can be done going one value at a time or groups of values at 

once. These criteria could be specified intervals or specified areas. The functions used for 

reclassification are designed to allow you to easily change many values on an input raster to 

desired, specified, or alternative values.  

 7.3 CLASS DIAGRAM 

 

 
Figure 50:  class diagram showing classes and their attributes 
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7. 5 Activity Diagram (in context) 

  

 

 

 

  

 

  

Figure 51: Use Case Diagram for Programming Aspect 
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Chapter 8:  

Professional and Ethical issues in scientific project development 

Professional and ethical issues are very important for the success of a project, and it is always a 

good practice to make sure that projects are done within the law without causing harm to the 

users and the environment in which it would be used 

8.1 Ethical issues 

 

Adu-Gyamfi and Okech (2010) stated that most scientific domains have guidelines concerning 

ethics in research. These guidelines are designed to enable researchers to conduct good research 

while avoiding potential harm to research participants. Leedy and Ormrod (2005) summarize 

ethical issues in research in four (4) main categories considering the major stake holders of any 

form of research (Human and Data):  

(a) Protection from harm – participant must not be exposed to harm  

(b) Informed consent – participant must know the nature of the research  

(c) Right to privacy – participant right of privacy must be protected  

(d) Honesty with professional colleagues – researcher must be honest in their report  

 

8.2 Professional issues 

  

Professional issues in computing and information has to do with the fact that information 

systems, software or computing based  project has to conform to the codes of conduct of relevant 

legislations and regulations, making sure that systems e.g projects are written professionally. 

Some of these codes of conduct include the standard regulations set by: 

 British Computer Society (BCS) 

 Association for Computing Machinery 

 (ACM) 

 The Institute of Electrical and Electronics 

 Engineers (IEEE) 
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 In writing the research project (based on the nature of study that we are undertaking), we have 

ensured that there was no clash of interest created by our mode of data selection especially the 

data from the study area, which has been handled with maximum integrity and confidentiality. 

Furthermore, based on the four point BCS standards for professional writing in information 

technology as can be seen in (BCS 2011) code of conduct report, we have also ensured that the 

data for the purpose of this research was only used to achieve the scientific research objectives.  

 

Some other codes of good practice as enabled by BCS professional ethics incudes the fact that 

the project report would be: 

 Written in clear brief English without any slangs. 

 Presented in contents page and appendices. 

 Presented in a clear layout, in line with module handbook regulations. 

 Referenced in Harvard style. 

 Presented with limited grammatical or spelling irregularities. 
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Chapter 9 

Evaluation of product by self and by stake-holders 

Evaluation is a way of testing effectiveness of a developed system. This will help us to analyse 

the developed model and then make any necessary adjustment. 

9.1 Evaluation of product by self 

 

9.1.1 Statistical evaluation 

 

Based on statistical inference, the first evaluation of our model in predicting the plant species 

around the three parallel river Lacang zone was done based on statistical significance and the 

predicting power of our model. This is shown in the table below where the highest error is 4. 

This prediction is based on the actual values as we have in the table (11) at the beginning of this 

model building; 

Spec id Elev Temp Prec pred. y error 

CAM1 1 900 90 0 4 -3 

CAM1 1 1200 100 7 4 -3 

CAM1 1 1600 108 21 4 -3 

CAM1 1 2000 130 307 4 -3 
 

WATER_LI1 2 500 80 12 5 -3 
 

WATER_LI1 2 600 111 13 3 -1 
 

WATER_LI1 2 800 130 133 3 -1 
 

WATER_LI1 2 900 102 55 4 -2 

CAM 2 3 700 99 71 4 -1 

CAM 2 3 790 100 205 5 -2 

CAM 2 3 850 144 502 4 -1 

CAM 2 3 1100 142 330 4 -1 

CAM 3 4 200 93 0 4 0 

CAM 3 4 300 115 98 4 0 

CAM 3 4 500 141 171 3 1 

CAM 3 4 700 165 793 5 -1 
 

WATER_LI2 
5 

120 77 17 5 0 
 

WATER_LI2 5 180 68 228 6 -1 

 5 300 116 212 4 1 
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WATER_LI2 

