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Abstract 

Crowded conditions on trains can lead to lower passenger satisfaction, discourage rail 

travel, result in negative economic impacts and are a factor in a number of health and 

safety hazards. In the UK there is an annual survey of rail passenger crowding, 

although the measures used do not reflect coach-by-coach variations, nor do they 

reflect variations across the peak period.  

In this MPhil thesis I investigated the application of weight-based automatic passenger 

counting data to deliver more even loadings on trains through the provision of new real-

time and static solutions. In addition I investigated the potential benefits of such 

solutions in terms of reduced dwell times and reduced crowding. The overall concept 

proposed was to make the most of the existing available capacity; for example, so that 

no-one is standing when seats are available. Through analysing a large sample of air 

suspension data, I identified station-specific trends where some coaches were over 

capacity while others had spare capacity. I also conducted a critical review of academic 

research into on-train crowding and solutions that seek to optimise ‘loading diversity’. 

This study contributes to this emerging subject area in several ways: I propose two new 

metrics to describe inter-coach loading diversity that, unlike existing metrics, contain 

information relative to the capacity; I have revealed a link between the inter-coach 

loading diversity metrics and estimated boarding times, with trains classified as ‘very 

uneven’ on departure typically having dwell times of approximately five to ten seconds 

greater than services that were classified as being ‘even’ with a similar total number of 

passengers on board; and finally I have applied classification supervised learning 

techniques to predict the load factor for a given service and these predictors were an 

improvement over taking the historical average. 
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1 Introduction 

1.1 Motivation: on-train crowding 

On-train crowding is an increasingly pressing issue for many UK rail passengers and 

train operators alike. In October 2010, the Public Accounts Committee produced a 

report called ‘Increasing Passenger Rail Capacity’ (PAC 2010), which raised concerns 

on “substantial increases in already unacceptable overcrowding levels [on trains]” and 

called for the DfT to consider obligations to limit rail passenger crowding in all franchise 

agreements. 

A qualitative research study commissioned by Transport Focus, the independent 

watchdog for Britain’s rail and bus passengers, identified rail crowding as the second 

most important measure of performance from the perspective of passengers (Transport 

Focus 2011). The study found that the principal measures of performance in 

descending order of importance to passengers were: punctuality and reliability of 

services; comfort and space on board and being able to get a seat; fares; customer 

service; and journey times. Transport Focus also conducts a large survey twice per 

year called the National Rail Passenger Survey (NRPS). The results from the Spring 

2014 survey showed that out of a list of 19 questions for on-train facilities and services, 

the question on “sufficient room for all passengers to sit/stand” had the sixth highest 

proportion (21%) who responded “dissatisfied or poor” (Transport Focus 2014). 

The Office of Rail Regulation (ORR) is the health and safety authority for Britain's 

railways and is responsible for regulating health and safety aspects of passenger 

crowding. They say that, "crowding can be inconvenient, uncomfortable... make 

passengers feel unsafe... and lead to unpleasant travelling conditions, especially when 

passengers must stand very close together for prolonged periods" (ORR 2014). 

Crowding affects many parts of the UK rail network and is particularly acute for some 

routes into London. In January 2015 the London Assembly wrote to Network Rail 

(London Assembly 2015) stating that two of their main concerns were the high 

projected increase in rail demand and a focus on passengers: “High levels of growth 

will put severe pressure on the national rail network serving London… significant 

enhancements will therefore be necessary on many routes and corridors… The 

Committee urges Network Rail to consider its responsibilities to passengers, and to 

prioritise those interventions which will: deliver sufficient capacity, particularly sufficient 
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seats, to prevent passengers from having to stand on journeys of over 20 minutes in 

length; minimise station overcrowding; improve punctuality and reliability of trains...”. 

Piczenik (2013) presented to the Transport Statistics User Group (TSUG)1 on how rail 

passenger crowding in the UK is modelled and forecasted, which included a discussion 

on the effects of crowding. It was suggested the implications of rail crowding are as 

follows: 

 “Peak spreading to less crowded trains… in the passenger’s preferred travel 

time 

 Suppression of journeys as passengers decide not to travel… lost revenue for 

the operators 

 Shift to other modes of travel resulting in loss of revenue and highway 

congestion 

 Reduction in work activity undertaken on the train impacting on the economy 

 Passenger safety risks 

 Delays due to additional boarding and alighting times at stations: both primary 

delay due to exceeding timetabled stop time and also reactionary delay to 

other trains 

 Additional costs for the train operating companies in exercising ‘best 

endeavours’ when PiXC benchmarks are exceeded - although not contractual2 

 Lower National Rail Passenger Survey (NRPS) scores which can result in 

requirement for the train operator to invest in remedial measures.” 

Specifically with respect to the impact of crowding on rail demand, Piczenik explained 

how a crowding penalty is included in MOIRA2, the revenue and demand forecasting 

model used in the rail industry. Essentially MOIRA2 uses the concept of Generalised 

Journey Time (GJT) to take into account various penalties relating to waiting times, 

interchanges, performance and crowding. The crowding penalty is a scale factor that is 

                                                

1
 The TSUG is a monthly forum that discusses use of statistics and data in transport. 

2
 As discussed in Section 2.2.1, the PiXC is no longer used as a target that train operators must meet. 



Optimising the loading diversity of rail passenger crowding using on-board occupancy data 

 13   

multiplied by the in-vehicle time. There are different values depending on whether the 

passenger is seated or standing and how crowded the train is, i.e. the standard class 

load factor. The precise values of the crowding penalty also vary for different services. 

The purpose of the MOIRA2 model is to enable train operators to assess revenue and 

demand forecasts in future or alternative scenarios, for example timetabling changes or 

fare increases. These crowding penalty factors provide a useful insight into how the 

industry models the effects of crowding. 

Various other studies have found slightly different values for the crowding penalty, 

although the principle of applying a penalty scale factor to the value of time is the 

same. A thorough review of crowding penalties can be found in Wardman and Whelan 

(2011). 

RSSB, formerly known as the Rail Safety and Standards Board, manages the rail 

industry research programme on behalf of industry sponsors, with funding mainly from 

DfT and from collaborative partnerships. RSSB (2005) conducted a piece of cross-

industry research to establish an understanding of the health and safety issues that 

may arise as a result of crowding on main line and underground railways. There were a 

range of suggestions on the actual definition of crowding from different perspectives; 

for example, industry defined it as “not being able to shut the doors”, whereas 

passengers defined it as “no spare seats” for inter-city journeys and “no handholds or 

standing for more than 10-20 minutes” for commuter journeys. Also, the literature 

review conducted by RSSB as part of the study revealed that some definitions related 

to objective elements such as density and the available space, whereas other 

definitions focused on more subjective elements on the perception of crowding. 

Stakeholder interviews for RSSB defined four qualitative levels of perceived crowding 

on the platform: ‘No crowding – All of body visible’; ‘Low to moderate crowding – Only 

body and head visible’; ‘Severe crowding – Only shoulder and head visible’; and 

‘Unacceptable crowding – Only head visible’ (RSSB 2003). Building on this, RSSB also 

proposed four similar qualitative levels of perceived crowding on the train (RSSB 

2005): 

 “No crowding – Available seats, available luggage space, unrestricted 

movement throughout train. 
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 Low to moderate crowding – Standing for short periods of time (less than 20 

minutes), available handholds, luggage space taken but not obstructing 

movement, some restricted movement in moving down train. 

 Severe crowding – Standing for moderate periods (20 minutes to 1 hour), 

small amounts of luggage restricting movement, cannot get catering trolley 

through train, train delayed at station due to alighting and boarding times. 

 Unacceptable crowding – Standing for long periods (>1 hour), standing for 

short periods without access to handhold, luggage obstructing movement 

throughout train, passengers or staff cannot move through train, cannot shut 

train doors.” 

Industry workshops and stakeholder groups were used to create a list of crowding-

related hazardous events. This list was ranked in terms of a qualitative estimation of 

risk as follows: “1. Slips, trips or falls in station area; 2. Ill health e.g. fainting; 3. 

Assaults; 4. Platform train interface; 5. Evacuation; 6. On-train incidents; 7. Other 

station area accidents; 8. Train accidents. It was concluded that “In context with the risk 

from other non-crowding related hazards on the railway, the risk associated with 

crowding was found to be small, [although] the perception of risk from crowding 

appears higher, among the public and rail users [than compared to the findings of the 

study]”. 

In this thesis, the terminology ‘crowding’ is taken to mean ‘passenger density’ rather 

than relating to the more qualitative definition of ‘perceptions of crowding’. 

1.2 Standpoint 

Through this thesis I sought to address the issue of rail passenger crowding in the UK 

from a data analytics standpoint. The primary focus was on extracting more value from 

existing ‘found data’ by reusing air pressure data from suspension systems as a 

measure of carriage loadings along a train, to help assess the case for investing in 

initiatives to optimise passenger loadings. The overall concept proposed was not to 

increase total capacity, but rather to help make the most of the existing available 

capacity, for example, so that no-one is standing when seats are available. 

Over recent years there has been a proliferation of new and larger datasets, which has 

been heralded by many as an opportunity for innovation, productivity and economic 

growth (Manyika et al. 2011). There is much ongoing work to develop new tools and 
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techniques to exploit these opportunities, which has seen the emergence of several 

related disciplines, some of which are briefly introduced here. Microsoft has described 

this phenomenon as the “Fourth Paradigm and the age of data-intensive scientific 

discovery” (Hey et al. 2009), whereas the term ‘data science’ is used by others and has 

been defined as “extracting predictive and prescriptive insight from large-scale complex 

data, data exploration, data discovery and delivering surprise” (Data Science London 

2014). Others have defined data science as “the field of study which is concerned with 

the collection, preparation, analysis, visualisation and management of data,… which 

builds upon and incorporates the expertise of many different disciplines to successfully 

extract meaning from data” (Knowledge Transfer Network & Smith Institute 2014). 

There exists a large number of data mining and machine learning techniques, drawing 

on different aspects of maths, statistics and computing. Zaki and Meira (2014) have 

published a free textbook with introductions to some of these techniques, which they 

say “form the basis for the emerging field of data science, which includes automated 

methods to analyse patterns and models for all kinds of data, with applications ranging 

from scientific discovery to business intelligence and analytics”. 

A related phrase is ‘big data’, which has taken on different meanings for different 

people. Some definitions focus on the large amounts of data involved, i.e. ‘volume’ 

(Kelly and Hamm 2013); other sources consider a wider definition, which as well as 

high volumes includes data that is frequently refreshed i.e. ‘velocity’ and/or data that 

does not have one consistent structure i.e. ‘variety’ (Kincaid 2014). Big data has quite a 

specific meaning for some to mean “massively parallel software running on up to 

thousands of servers”, in particular using software tools such as Hadoop and Spark 

(Adhikari 2011). However, use of the phrase also has become widespread with other 

meanings to the point that some commentators in both the print and online media are 

now sceptical: “it has become a synonym for data analysis, which is confusing and 

counter-productive” (Mims 2013); “big data is a vague term, often thrown around by 

people with something to sell” (Harford 2014). 

Regardless of the terminology it is clear that there are new emerging opportunities for 

deriving insights as well as developing new products and services across a wide range 

of domains. One such domain is transportation, which has seen the integration of ICT 

across different modes in recent years and hence new datasets.  

1.3 Structure of thesis 

The thesis is structured as follows: 
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 §2 is a critical review of relevant academic literature; 

 §3 describes the research focus, aims and questions; 

 §4 outlines the methodology and the datasets used, along with rationale for the 

proposed approaches; 

 §5 presents the findings of the main data analysis task and is supplemented by 

the findings of a workshop with frontline staff in §6; 

 §7 discusses the implications of the findings; and 

 §8 completes the thesis with conclusions, recommendations, a summary of the 

contribution to scholarship and suggested areas for further work. 

Summary 

Various organisations have raised concerns over the level of rail passenger crowding 

on some trains in the UK. There is research to suggest that conditions that are near or 

over capacity discourage passengers from using the train; this effect is modelled using 

‘crowding penalties’, which are included in revenue and demand forecasting models. 

Crowding can also lead to negative economic impacts, such as a reduction in work 

activity on the train and a shift to other modes, which may lead to an increase in road 

congestion. 

Qualitative research suggests that crowding was found to be a factor in a number of 

health and safety hazards, although in the context of the risk from other non-crowding 

related hazards on the railway, the risk associated with crowding was found to be 

“small”. The research also suggested a need to distinguish between objective elements 

such as passenger density and subjective elements such as perceptions of crowding. 

In this thesis, the terminology ‘crowding’ is taken to mean ‘passenger density’ rather 

than relating to the more qualitative definition of ‘perceptions of crowding’. 

Over recent years, in many different domains, there has been a proliferation of new 

and larger datasets and this has been accompanied by the emergence of data science 

as a discipline with new techniques and software. Through this thesis I sought to 

address the issue of rail passenger crowding in the UK from a data analytics 

standpoint. The primary focus was on extracting more value from existing ‘found data’ 

by reusing air pressure data from suspension systems as a measure of carriage 
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loadings along a train, to help assess the case for investing in initiatives to optimise 

passenger loadings. 
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2 Literature review: existing research  

The literature review undertaken covers several related areas and the objectives were 

as follows: 

 Understand existing research within the topic areas 

 Identify gaps and the current boundaries of the research 

 Identify methods used by others that may be applicable 

 Help focus the research questions of this study. 

The literature review begins in §2.1 by situating the thesis in the context of ICT and 

data analytics in public transport. In §2.2 the review focuses on research into on-train 

crowding. This is followed in §2.3 with a more specific review of existing solutions to 

optimise ‘loading diversity’. This review is concluded with a brief discussion of relevant 

data mining techniques, both in general and in a transportation context in §2.4; I 

applied some of these techniques in the research. 

I systematically searched a variety of transport research and computer science journals 

and conference proceedings, including but not limited to: Transport Research Parts A 

(Policy) and C (Emerging Technologies); Journal of Public Transportation; 

Transportation Research Record, Journal of the Transportation Research Board; RSSB 

research catalogue; Pervasive and Mobile Computing; ACM Computing Surveys; 

Intelligent Transport Systems UK Public Transport Interest Group, Transport Statistics 

User Group; International Conference on Data Mining (ICDM); Conference on 

Knowledge Discovery and Data Mining (KDD); International Joint Conference on 

Pervasive and Ubiquitous Computing (Ubicomp). This was supported by a more 

general internet search and discussions with colleagues for sources outside academic 

literature. I used a variety of search terms including but not limited to: rail passenger 

crowding; loading diversity; passenger occupancy; overcrowding; automatic passenger 

counting; automatic fare collection; smart card. 

2.1 ICT and data analytics in public transport   

This section explores different aspects of ICT in public transport and aims to situate the 

thesis in the wider context of related research. There are several categories for uses of 
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data to be considered in a transportation context (Ball 2014) and these are explored in 

the following sections: 

 Data flows from ‘source to consumption’ in Intelligent Transport Systems 

(§2.1.1); 

 ‘Found data’ whereby the ‘data exhaust’ from existing technologies are put to a 

secondary use; related to this is the ‘digital footprint’ of transport users using 

ubiquitous computing systems (§2.1.2); 

 Crowdsourcing, i.e. actively collecting transport data from people (§2.1.3); 

 Using data to influence public behaviour (§2.1.4). 

2.1.1 Intelligent Transport Systems (ITS): data from source to 
consumption 

Intelligent Transport Systems (ITS) has been defined as “an umbrella term for a range 

of information and control systems aimed at… improving travel efficiency and reducing 

the risk of accidents… the core technologies employed are sensors, communication 

links, processing elements, displays and actuators” (Gillan 2009). By this definition a 

necessary component in all ITS is the flow of data from source to consumption. The 

Internet of Things (IoT) is a related term used across multiple domains that expresses 

the concept of everything being connected in some way, some people have called it 

‘things that think’. As such, ITS can be considered as a subset of the more general IoT 

concept. A key point for all ITS is that various data quality aspects need to be 

considered at the system design phase to meet the required level so that the data is fit 

for purpose for the correct operation of the system. Similarly, data security needs to be 

considered for vulnerabilities to attacks and also privacy where personal details are 

involved (Ball et al. 2009). 

In 2005 the DfT set out its ‘ITS Policy Framework for the Roads Sector’ and identified 

seven themes for ITS: improving road network management; improving road safety; 

better travel and traveller information; better public transport on the roads; supporting 

the efficiency of the road freight industry; reducing negative environmental impacts; 

supporting security, crime reduction and emergency (DfT 2005). 

Within public transport, an example of ITS is passenger information systems. In 

addition to traditional information channels, such as posters and timetables, over recent 
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years the provision of passenger information by electronic means has become 

widespread. However, these are often for single modes of transport and as such the 

EC has identified multimodal traveller information and planning services as a priority 

through the ITS Action Plan (EC 2010); work is ongoing across Europe to deploy such 

multimodal systems (EC 2015). A relatively recent innovation is that transport operators 

are increasingly using social media websites, such as Twitter, as an information 

channel for both broadcasting travel alerts and engaging in two-way communication 

with passengers (Gault et al. 2014, Transport Focus 2012). 

A related concept to ITS is that of ‘Smart Cities’, where data is combined for several 

city functions such as transportation, energy, buildings and public safety (IBM n.d.). 

Research initiatives include the Smart Streets project, which aimed to “develop an 

open data hub for road maintenance [to] facilitate new innovation across the industry 

leading to cost reductions and new revenue opportunities” (Smart Streets Hub n.d.). 

City councils, such as Birmingham, have developed their own smart city road maps 

detailing their plans in this area (Birmingham City Council 2012). 

One subset of ITS is the deployment of very many sensors across a region for 

monitoring purposes. The Message project demonstrated the potential of diverse, low 

cost sensors to provide data for the planning, management and control of the 

environmental impacts of transport activity at an urban, regional and national level. This 

included implementation of ‘pervasive sensors’ at a trial site in Gateshead on vehicles 

and people to act as mobile real-time environmental probes, sensing transport and 

non-transport related pollutants and hazards (Bell et al. 2009). 

Another subset of ITS is cooperative vehicle systems, which involves communication 

and sharing of information dynamically between vehicles or between vehicles and 

infrastructure. The scope ranges from applications which warn the driver, to those 

which potentially take control from the driver in safety-critical situations. Driverless cars 

and other automated vehicles are arguably an advanced extension of ITS and are 

expected to generate substantial benefits: “They will make driving easier, allow people 

to be more productive and offer greater mobility to a wider range of people than ever 

before, they will also help improve road safety, reduce emissions and ease congestion” 

(DfT 2015). A range of ‘semi-autonomous’ technologies are becoming increasingly 

widespread, which are likely to be a stepping stone towards fully autonomous vehicles 

(Ball 2011). 
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2.1.2 ‘Found data’ and the digital footprint from ubiquitous computing 

The terminology ‘found data’ is used to describe situations where the ‘data exhaust’ 

from existing technologies are put to a secondary use, either through developing new 

real-time applications or deriving insights from historical analysis. In the Private Sector, 

organisations are working to understand and exploit the value of their data (Knowledge 

Transfer Network & Smith Institute 2014), while in the Public Sector many datasets are 

being made openly available (HM Government 2012). 

Ubiquitous computing is the concept of people being able to interact with computing 

anywhere; it is defined by the Pervasive and Mobile Computing journal (n.d.) as 

“ambient intelligence where network devices embedded in the environment provide 

unobtrusive connectivity and services all the time”. Sometimes when people use 

ubiquitous computing systems they will generate what some might call a ‘digital 

footprint’, for example smartphone GPS tracks or Oyster card usage histories. These 

can be a rich ‘passive’ source for data mining, where applications may range from 

personalised recommendation systems to country-wide traffic state estimation. The 

‘digital footprint’ is a type of ‘data exhaust’, although the distinction is that the digital 

footprint relates to a person rather than a machine. As mentioned above, wherever 

personal details are involved it is vital to ensure that privacy aspects are considered 

and addressed. 

There exists an emerging field of transport research around ‘found data’ and the ‘digital 

footprint’ from ubiquitous computing; some example topics of research in this area are 

summarised below. 

2.1.2.1 Mobility data and mobility profiling 

The areas of mobility data and mobility profiling are concerned with techniques and 

applications of monitoring people in motion. A good overview of the area is provided by 

Renso et al. (2013) and there are many examples of research in this area, for example 

as can be found on the Italian KDD Lab website (KDD n.d.). 

GPS vehicle tracks have been used to predict the end-to-end route of a vehicle based 

on past trips. For example, Microsoft built personalised predictive models based on a 

large historic sample of GPS tracks around Seattle (Froehlich and Krumm 2008). The 

software company, Pivotal, conducted a similar demonstration although with a real-time 

element (Dobson 2014). 
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A review paper by Calabrese et al. (2014) provides a useful overview of research and 

techniques in using mobile phone cellular network data in urban environments, 

referencing research in the areas of population distribution, land use, mobility patterns, 

local events and social networks. Regarding research into mobility patterns, they cite 

examples of monitoring the movements of both groups and individuals and the degree 

to which human behaviour is predictable. However, none of these examples relate 

specifically to rail travel. 

Inrix have demonstrated a technique using cellular data from mobile phones to 

understand peoples’ trip origins for a particular train route (Graham and Petrie 2012). 

As an example, they filtered out users travelling into London Paddington station by rail 

on one weekday morning and then plotted where the passengers started their journeys. 

They estimated that through this technique (in partnership with one mobile operator) 

they could monitor 20-30% of all movements on every mode every day. Although this is 

quite impressive and offers great potential for analysing origins and destinations, it is 

perhaps still not sufficiently accurate for passenger counting on specific trains. 

In addition to long-range technologies, short-range technologies such as Wi-Fi and 

Bluetooth are also commonly used to track the movement of people. For example, 

organisations such as Path Intelligence have developed techniques to monitor footfall 

movements for the retail industry (Path Intelligence 2015). Such techniques have also 

been applied to station environments to understand in detail how passengers interact 

with the station environment. However, similar to cellular data, the penetration rate of 

equipped devices is not accurately known and so these technologies are not as 

accurate as other technologies for passenger counting. 

2.1.2.2 Insights into how users interact with cycle hire schemes 

Cycle hire schemes with multiple stands across city regions typically use electronic 

systems so that users can hire pedal cycles without the need for human interaction 

(Bike Sharing Map n.d.). As a by-product such systems typically generate data on 

stand occupancy and origin and destination pairs for each trip. There is an active 

research community that is using such data to generate insights on how users interact 

with cycle hire schemes (IFSTTAR 2012). 