 
WATER_LI2 5 400 113 453 6 -1 

ORCHID 6 200 93 36 4 2 

ORCHID 6 400 105 228 5 1 

ORCHID 6 600 130 679 6 0 

ORCHID 6 800 145 190 3 3 

ORCHID 2 7 600 93 40 4 3 

ORCHID 2 7 900 103 882 8 -1 

ORCHID 2 7 1000 120 46 3 4 

ORCHID 2 7 1200 151 899 6 1 
 

WATER_LI3 8 1000 67 7 5 3 
 

WATER_LI3 8 1300 84 62 5 3 
 

WATER_LI3 8 1800 81 184 6 2 
 

WATER_LI3 8 2000 105 734 7 1 

 

The values with the    line has been predicted correctly, which means given 

another 4 sample  of a same species with varying ecological variables like temperature, 

precipitation and elevation (although the elevation has little or no significance in the prediction), 

there is a 26. 5% guaranty that the IVs can predict the value of the species as has been indicated 

by our model.  

The high error rate of 4 accounts for the outliers which we can identify from the diagram in 

figure 35 through 37. 

Generally at 95% confidence level, our model is model is significant. 

 

 

 

 

 

9.1.2 Evaluation using non-parametric bootstrapping 

 



GRACE SAMSON    U1251405 An Effective Approach for Mining Complex Spatial Data SUPERVISOR – JOAN LU  

110 
 

Another way we could evaluate the efficiency of the model developed in this project, is based on 

the ideas suggested by Todem et al. (2010), here since they acknowledge that, because in most 

prediction models, some of the model characteristics (which may have most perverse effect) are 

always non-identifiable from observed data, thus one best approach to evaluate the statistical 

hypothesis is to fix a minimal set of sensitivity parameters conditional upon which hypothesized 

parameters are identifiable.  They believe that in most multivariate statistical modelling, there is 

always likelihood that outliers are never ignorable when evaluating covariate effect on the 

model’s behaviour or performance. The bootstrapping tool is an evaluation tool that is basically 

used when the normal traditional assumptions are violated, to accurately test or adjust the model. 

This evaluation at this stage is beyond the reach of this project scope (because of time constraint) 

but will be considered if further research works  

 

9.2 Evaluation of product by stakeholder 

 

The major stake holder in context for this project is the project supervisor. In evaluating the 

product of this project work, the supervisor used the heuristic method of information system 

projects evaluation. This mode of project evaluation entails the process of finding satisfactory 

solution using intuitive judgement, educated guess or common sense. Judea (1983) also 

highlighted that heuristics strategies uses readily accessible but loosely applicable information to 

establish problem solving inhuman beings. 

In other words the supervisor’s evaluation of the project work was based on already known 

features of prediction models, which helps to identify some of the main key item that must be 

present in a prototype model of this nature based on the fact that the project work is a research 

framework for a more advanced research on mining complex systems using spatial data mining 

techniques. 
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Chapter 10 

CONCLUSION 

 

The project work was based on mining of complex spatial databases. After conducting a deep, 

thorough and reflective research, we were able to come up with a prototype model for predicting 

the plant species around an ecosystem based on the features and influences of some predictor 

variables. Our research output is the development of spatial mining methodologies, basic 

algorithm and tools that can address the following problems: 

 

 Regional patterns discovery – Interesting places and their associated patterns (take our 

case study for instance) 

 Spatial clustering and outlier effects in a spatial data 

 Co-location and correlation mining 

 Mining predictions for complex spatial systems. 

 

Spatial data mining is a branch of data mining where space and location of object is an important 

factor. In this advanced research based project, we have carried out an extensive research on the 

field of data mining and we have managed to develop a framework for spatial data mining which 

is suitable for further expansion and research. We looked at the various branches and tools for 

data mining and we had a detailed study of spatial data mining; tools techniques, methods, and 

tasks. We also looked at the various application areas of spatial data mining and the nature of 

specific pattern that could exist in a given spatial dataset. Using a two stages methodology, we 

developed a prototype generalised prediction model, the first stage was the analysis of the spatial 

data based on spatial analysis tools such as distance, overlay, con, isnull e.t.c this spatial 

analysis produced  a prediction map showing parts of the areas around the river zone which are 

suitable for plant species to grow and other areas which are not suitable,; this was derived using 

a prediction model as we can see in figure  31 through 34 in chapter 6 above. 

The other analysis we did was based on statistical implication, this was basically used to test for 

autocorrelation and to find pattern. Through that analysis we deduced that the elevation of any 

geographical location does not have any significant impact on the plant species around that 

location, it was also deduced that the precipitation around that area has the greatest impact on the 
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plant species whereby increase in precipitation always yield a positive impact on the species 

whereas lower temperatures are more preferable. 

Finally, we evaluated our model using statistical inference and bootstrapping and our model 

proofed approximately 27% effective in predicting the existence of a plant species around the 

three parallel rivers (Lacang zone) 

 

FUTURE WORK: 
 

Despite the time constraint of this project, we have tried to produce a prototype model for the 

prediction of a complex spatial dataset, thus we plan to carry out much detailed and complex 

analysis of various models of real-world problems as a future contribution to this work. Basically 

the main investigation to be done on this study area, is the development of novel, genetic and 

generic algorithms for complex spatial data mining; this would make the spatial data mining 

field very versatile as it would possess the capability of solving problems from various range of 

field including analysing human related complex processes such as applying the study to the 

building and modelling of human cognitive ability, human – environmental physiognomies 

and many other. 

More practically, our major future plan is to develop a generalised model for spatial pattern 

mining capable of analysing data from a complex spatial system and then produce information 

that would be useful in various disciplines where spatial data form the basis of general interest. 

In essence, our main aim is to be able to create solutions for the following projects based on our 

developed algorithm: 

 Modelling the spatio-temporal patterns of human cognition 

 Spatial analysis of natural disturbances: the effect of air pollution on water or 

weather condition 

 Modelling and simulation of inflation rate and control: a case of the Nigerian 

economy 

 Simulating the effect of Climate on the culture of a people 

More so, one of the problems encountered in this analysis is a way to solve the problem of poor 

measurement of goodness-of –fit caused by the self-dependent nature of spatial data, as such in 

our future research, this will be one of the main tasks in our future research. 
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Appendix 1: Proposal 

DESCIPTION OF PROJECT 

  
To: Prof. Lu  

From: Grace Samson (U1251405 – MSC Computer Science)  

Date: 5th June 2012  

Subject: Research proposal  

 

Proposed Research Topic  
An investigation in Efficient Spatial Patterns Mining: Mining Complex Spatial 

data  
 

Key words:  
Complex Spatial Systems (CSS), Predictive modelling/ Knowledge Management, Spatial Patterns 

Mining, Querying CSS, Mathematical CSS Modelling, Event Prediction.  

 

Purpose  
To develop a generalised model for spatial pattern mining capable of analysing data from a complex 

spatial system and then produce information that would be useful in various disciplines where spatial 

data form the basis of general interest. As acknowledged by Wilson (2002), complex spatial systems 

are defined as those systems described by many variables, with high levels of interdependence 

between elements, governed by non-linear processes and having significant spatial structures. One 

would have noticed that the major challenge in trying to build a general complex spatial system 

model would be; to be able to integrate the elements of these complex systems in a way that is 

optimally effective in any particular case.  

As highlighted by Shekhar et al (2005), the explosive growth of spatial data and widespread use of 

spatial databases emphasize the need for the automated discovery of spatial knowledge. This is what 

motivates our research interest. Although there some general purpose data mining tools such as 

Clementine and Enterprise Miner which are designed to analyse large commercial databases 

according to them, general purpose tools for spatial data mining (especially in the case of a complex 

spatial data) need also to be develop because extracting interesting and useful patterns from spatial 

data sets is more difficult than the patterns from traditional numeric and categorical data due to the 

complexity of spatial data types, spatial relationships, and spatial autocorrelation. As a result, we 

seek to develop a predictive model output patterns for spatial data mining.  