Kaltenbrunner et al. (2010) used stand occupancy data for the Barcelona cycle hire 

scheme to detect temporal and geographic mobility patterns within the city. They then 

built models that were able to predict the number of available bikes for any stand a few 
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hours into the future. When the London Barclays Cycle Hire (since renamed to 

Santander Cycle Hire) was launched users were required to apply for a key to access 

to the system; after six months this was changed so that anyone in possession of a 

debit or credit card could gain access. Lathia et al. (2012) investigated how the change 

affected the system’s usage and found that there was greater weekend usage and a 

number of stations underwent a complete change. Researchers at City University have 

used the same origin-destination dataset to generate interesting visualisations of the 

London scheme (Wood et al. 2011). 

A pilot trial of electrically-assisted bicycles was conducted in Brighton, in which data on 

the usage of the electric assistance coupled with a GPS track was sent via a 

smartphone back to a central database. The data was analysed to investigate how 

participants used the three levels of assistance when travelling up hills (Kiefer and 

Behrendt 2015). 

2.1.2.3 Transport mode detection from smartphone data 

Another active area of related research is using data from smartphones to detect the 

mode of transport of travellers. A variety of methods exist that use a combination of 

accelerometer data, GPS and static reference data. Libby (2008) developed a method 

based solely on accelerometer data in order to distinguish between sitting/standing, 

walking, cycling and vehicle passenger travel; likewise Hemminki et al. (2013) used just 

accelerometer data. Some studies have used purely GPS data to predict transport 

mode (Bolbol et al. 2012, Zheng et al. 2010), while others such as Reddy et al. (2010) 

have developed a technique that used a combination of GPS and accelerometer data. 

Several other methods have been developed that use various other data sources such 

as bus and rail data in addition to GPS and accelerometer data (Li et al. 2011, 

Stenneth et al. 2011, Manzoni et al. 2011, Thiagarajan et al. 2010). Applications of 

such techniques are varied, one example being the CarbonDiem smartphone app, 

which provides information to the user on their CO2 consumption (CarbonDiem n.d.). 

2.1.2.4 Social media mining in transport 

An emerging area of research is mining of social media as a ‘passive’ or ‘implicit’ data 

source. This is distinct from the use of social media as an ‘active’ or ‘explicit’ data 

source i.e. crowdsourcing (see §2.1.3) or the use of social media by transport 

operators as an information channel for engagement with transport users (see §2.1.1). 
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A recent collaborative research project collected and analysed tweets relating to travel 

to and from football matches. They investigated the methods, challenges and 

opportunities for enhancing transport data collection through social media (Grant-Muller 

et al. 2015), as well as considering the policy implications for such techniques (Grant-

Muller et al. 2014). A similar project analysed passenger sentiments using Twitter data 

relating to the Chicago metro system (Collins 2013). IBM conducted sentiment analysis 

for commuters in different cities across Europe by mining Twitter data (IBM 2013). 

Some ‘observatories’ have recently emerged for transport-related tweets, such as 

TransportBuzz (Watt 2013) and CommuteLondon (CommuteLondon n.d.). 

There is substantial research into social media mining in other domains. In the UK the 

Analysing Social Media Collaboration (ASMC) are a “multidisciplinary group of 

researchers interested in analysing data from social media such as Twitter with the aim 

to understand the role they play in social phenomena”. The Collaborative Online Social 

Media Observatory (COSMOS) is a related software platform that aims to reduce the 

technical and methodological barriers to accessing and analysing social media and 

other forms of open digital data (COSMOS Project n.d.). 

Nielsen (2006) discusses that a limitation of social media mining is the ‘participation 

inequality’, i.e. the situation where a minority of users usually account for a 

disproportionately large amount of content. The rule of thumb is that “In most online 

communities, 90% of users are 'lurkers' who never contribute, 9% of users contribute a 

little, and 1% of users account for almost all the action”. Such a sample can give a 

biased understanding of the community, because the overall system may not be 

representative of average users, because “many differences almost certainly exist 

between people who post a lot and those who post a little”. 

With regards to limitations of social media mining in transport, some research has 

found that the seriousness of transport as a ‘problem’ in people’s lives can become 

exaggerated and that it can be a means of “celebrating rather than solving” transport 

problems (Lyons 2012). 

2.1.3 Crowdsourcing 

Ross (2012) defined crowdsourcing as “engaging the masses to produce large 

data/information sets… the most common type being voluntary, personal interest or 

group interest, active online data contributions”. Furthermore it was claimed that in a 

transportation context crowdsourcing is “nearly always voluntary but ‘rewards’ can be 
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offered, can be connected to a niche community but not exclusively, [there is] often a 

geographical element but not exclusively, [there are] mostly active contributions e.g. 

mapping for OpenStreetMap but can be passive e.g. floating vehicle data, mostly 

online and increasingly via mobile”. It may be argued that transport crowdsourcing is a 

type of ITS, although with the data source being from human-created content rather 

than generated from sensors. 

There have been several recent research projects that have developed and piloted 

transport crowdsourcing smartphone apps: the ‘Tiramisu’ app was a real-time arrival 

and bus crowding information app, which was powered by crowdsourcing (Steinfeld et 

al. 2011); Lancaster University developed the ‘OurTravel’ app which provided multi-

modal information for particular communities through crowdsourcing (Harding et al. 

2013); the ‘GetThere’ app was developed by the University of Aberdeen to gather 

traveller information for rural buses from bus users (Corsar et al. 2013). 

Other organisations have also built proof-of-concept transport crowdsourcing apps: 

researchers at the University of Cambridge and UCL developed the ‘TubeStar’ app, 

which actively collected feedback from passengers on their experiences on London 

Underground journeys via Twitter (Ryan 2012); TRL built the ‘How’s My Trip’ app that 

aimed to collect feedback on journey quality and the perceived value of time from users 

(Hopkin et al. 2014); a project by the Transport Systems Catapult called 

‘CommonRoute’ collected journey quality feedback via a mobile website (TSC 2014). 

A key issue with transport crowdsourcing is identifying the motives for encouraging 

participation; all of the crowdsourcing apps listed above were pilot projects and as such 

had relatively low uptake. Some studies provided a financial incentive for participation 

in the research study, such as ‘Tiramisu’, whereas in other studies, such as ‘Tube Star’, 

there was only the ‘altruistic incentive’ in that users were sharing information directly 

with other travellers. Some studies concluded that transport crowdsourcing apps would 

be useful for service quality monitoring or issue detection (which does not rely receiving 

data from a representative sample of users), but may not be appropriate to measure 

passenger satisfaction due to issues of self-selection bias and the ‘participation 

inequality’ (Hopkin et al. 2014). 

Several transport crowdsourcing websites exist, whereby members of a community 

with a particular group interest share information. Examples include: CycleStreets, a 

“UK-wide cycle journey planner system designed by cyclists for cyclists” (CycleStreets 

n.d.); JustPark, which is a Private Sector enterprise that connect drivers in search of 
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parking with anyone who has a spare space (JustPark n.d.); FixMyTransport, which 

although no longer supported was a website where members of the public could 

identify issues with public transport, raise queries with the relevant authorities and ‘up-

vote’ important issues (FixMyTransport n.d.). 

2.1.4 Influencing public behaviour in transport 

Transport operators have attempted to influence public behaviour in transport for many 

years, ranging from general policies intended to create safer and more efficient 

transport systems, through to strategies to influence the time that people travel and 

mode of transport used, such as ticket pricing and road pricing. The Canadian VTPI 

maintain the Online Transport Demand Management (TDM) Encyclopaedia and they 

define TDM as a “general term for strategies that result in more efficient use of 

transportation resources” (VTPI 2014). Their encyclopaedia provides information on a 

wide range of traditional demand management strategies. 

There have been recent research projects that have used ICT to encourage use of 

more sustainable transport. One such example was the EC-funded project, Sunset, in 

which participants used a smartphone app to build up their own profile and were 

encouraged to use sustainable travel with incentives of ‘rewards’ with a social gaming 

element (Bijlsma 2014). Users were set challenges, such as travelling outside of the 

peak period if possible. A variety of methods for user feedback were tested, which 

included cartoons of a pig whose mood reflected the environmental costs of the user’s 

travel choices and also a man rowing fast or slow as a measure of personal fitness. 

There were personalised messages and recommendations, such as ‘Why don’t you try 

walking to the shops today?’. The app included two-way communication between 

operators and users and was piloted in both Leeds and Sweden. The app used a 

combination of GPS, cellular data and Wi-Fi to record position accurately and there 

was an online dashboard for querying the data. The findings suggested that some 

users were surprised with the information and didn’t realise the extent of their current 

transport habits. Some people modified their behaviour and shifted outside the peak 

times, whereas some wanted to but couldn’t. It was suggested that this is a common 

finding and that better information is a good first step towards behaviour change. 

(Grant-Muller 2015). 

A similar initiative was a research project called ‘Persuasive Advisor for CO2-reducing 

cross-model trip planning (PEACOX)’. This project developed a smartphone application 

that aimed to “provide travellers with personalised multi-modal navigation tools that 
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allow, help and persuade them to travel and drive ecological friendlier… that focus on 

minimising energy consumption and pollutant emissions”. Deliverables included 

guidelines and recommendations for the design and implementation of persuasive 

systems in the context of personal mobility and trip planner systems (Schrammel et al. 

2015). 

ICT initiatives exist to encourage car drivers to adapt their driving style to be more fuel 

efficient. One such example is the ‘ecoDrive’ app by Fiat, which gives the driver a score 

out of 100 based on speed and acceleration data. Initially this was in the form of a 

smartphone app, but more recent versions have involved an interface with on-board 

data, for example gear selection and pedal usage (Fiat 2010). 

Summary 

Intelligent Transport Systems (ITS) is an umbrella term for a range of information and 

control systems aimed at improving travel efficiency and reducing the risk of accidents, 

with core technologies being sensors, communication links, processing elements, 

displays and actuators. Because of the flow of data from source to consumption ITS 

can be considered as a subset of the more general Internet of Things (IoT) concept. 

Examples of ITS in public transport include passenger information systems and smart 

ticketing. 

The terminology ‘found data’ is used to describe situations where the ‘data exhaust’ 

from existing technologies are put to a secondary use, either though developing new 

real-time applications or deriving insights from historical analysis. One example 

research area is that of cycle hire schemes, whereby researchers are using stand 

occupancy and origin and destination trip pairs to generate insights on how users 

interact with such systems. The more general areas of mobility data and mobility 

profiling are concerned with techniques and applications of monitoring people in motion 

and can be based on long-range technologies, such as GPS and cellular or short-range 

technologies, such as Bluetooth. Other active areas of related research include using 

data from smartphones to detect the mode of transport of travellers and also the mining 

of transport-related tweets as a passive data source. 

There have been several recent research projects that have actively collected data 

from travellers through developing and piloting transport crowdsourcing apps. Some 

studies concluded that transport crowdsourcing apps would be useful for service quality 

monitoring or issue detection, but may not be appropriate to measure passenger 
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satisfaction due to issues of self-selection bias and the ‘participation inequality’. 

Encouraging uptake and understanding people’s motivation is also a key challenge for 

transport crowdsourcing. 

Transport operators have attempted to influence public behaviour in transport for many 

years, ranging from general policies intended to create safer and more efficient 

transport systems, through to strategies to influence the time that people travel and 

mode of transport used. Examples of research projects were identified where ICT has 

been used to encourage use of more sustainable transport; some studies found that 

providing better information on available alternatives was effective in encouraging 

behavioural change. 

2.2 On-train crowding 

A review of relevant research literature has been conducted to investigate the state of 

the art with respect to on-train crowding. The review begins with definitions of train 

capacity and the methods that are used for measuring crowding on trains in the UK 

(§2.2.1). This is followed by consideration of data-intensive methods that have been 

used to monitor and predict rail passenger crowding, using both automatic passenger 

counting (APC) data e.g. door sensors and weight sensors (§2.2.2) and also automatic 

fare collection (AFC) data e.g. smart cards (§2.2.3). There is a review of research into 

local crowding and ‘loading diversity’ (§2.2.4) and also the relationship between 

crowding and boarding times (§2.2.5).  

2.2.1 Definitions of capacity and crowding 

The Department for Transport (DfT) publishes an annual report called “rail passenger 

numbers and crowding on weekdays in major cities in England and Wales” (DfT 2014). 

The methodology defines on-train capacity as follows (DfT 2013a): 

“The standard class capacity includes the number of standard class seats on the 

service and may include an allowance for standing room. No allowance for standing 

is made on a service when the time between stations before (AM) or after (PM) the 
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critical load point3 is more than 20 minutes, but it is allowed when it is 20 minutes or 

less. The allowance for standing varies with the type of rolling stock but, for modern 

sliding door stock, it is typically approximately 35 per cent of the number of standard 

class seats. For most train operators the standing allowance is based on an 

allowance of 0.45m2 of floor space per passenger. However, for South West Trains’ 

commuter rolling stock a figure of 0.25m2 is used, and for Southeastern's class 376 

'metro' style stock and for London Overground a figure of 0.35m2 is used. In some 

cases train operators do not have standing capacities calculated for their rolling 

stock based on the available floor area. In these cases the standing capacities have 

been estimated as 20 per cent of the number of standard class seats for long 

distance rolling stock, and 35 per cent of the number of standard class seats for 

commuter rolling stock.” 

The DfT collect passenger counts from the train operators once per year in the autumn 

and in their annual report present summary statistics on weekday peak crowding and 

also passenger numbers. Historically, the counts were one-off manual counts, although 

increasingly many of the counts use automatic passenger counting (APC) techniques 

and so are collected on multiple days and averaged. The APC data is collected either 

from door sensors or weight-based sensors and this is discussed in further detail in 

§2.2.2. 

The crowding statistics are for the peak periods for trains arriving in major cities in the 

AM peak (07:00 to 09:59) and departing from major cities in the PM peak (16:00 to 

18:59). The crowding statistics are calculated for standard class passengers and are 

on the busiest point of each train service, i.e. the ‘critical load point’, as defined above. 

The main measure for crowding is called ‘Passengers in excess of capacity” (PiXC) 

and is defined as follows: 

“PiXC is the number of standard class passengers on a service that are in excess of 

the standard class capacity at the critical load point. It is the difference between the 

standard class passenger load at the critical load point and the standard class 

capacity, or zero if the passenger load is within the capacity. Capacities include the 

number of standard class seats, and also include a standing allowance if the time 

between stations at the critical load point is 20 minutes or less. For each train 

                                                

3
 Critical load point := “the location where the passenger load on a service is highest on arrival at (AM 

peak) or on departure from (PM peak) a city” 
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operator the numbers of passengers in excess of capacity on each service are 

aggregated together and expressed as a percentage of the total standard class 

critical load.” 

In previous years, PiXC was used as the crowding performance target for train 

operators, with a maximum allowable PiXC of 4.5% in one peak (either morning or 

afternoon) and 3% across both peaks. However, the PiXC is no longer used as a 

target, but it is still annually published to give a consistent measure that allows 

crowding to be compared between different routes and over time. 

One limitation of the PiXC measure is that it is based on average passenger loads over 

the peak period and aggregated across different services for particular train operators 

so does not capture variations between services. The disaggregated data is 

commercially sensitive and so is not published, although the DfT does publish a 

biannual briefing note called the “top ten overcrowded services” (DfT 2013b). This 

defines another measure for crowding, called the “standard class load factor”, which is 

defined as: 

“The number of standard class passengers expressed as a percentage of the 

maximum allowable standard class passenger capacity for that service. For 

example, a train which has the same passenger load as the passenger capacity 

would have a load factor of 100%.” 

This publication lists the ten services with the highest standard class load factor, which 

for Spring 2012 ranged from 149% to 184%. 

Another limitation is that the crowding statistics are based on the capacity and loading 

for the whole train and so coach-by-coach variations are not taken into account. This is 

suggested in the methodology report (DfT 2013a), “For example, at major terminals 

passenger numbers are often higher at the end of a train that is closest to the 

entrance/exit on the platform, meaning that passengers travelling at one end of a train 

can perceive a higher level of crowding than those at the other end, and that 

passengers can be standing in one carriage when there are empty seats in another”. 

Research on the extent to which the coach-by-coach occupancy is uneven is explored 

further in §2.2.4. 

In an international literature review (Charles and Hale 2009), researchers from the 

University of Queensland introduced other performance indicators, which included: 
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“standing time duration and ratios of passenger-km to seat-km”; and “pass-ups, i.e. the 

regularity at which passengers are unable to board due to overcrowding”. 

There is limited information on station platform capacity, although in a FOI request 

(Smith 2011), it was explained that for London stations there is no official maximum 

platform capacity, rather the “station staff make their judgements based on the density 

of people observed in specific areas of the station”. 

Summary 

The DfT conducts an annual survey of rail passenger crowding, which is increasingly 

based on passenger counts from automated systems. On-train standard class capacity 

is defined as the number of standard class seats plus a ‘standing allowance’, which is 

different for different types of service and rolling stock. The DfT uses two measures of 

rail crowding: ‘passengers in excess of capacity’ (PiXC) and ‘standard class load 

factor’. 

The DfT acknowledge limitations of these measures, namely that they do not reflect 

coach-by-coach variations, nor do they reflect variations across the peak period. 

2.2.2 Automatic passenger counting (APC) data and rail passenger 
crowding 

The supporting notes to the DfT rail crowding statistics report explain that there are two 

main types of automatic passenger counting (APC) systems in the UK (DfT 2013a): 

 ‘Load weighing’ – this is equipment fitted to trains that ‘weighs’ the train at 

certain points, estimating the number of passengers on board by assuming an 

average weight per passenger. 

 ‘Infra-red’ – this uses infra-red sensors fitted around each door on the train to 

count the numbers of passengers boarding and alighting at each station. 

Some door sensors also use video image processing or lasers instead of or in addition 

to infra-red technology. Train operators may have a variety of uses for this data, such 

as planning timetables and how rolling stock is deployed, informing ticket pricing and 

marketing campaigns. Due to the commercial nature of this data it is not published at 

disaggregated level, although some train operators publish typical information about 
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crowding on individual train services to passengers, either online or through posters at 

stations (ORR 2012). 

The DfT is in the process of procuring a new database of all UK APC data for use by 

themselves and the train operators (Capita Symonds 2012), which will “provide an 

important insight into the usage and volumes of passenger traffic across the rail 

network [and] identify ‘hotspots’ and trends”. 

The existing deployment of APC on UK trains varies by train operator. A report by the 

Public Accounts Committee states that the DfT requires all new trains to have it, and 

that some train operators are retro-fitting APC to old trains (PAC 2010). As of Nov 

2010, it was estimated that 39% of carriages were fitted with some type of APC 

equipment.  

The accuracy of APC door sensors is often quoted by manufacturers as being at least 

95% (TRB 2008). The accuracy of weight based sensors may well be less than this, 

because assumptions are required for the average weight of passengers. Another 

advantage of door sensors is that they are able to provide bi-directional boarding and 

alighting flows, whereas weight-based sensors cannot. However, door sensors may be 

susceptible to ‘drift’ in the running total on-board, e.g. this may occur in the event that 

the alighting count is accurate, but the boarding count is over-counting. Also, to provide 

accurate passenger counts for each coach, door sensors are required between 

carriages. 

The literature review did not find any academic research on the use of APC data in rail 

in the UK. This may be because the data is owned by the train operators and is 

commercially sensitive. A small amount of academic research was found on the use of 

APC data for other modes of transport and in other countries. 

Rajbhandari et al. (2003) conducted research into inter-city bus dwell times using APC 

data. They suggested that factors that may affect the boarding time included: the 

number of boarding passengers; the number of alighting passengers; and the number 

of passengers standing. They developed linear and non-linear regression models to 

describe the relationship between dwell times and these factors. They found that the 

non-linear model, which included the number of standing passengers, gave the best fit 

suggesting that boarding times were greater when there was crowding on-board. They 

also found that the dwell time was not affected by time of day or service type. It is 

interesting that Rajbhandari et al. were able to use APC data to establish a link 
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between crowding and boarding times; however, there is only limited applicability of the 

results to rail, because there are additional factors, such as payment to the driver for 

boarding passengers. Nevertheless, it suggests that it may be possible to use APC 

data to investigate the relationship between crowding and dwell times in rail. Other 

examples of research into the link between crowding and dwell times using other 

sources of data will be discussed in §2.2.5. 

The TRB (2008) produced a synthesis of information and advice for US public transport 

agencies on the use of APC. However, it primarily is based on case studies of APC 

used in buses and in some cases light rail.  

Other technologies, in particular mobile phones, have also been used for monitoring 

pedestrian flows more generally (see §2.1.2). However, these technologies are not as 

widely used as door sensors or weight-based sensors by train operators for passenger 

counting because of lower accuracy. 

Summary 

The two main types of APC sensors used in the UK rail industry are door sensors and 

weight sensors, with around 40% of the fleet equipped as of 2010. An advantage of 

door sensors is that they are typically more accurate than weight-based sensors, 

because assumptions are not required around the average weight of passengers. Also 

door sensors are able to provide bi-directional boarding and alighting flows, whereas 

weight sensors cannot. However, door sensors may be susceptible to ‘drift’ in the 

running total on-board and also to provide accurate passenger counts for each coach, 

additional door sensors are required between carriages. 

The literature review did not find any academic research on the use of APC data in rail 

in the UK, which may be because the data is owned by the train operators and is 

commercially sensitive. This perhaps suggests that there is a gap for novel research if 

it were possible to gain access to this data source. Some academic research was 

found into the use of APC data for estimating dwell times of buses, although this is not 

directly applicable, because there are other factors not present in rail, such as payment 

to the driver for boarding passengers. 
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2.2.3 Automatic fare collection (AFC) data and rail passenger crowding 

Automatic fare collection (AFC) systems in public transport have been deployed in 

many countries around the world using smart card technology. Rather than using 

traditional paper tickets, public transport passengers can purchase tickets without 

queuing and can complete their journey using a single smart card, phone or 

contactless bank card. Smart card schemes are well established in many cities and 

regions internationally, with examples such as the Oyster card in London and the 

Octopus card in Hong Kong. In some cases the area covered by the smart cards is 

regional or country-wide, although more commonly the area covered by smart cards is 

city-wide. In the UK there are plans for greater deployment of smart card schemes 

across the country (Borg 2014) and a pilot project in Norfolk is ongoing, which will 

evaluate the effectiveness of a ‘managed service’ approach in deploying smart and 

integrated ticketing across a rural county (DfT 2013c). 

There has been much research using the data generated from the user ‘touch-ins’ and 

‘touch-outs’ across a wide range of situations. Pelletier et al. (2011) gives a good 

overview of strategic, tactical and operational uses of AFC data, as well as considering 

the research challenges. Some more specific examples of research using AFC data 

include the following. 

 Personalised recommendation systems – Researchers at UCL have proposed 

approaches for developing personalised systems using AFC data, in particular 

for providing personalised trip time estimates (Lathia et al. 2013, Lathia et al. 

2010), as well as giving recommendations for the type of ticket users should 

purchase (Lathia and Capra 2011). 

 Estimating occupancy on buses – Oyster card data is increasingly being used 

to measure occupancy and crowding on buses in London instead of traditional 

manual surveys; this is not a trivial task because data is only collected when 

entering a bus (Wang et al. 2011). 

 Measuring public transport accessibility – Ferrari et al. (2013) built a model from 

AFC data and a journey planner to evaluate the level of accessibility for various 

trips across London. 

These studies illustrate that AFC data is an exciting area of research with potential to 

be applied to a variety of situations. The rest of this section focuses on a smaller 

selection of research studies, in which AFC data is used to investigate crowding. 
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2.2.3.1 Predicting crowding using AFC data 

Ceapa et al. (2012) undertook analysis of peak crowding at stations on the London 

Underground using one month of Oyster card entrance and exit data.  

After cleaning the data, they conducted a spatio-temporal analysis, which revealed that 

the station crowding patterns were very regular during the week due to commuting, but 

typically had higher variance at the weekends. For the weekday data, they identified at 

least three types of station: ‘Residential’ with high entrances in the AM Peak and high 

exits in the PM Peak e.g. Finchley Central; ‘Business’ with high exits in the AM Peak 

and high entrances in the PM Peak e.g. Canary Wharf; and ‘Transport Hub’ with both 

high entrances and high exits in both the AM Peak and PM Peak e.g. Waterloo. Figure 

1 shows the average weekday entrances (blue) and exits (red) at Canary Wharf 

Underground station, which showed very low standard deviation (shaded area) in the 

evening peak, along with three ‘sub-peaks’ around 17:10, 17:40 and 18:10.  

 

Figure 1 – Weekday entrances (red) and exits (blue) at Canary Wharf Underground 
station (reproduced from Ceapa et al. 2012; © 2012 ACM, Inc. Included here by 

permission) 

They then undertook a more systematic classification of the stations using an 

agglomerative hierarchical clustering technique, i.e. this is a ‘bottom up’ approach in 

which each observation starts in its own cluster and then pairs of clusters are merged 

together. They used a technique related to ‘Dynamic Time Warping’ (DTW), which is a 

popular algorithm used in data mining and time series clustering analysis, as well as in 

other fields. Senin (2008) describes the DTW algorithm as “being extremely efficient as 

the time-series similarity measure which minimises the effects of shifting and distortion 

in time by allowing elastic transformation of time series in order to detect similar shapes 

with different phases”. Specifically Ceapa et al. chose to use an approximation to DTW 

called ‘FastDTW’; this had the advantage of being more suitable for large time series 

datasets. From visual inspection, they chose to terminate the clustering algorithm at six 

clusters. The results of the clustering gave small intra-cluster distances suggesting that 
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there was good compactness within each cluster; there was also large inter-cluster 

distances suggesting good separation between the clusters. 

As there was no official definition for station crowding, they defined a proxy measure 

for crowding, which was the proportion of touch-ins and touch-outs at the station 

relative to the maximum number observed in the data. This measure meant that a 

value of 1 represented the station at its peak level of crowding and a value of 0 

indicated no entrances or exits within the period. 

They then built and evaluated three prediction models and investigated the effect of 

several parameters on the accuracy of the results, using half of the data for training the 

model and half for testing. The three predictors were as follows: 

 ‘Historic value’ – This was the most basic predictor, taking the one 

corresponding value in the training dataset for the corresponding day of week 

and time of day. 

 ‘Historic mean’ – This was similar to the ‘Historic value’ predictor, but used the 

mean of all values in the training dataset for the corresponding day of week 

and time of day. 

 ‘Historic trend’ – This attempted to improve on the other two predictors by 

taking into consideration crowding level for the current time. 

The project concluded that the high regularity of commuting travel meant that patterns 

are indeed predictable, even with as little as two weeks of training data. The three 

predictors based on historic data achieved very good results in predicting crowding, 

which suggested that providing information on crowding levels to passengers would be 

“highly feasible”.  

They proposed one use of this analysis as follows: “Identifying times when public 

transport is overcrowded could help travellers change their travel patterns, by either 

travelling slightly earlier or later, or by travelling from/to a different but geographically 

close station”. However, the study did not assess how passengers would make use of 

such information, but recommend this for future studies. 

The finding that weekday travel on the London Underground has low variability is not 

surprising; for the most part this is likely explained by high levels of commuting trips, 

many of which will involve interchanges with timetabled train services. Nevertheless, it 

is novel that even relatively simple predictors yielded accurate results due to this 
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regularity. A limitation of the study should be noted in that it did not consider any 

seasonal effects; the study was based on data for the 31 days in March 2010, which 

was a ‘typical’ month in that it contained no school holidays or bank holidays.  

The fundamental approach of station-by-station analysis, clustering and then prediction 

may be applicable to heavy rail, although it is not clear whether journeys would also 

have low levels of variability and in turn high levels of predictability. This would likely be 

affected by the proportion of passengers on a particular route who were travelling for 

commuting, business, leisure or other journey purposes. 

As discussed above, the study used the proportion of touch-ins and touch-outs relative 

to the maximum number observed in the data as a proxy measure for crowding. This 

measure was fit for purpose in the context of the study in assessing the predictability of 

demand, although a limitation of the study is that there were no attempts to calibrate 

this with available capacity, i.e. to understand actual levels of crowding. This could be 

attempted in a more detailed study, which might involve analysis of service timetables, 

walking times, predicted interchanges, proportion of tickets that are still paper-based, 

validation with manual counts etc. As such, it seems that it would be easier to use APC 

data if available rather than AFC data for measuring levels of crowding. 

2.2.3.2 Agent-based modelling using AFC data 

Legara et al. (2014) built an Agent-Based Model (ABM) of the light rail network in 

Singapore using AFC smart card data. Agents have been defined as “autonomous 

decision-making units with diverse characteristics” (Macal and North 2010). For 

example, this might be a model of a flock of birds, where each individual bird is 

considered an agent and their behaviours are modelled individually. 

The AFC dataset covered one week and contained 14 million journeys with information 

on time and location of touch-ins and touch-outs, as well as with a journey ID and 

anonymised card ID. The model consisted of a network of 29 stations on one line, with 

train dispatch intervals being normally distributed with a three-minute headway during 

the peak and a six-minute headway at other times. They used the AFC data to validate 

their model through both visual inspection and statistical goodness of fit tests. They 

plotted output from the model on the travel time distributions between origin-destination 

station pairs and then also plotted real data against these curves.  

The model contained information on the loadings and available capacity of all trains at 

a particular time. The main measure used in the model was the number of ‘pass-ups’, 
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i.e. where passengers are not able to board a train, because there is no available 

capacity. They ran several model scenarios where the number of travellers was 

increased to represent future scenarios with population growth. They also ran 

scenarios where they decreased the available capacity. They found that when 

decreasing the available capacity, there was a tipping point where the cumulative travel 

time increased exponentially. This was because the model reached a point where 

trains consistently departed at full capacity and the number of passengers who could 

not board increased throughout the peak period. 

The focus of this study was in modelling future growth scenarios for a subway system 

with very high demand, where the main measure of crowding used was the number of 

‘pass-ups’. Although on occasion some heavy rail trains do depart with passengers not 

able to board, this is typically a rare occurrence in the UK and so is not an applicable 

metric. A modelling approach can be a useful method to test alternative scenarios, 

although such models for the UK railways are already well established as discussed in 

§1.1. 

2.2.3.3 Visualisation of passenger flows using AFC data 

Itoh et al. (n.d.) proposed two types of visualisation for occupancy on metros using two 

years of AFC data for Tokyo’s subway, a ‘Heat Map View’ and a ‘Route Map View’. The 

Heat Map View uses the horizontal axis for the time and the vertical axis for the 

different lines and stations. There is one cell for each 10 minutes and for each station 

in a particular direction. The colour of the cell represents the level of crowding, 

normalised by standard deviation; red represents occupancy on that day where it is 

higher than the historic average for that cell and blue represents occupancy that is 

lower than the historic average. The Route Map View illustrates the number of 

passengers by the height of stacked 3D bands along the route, but also uses colour to 

describe how the values at a particular time compare to the historic average in the 

same way as the Heat Map View. Figure 2 shows the two views in Tokyo on a date of 

an earthquake; this shows that at 14:00 the subway was running as usual, but soon 

after the earthquake at 14:46 flows were much lower than usual and then when the 

lines were reopened in the evening the flows were much higher than usual. 

These visualisations are an interesting way to communicate operational information for 

multiple routes and services, specifically for how a particular day compares with 

‘normal conditions’, i.e. in communicating the level of service disruption. 
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Figure 2 – Passenger flows on 11 March 2011, Tokyo, Heat Map View (left) and Route Map 
View (right) (reproduced from Itoh et al. n.d.) 

Summary 

There is a substantial amount of academic research into AFC data across a range of 

topic areas. The literature review has focused on applications of AFC data to estimate 

levels of crowding, both on stations and on trains. The structure of AFC data is typically 

that of ‘touch-ins’ and ‘touch-outs’ and so does not provide a direct link to crowding and 
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occupancy data, unlike APC data. Nevertheless, there are a range of approaches that 

may be applicable. 

Ceapa et al. (2012) used the approach of a preliminary spatio-temporal visual analysis, 

followed by a more rigorous clustering approach to classify the stations, followed by 

use of predictive techniques. They used an approximation to the DTW clustering 

algorithm to classify the time series data. They showed that if the variability is low, then 

simple predictors can give quite accurate results, even with a relatively small amount of 

data. 

The modelling approach used by Legara et al. (2014) focused mainly on the number of 

‘pass-ups’ as the main measure of crowding. This may be applicable to a very busy 

light rail scenario, but is less applicable to heavy rail. 

The review identified some novel visualisation techniques that may be applicable, 

although such visualisations should be in addition to more rigorous techniques. 

2.2.4 Localised crowding and ‘loading diversity’ 

As introduced in §2.2.1, uneven distribution of passengers between coaches can lead 

to localised crowding on a train when seats are still available, meaning that passengers 

travelling at one end of a train can perceive a higher level of crowding than those at the 

other end of the train. This section explores research into this localised crowding or 

‘loading diversity’. 

2.2.4.1 Definition of ‘loading diversity’ 

The TRB (2003) issued guidance that introduced the concept of ‘loading diversity’, of 

which they defined three types: “1. Loading diversity within a car4”; “2. Loading diversity 

among cars of a train”; and “3. Unevenness of passenger demand during the peak 

hour”. They described the first type of loading diversity as being the situation in which 

“the highest standing densities occur around doorways” and suggested this can be 

reduced by increasing the number of doors. For the second type of loading diversity, 

where there are more passengers in some coaches than other coaches, they defined a 

                                                

4
 The terminology ‘cars’ is used in the TRB report, which is equivalent to the word ‘coaches’ used in the 

thesis. 
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measure that they call ‘average peak hour passenger distribution between cars of 

trains’, or perhaps more usefully ‘ratio of car occupancy to train average’. This is a 

measure where a value equal to 1 represents an individual coach load equal to the 

average load of all cars in the train. An example for one platform on Toronto’s subway 

is reproduced in Figure 3; this was aggregated across 99 trains in a six-hour period on 

one day. 

 

Figure 3 – ‘Ratio of car occupancy to train average’: Toronto, Yonge Subway, Wellesley 
Station, southbound direction, Jan 11th 1995, 99 trains, 66,263 passengers (reproduced 

from TRB 2003) 

In this example, during the morning peak period, the rear of the train (Coaches 5 and 6) 

was typically more heavily loaded than the front of the train; this ranged from 1.26 

(+26%) in the busiest coach to 0.61 (-39%) in the emptiest coach. They suggested that 

this could be explained by a major transfer station at the next station along (Bloor 

Street), which has the interchange at the rear end of the platform. In this example, 

there was less variation in the ratio of car occupancy to train average during the one-

hour peak period (08:00 to 09:00) suggesting passengers were more likely to spread 

evenly along the full length of the train at the busiest times. For individual trains in the 

survey period, the ratio of car occupancy to train average ranged from 2.56 (+156%) to 

0.11 (-89%). They suggested that the main cause of this second type of loading 

diversity is that “cars that are closer to station exits and entrances will be more heavily 

loaded than more remote cars”. Furthermore, they suggested that, “this inefficiency can 

be minimised by staggering platform entrances and exits between ends, centres, and 

third points of the platforms”. 

They described the third type of loading diversity as being where passenger demand is 

spread unevenly over the peak hour period. The distribution of train loads for the 
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extended peak period is shown in Figure 4 for the same example as above. There was 

a spike at 08:35, illustrating that there can be high variability within the peak hour 

period. A measure was proposed to describe the ‘peak-within-the-peak’ that was called 

the ‘peak hour factor’, defined as: 

“Peak hour factor = (passenger volume in peak hour) / (4 * passenger volume in 

peak 15 mins)” 

The peak hour factor gives a value between 0.25 and 1, where a higher value means 

that the passenger demand is more evenly spread over the peak hour. 

 

Figure 4 – Train load across the extended AM peak period: Toronto, Yonge Subway, 
Wellesley Station, southbound direction, Jan 11th 1995 (reproduced from TRB 2003) 

The three-part definition of ‘loading diversity’ provides a useful starting point to consider 

the issue of uneven occupancy on trains. The first type was considered not of interest 

here in that it is largely affected by carriage design, which was not the primary focus of 

this research. The second type of ‘inter-coach’ loading diversity was considered to be 

of interest, although the current TRB metric (‘ratio of car occupancy to train average’) 

does have a limitation in that it only explains the loading relative to other coaches and 

does not include information on the capacity; for example some quiet services would 

be classified as having very high loading diversity, even though there may be no 

coaches at or near capacity. The third type of ‘inter-train’ loading diversity was also of 

interest, although the ‘peak hour factor’ measure may not be appropriate for use in 

heavy rail because of larger headways between trains. As these loading diversity 

measures are not readily applicable, there is a gap to explore alternative measures, 

using these as a starting point. It may be possible to combine the measures proposed 

by the TRB with existing DfT measures, such as ‘standard class load factor’ or PiXC 

(see §2.2.1) on a coach-by-coach basis.  
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The TRB report suggested that loading diversity could be addressed through measures 

such as staggering entrances and exits along the platform and providing more doors on 

trains. These approaches would be relatively high-cost or would need to be considered 

initially when designing the station. A review of possible measures to address inter-

coach and inter-train loading diversity will be given in §2.3. 

2.2.4.2 Research studies into different aspects of loading diversity 

Kim et al. (2014) conducted a study to investigate the reasons why passengers choose 

a particular coach on the Seoul subway. Thus they attempted to explain the underlying 

causes for unevenness of passenger loads across individual coaches of a train, i.e. the 

second type of loading diversity as defined in §2.2.4.1. They conducted 340 face-to-

face interviews at one station on the Seoul metro during the weekday morning peak 

over a period of four weeks. The surveyors randomly picked passengers who were 

waiting for their train to arrive. The survey involved two main questions: whether or not 

they chose a specific coach intentionally; and if so what was the motivation for their 

choice. Before conducting the survey, they determined four groups of variables to 

correlate against their responses:  

 Individual-specific characteristics – age, gender, marital status, income and 

other socio-economic factors 

 Trip-related variables – variables related to a respondent’s current trip, such 

as trip purpose, trip frequency, prior travel experience, awareness of station 

layout etc 

 Physical environment around the platform contains – entrances/exits, transfer 

gates, elevators, and escalators. 

 Attitudinal or behavioural propensities – good memory, health condition, 

punctuality etc. 

The headline results from the survey were that about three-quarters of the respondents 

reported choosing a specific coach intentionally. Of these when asked to explain their 

motivation: 70% said “to minimise the walking distance to exit when they disembarked 

at a destination station”; 17% said “to minimise the distance from the entrance when 

they boarded at an origin station”; and the remaining 13% said “to pursue comfort while 

travelling”. They constructed a statistical model to determine which variables explained 

the answers.  
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A relationship of note was that young females were more likely to choose a coach to 

avoid high levels of crowding. Another was that commuters were more likely to 

minimise their walking distance at the destination station, as were passengers who 

were classified to have better mnemonic ability, i.e. those with better memory. The 

survey was conducted for a subway during the weekday morning peak and so it would 

be expected that there would be a high proportion of commuters. Given that it was 

found that commuters were more likely to minimise walking distance on alighting the 

train, this combined with the make-up of the sample would go some way to explaining 

the 70% who said this was their main motivation for choosing their coach. These 

results are likely applicable to situations with high proportions of commuters, but 

perhaps less so where there are low proportions of commuters. The passenger survey 

approach used in this study could also be applied to heavy rail in determining the 

motivations of passengers in their choice of coach. 

Sohn (2013) built a model to determine the optimal stopping position for trains for a 

hypothetical metro line, in order to make the passenger load more evenly dispersed. 

He did this by applying a genetic algorithm to solve the proposed model, which 

“considerably improved the distribution of passenger loading”. Such research is useful 

if designing and building new stations, but is of limited applicability to existing stations. 

Lee et al. (2012) conducted a simulation study for the Seoul Subway into the benefits 

of providing real-time coach-by-coach congestion information to passengers waiting for 

the approaching train on the platform. The simulation was for the most crowded section 

of Line 4 between Danggogae and Chungmuro stations. There is only limited published 

information on the simulation, although it was concluded that dwell time could be 

reduced by 15% if this were implemented. Modelling the impacts of coach-by-coach 

congestion information could be a successful approach for estimating the benefits of 

such systems. The 15% reduction in dwell time suggested by the modelling would be a 

substantial time saving; however, there is only limited information on the scenarios and 

assumptions made and so these results should be treated with caution. 

Wiggenraad (2001) conducted observational studies at seven Dutch stations, which 

included observations of where passengers waited and also where they boarded. The 

study involved around 20 surveyors covering the full length of the platforms with 

clipboards, for a period of four hours at each station (07:00-09:00 and 10:00-12:00). 

This yielded a total of 130 observations of train services. The study focused 

predominantly on boarding and dwell times, but also involved summary analysis of the 

distribution of passengers along the platform. A key finding was that at some stations 
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although there was a concentration of passengers waiting close to the stairs, upon the 

arrival of the train the passengers distributed themselves more evenly over the platform 

for boarding. 

The traditional approach of using surveyors to monitor the boarding location of 

passengers would still be applicable today, although is a resource-intensive method. If 

door sensors were already fitted on the trains (see §2.2.2), it would be possible to 

analyse the proportion of passengers boarding at each door, which would be a 

substantially more efficient approach. Another alternative would be to conduct a similar 

analysis through using video surveys to record behaviour along the platform; this would 

have the advantage of being able to ‘fast forward’ to the arrival times of the trains and 

also to assess the distribution of where passengers waited. 

Researchers from UCL (Fujiyama 2014) are also currently working in the area of 

loading diversity. An employee of London Underground, David Dobson, has recently 

started a part-time PhD at UCL conducting investigations into more even loadings 

between coaches on the Underground, although the research is still at an early stage. 

Taku Fujiyama from UCL also has an interest in this area from the perspective of 

boarding times and dwell times. Researchers in South Korea and the USA are also 

working in this area. 

Summary 

The TRB have proposed a three-part definition of ‘loading diversity’ to describe the 

distribution of passengers: i) near doors within a coach; ii) from coach to coach; iii) 

between trains across the peak period. The metrics associated with these definitions 

are not readily applicable to heavy rail, although they do provide a useful starting point 

to explore alternative measures of uneven occupancy on trains. The first type was 

considered not of interest here in that it is largely affected by carriage design, which 

was not the primary focus of this research. The second type of loading diversity was 

considered to be of interest, although the ‘ratio of car occupancy to train average’ is 

only a relative measure and does not include information on the capacity. The third 

type of loading diversity was also of interest, although the ‘peak hour factor’ measure 

may not be appropriate for use in heavy rail because of larger headways between 

trains. 
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The review identified only a few research papers in the area of loading diversity. Kim et 

al. (2014) found that about three-quarters of subway users in South Korea reported 

choosing a specific coach intentionally and of these when asked to explain their 

motivation there were a variety of reasons, although 70% said “to minimise the walking 

distance to exit when they disembarked at a destination station”. This paper goes some 

way to investigate the causes of uneven loadings, but it should be noted that the 

survey was conducted for a subway during the weekday morning peak and so may not 

be representative of other scenarios. 

2.2.5 Relationship between crowding and boarding times 

It may be expected that the extent to which passengers are spread unevenly between 

coaches would be related to boarding times. This section briefly explores existing 

research into train boarding times; this includes both real-world observations and 

laboratory experiments. 

Wiggenraad (2001) conducted observations at Dutch railway stations and found that 

during the first phase of boarding where passengers are crowded at the door the mean 

alighting and boarding time per passenger was around one second. He found that for 

wider doors there were 10% shorter time values and for narrower doors there were 

10% longer time values.  

Lee et al. (2007) conducted a review of existing research into boarding times. They 

suggested that there are four types of factors that affect train boarding times: 

passenger mobility; platform design; vehicle design; and crowding effects. They also 

proposed a model based on empirical data to describe the non-linear relationship 

between boarding times and the level of crowding on the train. 

UCL constructed a mock-up of a train carriage in their pedestrian laboratory 

environment and conducted controlled experiments, whereby participants board and 

alight the carriage under different conditions. They undertook a study for the design of 

the Thameslink carriages (Fujiyama et al. 2008), which tested different passenger flows 

for a range of design variables, such as door width, platform height and platform 

markings. Regarding the relationship between crowding in the vestibule and passenger 

flow rate, they found that “when density of the destination (e.g. the vestibule for the 



Optimising the loading diversity of rail passenger crowding using on-board occupancy data 

 47   

boarding flow) becomes two people per square metre or greater, the flow rate starts 

decreasing”. 