The prediction of events occurring at particular geographic locations is very important in several 

application domains. Examples of problems which require location prediction include crime analysis, 

cellular networking, and natural disasters such as, droughts, vegetation diseases, and earthquakes.  

 

We seek to create an explicit spatial model for event prediction using basic spatial data mining 

algorithms and not any of the general purpose data mining algorithms. In essence we aim to look at 

modelling (predictive modelling/ knowledge management of complex spatial systems), querying and 

implementing a complex spatial database (using data structure and algorithms).  

Background  
There are basically three types of complex systems as noted by Weaver (1948, 1958). These include 

the simple, the organised complexity and the disorganised complexity systems respectively. For the 

purpose and scope of our research work we are going to be considering the organised complex 

system and then move further into the disorganised complex system and complex adaptive systems 

in further research works. Organised complex systems are described by many variables, and all 

variables have strong interdependencies. Human beings, brains, economies, cities, ecosystems, and 
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language all provide examples of organised complex systems. Organised systems are also 

characterised by the presence of nonlinearities (consider figure 1.0)  

 
 

 

Fig 1.0: A diagrammatic view of different spatial data layer and data from such a system is handled for 

knowledge management in a complex organised system.  

 

Because complex spatial systems are those with significant spatial structures, we shall concern 

ourselves majorly with three main tasks:  

1. We shall investigate, examining and analyse the different range of disciplines where complex 

spatial data has a significant function and then we shall link some of these functions to the 

development of complexity theory.  

2. We shall investigate existing mathematical models for modelling these kinds of systems and then 

try to develop a better analytical/predictive model for such complex systems, by implementing (using 
data structure and algorithms) and querying a given complex spatial database.  

3. We shall then take an example from one of the various existing models (e.g. Urban) which form an 

important antecedent of the programme of building general models of complex systems within the 

field of complexity theory.  

4. Finally we shall make a conclusion based on what we have discovered from the proposed 

extensive study of complex spatial systems.  

 
However, the four (4) basic areas of interest of spatial data mining as listed below, would be a major term 

of reference to what we intend to achieve (and our major task would be to develop an algorithm for some 

of these tasks and then identify their application areas).  

1. Predictive modelling/ Knowledge Management (for event prediction)  

2. Spatial outlier detection  

 

3. Spatial co-location rule/patterns mining  

4. Spatial clustering.  

5. Spatial trend  

6. Spatial classification  
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Theoretical framework:  
We shall be guided most generally by the interpretive perspective, and more specifically by Wilson’s 

(2002) ‘Models of cities’ approach. The interpretive perspective places the focus on interpreting the 

meanings and perspectives of modelling a complex spatial system based on three major range of 

method/approaches; Non – linear mathematics, Computer simulation and Visualisation of result.  

Exploration of the meanings of cities and region as complex spatial systems, identification of 

elements of a complex spatial system, conventional models for CSS and relationships that could exist 

between elements of CSS as well as investigating a conceptual frame work shall be based on the 

work of Wilson (2000). Shekhar et al (2005) will guide us through the basic components, elements, 

techniques and features of a spatial pattern mining task; as this forms the basis of our argument. 

Some of these issues include  

1. Spatial data types (points, lines and polygons/regions )  

2. Spatial attributes (latitudes, longitudes shapes…….)  

3. Implicit spatial relationships among variables  

4. Observations that are not independent, and  

 

 

Method  
1. we shall start by Conducting an intensive literature review on Data mining, Spatial data mining, 

Complex systems, Spatial patterns mining, Complex spatial system, Methods for modelling and 

querying a spatial database, Predictive modelling/ Knowledge Management and Creating 

mathematical models for computer simulation.  

2. Then we would undertake a thorough analysis of existing models and algorithms for predictive 

modelling/ knowledge management of CSS.  