There are several existing research studies that have investigated the factors affecting 

boarding times through both real-world and laboratory experiments; a range of results 

have been collected for the average boarding and alighting times per passenger under 

various conditions. The only study identified that used APC data to investigate boarding 

times was Rajbhandari et al. (2003), as discussed in §2.2.2. There is potential for more 

widespread use of APC (door sensor) data in this way, which would have advantages 

of larger sample sizes and also cheaper data collection if sensors were already 

installed. The studies identified focused on average results for one set of doors, rather 

than taking into account the maximum boarding time across all doors. 

The relationship between loading diversity and boarding times is likely two-fold.  Firstly, 

the boarding time for a whole train is equal to the maximum boarding time of each 

individual door, thus if a disproportionate number of passengers board and alight from 

one particular door this will result in higher overall boarding time. Secondly, there is 

research from multiple studies to suggest that once the vestibule reaches a certain 

threshold of crowding, the flow rate at which passengers can board reduces. Thus it is 

intuitive that optimising boarding patterns along the platform will result in lower 

boarding times, although this relationship is likely non-linear if there is an interactive 

effect of crowding in vestibules. 

Dwell time is the time that train is at the station; one definition is the time spent at the 

station between the wheels stopping and starting, while an alternative definition is the 

time between the doors unlocking and locking. Dwell time is closely related to boarding 

time, in that boarding time makes up a large proportion of the dwell time in many 

cases. Other aspects of dwell time include waiting for the scheduled departure time if 

trains are running early or if there is contingency in the timetable. 

Boarding times and in turn dwell times are one source of delay for smooth operation of 

trains. There are several punctuality targets for train operators and Network Rail, 

although the main target is the ‘public performance measure’ (PPM), which is the 

percentage of trains that arrive at their terminating station on time, i.e. within five 

minutes of the planned arrival time for London or regional services, or within ten 

minutes for long distance services (Network Rail n.d.). 
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Summary 

There are several existing research studies that have investigated the factors affecting 

boarding times through both real-world and laboratory experiments. The mean alighting 

and boarding time per passenger is typically around one second, although this 

increases or decreases depending on various conditions, such as passenger mobility, 

platform design, vehicle design and crowding effects. 

The relationship between loading diversity and boarding times is likely two-fold.  Firstly, 

the boarding time for a whole train is equal to the maximum boarding time of each 

individual door, thus if a disproportionate number of passengers board and alight from 

one particular door this will result in higher overall boarding time. Secondly, there is 

research from multiple studies to suggest that once the vestibule reaches a certain 

threshold of crowding, the flow rate at which passengers can board reduces. Thus it is 

intuitive that optimising boarding patterns along the platform will result in lower 

boarding times, although this relationship is likely non-linear if there is an interactive 

effect of crowding in vestibules. 

2.3 Review of existing research into solutions to optimise 
loading diversity 

This section gives an overview of research into solutions that are designed to optimise 

loading diversity. The review draws upon both academic and other sources and covers 

initiatives from concepts to pilots to implemented solutions. This involves approaches 

that affect passengers both consciously and subconsciously, with both real-time and 

static solutions. All solutions considered in some way use the on-board occupancy data 

that is captured automatically. For the purposes of making comparisons, initiatives 

have been grouped into two categories depending upon their intended effect: 

 Inter-coach: these are intended to influence how passengers distribute 

themselves between coaches along a train, i.e. to optimise the second type of 

loading diversity as defined in §2.2.4.1. 

 Inter-train: these are intended to influence the choice of train passengers make 

so as to encourage a move from crowded trains to earlier or later trains where 

more space is available, i.e. to optimise the third type of loading diversity as 

defined in §2.2.4.1. 
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The purpose of this review of solutions is to understand what concepts have been 

proposed or piloted and to explore the extent to which there exists evaluation evidence 

on the impact of these interventions. In turn this will highlight the gaps in the 

knowledge. 

2.3.1 Inter-coach, real-time information 

Solutions in this category provide real-time information to inform passengers waiting on 

the platform of congested zones on the approaching train. The intention is to allow 

people to stand at appropriate locations along the platform so that they can board 

coaches with available space and avoid coaches that are full. Several examples were 

identified in the review: 

 There has been a large-scale pilot in the Netherlands of a system that provides 

real-time information on coach-by-coach occupancy via an app and on-platform 

displays (§2.3.1.1). 

 A simulation by the Korean Transport Institute concluded that real-time coach-

by-coach occupancy information could reduce dwell times by 15% (§2.2.4.2). 

 London Underground have completed the first phase of a research study into 

‘crowding indicators’ and plan to conduct three demonstrators (§2.3.1.2). 

 The new Siemens Desiro City trains to be used on Thameslink is planned to 

provide platform displays on passenger loadings (§2.3.1.2). 

 A number of other conceptual proposals have been identified which 

demonstrate different approaches that could be used for displaying coach-by-

coach occupancy information to passengers (§2.3.1.2). 

2.3.1.1 Pilots of automated real-time passenger information systems using on-
board automatic passenger counts 

This project was undertaken by the consortium of NS, ProRail, STBY and 

Edenspiekermann in the Netherlands. The project revolved around the development of 

a real-time passenger information application system providing users with information 

on on-board real-time coach-by-coach occupancy. The information was made available 

to the user in the form of a mobile app as well as a digital display on the station 

platform. 
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Phase 1 was a trial of an automatic system that used on-board passenger counters to 

generate real-time occupancy data that were used to update a smartphone application 

with information to passengers on where to board (NS 2013). The trial was undertaken 

by NS, the long-distance train operator in the Netherlands. NS considered different 

technologies for the passenger counts, such as measuring the weight of the train, Wi-Fi 

usage, electronic checking data or monitoring seats, although they eventually chose to 

use door sensors to generate counts at the compartment level. Before the complete 

roll-out of the test, cameras were installed in the prototype train to check the accuracy 

of the sensors. 

The APC test took place on the line from Roosendaal to Zwolle; 11 trains were 

equipped with over 270 counting sensors in total. The test involved two user groups, a 

group of NS employees and a group of 800 passengers, who both had access to the 

specially designed “iNStApp”, see Figure 5. Boarding and alighting passengers were 

counted, after which the occupancy of the train was calculated and classified as Red, 

Amber or Green. Count data were transmitted wirelessly to a central server, along with 

other data about the train, where they were then used to provide real-time information 

via a smartphone app about the passenger loading along the train to passengers 

waiting at stations for the train to arrive. The real-time information was updated around 

two minutes after the train left a station. Other information supplied by the app included 

the location of the 1st and 2nd class coaches, quiet coaches, entrances for bicycles 

and wheelchairs and train Wi-Fi information. 

 

Figure 5 – Pilot of real-time smartphone app (reproduced from NS 2013) 
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The benefits of the system were stated as being that “passengers with a seat and a 

less crowded carriage are more likely to have an enjoyable journey and feel better 

about the service”. In an online interview, a spokesperson from NS spoke about 

feedback from passengers (Upton 2014): “We are very satisfied about the automatic 

passenger counting test. We notice that our customers greatly appreciate being able to 

see where there are seats available on the train and have a more comfortable journey 

as a result. Additionally, we can make great use of the occupancy figures for other 

applications within our company [such as the planning of the timetable and disruption 

management], making it a contributor to innovation within NS.” 

This initial smartphone pilot by NS was novel in that it demonstrated that the 

technologies do exist to be able to build such a system and the scale of the pilot seems 

to have been sufficient to successfully demonstrate the technologies. Infra-red sensors 

were installed on all internal and external doors, partitioning each coach into two or 

three compartments; this level of granularity is higher than some other studies, which 

have proposed only coach-by-coach granularity. The approach taken by NS would 

likely be a more expensive implementation because more sensors would be required. 

Only limited information has been published on the results of the pilot and so it is 

difficult to draw conclusions on its success. It might be expected that using a 

smartphone app to display the information may only have limited take-up; in the 

subsequent phases of the pilot other ways to display the information were investigated. 

In Phase 2 of the research programme there were observational studies at platforms, 

qualitative research with passengers and preparatory work for further pilots of real-time 

information systems. This work was commissioned by ProRail, the company 

responsible for the rail network and the management of train stations in the 

Netherlands, and was delivered by a research organisation called STBY and a design 

company called Edenspiekermann. There were three sub-projects (Enninga et al. 

2013): 

 ‘What motivates passengers on the platform’  

 ‘Finding your way around the platforms’  

 ‘Improving boarding and alighting’  

The first project focused on how and why passengers move around platforms. STBY 

mapped the pedestrian flows on platforms through observations and shadowing; this 

was then supplemented by interviews with travellers to help understand the motives 
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behind the flows. The project concluded that there are three distinct categories of travel 

that determine a passenger’s informational needs according to whether they are 

involved in routine travel, in incidental travel, or their travel experience has been 

disrupted. The second project was a more in-depth study involving travel diaries and 

interviews with train travellers. For about three weeks, travellers were asked to keep 

track of their train journeys using a specially designed diary. They answered questions 

about their trip, made sketches to indicate their movements and indicated their level of 

satisfaction at various stages. Each participant was then interviewed about their 

answers. There were “co-creation” workshops to define the main problems and identify 

possible improvements (Hummels 2013). Based on the customer insights, 

Edenspiekermann developed several possible design solutions to improve the boarding 

process. The design ideas were evaluated and improved on through further workshops 

with all relevant stakeholders. One concept was about providing train travellers with 

platform displays with information about the level of occupancy of the various train 

compartments. This concept overlapped with the work already done by NS on their 

real-time smartphone app and was taken forwards as a pilot in the next phase. 

Phase 3 involved a pilot at Den Bosch station of a platform edge LED display system to 

provide a real-time display, using a Red-Amber-Green colour code, of where current 

seating availability was greatest, encouraging pedestrians to move along the platform, 

see Figure 6. The pilot was conducted jointly by the four organisations, drawing on 

experiences from the two earlier projects (Holthuis 2013). 

 

Figure 6 – Pilot of real-time platform information system (reproduced from De Vos 2013) 
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Similar to the smartphone app that NS developed, the platform display provided train 

travellers with live information about the availability of seats in the train they were 

waiting for. The system architecture was essentially the same as the trial of the 

smartphone app: infra-red door sensors collected real-time occupancy data on the 11 

trains that were part of the previous pilot and this was then transmitted wirelessly to the 

central server. The platform displays also gave other information on the actual 

composition of the train: the exact position of the train and train doors; position of the 

first and second class sections, as well as the special train functions like disabled 

ramps.  

The pilot, which claimed to be the world’s first real-time boarding information system of 

its kind, was operational for three months as a pilot at Den Bosch railway station from 

February to April in 2013. STBY analysed the usage of the app and the platform screen 

and also collected data on passenger satisfaction (De Vos 2013). During the test 

period many people used the new services, with about 700 travellers providing their 

feedback to STBY through online questionnaires and in-depth interviews.  

Results from the pilot showed that, "The customer gave NS a significantly higher 

valuation at the end of the trial than before". Other benefits were that the passenger 

counts “provide the operator with an accurate, real-time display of how their trains are 

being used [and]… can help in time-table planning, improving how rolling stock is 

distributed, disruption management and how stations are planned”. NS have said that 

they are looking at the costs of such a system in consideration for a wider roll-out. As of 

August 2015, the consortium was planning further trials. 

The pilot of the real-time occupancy screens was successful in that it demonstrated 

such systems are technically feasible and there is some evidence to suggest that 

passengers valued the system. Emphasis was placed on user needs when designing 

the screens and the resulting 180-metre LED screens were quite ambitious. However, 

no published material was found with evaluation evidence of how passengers 

interacted with the system. The pilot could have been improved through quantitative 

monitoring of the behaviour of passengers, possibly using a ‘Control’ and ‘Treatment’ 

approach; i.e. monitoring the distribution of passengers along the platform (similar to 

Wiggenraad (2001) in §2.2.4.2) before it was installed, then again once the system was 

implemented. In particular, it would have been of interest to observe the level of 

compliance with the system, i.e. how many passengers stood in zones relative to the 

Red-Amber-Green colours displayed. Indeed, it is a possibility that too many people 

would stand where it was lit Green and this may in turn result in longer boarding times 
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and higher levels of crowding; for this reason more detailed evaluations should be 

conducted before such systems are implemented widely. 

2.3.1.2 Various – Vision concepts 

London Underground has recently announced that their Innovation Team has 

completed the initial phase of a project called, ‘Crowding indicators research’ (TfL 

2015). Instrata, a digital SME from Cambridge, undertook the research, which included 

a literature review, passenger observations, a staff consultation at Victoria station and 

focus groups. A July 2015 London Underground newsletter said that, “A number of 

concepts were developed that aimed to make better use of data from trains to ease 

loading and reduce dwell times. The concepts focus on providing better information 

about frequency and crowding earlier in passengers’ journeys (on a variety of displays) 

and then using platform digital projection and signage to display dynamic information 

about train crowding before trains enter the platform”. The planned next phase of 

research will involve three demonstrators.  

According to reports in the media the train operator in Stockholm, Stockholmståg, are 

planning to release an app that will “indicate which coaches are more or less 

crowded… [using] the wheel pressure in the trains” (Holland 2015). No further 

information was available on the initiative. 

Siemens published a concept in which there was an indication on the platform of the 

location of the least crowded coaches (Siemens 2009). It is understood that a system 

like this may be installed for its Desiro City trains, which are being built for the 

Thameslink franchise. The promotional video does not describe how the information 

would be presented nor how the data would be collected, but it is understood that 

automatic passenger counters are to be fitted to all new rolling stock (see §2.2.2). A 

related application is also proposed for which the air conditioning system uses CO2 

sensors to match cooling to the passenger loadings. 

A number of other conceptual proposals have been identified which demonstrate 

different approaches that could be used for displaying coach-by-coach occupancy 

information to passengers: 

 A display for coach-by-coach occupancy for multiple approaching trains has 

been proposed for the London Underground (Taylor 2011). This would be 

displayed on the opposite wall to the platform on a large display and would 

have a traffic light colour code for each coach; it is proposed that this would 
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show multiple trains and be combined with information on arrival times and the 

current location of the trains on the network. It was suggested that loading 

information would be obtained from passenger body heat or carriage weight. 

 The ‘Comfort Zone Display’ is a vision concept designed by 4-iD Design 

Network of Barcelona (Kumar 2010). The display boards at a station would 

show train passengers the coach-by-coach occupancy of the incoming train 

with images of people and a traffic light colour code. The displays would also 

show information on other services available in each coach. 

 A start-up technology company in London has proposed a coach-by-coach 

occupancy display (Opencapacity n.d.). Their website describes a “content 

delivery product for public transport using the latest open source technologies 

combined with sensor innovations to create OpenCapacity – a novel, modular 

platform to measure, analyse and communicate the available space on public 

transport”. It includes a concept for displaying the loading information in 

monochrome on existing LED CIS boards; passenger loading data would be 

obtained from any type of automatic sensors. 

2.3.2 Inter-coach, near-real-time seat reservations 

Solutions in this category aim to use seat reservation information to help optimise 

coach-by-coach occupancy. 

2.3.2.1 ‘Seat Reservation Display System’ 

DILAX, a provider of automatic passenger counting systems, has launched a new 

product for real-time seating information on trains. The DILAX ‘Seat Reservation 

Display System’ combines data from seat reservations and on board infra-red 

passenger counting systems (Dilax n.d.). They say that the “information can be shown 

on displays by the seat, as well as on the platform before boarding… another possible 

option is to offer a mobile app which enables passengers to quickly identify and locate 

their seats before and during boarding”. 

There is only limited information available and it is not clear exactly what the proposed 

product would do or how it would work. Nevertheless, there is potential for combining 

seat reservation information with APC data in some way, perhaps in enhancing real-

time information systems as described in the previous section. Alternatively the 
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allocation of seat reservations to particular coaches could be optimised to assign 

certain Origin-Destination trips for advanced tickets to particular coaches. These could 

use historic APC data to train the forecasting algorithms on the most appropriate coach 

for each reservation. For such systems there would be no human factors 

considerations, because no decision would need to be made by the passenger. 

2.3.3 Inter-coach, static information 

Solutions in this category provide static information on inter-coach loading based on 

historical trends. Information would be static and so would not have the capability of 

adapting to specific circumstances in the way that dynamic measures may.  

2.3.3.1 Fixed signs pointing to less busy ends of the platform 

Some London Underground stations have signs instructing passengers to walk to less 

busy ends of the platform. One such example is Platform 3 at Victoria London 

Underground station, which has a fixed sign with an arrow saying “Pass along the 

platform”, as shown in Figure 7.  

 

Figure 7 – Fixed signs pointing to less busy ends of the platform on the London 
Underground 

This approach may be applicable at some stations where there are repeated patterns 

in the distribution of boarding passengers along the platform. APC data could be used 

to investigate the variability of such patterns and to identify stations for which such 
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fixed measures may be appropriate. Ideally such analysis would be conducted on 

boarding flows, i.e. with door sensor data rather than weight data. 

2.3.3.2 Historic inter-coach crowding information 

Upon the award of the Essex Thameside franchise, a press release announced plans 

to, “Inform passengers on platforms which carriages on each service are least likely to 

be busy, initially using historical data on commuting patterns but with the aim of 

providing real-time information within five years” (Collins 2014). The train operator has 

already delivered an initiative for inter-train crowding information (see §2.3.6.3), 

although no further information on the inter-coach initiative has been identified. 

2.3.4 Inter-coach, static passive behavioural modifiers 

Solutions in this category attempt to sub-consciously modify behaviours of travellers to 

induce more desirable positioning along the platform. Such measures would seek to 

perform a similar function to the above category, but rather than providing information, 

would seek to modify passenger behaviour through the use of ‘nudge’ tactics. For 

example, rather than inform people that it is better to stand at one end of the platform, 

a measure may simply encourage them to stand there by making it the easiest course 

of action. Several suggested examples were found from two sources: 

 The Network Rail Stations RUS describes different methods that can be used. 

Example measures listed include moving information screens or removing 

obstacles to encourage people to congregate at a different point (§2.3.4.1). 

 RSSB have produced guidance on management of rail crowding, which 

includes suggestions for influencing passenger positions along the platform. 

RSSB have also used pedestrian modelling to investigate the impacts of 

moving CIS displays (although on the main concourse rather than along 

platforms) (§2.3.4.2). 

2.3.4.1 Network Rail toolkit for platform overcrowding 

The Network Rail Route Utilisation Strategy (RUS) for Stations contains a toolkit to 

address station overcrowding (Network Rail 2011). It considers different ‘gaps’ and 

‘options’ for three different station zones: ‘Access Zone’, ‘Facilities Zone’ and ‘Platform 

Zone’. Some options to address crowding in the Platform Zone are reproduced below. 
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Table 1 – Platform gaps and options: extract from Table 5.8 of the Network Rail Stations 
RUS (reproduced from Network Rail 2011) 

Gap Toolkit gap Option Toolkit option Comments 

PZ1 In inclement weather, 

passengers congregate 

under the canopy, causing 

congestion and increased 

station dwell time if all the 

train doors are not used. 

PZ1.1 Extend the canopy further along 

the length of the platform, or 

provide shelters. 

Current works at Clapham Junction are 

extending the platform canopies in order 

to encourage passengers to use the full 

length of the platform during inclement 

weather. Passengers currently 

congregate under the canopy and do 

not make full use of the platform length. 

This leads to bunching of passengers 

and slower boarding times potentially 

increasing train dwell times. 

PZ2 Passengers may 

assemble near departure 

screens, especially during 

times of disruption. 

PZ2.5 Consider installing further displays 

along the length of the platform. 

The positioning of a CIS screen may 

cause passengers to congregate in one 

small area of a platform, as illustrated by 

the Littlehaven case study. The impact 

of this can be crowding in one area 

slowing boarding time and affecting train 

performance. Spreading passengers out 

along the platform has the potential to 

give more efficient boarding and reduce 

the impact on the train service by 

reducing dwell time. 

PZ2.6 Consider de-cluttering the platform 

or concourse to improve 

passenger circulation and allow 

the screens to be seen from 

further away. 

In some instances other structures, 

equipment or signage may obscure the 

sight lines to the CIS. By decluttering 

the station CIS can be seen from further 

away reducing congestion. 

PZ3 If unsure how many 

carriages are on the train, 

passengers may not use 

the appropriate length of 

the platform, causing 

bunching and potentially 

extending dwell times. 

PZ3.2 Consider placing door markings 

with carriage numbers on the 

platform. 

This is only likely to be feasible if 

identical rolling stock types are used on 

all services, and if the stop boards are 

positioned in such a way that different 

length trains will always have the doors 

in the same position. It also requires 

high levels of braking accuracy on the 

part of train drivers. 

PZ4 Passengers requiring a 

specific part of the train 

(eg first class, reserved 

PZ4.2 Signage on the platform to 

indicate where each carriage will 

stop. 

While this information can be helpful, 

the signage can be misleading if the 

train is not in its usual formation. 
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Gap Toolkit gap Option Toolkit option Comments 

seat etc) may not know 

where to wait. 

PZ5 Arriving trains may already 

be crowded making it 

difficult for passengers to 

board. 

PZ5.2 Use CIS to inform passengers 

where the less crowded part of the 

train is likely to be. 

As information systems become more 

sophisticated it might be possible to 

provide real-time information from the 

on-train Automatic Passenger Counting 

system about where the busiest part of 

the train is. 

PZ5.6 Consider whether the train internal 

layout can be reconfigured to 

remove crowding from around the 

doors, by, for example, making it 

easier for passengers to stand in 

the body of the vehicle, or by 

widening the doors, or by 

increasing the vestibule area. 

An example of modifications to rolling 

stock to increase its capacity without 

increasing its length is South West 

Trains refurbishment of Class 455s to 

augment the standing capacity, remove 

seating from around the doors and 

providing grab rails. These adaptations 

have the potential to reduce the time 

taken for passengers to board the train. 

PZ7 Congestion at platform 

exit/entrances. 

PZ7.2 If the width of the platform 

exacerbates crowding seek to 

widen the platform or by removing 

obstacles. 

At Seven Sisters a structure on Platform 

2 may be removed from to increase the 

width of platform space in the area of 

the entrance to the Underground which 

is a pinch point. 