3. We shall then try to work out a new algorithm for modelling a complex spatial system  

4. Design a simulated system for complex spatial system prediction  

5. Design a system for visualization of event prediction result using Java programming language  

6. Write a research report that combines our understanding of the relevant theory and previous 

research with the results of our empirical research and  

7. Finally, we hope to be able to come with a system for capturing, storing, checking, 

integrating, manipulating, analysing and displaying data which are spatially referenced to the 

Earth  

 

 

 

Limitations:  
Time constraints of the semester require less time than may be ideal for the study of complex 

interactions among elements of a complex spatial system. And also being an early scholar in the field 

of data/spatial data mining may also limit the expected output of this research process (though we 

would give in all our best to achieve an effective system).  
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Conclusion  
In summary, spatial data mining organises by location what is interesting thus, the major issue 

around its study include:  

1. Analysing spatial autocorrelation  

2. The fact that space is continuous  

3. Existence of complex spatial data types  

4. The need for regional knowledge  

5. Availability of large dataset and many possible patterns  

6. The importance of map as summaries e.t.c………..  

 

For the sake of argument, we would try to see how much of these issues listed above that we could 

handle. And this leads to the conclusion that our intended research output would be the development 

of spatial mining methodologies, algorithm and tools that can address the following problems:  

1. Regional patterns discovery – Interesting places and their associated patterns in spatial dataset.  

2. Spatial clustering algorithm with some fitness function  

3. Co-location and correlation mining  

4. Change analysis in spatial dataset and  

5. Mining predictions for complex spatial systems.  
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Appendix 2: Project Timespan (derived from methodology) 
 

Project Timescales 

 

1
st
 May – 29

th
 May: Project discussion with prospective supervisor including proposal; writing. 

(4wks) 

1
st
 June – 29

th
 June: Collecting facts and reviewing literature. (4wks) 

2
nd

 July:  milestone 1 <Report from literature>. 

4
th

 July – 31
st
 July: Theory building and model derivation.  (4wks) 

3
rd

 August: milestone 2 <working theory> 

6
th

 August – 10
th

 September: Analysing cause and effect factors.  (5wks) 

11
th

 September: milestone 3 <working causal theory>. 

13
th

 September - 11
th

 October: Development of prediction model.  (4wks) 

15
th

 October: milestone 4 <analysed prediction variable>. 

19
th

 October – 18
th

 November: report writing, Project review, presentation preparation (4wks) 

20
th

 November – 28
th

 November: Project review with supervisor. (1wk) 

30
th

 November:  milestone 5 <project submission>. 

14
th

 December: milestone 6 <project presentation>. 
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Appendix 3: Project Time-plan diagram (derived from methodology) 

10/01/2013 30/09/2013

01/02/2013 01/03/2013 01/04/2013 01/05/2013 01/06/2013 01/07/2013 01/08/2013 01/09/2013

10/01/2013 30/09/2013

01/02/2013 01/03/2013 01/04/2013 01/05/2013 01/06/2013 01/07/2013 01/08/2013 01/09/2013

6/1/2013 7/1/2013

10/01/2013 30/09/2013

01/02/2013 01/03/2013 01/04/2013 01/05/2013 01/06/2013 01/07/2013 01/08/2013 01/09/2013

4/26/2013

litterature review report

1/10/2013 - 3/30/2013

Facts Collection and Litterature Review

6/1/2013 - 7/1/2013

Analysing Cause and Effect factors

02/07/2013

Predication Variables Found

03/07/2013 - 03/08/2013

Develop Prediction Model6/6/2013

Working Theory

4/27/2013 - 5/31/2013

Theory/Model Derivation

6/6/2013

Working Theory

6/6/2013

Working Theory

10/01/2013 30/09/2013

01/02/2013 01/03/2013 01/04/2013 01/05/2013 01/06/2013 01/07/2013 01/08/2013 01/09/2013

03/08/2013 - 20/09/2013

Project Review, General Report Writing, Project Presentation Plan

29/09/2013

Project Presentation

20/09/2013

Project Finished
 

Figure 52: Project timeline 
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