PZ7.3 Provide new exit/entrance or 

enlarge existing entrance. 

The Preston case study is an example 

where extra capacity is proposed at a 

platform entrance/exit in order to 

address congestion at this location in 

the station. 

2.3.4.2 RSSB research and guidance on rail crowding 

RSSB conducted research into managing crowding on trains and in stations and 

produced guidance (RSSB 2009a), (RSSB 2009b). Section 3 of the guidance relates to 

crowd control and states: 

“There are a range of practical crowd measures you can use to manage your 

passengers effectively and deliver real benefits for on-train situations. These include 

better use of your available capacity, encouraging passengers to distribute to other 

services and helping them locate a suitable position on the platform.” 
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The guidance then has a section on each of the following seven initiatives: 

 Encouraging passengers to use other services 

 Using passenger numbers and distributions 

 Passenger positioning on platforms 

 Declassifying first class 

 Adjusting train stopping patterns and timings 

 Implementing changes to stations and platforms 

 Maintaining and increasing capacity 

RSSB conducted a research study into station design and crowd management, which 

involved two main stages of work (RSSB 2012). Firstly, focus groups with passengers 

were undertaken to identify the user requirements that would lead to behaviour change. 

Secondly, six business solutions for releasing capacity were developed, which 

comprised three elements: technology feasibility; economic modelling of each of the 

solutions; and pedestrian modelling to demonstrate the impact of the solutions. The 

focus of the business solutions was primarily on ticketing, although one solution was to 

remove or relocate the CIS displays. This related to the main CIS displays on the 

concourse, rather than the displays along the platform and so is only marginally 

relevant here. Nevertheless, the pedestrian modelling showed that removal or 

relocation of the main CIS displays at three large stations would reduce the level of 

crowding on the concourse. This suggests a similar pedestrian modelling technique 

may be applicable to assess the impacts of modifications to CIS displays on the 

platform. 

2.3.5 Inter-train, real-time information 

Measures in this category seek to encourage travellers to choose an earlier or later 

train that is less crowded, based on real-time data.  

2.3.5.1 Real-time occupancy information on buses 

The University of South Florida bus service provides real-time information on a website 

on bus movements and ‘Percent Full’ occupancy from automatic sensors, enabling 
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users to decide whether to take the next bus or wait for a less crowded one. The 

project was implemented by a company called Syncromatics. 

2.3.6 Inter-train, static information 

Inter-train static measures similarly attempt to encourage travellers to use alternative 

services, but base this on long-term trends rather than real-time data. This would 

perhaps focus on times of peak and off-peak demand and would attempt to spread out 

the peaks and troughs. Several examples were found, both provision at the station 

through posters, as well as elsewhere through information provided at the point of sale 

for online tickets: 

 The Swiss train operator, SBB, provides information on the expected level of 

crowding on specific trains at the point where passengers buy their tickets on 

their website (§2.3.6.1). 

 South West Trains have carried out a pilot with ORR, using colour-coded 

posters showing which trains are typically the most crowded. Other train 

operators, such as London Midland have also done this, which has received 

praise from the DfT (§2.3.6.2). 

 The C2C smartphone app provides information on the expected level of 

crowding on different trains in the peak period for some stations (§2.3.6.3). 

 UCL have undertaken analysis of overcrowding on the Underground using 

Oyster card data. The project concluded that the high regularity of commuting 

travel means that patterns are predictable and that providing information on 

crowding levels to passengers would be "highly feasible” (§2.2.3.1). 

 A number of projects have been identified that share user-generated (i.e. 

‘crowdsourced’) data on the typical levels of overcrowding on particular services 

(§2.3.6.4). 

2.3.6.1 Expected occupancy levels when buying tickets online 

The Swiss train operator, SBB, provides information on the expected level of crowding 

on specific trains at the point where passengers buy their tickets on the website, see 

Figure 8 (SBB n.d.). The information is based on historic data from automatic door 

sensors, which have been in use on their trains for several years. There are three 

levels: “Low to Medium”; “High”; and “Very High”. 
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Figure 8 – Expected occupancy levels when buying tickets online (reproduced from SBB 
n.d.) 

The critical factor as to the success of encouraging passengers to take alternative 

trains is likely to be in ensuring that the information is made available at a point in time 

where the user is reasonably able to alter their travel plans. For example, if on arrival at 

a station a traveller is informed that the next train is full and that the following train is 

less full, the individual’s decision on whether to act on that information is likely to be 

influenced by the arrival time of the following train.  How long a traveller is prepared to 

wait is itself likely to be influenced by a host of other factors, such as:  

 How long their overall journey is expected to take 

 The purpose of their travel (e.g. potential scheduling commitments) 

 Trust in the information provided (both as to the predicted waiting time and the 

certainty that they will get a seat) 

 Facilities at the station (leisure, food and drink, toilets, seating, waiting rooms) 

 Weather conditions (linked to waiting facilities) 

 Whether or not they are booked onto a particular service 

Measures are therefore likely to be more effective if the information can be provided in 

advance, for example when buying a ticket online. However, if this information is 
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provided in advance, it would likely need to be based on historic trends as with the SBB 

website, rather than real-time information. 

As the information is static, passengers may accept that the guidance will not be right 

all the time. However, if the information is consistently inaccurate, many passengers 

will ignore the guidance; the predictions should therefore be made to be as accurate as 

possible. APC data, either from door sensors or weight sensors could be used to 

generate such predictions taking into account variability due to day of week, seasonal 

effects and events such as football matches and concerts. 

2.3.6.2 Pilots of rail passenger crowding posters 

South West Trains and the ORR carried out a trial of posters to show passengers 

which trains are typically the most crowded, helping those who have the option to 

choose a different train that avoids crowding (ORR 2012). Posters with seat availability 

information were put up at five SWT stations (Basingstoke, Farnborough, Motspur 

Park, New Malden, Surbiton) between November 2011 and February 2012, see Figure 

9. Questionnaires were used to collect passengers’ views on whether they had seen 

the information and if it had any impact on their choice of train. 

 

Figure 9 – Posters used in the South West Trains pilot project (reproduced from ORR 
2012) 
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Survey results showed that 34% of respondents had seen the information and of those, 

over two thirds found it at least fairly useful and almost 10% found it very useful. Just 

over a fifth of respondents who had seen the information have regularly or occasionally 

changed the trains they get as a result of the information published. 

To complement the survey, passenger loading data collected using automatic 

passenger counters were analysed to see if any changes in loading could be detected. 

Stations further out, like Basingstoke and Farnborough, have experienced some 

changes in passenger behaviour e.g. passengers changing to less crowded services, 

although it was not possible to say with certainty whether this was as a result of 

viewing the information in the capacity posters. Stations closer to London may be 

relatively insensitive to the effects of posters, with shorter journey times into London 

suggesting that a “turn-up-and-go” approach is preferred by passengers. 

In a related development, similar initiatives undertaken by London Midland were 

praised by the DfT in August 2013 (Watt 2013): 

“Norman Baker is urging train companies to follow the example of London Midland…, 

which colour-codes trains using a red, amber and green ‘traffic light’ system. 

‘Publication of train-by-train crowding information is, in the short term, an important tool 

for allowing passengers to make informed choices about which trains to travel on, and 

convincing those passengers who can change their travel patterns to do so… The 

innovative approach taken by London Midland is helping to smooth the peaks in 

demand for their services and is making the most of the investment going into rail 

services in their area. I am keen to see the rail industry working together to follow 

London Midland's example.” 

2.3.6.3 Inter-train crowding information via a smartphone app and posters 

C2C, the train operator of the Essex Thameside franchise, provides information on the 

expected level of crowding on different trains in the peak period for some stations 

through both their ‘C2C-Live’ smartphone app and also through posters (C2C n.d.). 

This includes three levels of occupancy: ‘Seats normally available’ (green); ‘Few seats 

normally available’ (amber); and ‘Standing room only’ (red). The app was created by 

IBM using historical APC data on commuting patterns. 

Smartphones are a good channel for such inter-train crowding information, because it 

is possible to search for different stations and train services. As with the C2C-Live app, 

such information can be provided along with other sources of information, such as 
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station facilities and delay information, which can encourage higher uptake compared 

to a standalone app. 

2.3.6.4 Various – Expected levels of crowding from user-generated data 

A number of projects have been identified that share user-generated (i.e. 

‘crowdsourced’) data on the typical levels of crowding on particular services. 

The ‘Moovit’ app is an example of using crowdsourcing to collect and share information 

on passenger comfort to help users identify the least crowded services (Crawford 

2013).  A previous version of the Moovit app had a ‘Report’ functionality, which enabled 

users to share information on delays, accidents and levels of crowding, although this 

functionality is no longer available in the most recent version of the app. The 

commercially available app has been tested in various locations, including the San 

Francisco Bay Area Rapid Transport system. As of June 2014 there had been over one 

million downloads worldwide. 

A campaign by the Green Party in Melbourne collected crowdsourced data provided by 

members of the public via a special smartphone app or an online survey (Barber 2012). 

People reported on how many people there were in the same coach as them and also 

gave qualitative comments on crowding. The data was then used to provide feedback 

to users on typical historical levels of crowding on a network map. 

Summary 

The purpose of the review of solutions was to understand what concepts have been 

proposed or piloted and to explore the extent to which there exists evaluation evidence 

on the impact of these interventions. 

A review of the current use of systems for reducing uneven loadings within trains has 

identified a number of examples, some of which are now commercially available and 

being installed on new trains. Examples have been identified for both metro type 

operations and longer distance inter-city type trains.  

The most sophisticated example found was that of the Dutch pilot at Den Bosch 

station, which provided real-time information on coach-by-coach occupancy. This pilot 

favoured infra-red door sensors to provide automatic passenger counts and then 

transmitted this information to passengers, initially via a smartphone app, and then 

later by an LED display along the full length of the platform. A number of similar 
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solutions were also identified, although mainly at the concept stage. There is good 

evidence that the full range of technologies required to provide a fully automated real-

time coach-by-coach system already exists and is, in various ways, already appearing 

in the market.  

There were also examples of more low-tech static solutions to address the same 

problem, i.e. where historical loading data is used to identify patterns and trends in 

coach-by-coach crowding. In some circumstances static solutions may be sufficient, 

either through information on posters and signs to direct people towards the least busy 

carriages/train services, or through passive mitigations such as design features to 

subconsciously encourage different passenger distributions in stations. 

A number of different systems were identified that provide train-by-train information, 

suggesting that there is also potential demand for this type of system. In many 

situations, such systems can be operated using data derived from historical loading 

data, whether this is automatically collected (door sensors or weight sensors) or in 

some cases user-generated (i.e. ‘crowdsourced’). Examples were found that presented 

such information via different information channels, including posters, websites and 

smartphone apps. 

However, while the review identified a number of approaches that could in principle be 

adopted, very little evidence was found of the impact of such measures, or their costs. 

A simulation study by the Korean Transport Institute concluded that a 15% reduction in 

dwell times could be achieved by giving passengers real-time information on where 

seats are most likely to be available, however no equivalent figure has been identified 

from an in-service trial. 

2.4 Techniques 

This section gives an introduction to relevant data mining and machine learning 

techniques, as defined in §2.4.1. An overview of particular techniques is given in §2.4.2 

and some of these techniques were applied to the study dataset. Finally, in §2.4.3 

there is a brief review of such examples in the context of transportation research. 

2.4.1 Definitions of data mining and machine learning 

Bramer (2007) defined the knowledge discovery process as “the non-trivial extraction 

of implicit, previously unknown and potentially useful information from data… it is a 
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process of which data mining forms just one part, albeit a central one… prepared data 

is… passed to a data mining algorithm, which produces an output in the form of rules 

or some other kind of patterns… applications [of data mining] can be divided into four 

main types: classification, numerical prediction, association and clustering”. Bramer 

defined two types of data as follows: 

“For the first type there is a specially designated attribute and the aim is to use the 

data given to predict the value of that attribute for instances that have not yet been 

seen. Data of this kind is called labelled. Data mining using labelled data is known 

as supervised learning. If the designated attribute is categorical, the task is called 

classification. If the designated attribute is numerical, e.g. the expected sale price of 

a house, the task is called regression. Data that does not have any specially 

designated attribute is called unlabelled. Data mining of unlabelled data is known as 

unsupervised learning. Here the aim is simply to extract the most information we can 

from the data available.” 

Zaki and Meira (2014) have published a free textbook called ‘Data mining and analysis: 

fundamental concepts and algorithms’, in which they defined data mining as “the 

process of discovering insightful, interesting, and novel patterns, as well as descriptive, 

understandable, and predictive models from large-scale data”. The textbook gives a 

detailed review of four areas of data mining in turn: exploratory data analysis, frequent 

pattern mining, clustering, and classification. 

A commonly quoted definition of machine learning is quite broadly seeking to answer 

the question, “How can we build computer systems that automatically improve with 

experience, and what are the fundamental laws that govern all learning processes?” 

(Mitchell 2006). More specifically, 

“We say that a machine learns with respect to a particular task T, performance 

metric P, and type of experience E, if the system reliably improves its performance P 

at task T, following experience E. Depending on how we specify T, P, and E, the 

learning task might also be called by names such as data mining, autonomous 

discovery, database updating, programming by example, etc.” (Mitchell 2006) 

Ng (2013) gave four example applications of machine learning, one of which included 

data mining:  

 “Database mining – large datasets from growth of automation / web, e.g. web 

click data, medical records, biology, engineering etc; 
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 Applications we can’t program by hand – e.g. autonomous helicopters, 

handwriting recognition, most Natural Language Processing (NLP), Computer 

vision; 

 Self-customising programs – e.g. Amazon, Netflix, product recommendations; 

 Understanding human learning – brain, real AI.” 

Brownlee (2013) gave a good introduction and overview to different types of machine 

learning algorithms. He defined four different types of learning style, the two main ones 

relevant to data mining being supervised and unsupervised, similar as above. The two 

other types defined were semi-supervised learning where there is only a small amount 

of labelled data and also reinforcement learning which is focused on training robots 

with punishment and reward. Brownlee then proposed 12 categories of algorithm, 

although admitted that arguably particular algorithms may fit in more than one 

category, as reproduced in Table 2. 

Table 2 – Categories of machine learning algorithms (reproduced from Brownlee 2013) 

Type Category and description Example algorithms 

Supervised Instance based learning model a decision 

problem with instances or examples of training 

data that are deemed important or required to 

the model. Such methods typically build up a 

database of example data and compare new 

data to the database using a similarity measure 

in order to find the best match and make a 

prediction. For this reason, instance-based 

methods are also called winner-take all methods 

and memory-based learning. 

• k-Nearest Neighbour 

(kNN) 

• Learning Vector 

Quantisation (LVQ) 

• Self-Organising Map 

(SOM) 

 

Supervised Bayesian methods are those that are explicitly 

apply Bayes’ Theorem for problems such as 

classification and regression. 

• Naive Bayes 

• Averaged One-

Dependence Estimators 

(AODE) 

• Bayesian Belief Network 

(BBN) 

Supervised Decision tree methods construct a model of 

decisions made based on actual values of 

attributes in the data. Decisions fork in tree 

structures until a prediction decision is made for 

a given record. Decision trees are trained on 

• CART 

• ID3 

• C4.5 

• CHAID 

• Decision Stump 
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Type Category and description Example algorithms 

data for classification and regression problems. • Random Forest 

• MARS 

• GBM 

 

Supervised Kernel Methods are best known for the popular 

method Support Vector Machines which is really 

a constellation of methods in and of itself. Kernel 

Methods are concerned with mapping input data 

into a higher dimensional vector space where 

some classification or regression problems are 

easier to model. 

• Support Vector Machines 

(SVM) 

• Radial Basis Function 

(RBF) 

• Linear Discriminate 

Analysis (LDA) 

 

Supervised Regression is concerned with modelling the 

relationship between variables that is iteratively 

refined using a measure of error in the 

predictions made by the model. Regression 

methods are a work horse of statistics and have 

been co-oped into statistical machine learning. 

This may be confusing because we can use 

regression to refer to the class of problem and 

the class of algorithm. Really, regression is a 

process. 

• Ordinary Least Squares 

• Logistic Regression 

• Stepwise Regression 

• Multivariate Adaptive 

Regression Splines 

(MARS) 

• Locally Estimated 

Scatterplot Smoothing 

(LOESS) 

Supervised Regularisation methods are popular, powerful 

and generally simple modifications made to 

other methods. An extension made to another 

method (typically regression methods) that 

penalises models based on their complexity, 

favouring simpler models that are also better at 

generalising. 

• Ridge Regression 

• Least Absolute Shrinkage 

and Selection Operator 

(LASSO) 

• Elastic Net 

Supervised Artificial Neural Networks are models that are 

inspired by the structure and/or function of 

biological neural networks. They are a class of 

pattern matching that are commonly used for 

regression and classification problems but are 

really an enormous subfield comprised of 

hundreds of algorithms and variations for all 

manner of problem types. 

• Perceptron 

• Back-Propagation 

• Hopfield Network 

• Self-Organising Map 

(SOM) 

• Learning Vector 

Quantisation (LVQ) 

Semi-

supervised 

Deep Learning methods are a modern update 

to Artificial Neural Networks that exploit 

abundant cheap computation. They are 

• Restricted Boltzmann 

Machine (RBM) 

• Deep Belief Networks 
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Type Category and description Example algorithms 

concerned with building much larger and more 

complex neural networks, and as commented 

above, many methods are concerned with semi-

supervised learning problems where large 

datasets contain very little labelled data. 

(DBN) 

• Convolutional Network 

• Stacked Auto-encoders 

Unsupervised Clustering, like regression describes the class 

of problem and the class of methods. Clustering 

methods are typically organised by the 

modelling approaches such as centroid-based 

and hierarchal. All methods are concerned with 

using the inherent structures in the data to best 

organise the data into groups of maximum 

commonality. 

• k-Means 

• Expectation Maximisation 

(EM) 

Unsupervised Association rule learning are methods that 

extract rules that best explain observed 

relationships between variables in data. These 

rules can discover important and commercially 

useful associations in large multidimensional 

datasets that can be exploited by an 

organisation. 

• Apriori algorithm 

• Eclat algorithm 

Unsupervised Like clustering methods, Dimensionality 

Reduction seek and exploit the inherent 

structure in the data, but in this case in an 

unsupervised manner or order to summarise or 

describe data using less information. This can 

be useful to visualise dimensional data or to 

simplify data which can then be used in a 

supervised learning method. 

• Principal Component 

Analysis (PCA) 

• Partial Least Squares 

Regression (PLS) 

• Sammon Mapping 

• Multidimensional Scaling 

(MDS) 

• Projection Pursuit 

Ensemble Ensemble methods are models composed of 

multiple weaker models that are independently 

trained and whose predictions are combined in 

some way to make the overall prediction. Much 

effort is put into what types of weak learners to 

combine and the ways in which to combine 

them. This is a very powerful class of techniques 

and as such is very popular. 

• Boosting 

• Bootstrapped 

Aggregation (Bagging) 

• AdaBoost 

• Stacked Generalisation 

(blending) 

• Gradient Boosting 

Machines (GBM) 

• Random Forest 
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As defined above, supervised learning involves situations with labelled data, i.e. where 

there is a specially designated attribute and the aim is to use other attributes of the 

data given to predict the value of the labelled data for instances that have not yet been 

seen. Classification techniques are used when the labelled data is categorical, i.e. 

either: nominal (un-ordered categories, e.g. ‘Green’, ‘Brown’…); ordinal (ordered 

categories, e.g. ‘Low’, ‘Medium’, ‘High’…); or Boolean (0 or 1). Furthermore, the 

classes need to be mutually exhaustive and exclusive, i.e. each instance is assigned to 

precisely one class. Typically the data is split into a training dataset and a test dataset. 

The training dataset is used to build a predictive model and this model is then applied 

to the test dataset. The predictions for the test dataset are then compared against the 

truth data to assess how accurate the predictive model was. 

2.4.2 Overview of particular techniques 

2.4.2.1 Naïve Bayes 

The ‘Naïve Bayes’ algorithm is a classification technique that can be applied when the 

attributes used in the prediction are categorical and independent. Bramer (2007) 

presents a good worked example of how to apply the technique and describes it 

formally as follows: 

Given a set of k mutually exclusive and exhaustive classifications c1, c2… ck, which 

have prior probabilities P(c1), P(c2), . . . , P(ck), respectively, and n attributes a1, a2, . 

. . , an which for a given instance have values v1, v2…, vn respectively, the posterior 

probability of class ci occurring for the specified instance can be shown to be 

proportional to 

  P(ci) × P(a1 = v1 and a2 = v2 . . . and an = vn | ci) 

Making the assumption that the attributes are independent, the value of this 

expression can be calculated using the product 

  P(ci) × P(a1 = v1 | ci) × P(a2 = v2 | ci) × . . .× P(an = vn | ci) 

We calculate this product for each value of i from 1 to k and choose the 

classification that has the largest value. 

Essentially, for a particular class, i, the technique uses the training dataset to calculate 

the conditional probabilities for all the independent variables, given that the class = i. 
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Then for a new instance where the class is not yet known, the product of the prior 

probability and all the relevant conditional probabilities generates a score for class, i. 

This score is calculated for all other classes and the class with the highest score is 

selected as the predicted class. 

An example where this approach may be applicable is in predicting the level of 

crowding on a particular train in the future, where the dependent variable is categorical, 

e.g. ‘Low’, ‘Medium’ or ‘High’. Categorical predictor variables, such as scheduled 

departure time, day of week, number of coaches and so on could be used to predict for 

unknown cases the expected level of crowding. Such predictions could feed in to 

passenger information services, such as those identified in §2.3.6.1. 

2.4.2.2 Decision trees 

Bramer (2007) gives an introduction to decision trees, defining terminology as below 

“A decision tree is created by a process known as splitting on the value of 

attributes (or just splitting on attributes), i.e. testing the value of an attribute… and 

then creating a branch for each of its possible values… One commonly used 

method [for choosing which attribute to split on] is to select the attribute that 

minimises the value of entropy, thus maximising the information gain. 

Entropy is an information-theoretic measure of the ‘uncertainty’ contained in a 

training set, due to the presence of more than one possible classification. 

 

E is positive or zero for all training sets and takes its minimum value (zero) if and 

only if all the instances have the same classification, in which case there is only one 

non-empty class, for which the probability is 1… 

The process of decision tree generation by repeatedly splitting on attributes is 

equivalent to partitioning the initial training set into smaller training sets repeatedly, 

until the entropy of each of these subsets is zero (i.e. each one has instances drawn 

from only a single class). At any stage of this process, splitting on any attribute has 

the property that the average entropy of the resulting subsets will be less than (or 

occasionally equal to) that of the previous training set.” 
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2.4.2.3 Other techniques 

There is substantial literature on the various other algorithms listed in Table 2. Wu et al. 

(2008) summarised the ‘top ten’ data mining algorithms identified by the IEEE 

International Conference on Data Mining (ICDM) in December 2006. These were listed 

as: C4.5; k-Means; SVM; Apriori; EM; PageRank; AdaBoost; kNN; Naive Bayes; 

CART. The review paper gives an overview of how to use each technique in turn along 

with discussions on the implications and limitations. Kotsiantis (2007) is another good 

review paper focused on various classification techniques. 

An industry workshop was held by the Knowledge Transfer Network (KTN) and the 

Smith Institute in 2014 to explore the mathematical foundations of data science 

(Knowledge Transfer Network & Smith Institute 2014). Feedback from the workshop 

delegates was that there is “a shift towards the use of more advanced and adaptable 

methods that have the ability to process structured or unstructured data, of changing 

sizes and dimensions, that is discrete or continuous, and with varying levels of 

complexity”. The following list of techniques were identified as having been 

successfully applied to data science challenges: probability theory; hidden Markov 

models; evolving and multiplex networks; deep learning; Bayesian analysis; 

classification and clustering; data mining; graphical models; topological data analysis; 

tropical geometry; dynamical systems; machine learning; sparse tensor methods; 

stochastic optimisation tools; large-scale linear algebra. The workshop notes provide 

links to reference material for each of these areas of study. 

2.4.3 Applications of data mining techniques in transportation 

The research papers first reviewed in §2.1 to §2.3 were revisited to review any data 

mining techniques used. 

Lathia and Capra (2011) built a personalised recommendation system to predict the 

type of ticket users should purchase (see §2.2.3). They applied four different classifiers 

as listed below. 

 Baseline – This simple classifier returned the most frequent class in the 

training set. 

 Naïve Bayes – this classifier, based on Bayes’ theorem, assumed that each 

feature of the users’ profiles was independent from the others; geographic 

features were transposed into binary variables. 
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 k-Nearest Neighbours – this technique operated by finding, for each test 

profile, the k most similar profiles; the predicted class was then selected to be 

the most frequent class that appeared in the neighbour set. 

 Decision Trees – the C4.5 algorithm was used to generate a decision tree to 

classify test instances; it did so by recursively partitioning the data on a single 

attribute, according to the measured information gain of each split. 

Ceapa et al. 2012 used Oyster card ticket gate data at London Underground stations to 

investigate patterns in station crowding (see §2.2.3.1). They then built and evaluated 

three prediction models and investigated the effect of several parameters on the 

accuracy of the results as follows: 

 ‘Historic value’ – This was the most basic predictor, taking the one 

corresponding value in the training dataset for the corresponding day of week 

and time of day;  

 ‘Historic mean’ – This was similar to the ‘Historic value’ predictor, but used the 

mean of all values in the training dataset for the corresponding day of week 

and time of day;  

 Historic trend’ – This attempted to improve on the other two predictors by 

taking into consideration crowding level for the current time.  

Two further predictors, one based on linear regression with ordinary least squares to 

estimate parameters, and one based on Kalman Filters were also attempted although 

offered no improvement over the three techniques above. 

Stenneth et al. 2011 used GPS and accelerometer data off smartphones to predict 

mode of transport (see §2.1.2.3). To determine the most accurate classifier they 

compared the precision and recall accuracy of five distinct classification models: Naive 

Bayes; Bayesian Network; Decision Trees; Random Forest; Multilayer Perceptron. To 

evaluate the different classification models on transportation mode detection, the Weka 

machine learning tool set was used. The results indicated that the Random Forest 

technique produced the best model, with an average precision accuracy of 93.7% and 

recall of 93.8%. 



Optimising the loading diversity of rail passenger crowding using on-board occupancy data 

 75   

Summary 

Supervised learning involves situations with labelled data, i.e. where there is a specially 

designated attribute and the aim is to use other attributes of the data given to predict 

the value of the labelled data for instances that have not yet been seen. Classification 

techniques are used when the labelled data is categorical. A brief review of supervised 

learning classification techniques was undertaken, in particular the Naïve Bayes and 

decision tree techniques. 

Such techniques may be applicable in predicting the level of crowding on a particular 

train in the future, where the dependent variable is categorical, e.g. ‘Low’, ‘Medium’ or 

‘High’. Categorical predictor variables, such as scheduled departure time, day of week, 

number of coaches and so on could be used to predict for unknown cases the 

expected level of crowding. Examples of the use of such techniques in transport 

research have been reviewed. 
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3 Research focus, aims and questions 

The literature review identified relevant research in loading diversity and related areas; 

some of the key points that informed the research focus are summarised again in §3.1. 

The research aims arise from this review, namely in attempting to address some of the 

gaps and opportunities that were identified, see §3.2. This then helped to formulate 

specific research questions, listed in §3.3, which informed the main analysis tasks. 

3.1 Research focus 

There is research to suggest that conditions on trains that are near or over capacity 

can lead to lower customer satisfaction, discourage passengers from using the train, 

result in negative economic impacts and have been found to be a factor in a number of 

health and safety hazards. Various organisations have raised concerns over the level 

of rail passenger crowding on some trains in the UK, highlighting how this is an 

important issue for rail passengers and train operators alike (§1.1). 

Over recent years, in many different domains, there has been a proliferation of new 

and larger datasets and this has been accompanied by the emergence of data science 

as a discipline with new techniques and software. Through this thesis I sought to 

address the issue of rail passenger crowding in the UK from a data analytics 

standpoint. The primary focus was on extracting more value from existing ‘found data’ 

by reusing air pressure data from suspension systems as a measure of carriage 

loadings along a train, to help assess the case for investing in initiatives to optimise 

passenger loadings (§1.2). 

The application of data-intensive methods to different aspects of transportation is an 

emerging area and §2.1 gave an overview of several examples that situate the thesis in 

the wider context of related research. This included a discussion on the fields of 

Intelligent Transport Systems (ITS) and the Internet of Things (IoT), which are common 

in that they both involve data flows from source to consumption. Passenger information 

systems are a public transport example of ITS (§2.1.1). There exists an emerging field 

of research around ‘found data’ and the ‘digital footprint’ from ubiquitous computing. 

Examples discussed included: mobility data and mobility profiling; investigating how 

users interact with cycle hire schemes; using data from smartphones to detect the 

mode of transport of travellers; and the mining of transport-related tweets as a passive 

data source (§2.1.2). Crowdsourcing is another area of research where data is actively 
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collected from the public. In a transportation context there have been several research 

projects that have successfully applied the crowdsourcing concept to different interest 

groups (§2.1.3). Examples of research projects were identified where ICT has been 

used to encourage use of more sustainable transport; some studies found that 

providing better information on available alternatives was effective in encouraging 

behavioural change (§2.1.4). 

The DfT conducts an annual survey of rail passenger crowding, which is increasingly 

based on passenger counts from APC systems. Two measures of rail crowding are 

used: ‘passengers in excess of capacity’ and ‘standard class load factor’; some 

limitations of these measures are acknowledged by the DfT, namely that they do not 

reflect coach-by-coach variations, nor do they reflect variations across the peak period 

(§2.2.1). The two main types of APC sensors used in the UK rail industry are door 

sensors and weight sensors, with around 40% of the fleet equipped as of 2010. The 

literature review did not find any academic research on the use of APC data in rail in 

the UK, which may be because the data is owned by the train operators and is 

commercially sensitive. This perhaps suggests that there is a gap for novel research if 

it were possible to gain access to this data source. Some academic research was 

found into the use of APC data for estimating dwell times of buses, but this was not 

directly relevant (§2.2.2). There is a substantial amount of academic research into AFC 

data across a range of topic areas, some of which has focused on estimating levels of 

crowding for the London Underground. The structure of AFC data is typically that of 

‘touch-ins’ and ‘touch-outs’ and so does not provide a direct link to crowding and 

occupancy data, unlike APC data. Nevertheless, it has been shown that if the variability 

is low, simple predictors can give quite accurate predictions of crowding, even with a 

relatively small amount of data (§2.2.3). 

The TRB have proposed a three-part definition of ‘loading diversity’ to describe the 

distribution of passengers: i) near doors within a coach; ii) from coach to coach; iii) 

between trains across the peak period. The metrics associated with these definitions 

are not readily applicable to heavy rail, although they do provide a useful starting point 

to explore alternative measures of uneven occupancy on trains. The first type of 

loading diversity relates to carriage design and was not the main focus of the thesis. 

The second type of loading diversity was of interest, although the current TRB metric is 

only a relative measure and does not include information on the capacity. The third 

type of loading diversity was also of interest, although again the current metric may not 

be appropriate for use in heavy rail because of larger headways between trains 
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(§2.2.4.1). The review identified only a few research papers in the area of loading 

diversity. One paper found that about three-quarters of subway users reported 

choosing a specific coach intentionally and of these when asked to explain their 

motivation there were a variety of reasons, although 70% said “to minimise the walking 

distance to exit when they disembarked at a destination station”. This paper went some 

way to investigate the causes of uneven loadings, but it should be noted that the 

survey was conducted for a subway during the weekday morning peak and so may not 

be representative of other scenarios (§2.2.4.2). 

Existing research studies have found that the mean alighting and boarding time per 

passenger is typically around one second, although this increases or decreases 

depending on various conditions, such as passenger mobility, platform design, vehicle 

design and crowding effects. The relationship between loading diversity and boarding 

times is likely two-fold.  Firstly, the boarding time for a whole train is equal to the 

maximum boarding time of each individual door, thus if a disproportionate number of 

passengers board and alight from one particular door this will result in higher overall 

boarding time. Secondly, there is research from multiple studies to suggest that once 

the vestibule reaches a certain threshold of crowding, the flow rate at which 

passengers can board reduces. Thus it is intuitive that optimising boarding patterns 

along the platform will result in lower boarding times, although this relationship is likely 

non-linear if there is an interactive effect of crowding in vestibules (§2.2.5).  

A review of solutions identified a number of interventions for reducing uneven loadings 

on trains, in both metro operations and longer distance inter-city trains. The purpose of 

this review was to understand what concepts have been proposed or piloted and to 

explore the extent to which there exists evaluation evidence on their impact (§2.3). The 

most sophisticated example found was that of the Dutch pilot at Den Bosch station, 

which provided real-time information on coach-by-coach occupancy. This pilot favoured 

infra-red door sensors to provide automatic passenger counts and then transmitted this 

information to passengers, initially via a smartphone app, and then later by an LED 

display along the full length of the platform. A number of similar solutions were also 

identified from other sources, although mainly at the concept stage. There is good 

evidence that the full range of technologies required to provide a fully automated real-

time coach-by-coach system already exists and is, in various ways, already appearing 

in the market (§2.3.1). There were also examples of more low-tech static solutions to 

address the same problem, i.e. where historical loading data is used to identify patterns 

and trends in coach-by-coach crowding. In some circumstances static solutions may be 
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sufficient, either through information on posters and signs to direct people towards the 

least busy carriages/train services (§2.3.3), or through passive mitigations such as 

design features to subconsciously encourage different passenger distributions in 

stations (§2.3.4). 

A number of different systems were identified that provide train-by-train information, 

suggesting that there is also potential demand for this type of system. In many 

situations, such systems can be operated using data derived from historical loading 

data, whether this is automatically collected (door sensors or weight sensors) or in 

some cases user-generated (i.e. ‘crowdsourced’). Examples were found that presented 

such information via different information channels, including posters, websites and 

smartphone apps (§2.3.6). 

However, while the review identified a number of approaches that could in principle be 

adopted, very little evidence was found of the impact of such measures, or their costs. 

A simulation study by the Korean Transport Institute concluded that a 15% reduction in 

dwell times could be achieved by giving passengers real-time information on where 

seats are most likely to be available, however no equivalent figure has been identified 

from an in-service trial. 

A review of supervised learning techniques identified approaches that may be 

applicable to the study (§2.4). Supervised learning involves situations with labelled 

data, i.e. where there is a specially designated attribute and the aim is to use other 

attributes of the data given to predict the value of the labelled data for instances that 

have not yet been seen. Classification techniques are used when the labelled data is 

categorical. A brief review of supervised learning classification techniques was 

undertaken, in particular focusing on the Naïve Bayes and decision tree techniques. 

Such techniques may be applicable in predicting the level of crowding on a particular 

train in the future, where the dependent variable is categorical, e.g. ‘Low’, ‘Medium’ or 

‘High’. Categorical predictor variables, such as scheduled departure time, day of week, 

number of coaches and so on could be used to predict for unknown cases the 

expected level of crowding. Examples of the use of such techniques in transport 

research have been reviewed. 
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3.2 Research aims 

The literature review identified several gaps in the knowledge: 

 The literature review did not find any academic research on the use of APC 

data in rail in the UK, which may be because the data is owned by the train 

operators and is commercially sensitive. 

 Existing UK measures for rail crowding do not reflect coach-by-coach 

variations, nor do they reflect variations across the peak period; furthermore, 

American metrics for ‘loading diversity’ are not readily applicable to heavy rail, 

although they are a good starting point. 

 There is evidence to suggest that optimising the distribution of passengers on 

the train may lead to dwell time savings, but there is only limited research on 

the extent of these savings. 

 Although a wide range of solutions have been proposed that would seek to 

optimise loading diversity, only limited evaluation evidence is available on the 

impact of such systems. 

The literature review also identified several opportunities: 

 APC data has the potential to be used to investigate a wide range of questions 

surrounding on-train crowding. 

 The use of APC door sensors and weight sensors on trains is becoming 

increasingly widespread in the UK, with it being specified for installation on all 

new trains and already over 40% of existing trains equipped. 

 There are many different data mining techniques that may be readily applicable 

to help realise the potential offered by APC data. 

 Crowding on trains in the UK is an important problem from both a passenger 

and operator perspective. As such, investigating measures to ease crowding 

would likely yield benefits to both passengers and operators. 

An 11-month sample of data was obtained from a UK train operating company, which 

included air suspension pressure, the times the doors lock/unlock and timetable 

information. This dataset was manipulated with a view to addressing the gaps and 
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exploiting the opportunities identified above. Specifically the following hypothesis was 

proposed: 

 Hypothesis: Automatic passenger counting (APC) data has the potential to 

deliver more even loadings on trains through the provision of new real-time 

and static solutions; furthermore, such solutions have benefits of reduced 

dwell times and reduced crowding and are of value to rail passengers and 

train operators. 
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3.3 Main research questions 

The following five main research questions were defined in the context of the research 

focus and research aims; these questions were primarily targeted at exploring the 

potential of weight-based APC data in understanding and predicting loading diversity. 

Main research questions on loading diversity 

RQ 1. Quantification of inter-coach loading diversity 

(a) Is it possible to identify coach-by-coach occupancy using air suspension 

data? 

(b) Which train services and stations had the most uneven inter-coach 

loadings? 

(c) For what proportion of train departures were there available seats in at 

least one coach, while passengers were standing elsewhere on the train? 

(d) Which stations had the highest proportion of passengers who were 

standing, but could have been sitting down? 

(e) What metrics are appropriate to quantify the inter-coach loading diversity? 

RQ 2. Link between inter-coach loading diversity and dwell times 

(a) What was the distribution of dwell times and estimated boarding times? 

(b) To what extent were longer dwell times related to uneven coach-by-coach 

occupancy? 

RQ 3. Quantification of inter-train loading diversity 

(a) How did load factor vary by station, time of day and other attributes? 

(b) What metrics are appropriate to quantify the inter-train loading diversity? 

RQ 4. Prediction of inter-train loading diversity 

(a) What techniques can be applied to predict load factor, based on historic 

data? 

(b) What was the accuracy, precision and recall of these predictors? 

RQ 5. Perceived causes and effects of loading diversity 

(a) From the perspective of frontline staff, which services had high levels of 

inter-coach local crowding? 

(b) From the perspective of frontline staff, which services had high levels of 

inter-train local crowding? 

(c) What were the perceived causes of inter-coach local crowding? 

(d) What were the perceived causes of inter-train local crowding? 

(e) What were the perceived effects of crowding, both inter-coach and inter-

train? 

Rationale: The initial focus of the study was to use the APC data to quantify the 

loading diversity, both for inter-coach (RQ 1) and inter-train (RQ 3). The purpose of this 

was to investigate whether it was possible to use the data in this way and also to 

understand any patterns and trends.  
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Several different solutions that aim to optimise inter-coach loading diversity were 

identified in the literature review, although a gap in the knowledge was the lack of 

evaluation evidence on the impacts of these solutions. Reduced boarding times would 

be a key benefit to train operators and so questions on the relationship between 

boarding time and inter-coach loading diversity were defined (RQ 2); these questions 

aimed to identify the scale of the possible dwell time savings that could be achieved if 

all trains were evenly loaded. 

Examples of inter-train solutions were identified whereby some train operators use 

APC data to provide information on the level of crowding for a particular service 

through a variety of information channels (§2.3.6). However, only limited information is 

published on the method for generating these predictions and their accuracy. The other 

main focus of the study was therefore defined to investigate how the APC data could 

be used to generate predictions for the level of crowding on a particular train (RQ 4) 

and thus address this gap in the research. More specifically, the questions on 

techniques were appropriate in understanding whether predictive information in such 

systems can be sufficiently accurate to be of value to rail passengers. 

Better understanding of the root causes of local crowding may help to identify how 

these issues could be overcome, whereas better understanding of the effects of local 

crowding sets the context for the scale of the issue. As such, questions were set to aim 

to gain a better understanding on the perceived causes and effects of uneven loadings 

(RQ 5). 

A gap identified from the literature review was the lack of evaluation evidence on the 

impact of local crowding solutions. It was unfeasible to conduct full-scale pilots within 

the scope of the MPhil; however the following additional questions were partially 

addressed through the literature review and in the discussion. 

 How can the solutions be categorised, both inter-coach and inter-train? 

 How would passengers interact with the solutions, both inter-coach and inter-

train? 

 What would be the impacts of the solutions, both inter-coach and inter-train? 

 What are the most promising solutions, both inter-coach and inter-train? 
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4 Methodology 

This section outlines the methodology of the tasks that were undertaken in order to 

answer the research questions. Figure 10 outlines the approach of the study, with tasks 

relating to ‘inter-coach’ loading diversity above the dotted line and those relating to 

‘inter-train’ loading diversity below the dotted line. 

 

 

 

 

 

 

 

 

 

 

 

Figure 10 – Overview of tasks 

4.1 Task 1 – Inter-coach loading diversity: analysis of existing 
data  

Task 1 was designed to answer the following research questions: 

 RQ 1 – Quantification of inter-coach loading diversity 

(a) Is it possible to identify coach-by-coach occupancy using air suspension 

data? 

(b) Which train services and stations had the most uneven inter-coach 

loadings? 

(c) For what proportion of train departures were there available seats in at least 

Task 3 (RQ 5) – 

Perceived causes 

and effects of 

loading diversity, 

both inter-coach 

and inter-train 

Collection of 

qualitative 

data through 

a focus 

group with 

on-train and 

on-platform 

staff 

Task 2 (RQ 3, 4) –  

Inter-train loading diversity: analysis of existing data 

Train dispatch 

data 

On-train 

occupancy data 

Methods for prediction of 

occupancy on different trains 

Timetable data 

Task 1 (RQ 1, 2) –  

Inter-coach loading diversity: analysis of existing data 

Train dispatch 

data 

On-train 

occupancy data 

Impact of uneven coach-by-coach 

occupancy on dwell times 

Timetable data 



Optimising the loading diversity of rail passenger crowding using on-board occupancy data 

 85   

one coach, while passengers were standing elsewhere on the train? 

(d) Which stations had the highest proportion of passengers who were standing, 

but could have been sitting down? 

(e) What metrics are appropriate to quantify the inter-coach loading diversity? 

 RQ 2 – Link between inter-coach loading diversity and dwell times 

(a) What was the distribution of dwell times and estimated boarding times? 

(b) To what extent were longer dwell times related to uneven coach-by-coach 

occupancy? 

The literature review identified gaps and opportunities in this area, specifically in the 

opportunity for using APC data to evaluate the impact of uneven passenger loadings 

on train departures. An 11-month sample of data was obtained from a UK train 

operating company, covering a large proportion of trains in the fleet for the period April 

2013 to February 2014. The three main datasets were as follows: 

 Air suspension pressure – Data is automatically collected on the air pressure in 

the suspension, which gives an approximate passenger loading for each train. 

A large historic sample of this data was analysed to assess to what extent the 

occupancy on-board trains is uneven by time of day and along each route. This 

was compared against the theoretical capacity (as defined in §2.2.1) and each 

coach was classified based on the occupancy levels. This data was analysed to 

identify patterns for particular trains and sections of routes. These patterns were 

summarised to produce a shortlist of stations where departing trains have the 

most uneven loadings. New metrics were explored to describe loading diversity, 

using the TRB metrics as a starting point. 

 Times the doors lock/unlock – Data is collected for the arrival and departure 

time for each train service at each station through the times that the doors 

unlock and lock. This was used to generate a measure for estimated boarding 

times at each station for each train service. 

 Timetable information – Data on scheduled arrival and departure times for each 

station was also obtained; this included information on service changes, for 

example on bank holidays and during engineering works. The timetable data 

was combined with the door locking data to determine for each service whether 

it arrived and/or departed late. 
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All three datasets were combined and analysed, in order to assess which stations have 

higher than average delay for late-running services. In particular this was correlated 

with the coach-by-coach occupancy data to identify if there was a relationship between 

uneven occupancy and longer than average dwell times. 

Rationale: The datasets obtained were comprehensive in their coverage of most 

services and most trains over an 11-month period. This had advantages over traditional 

survey approaches (similar to those in §2.2.4.2) of giving a complete picture of trends 

rather than a sample for a few stations over a much shorter time period. Another 

advantage of this approach was the negligible cost of data collection, in that it is 

automatically produced as a by-product ‘exhaust’ from the suspension system. A 

disadvantage though was perhaps lower level of detail (e.g. no boarding and alighting 

flows) and poorer accuracy, compared to door sensor data; however, no door sensors 

were installed on the train operator’s fleet. 

4.2 Task 2 – Inter-train loading diversity: analysis of existing data 

Task 2 was designed to answer the following research questions: 

 RQ 3 – Quantification of inter-train loading diversity 

(a) How did load factor vary by station, time of day and other attributes? 

(b) What metrics are appropriate to quantify the inter-train loading diversity? 

 RQ 4 – Prediction of inter-train loading diversity 

(a) What techniques can be applied to predict load factor, based on historic 

data? 

(b) What was the accuracy, precision and recall of these predictors? 

The analysis in Task 1 considered the extent of coach-by-coach crowding. Task 2 built 

on this previous analysis through analysing the variability and predictability of the 

trends for inter-train loading diversity across different predictor variables. 

The review of solutions identified that some train operators use APC data to provide 

information on the level of crowding for a particular service through a variety of 

information channels (§2.3.6). The Naïve Bayes technique was implemented on a 

training dataset for different groups of predictor variables and the accuracy, precision 

and recall of these classifiers was measured through applying the models to a test 

dataset. An initial exploration with decision trees was also attempted for one station. 



Optimising the loading diversity of rail passenger crowding using on-board occupancy data 

 87   

Rationale: Similar to Task 1, the benefits for a data analytics approach were mainly in 

the coverage and low cost of the data. Specifically, for the prediction task there was a 

good sample size of around 45 weeks of data.  

As identified in the literature review in §2.4, there are many techniques that may be 

applicable to this type of problem. The Naïve Bayes algorithm was chosen, because it 

was relatively easy to implement and is regarded in the Literature as a good first step 

for such classification tasks. A requirement of the theorem is that the predictor 

variables are independent; however, this condition was likely not met. Nevertheless, 

Naïve Bayes has been shown to produce reasonable results even when the 

independence condition is not met. In particular running several different Naïve Bayes 

models is considered a good method for identifying suitable predictor variables. 

The review of machine learning techniques identified decision trees as another popular 

approach for classification tasks. There exist several off-the-shelf software packages to 

implement the many variants of decision tree approaches, some of which are listed in 

Table 2. As an initial investigation, a decision tree was implemented from first principles 

for one station only; the order in which attributes were split was determined by 

maximising the information gain at each split, i.e. calculating the entropy for each 

option and choosing the feature that resulted in the largest reduction in entropy. This 

was not intended as a robust analysis; rather it was purely a preliminary investigation 

into how this approach works. 

4.3 Task 3 – Perceived causes and effects of loading diversity, 
both inter-coach and inter-train 

This task was designed to answer the following research questions: 

 RQ 5 – Perceived causes and effects of loading diversity 

(a) From the perspective of frontline staff, which services had high levels of 

inter-coach local crowding? 

(b) From the perspective of frontline staff, which services had high levels of 

inter-train local crowding? 

(c) What were the perceived causes of inter-coach local crowding? 

(d) What were the perceived causes of inter-train local crowding? 

(e) What were the perceived effects of crowding, both inter-coach and inter-

train? 
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A focus group was held with nine of the train operator’s frontline staff, seven were on-

train staff and two were platform staff. This provided qualitative evidence on the causes 

and effects of local crowding, both inter-coach and inter-train. A secondary purpose of 

the focus group in Task 3 was to give a qualitative validation of the scale and location 

of crowding in relation to the more quantitative findings from Tasks 1 and 2. 

The topic guide for the focus group was as follows: 

 Welcome and introduction (10 minutes) – personal introduction from everyone. 

 Experience of local crowding on trains (10 minutes) – the extent to which 

during their day-to-day work that some parts of trains are crowded while there 

are seats available elsewhere and also the variability they see in crowding 

across different times of day. 

 Causes (20 minutes) – the main factors that lead to uneven occupancy, both 

coach-by-coach and across the peak period. 

 Effects (20 minutes) – who is affected and how for different levels of crowding 

on trains. 

 Suggestions for improvement (15 minutes) – ideas for solutions, working in 

two groups then report back to the whole group. 

Rationale: Frontline staff use the trains every day and so have first-hand experience of 

the factors surrounding crowding. A focus group was considered a good method for 

drawing on this experience, because it would provoke the sharing of experiences and 

discussions from different perspectives. This method was preferred to a paper-based 

survey, because it was felt more appropriate in exploring and understanding relevant 

topics in depth. 

Summary 

Three tasks were defined in order to answer the five main research questions. The 

methodology for each of these tasks was set out and justified. Task 1 (RQ 1 and 2) and 

Task 2 (RQ 3 and 4) used a data analytics approach to manipulate three large datasets 

on air suspension, door locking and timetables. Task 3 (RQ 5) comprised a more 

qualitative approach through conducting a focus group with nine frontline staff. 
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5 Findings: occupancy data 

This section presents the findings for the first two tasks outlined in the methodology 

section: 

 Task 1 – Inter-coach loading diversity: analysis of existing data (§5.1) 

 Task 2 – Inter-train loading diversity: analysis of existing data (§5.2) 

Lower-level section headings are used for each of the main research questions that 

were posed in §3.3, each with a summary at the end of the section. 

5.1 Task 1 – Inter-coach loading diversity: analysis of existing 
data 

Task 1 answered two groups of research questions; as discussed in §4.1, this was 

achieved through analysis of data on air suspension pressure, the times the doors 

locked/unlocked and timetable information. 

 RQ 1 – Quantification of inter-coach loading diversity (§5.1.1) 

 RQ 2 – Link between inter-coach loading diversity and dwell times (§5.1.2) 

5.1.1 RQ 1 – Quantification of inter-coach loading diversity 

5.1.1.1 (1a) Is it possible to identify coach-by-coach occupancy using air 
suspension data? 

The air suspension dataset 

The air suspension dataset was automatically collected for the 11-month period, April 

2013 to February 2014. This consisted of two readings of air pressure for each coach, 

taken just prior to the doors closing on departing each station. Each instance also 

included: the vehicle ID; the number of coaches; the train service route ID; the time 

stamp to the nearest second; and a record of the station for which it was departing. 

Data was available for a large proportion of the train operator’s fleet. There were two 

lengths of equipped trains, which for the purpose of this thesis are referred to as long 

and short.  
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Cleansing the air suspension data 

Initial cleansing involved removal of instances with an invalid number of coaches. The 

reason for these errors was unknown, although only a small proportion of the dataset 

was affected (0.03%). 

Instances were also removed where the previous station was ‘NULL’. This represented 

a relatively large proportion of the raw dataset (10.87%). However, these records were 

not actual observations; for example they represented instances at the depot etc. 

After the two cleansing steps above, the dataset was used to generate estimates of 

passenger counts, as described below. This version of the dataset is referred to as 

‘Sample 1’. As will be discussed later, the air suspension data was fused with timetable 

data and door locking data. The combined dataset of air suspension data and timetable 

data is referred to as ‘Sample 2’, whereas the combined dataset of air suspension data, 

timetable data and door locking data is referred to as ‘Sample 3’. 

Generating the passenger counts 

As discussed above, two pressure sensors were present for each coach. The 

distribution of air pressure for each sensor was plotted, primarily to calculate the 

minimum air pressure observed for each coach. Specifically, the 2nd percentile, 25th 

percentile, 75th percentile and 98th percentile were plotted for each coach. 

The 2nd percentile was used as a proxy for the population minimum in order to reduce 

the influence of erroneous data. It is known that some services run with very low 

numbers of passengers, for example some late night services. As such, it was 

reasonable to assume that the 2nd percentile would be close to the population 

minimum; i.e. that in at least 2% of instances a coach is either empty or very close to 

empty. The two air pressure sensors within a coach do not necessarily give the same 

reading, although for some coaches the two 2nd percentile values were similar. The 

train operator recommended taking the average of the two sensors in each coach to 

get one reading per coach. 

The front and rear coaches were the heaviest and as expected had the highest air 

pressure. More generally, the ratio of the tare weight (i.e. the weight with no 

passengers on board) to the 2nd percentile values were relatively similar for all 

coaches, suggesting that the minimum pressure estimates were consistent. Although 
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the estimated minimum values in each coach were similar across the fleet, they were 

calculated for each individual vehicle to account for subtle variations in vehicle weights. 

To generate the estimated passenger counts, the ratio was taken of the air pressure on 

departure to the minimum air pressure for each coach on each vehicle. A linear 

relationship between weight and pressure was assumed; i.e. the percentage increase 

in air pressure was multiplied by the tare coach weight to generate an estimated 

increase in weight as a result of the passengers on board. This was in turn divided by 

the average weight of a passenger with luggage to generate an estimated passenger 

count. 

It was assumed that the average weight of a passenger with luggage was 80kg. This 

value was suggested by the train operator as the value they had used in the past. The 

standard value used by the airline industry for a passenger with luggage, both hand 

luggage and in the hold, is 100kg (Stockholm Environment Institute n.d.). It may be 

expected that an airline passenger would have more luggage than a rail passenger and 

thus this likely forms an upper bound. Other estimates by the ONS (2010) suggested 

that for England and Wales, the average weight of men and women was 83.6kg and 

70.2kg, respectively. A passenger train would carry a mixture of adults and children, 

with varying amounts of luggage and so without further quantitative information 80kg 

seems to be a reasonable assumption in light of these other estimates. 

The 80kg assumption has a large influence on the absolute accuracy of the estimated 

passenger counts. However, the primary focus of this research was to investigate 

localised crowding, both inter-coach and inter-train and as such the relative levels of 

crowding were of greater interest than the absolute levels of crowding. 

The air pressure reading is recorded a few seconds before the doors close and so this 

provides a snapshot of the distribution of coach-by-coach loading on departure from 

each station. Another consideration regarding accuracy is that some passengers move 

along a train between stations, meaning that crowding in a coach on departure may not 

translate directly into crowding during a journey. 

Distribution of passenger counts 

Figure 11a shows the distribution of the estimated number of passengers on all trains. 

There were two peaks, one around the median value of 222 and a small peak around 

zero. Only a small proportion of observations gave negative estimates (0.25%); Figure 

11b zooms in around the Origin to illustrate this. 
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Figure 11 – Distribution of estimated number of passengers on train upon departure 
(Sample 1) 

Figure 12 shows the distribution of the estimated number of passengers in a particular 

coach for the whole sample. There were at least two peaks, one around the median 

value of 34 and another peak between approximately 0 and 20. Some coaches had 

higher capacity than other coaches and thus there were perhaps more than two peaks, 

because all coaches were plotted in the same graph. The shape of the distribution had 

large jumps between subsequent numbers, which was explained by the relatively low 

level of precision (i.e. the rounding) of the air pressure data. Only a small proportion of 

observations gave negative estimates (0.67%); these were set to be zero. 

 

Figure 12 – Distribution of estimated number of passengers in each coach upon 
departure (Sample 1) 
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(b) 
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For the purpose of this study, the capacity of each coach was taken to be the number 

of seats, i.e. no standing allowance (see §2.2.1). The estimated passenger count was 

divided by the capacity for each coach, thus giving a ‘coach load factor’. Figure 13 

shows the distribution of the estimated coach load factor (pooled for all coaches), 

banded to the nearest 5%. There were two peaks, one around the median, which fell 

into the 55%-60% class, and another peak around zero. This now takes into account 

the fact that different coaches had different capacities, unlike in Figure 12. 

The observations to the right of the black line represent instances where a particular 

coach had more passengers than seats were available; this was the case for 14.7% of 

instances. As discussed in §2.2.1, the formal definition of capacity does not include 

coach-by-coach variations. These observations were therefore not necessarily ‘over 

capacity’, in that other coaches on the same train may have had spare capacity; this is 

explored in §5.1.1.2. 

 

Figure 13 – Distribution of occupancy in each coach upon departure (Sample 1) 

Thresholds 

For later use in visualisations and predictive models, it was decided to partition the 

coach-by-coach sample into a small number of classes. The quantitative definitions of 

crowding in §2.2.1 would suggest a binary classification of ‘0% to 100%: Within 

capacity’ and ‘>100%: Over capacity’ would be sufficient. 

As was discussed in §1.1, a literature review by RSSB revealed that while some 

definitions related to objective elements such as density and the available space, other 

definitions focused on more subjective elements on the perception of crowding. 

Qualitative research by RSSB (2005) suggested that four classes of perceived 
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crowding were required to distinguish the different effects of crowding. In a similar 

manner Cox et al. (2006) suggested that perceptions of crowding were perhaps more 

complicated than a binary system when they stated that, “Passenger density may not 

be simply and linearly related to perceptions of crowding”. 

As discussed in §2.3.1, the Dutch pilot provided real-time crowding information on 

current coach-by-coach levels of crowding on the approaching train through a ‘Red-

Amber-Green’ system. Similarly as discussed in §2.3.6, SBB, C2C and SWT each 

provide passenger information on crowding levels for different trains through a variety 

of channels (online, smartphone, posters), each also distinguishing three levels of 

crowding. 

This thesis is focused primarily on passenger counting data and therefore 

predominantly the more quantitative aspects of crowding and ‘passenger density’. 

However as discussed above, various sources from the literature review suggest that 

three or perhaps four levels are required to sufficiently describe the nature of crowding. 

It was decided to split the ‘0% to 100%: Within capacity’ class down further to define 

two sub-classes: ‘Plenty of seats’ and ‘Nearing capacity’. Both of these classes are still 

technically ‘Within capacity’, although the distinction is that for ‘Nearing capacity’ 

although all passengers have an available seat, it may ‘feel more crowded’. The 

threshold of 75% was taken to distinguish between ‘Plenty of seats’ and ‘Nearing 

capacity’. Using the National Transport Model as a relative comparison, although not 

directly applicable, cars on links in conditions above 80% of theoretical capacity are 

defined as travelling in “very congested conditions” (DfT 2013d). 

It was decided to split the ‘>100%: Over capacity’ class down further to define two sub-

classes: ‘Some people standing’ and ‘Many people standing’. Both of these classes are 

still technically ‘Over capacity’, although the purpose was to go some way to distinguish 

between different severities of crowding. The value of 125% was chosen as the 

threshold. 

For illustration purposes, these four classes for coach-by-coach occupancy were each 

assigned a colour and a qualitative name: 

 0% to 75%: (green) ‘Plenty of seats’ – 68.1% of the sample 

 75% to 100%: (amber) ‘Nearing capacity’ – 17.1% of the sample 

 100% to 125%: (red) ‘Some people standing’ – 8.9% of the sample 
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 Over 125%: (purple) ‘Many people standing’ – 5.8% of the sample. 

The sample as in Figure 13 is shown again in Figure 14, but colour-coded and 

partitioned into the four classes of observation. From visual inspection, this suggests 

that the proposed thresholds give an appropriate split of the sample in order to illustrate 

the variability in crowding across the network through various visualisations, as will be 

explored in §5.1.1.2.  

 

Figure 14 – Distribution of occupancy in each coach upon departure, with four classes 
(Sample 1) 

These four proposed classes were compared with other classification schemes in 

Table 3; limited information was available for the quantitative thresholds used by the 

other schemes, although this comparison was attempted using the qualitative 

descriptions.  
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Table 3 – Comparison of crowding classifications 

(RSSB 

2005) (on-

train) 

“No crowding – 

Available seats, 

available luggage 

space, unrestricted 

movement throughout 

train. 

Low to moderate 

crowding – 

Standing for short 

periods of time 

(less than 20 

minutes), 

available 

handholds, 

luggage space 

taken but not 

obstructing 

movement, some 

restricted 

movement in 

moving down 

train. 

Severe crowding 

– Standing for 

moderate periods 

(20 minutes to 1 

hour), small 

amounts of 

luggage restricting 

movement, 

cannot get 

catering trolley 

through train, train 

delayed at station 

due to alighting 

and boarding 

times. 

Unacceptable 

crowding – 

Standing for long 

periods (>1 hour), 

standing for short 

periods without 

access to 

handhold, 

luggage 

obstructing 

movement 

throughout train, 

passengers or 

staff cannot move 

through train, 

cannot shut train 

doors.” 

(RSSB 

2003) (on-

platform) 

‘No crowding – All of 

body visible’ 

‘Low to moderate 

crowding – Only 

body and head 

visible’ 

‘Severe crowding 

– Only shoulder 

and head visible’ 

‘Unacceptable 

crowding – Only 

head visible’  

(DfT 2013a) 
0% to 100%: Within 

capacity 
>100%: Over capacity 

(SBB n.d.) 

Low/medium 

occupancy expected 

(Level 1) 

High occupancy 

expected (Level 

2) 

Very high occupancy expected (Level 

3) 

(SWT 2012) Seats available (green) 
All seats taken 

(yellow) 
Limited standing (red) 

(C2C n.d.) 

Seats 

normally 

available 

(green) 

Few seats 

normally 

available 

(amber) 

Standing room only (red) 

Proposed 

classificatio

n 

0% to 

75%: 

(green) 

‘Plenty of 

seats’ 

75% to 

100%: 

(amber) 

‘Nearing 

capacity’ 

100% to 125%: 

(red) ‘Some 

people standing’ 

Over 125%: (purple) ‘Many people 

standing’  
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The proposed four-part classification relates to occupancy in a particular coach, 

whereas most of the other classifications relate to occupancy on the whole train; 

however, the proposed classification is perhaps closest to the C2C classification, in 

that amber relates to ‘few seats normally available’. On the contrary the SWT 

classification takes the amber class to mean ‘All seats taken’; likewise SBB combine 

‘low’ and ‘medium’ occupancy into the first level. The variability between the different 

classifications is perhaps because different train services have different definitions of 

capacity, i.e. due to the amount of ‘standing allowance’, as discussed in §2.2.1.  

The RSSB qualitative classifications focus on the higher end of the spectrum for 

‘unacceptable crowding’. Other Red-Amber-Green classifications were observed in 

§2.3.1, although no information was available on either the quantitative or qualitative 

thresholds used and so they were not used in the comparison. 

Data fusion with timetable data: ‘Sample 2’ 

A limitation of the above analysis was that it combined both directions of travel5. To 

overcome this limitation and break down the results by particular routes, the data was 

combined with timetable data. This fused dataset is referred to as ‘Sample 2’. 

The timetable dataset consisted of one row for all of the train operator’s departures 

spanning the same 11-month period6. Information was available for each train service 

on arrival and departure times for all calling points. This included changes to the 

published timetables, due to bank holidays and engineering works etc. A unique ID was 

created by combining the train service route ID, the date and the departure station. 

Of ‘Sample 1’, it was possible to join 75.18% of the air suspension data with the 

timetable data. A further 2.88% consisted of multiple observations, whereby there was 

more than one instance for each departure; for these, only the most recent observation 

was retained. Data was also available on services that were travelling in ‘reverse’, 

which represented a further 1.42% of observations; these reversed services were also 

removed from Sample 2. Although these data cleansing steps removed a relatively 

                                                

5
 With the exception of terminus stations, where there was only one direction for departing trains 

6
 Although timetable data was not available for a two-week period in June and an eight week period from 

mid-September to mid-November 
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large proportion of the dataset, given that there was initially an 11-month sample this 

still represented a sufficiently large dataset.  

It was understood that the train service ID in the air suspension dataset is input by the 

driver and so it was likely that the unmatched records were because of a manual input 

error. It was expected therefore that these manual errors were randomly distributed. 

The multiple observations of the same departure were predominantly in the early 

morning, suggesting that this error may have been related to initialising the system in 

the morning, in which case they would be genuinely erroneous data. The trains 

travelled in reverse on occasion for operational reasons; it was understood that these 

instances were randomly distributed. The sample as in Figure 14 is shown again in 

Figure 15, but for the fused dataset, Sample 2. 

 

Figure 15 – Distribution of occupancy in each coach upon departure, with four classes 
(Sample 2) 

The distribution of Sample 2 was very similar to Sample 1, with the median being within 

the 55%-60% class. The main difference was that the peak around 0 was less 

pronounced; this was as a result of the removal of the multiple observations in the early 

morning. The proportion of the sample in each of the four classes was as follows: 

 0% to 75%: (green) ‘Plenty of seats’ – 67.0% of the sample 

 75% to 100%: (amber) ‘Nearing capacity’ – 17.9% of the sample 

 100% to 125%: (red) ‘Some people standing’ – 9.2% of the sample 

 Over 125%: (purple) ‘Many people standing’ – 5.9% of the sample. 



Optimising the loading diversity of rail passenger crowding using on-board occupancy data 

 99   

Validation 

The estimated passenger counts above gave ‘sensible’ results, in that only a small 

proportion of estimates were negative. This suggested that the estimates for the 

minimum air pressure for each coach worked well. 

It was not possible to conduct manual calibration / validation passenger counts within 

the scope of this study. However, counts from ticket data were available for some 

services in February 2014, although it is understood that these ticket counts did not 

contain all ticket types. The ratio of the estimated passenger counts against the ticket 

data is shown in Figure 16, i.e. instances greater than 1 (to the right of the black line) 

represent situations where the estimated passenger count was higher than the ticket 

data. 

 

Figure 16 – Comparison of estimated passenger counts against ticket data (subset of 
Sample 2, where it was possible to match to ticket counts; n=9,964) 

The median was 1.53, i.e. suggesting that on average the estimated passenger counts 

were 53% higher than the ticket counts. This result was as expected, because the 

ticket data did not include all types of available ticket. This did not fully validate the 

passenger counts, although it did go some way to suggest that the estimates were 

reasonable. As discussed previously, the primary focus of this research was to 

investigate localised crowding, both inter-coach and inter-train. As such the relative 

levels of crowding were of greater interest than the absolute levels of crowding and so 

the validation against ticket counts gave sufficient confidence in the data quality. 

For future work, manual validation counts could be collected to give greater confidence 

in the findings from the air suspension occupancy data. This could be achieved through 
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surveyors collecting passenger counts while walking along the length of the train. An 

alternative method could be to collect cordon counts of the doors and vestibules, either 

manually from CCTV data or automatically from door sensors where these are 

installed. 

5.1.1.2 (1b) Which train services and stations had the most uneven inter-coach 
loadings? 

Methods for viewing the counts: 1. Cumulative distribution of occupancy 

The cumulative distribution of occupancy for all stations and all times of day was 

plotted for each coach, separately for short and long trains. The cumulative distribution 

graphs provided a good overview, although it was required to break this down to 

investigate variations for different stations and different times of day. 

A macro spreadsheet utility was developed to automatically generate PowerPoint 

animations showing how the cumulative distribution of each coach varied throughout 

the day at a particular station. This tool combined both directions of travel and binned 

the data to the nearest hour of actual departure. The slideshow visualisations consisted 

of 24 graphs for each station, one for each hour of the day. These were a useful 

method for illustrating how the occupancy varied throughout the day, in particular the 

relative occupancy between different coaches. 

The visualisations showed that for particular stations, it was often the same coaches 

that had the highest occupancy throughout the day. These trends were station-specific, 

i.e. for some stations it was usually one end of the train that was busiest, whereas for 

other stations it was the middle of the train where this was the case. The times of day 

and sections of network that would be expected to be busy proved to be so, suggesting 

that the data gave sensible results. 

Methods for viewing the counts: 2. Proportion of observations with occupancy > 
100%, by time of day for a particular station 

From the above visualisations, it became apparent that by taking a cross-section of the 

cumulative distribution it was possible to condense the information. Specifically, taking 

the proportion of observations with occupancy greater than 100% (i.e. at least some 

people standing in a coach) was sufficient to capture the key information on the inter-

coach loading diversity. The spreadsheet utility was adapted to generate one graph for 
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each station, with a collection of bar charts for each hour of the day. This gave the 

same insights as before, although in a more concise format. 

Methods for viewing the counts: 3. Proportion of observations with occupancy > 
100%, for all times of day combined 

From the above analysis it was clear that there were similar trends in the relative 

occupancy of coaches throughout the day, although in the peak periods this was 

amplified with more instances of higher occupancy in all coaches. As such it was 

possible to combine results for all times of day to summarise the inter-coach patterns 

for each station. 

The preliminary analysis suggested that there was uneven occupancy on many train 

services and that these trends were station-specific. In summary, from visual 

inspection: 

 Two stations were identified where on departure typically the middle of the 

train was more often over capacity compared to other parts of the train. 

 Eight stations were identified where on departure typically one end of the train 

was more often over capacity compared to other parts of the train. 

 All other stations had relatively fewer instances where coaches had 

occupancy over capacity. 

These trends were more pronounced for long trains, although also present to a lesser 

extent for short trains. 

Methods for viewing the counts: 4. ‘Green-Amber-Red-Purple’ average 
occupancy ‘Heat Map’ visualisations, by train service and direction 

As discussed in §2.2.3.3, Itoh et al. (n.d.) proposed the concept of a ‘Heat Map view’ in 

which colours are used to show whether occupancy is higher or lower than historic 

trends; the horizontal axis represents time and the vertical axis represents the different 

lines and stations. This concept was applied to the train operator’s datasets and 

modified to represent inter-coach loading, so that the vertical axis still represented the 

stations, but the horizontal axis represented the different coaches.  

A macro spreadsheet utility was developed to automatically generate visualisations for 

the average weekday occupancy coach-by-coach. Green indicated occupancy between 
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0 and 75%; orange indicated occupancy between 75 and 100%; red indicated 

occupancy between 100 and 125%; and purple indicated occupancy greater than 

125%. Such outputs were generated for all routes and services on ‘Sample 2’, 

distinguishing the direction of travel. The benefit of this approach was to consider the 

inter-coach loading diversity in the context of preceding and subsequent stations. 

It was found from visual inspection of the heat maps that patterns of inter-coach 

loading diversity were often similar for neighbouring stations. A more robust cluster 

analysis was also undertaken, as discussed below. 

Cluster analysis 

A cluster analysis was undertaken on the average coach-by-coach occupancy data to 

identify stations with similar patterns in a robust manner. This was done for long trains 

for southbound and northbound services separately. 

The k-means method was chosen for the cluster analysis and was implemented 

multiple times with the number of clusters varying from k=2 to 10. For each value of k, 

the algorithm was run ten times, with a randomly selected set of starting centroids each 

time. For each run, the percentage of variance explained (i.e. the ratio of the between-

group variance to the total variance) was captured. The average percentage of 

variance explained across the ten repetitions is presented in Figure 17; this suggested 

that six clusters in the southbound direction gave sensible results, i.e. with a slight 

‘elbow’ at k=6. For the northbound direction, the ‘elbow’ was not as pronounced, 

although after visual inspection of the cluster output (for k=4, 5 and 6), five clusters was 

chosen as the most suitable partition. The results for some clusters changed slightly 

depending on the initial centroids; the cluster selection that gave the highest 

percentage of variance explained was chosen as the final partition. 
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Figure 17 – Percentage of variance explained for each number of clusters tested (average 
across all ten repetitions) 

In the southbound direction three of the six clusters had some coaches with average 

occupancy over 70% with other coaches below 55%, while for northbound this was true 

for two of the five clusters; 15 stations were assigned to these clusters for southbound 

services and only seven stations for northbound services, which suggested that uneven 

loadings may be a more common issue for southbound trains, compared to northbound 

trains. 

For southbound services, Cluster A1 comprised stations where on average the middle 

of the train was quite busy, while the rear of the train was quiet; the opposite was true 

for Clusters A2 and A3, with varying levels of average occupancy. 

 Cluster A1 had average occupancy around 75% towards the middle of the train 

and 50% towards the rear of the train; 

 Cluster A2 had average occupancy around 80% towards the rear of the train 

and 50% towards the middle of the train; 

 Cluster A3 had average occupancy around 75% towards the rear of the train 

and 30% towards the middle of the train, which was the greatest range (i.e. 

‘most uneven’) of all the clusters; 

 Cluster A4 had a similar profile to Clusters A2 and A3, although was typically 

less busy with average occupancy around 55% towards the rear of the train and 

30% towards the middle of the train. 
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 Clusters A5 and A6 comprised services with relatively even average occupancy 

across all coaches, with those stations in Cluster A5 being typically busier than 

those in Cluster A6. 

For northbound services, Cluster B1 comprised stations where on average the middle 

of the train was quite busy, while other parts of the train were quiet; the opposite was 

true for Cluster B2. There were often similar stations in the respective southbound and 

northbound clusters, which suggested that for some but not all stations there were 

similar patterns in both directions. This result is perhaps surprising; possible causes of 

such patterns are discussed later in §6.1.1.3. 

 Cluster B1 had average occupancy around 70% towards the middle of the train 

and 50% on other parts of the train; 

 Cluster B2 had average occupancy around 80% towards the front of the train 

and 50% towards the middle of the train; 

 Cluster B3 had average occupancy around 50-60% along the length of the train 

with relatively even occupancy across all coaches; 

 Cluster B4 had average occupancy around 50% towards the front of the train 

and 30% towards the middle of the train. 

 Cluster B5 comprised services with relatively low average occupancy across all 

coaches. 

The 15 stations within Clusters A1, A2 and A3 and the seven stations within Clusters 

B1 and B2 were similar to those identified from visual inspection of previous analysis, 

although here the findings were based on average occupancy, rather than the 

proportion of observations with occupancy over 100%. 

The stations within particular clusters were often neighbouring stations on the same 

route. This finding that neighbouring stations had similar loading profiles was not a 

surprise, because in a situation where the net number of passengers alighting is 

relatively low, if a coach is busy on arrival at a station it will likely also be busy on 

departure. An important thing to note from this is that if a station has particularly 

uneven loadings, initiatives at that station in isolation may not be sufficient; i.e. if the 

problem is being caused by behaviours at a preceding station, it would be better to 

tackle the root cause of the problem ‘upstream’. In other words prioritising effort to 
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provide solutions at those stations with uneven loadings and high boarding flows may 

also alleviate crowding at several subsequent stations ‘downstream’. 

A limitation of the analysis was that no information was available on boarding and 

alighting flows. Without information on boarding and alighting flows, it is challenging to 

identify which stations were the root cause, i.e. at which stations the effort should be 

targeted for solutions to smooth the crowding. 

5.1.1.3 (1c) For what proportion of train departures were there available seats in 
at least one coach, while passengers were standing elsewhere on the 
train? 

All services 

All departing train services were partitioned into one of three categories:  

 ‘Some coaches had standing passengers while other coaches had spare 

seats’;  

 ‘All coaches had only seated passengers’; 

 ‘All coaches had at least some standing passengers’.  

The first category was of most interest, because this was a useful headline figure to 

highlight the extent to which uneven inter-coach loading was a problem. 

As shown in Table 4, 36% of short train services and 28% of long train services had 

available seats in at least one coach, while passengers were standing in at least one 

coach elsewhere on the train. A headline figure therefore was that on around a third of 

services there were at least some passengers standing who could have been sitting 

down. 

Table 4 – Proportion of observations where some coaches had standing passengers 
while other coaches had spare seats (Sample 2) 

Classification Short trains Long trains Short trains Long trains 

Some coaches had standing 
passengers while other coaches 

had spare seats 
36.5% 27.9% 31,911 38,708 

All coaches had only seated 
passengers 

56.2% 70.2% 49,208 97,300 

All coaches had at least some 
standing passengers 

7.3% 1.9% 6,391 2,686 

Total 100% 100% 87,510 138,694 
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This analysis was broken down by time of day and whether weekday or weekend, as 

shown in Figure 18. This suggested these instances were more often in the 10:00-

15:59 and 16:00-18:59 periods. 

 

Figure 18 – Proportion of observations where some coaches had standing passengers 
while other coaches had spare seats, by time of day (Sample 2) 

Busy services 

Because uneven boarding has little impact on the more lightly loaded trains, more 

detailed analysis was carried out on ‘busy’ services. Busy services were defined as 

being those services departing with load factor over 75%. These ‘busy services’ 

represented 48% of short train services and 21% of long train services. 

In summary, 70% of busy short train services and 83% of busy long train services had 

available seats in at least one coach while passengers were standing in at least one 

coach elsewhere on the train. 
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Table 5 – Proportion of observations for ‘busy’ services where some coaches had 
standing passengers while other coaches had spare seats (Sample 2) 

Classification Short trains Long trains Short trains Long trains 

Some coaches had standing 
passengers while other coaches 

had spare seats 
70.1% 83.4% 29,174 24,073 

All coaches had only seated 
passengers 

14.5% 7.2% 6,047 2,089 

All coaches had at least some 
standing passengers 

15.4% 9.3% 6,391 2,686 

Total 100% 100% 41,612 28,848 

5.1.1.4  (1d) Which stations had the highest proportion of passengers who were 
standing, but could have been sitting down? 

All services 

Further headline measures were defined as follows: 

 The proportion of passengers who were standing. The estimated 

passenger counts were compared against the number of seats to calculate the 

number of standing passengers or number of spare seats in each coach; 

 The proportion of passengers who were standing but could have been 

sitting down. This was computed by comparing the number of people 

standing and number of spare seats across all coaches, until all unused seats 

were filled. 

Overall 9.1% of passengers on short trains and 4.6% of passengers on long trains 

were standing on departure. It is possible that some of these passengers may have 

moved along the train to find a seat, although data on this was not available. Figure 19 

shows the proportion of passengers who were standing for different times of day; this 

shows that this was highest for the 1600-1859 period on weekend services. 
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Figure 19 – Proportion of passengers who were standing, by time of day (Sample 2) 

Overall for all stations and times of day, 2.0% of passengers on short trains and 1.8% 

of passengers on long trains were standing on departure, but there were sufficient 

seats elsewhere on the train for them to sit down. Figure 20 shows that this measure 

was consistently around 2% for different times of day, with the exception of early 

morning and late evening services, when this measure was lower. 

 

Figure 20 – Proportion of passengers who were standing but could have been sitting 
down, by time of day (Sample 2) 
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Busy services 

More detailed analysis was carried out on ‘busy’ services, i.e. those services departing 

with load factor over 75%.  

For busy services, 13.7% of passengers on short trains and 11.9% of passengers on 

long trains were standing on departure.  

For busy services, 2.9% of passengers on short trains and 4.1% of passengers on long 

trains were standing on departure, but could have been sitting down. This measure 

was as high as 9% of passengers for a particular station and 7% for two other stations.  

5.1.1.5  (1e) What metrics are appropriate to quantify the inter-coach loading 
diversity? 

Application of existing metrics 

As identified in the literature review in §2.2.4.1, the TRB (2003) issued guidance that 

introduced the concept of ‘loading diversity’, of which they defined three types: “1. 

Loading diversity within a car”; “2. Loading diversity among cars of a train”; and “3. 

Unevenness of passenger demand during the peak hour”. 

For the second type of loading diversity, where there are more passengers in some 

coaches than other coaches, they defined a metric called ‘ratio of car occupancy to 

train average’. This is a metric where a value equal to 1 represents an individual coach 

load equal to the average load of all cars in the train. Figure 3 in §2.2.4.1 was an 

example of this metric for the Toronto subway. 

The ‘ratio of car occupancy to train average’ was computed across all stations. This 

showed that for short trains typically one particular coach had occupancy 20% lower 

than the train average. Similarly for long trains, two coaches had occupancy 22% and 

14% lower than the train average. 

When looking at different time periods throughout the day, the 0000-0659 time period 

had the largest range of values (from 0.86 to 1.21 for short trains and 0.77 to 1.39 for 

long trains), i.e. according to this metric the ‘most uneven’ train services. The value of 

this metric is somewhat debatable for this time period, because average occupancy 

was particularly low (around 35% as will be discussed in §5.2.1.1). 
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More generally, it is the case that a limitation of the existing TRB metric is that it only 

explains the occupancy relative to other coaches and ignores the absolute occupancy; 

for example some quiet services would be classified as having very high loading 

diversity, even though there may be no coaches at or near capacity. Because of this 

limitation, two new metrics to describe inter-coach loading diversity were proposed. 

New metric 1: ‘Two busiest and two quietest coaches’ inter-coach loading 
diversity classification 

For the first metric, thresholds of occupancy were set as follows: 

 Low (L) – 0% to 75%; 

 Medium (M) – 75% to 100%; 

 High (H) – Over 100%. 

Six classes were proposed meeting the conditions as defined in Table 6. Each of the 

six classes were given a name, such as “X-X”, whereby the first letter related to the two 

busiest coaches and the second letter related to the two quietest coaches. For 

example, the most uneven class had at least two coaches with occupancy greater than 

100% and at least two coaches with occupancy less than 75% and was named “H-L”. 

These six classes are also illustrated in Figure 21 with the loading diversity on the 

horizontal axis and number of passengers on the vertical axis. This proposed new 

metric overcame the limitation of the existing TRB metric in that it included information 

relative to the capacity. 

Table 6 – Proposed new metric of ‘Two busiest and two quietest coaches’: definition of 
six classifications to describe inter-coach loading diversity 

Loading 
diversity Name 

Number of 
coaches <75% (L) 

Number of coaches 
between 75 and 100% 

(M) 

Number of 
coaches >100% 

(H) 

‘Very 
uneven’ 

‘H-L’ At least 2 No condition At least 2 

‘Uneven’ ‘H-M’ At most 1 At least 2 At least 2 

‘M-L’ At least 2 At least 2 At most 1 

‘Even’ ‘H-H’ At most 1 At most 1 At least 2 

‘M-M’ At most 1 At least 2 At most 1 

‘L-L’ At least 2 At most 1 At most 1 
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Figure 21 – Proposed new metric of ‘Two busiest and two quietest coaches’: illustration 

Table 7 gives the partition of the sample into the six classes as defined above. This 

shows that 9.5% of long train departures were classified as ‘very uneven’ (‘H-L’), i.e. 

observations where at least two coaches had occupancy less than 75% and at least 

two coaches had occupancy greater than 100%. This partition will be used again in 

§5.1.2 when considering average boarding times. 

Table 7 – Partition by ‘Two busiest and two quietest coaches’ metric (Sample 2) 

Classification Short trains Long trains Short trains Long trains 

‘Very unevenly loaded’ H-L 4.3% 9.5% 3722 13147 

‘Unevenly loaded’ 
H-M 9.3% 4.7% 8142 6548 

M-L 17.0% 21.8% 14886 30212 

‘Evenly loaded’ 

H-H 17.3% 4.0% 15135 5548 

M-M 8.2% 0.8% 7191 1141 

L-L 43.9% 59.2% 38434 82098 

All 100% 100% 87510 138694 

Figure 22 presents the same analysis split by time of day and shows that the 1000-

1559 time period had the highest proportion of observations that were classified as 

either ‘very uneven’ (‘H-L’) or ‘uneven’ (‘H-M’ or ‘M-L’). This was in contrast to the TRB 

metric which suggested the 0000-0659 time period had the most unevenly loaded 

trains. 
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Figure 22 – Partition by ‘Two busiest and two quietest coaches’ metric, by time (Sample 
2) 

The same analysis was conducted for different routes and this showed that trains from 

a particular station typically had the highest proportion of observations that were 

classified as either ‘very uneven’ (‘H-L’) or ‘uneven’ (‘H-M’ or ‘M-L’). This was 

consistent with the initial analysis conducted in §5.1.1.2. 

Table 8 presents the same analysis, filtered for ‘busy’ services, which were defined as 

being those services departing with load factor greater than 75%. Compared with the 

previous analysis in Table 7, this shows that busy services were more prone to be 

affected by uneven occupancy, in particular for long trains.  

Table 8 – Partition by ‘Two busiest and two quietest coaches’ metric for ‘busy’ services 
(Sample 2) 

Classification Short trains Long trains Short trains Long trains 

‘Very unevenly loaded’ H-L 8.6% 34.3% 3600 9901 

‘Unevenly loaded’ 
H-M 19.5% 22.7% 8141 6548 

M-L 15.3% 19.3% 6381 5557 

‘Evenly loaded’ 

H-H 36.4% 19.2% 15135 5548 

M-M 16.9% 3.9% 7047 1140 

L-L 3.1% 0.5% 1308 154 

All 100% 100% 41612 28848 
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This new metric was successful in classifying services by how evenly they were loaded 

and furthermore overcame the limitations of the existing metric that were discussed in 

the previous section. 

New metric 2: ‘Rear-Middle-Front’ inter-coach loading diversity classification 

A limitation of the proposed new metric above is that it does not contain information on 

where along the train the crowded coaches are. In order to address this limitation, a 

second new metric was also proposed. 

The train was split into ‘Rear’, ‘Middle’ and ‘Front’ and then all the ordered 

permutations of occupancy were considered using the same thresholds as above: Low 

(L), 0% to 75%; Medium (M), 75% to 100%; High (H), Over 100%. This yielded 27 

possible classes: ‘L-L-L’, ‘L-L-M’, ‘L-L-H’, ‘L-M-L’, ‘L-M-M’ and so on, as defined in 

Table 9. 

This metric was applied to departures for long trains from one station. This subset was 

chosen for illustrative purposes, because it was one of the scenarios identified in the 

previous section as being more susceptible to uneven loading. Figure 23 partitions the 

observations for this subset into the eight (out of 27) most common classes (shown in 

the columns) for each departure throughout the day (shown in the rows).  
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Table 9 – Proposed new metric of ‘Rear-Middle-Front’ inter-coach loading diversity 
classification: definition of 27 ordered classes 

 

For this particular station in the morning the most common classification was ‘L-L-L’, 

i.e. all three parts of the train had average occupancy less than 75%. From around 

1000 to midday the most common classification was ‘M-L-L’, suggesting that often the 

rear of the train was starting to approach capacity. In the afternoon and evening there 

were a large proportion of trains that departed classified as ‘H-H-L’, ‘H-M-L’ or ‘H-L-L’, 

i.e. with coaches over capacity towards the rear of the train, but with spare capacity 

towards the front of the train. 

These trends were consistent with the analysis in §5.1.1.2. This metric was therefore 

successful in quantifying at what point along the train the crowding occurred, i.e. for 

this example the rear of the train often being over capacity while the middle and front 

had spare capacity. 
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Figure 23 – ‘Rear-Middle-Front’ inter-coach loading diversity classification applied to 
departures from one station (Sample 2) 
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Summary 

The air suspension dataset was automatically collected for the 11-month period, April 

2013 to February 2014. This consisted of two readings of air pressure for each coach, 

taken just prior to the doors closing on departing each station. To generate the 

estimated passenger counts, the ratio was taken of the air pressure on departure to the 

minimum air pressure for each coach on each vehicle. A linear relationship between 

weight and pressure was assumed; i.e. the percentage increase in air pressure was 

multiplied by the tare coach weight to generate an estimated increase in weight as a 

result of the passengers on board. This was in turn divided by the average weight of a 

passenger with luggage to generate an estimated passenger count. 

For illustration purposes, these four classes for coach-by-coach occupancy were each 

assigned a colour and a qualitative name: 0% to 75%, (green) ‘Plenty of seats’; 75% to 

100%, (amber) ‘Nearing capacity’; 100% to 125%, (red) ‘Some people standing’; Over 

125%, (purple) ‘Many people standing’. 

The air suspension data was combined with timetable data to determine direction of 

travel and the dataset was cleansed, which included removing trains that departed in 

reverse formation. It was not possible to conduct manual calibration / validation 

passenger counts within the scope of this study. However, counts from ticket data were 

available for some services. This did not fully validate the passenger counts, although it 

did go some way to suggest that the estimates were reasonable. As discussed 

previously, the primary focus of this research was to investigate localised crowding, 

both inter-coach and inter-train. As such the relative levels of crowding were of greater 

interest than the absolute levels of crowding and so the validation against ticket counts 

gave sufficient confidence in the data quality for the purposes of the study. 

Four different methods for viewing the counts were applied: coach-by-coach cumulative 

distributions; proportion of observations with coach-by-coach occupancy over 100% by 

time of day; proportion of observations with coach-by-coach occupancy over 100% for 

all times of day combined; and average coach-by-coach occupancy 'heat maps' across 

the network. This analysis suggested that there was uneven inter-train occupancy on 

many train services and that these trends were station-specific. 

A cluster analysis was undertaken on the average coach-by-coach occupancy data to 

identify stations with similar patterns in a more robust manner. This was done for long 

trains, with six clusters in the southbound direction and five clusters in the northbound 
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direction giving sensible results. In the southbound direction three of the six clusters 

had some coaches with average occupancy over 70% with other coaches below 55%, 

while for northbound this was true for two of the five clusters. There were often similar 

stations in the respective southbound and northbound clusters, which suggested that 

for some but not all stations there were similar patterns in both directions. 

Specifically, for southbound services: Cluster A1 had average occupancy around 75% 

towards the middle of the train and 50% towards the rear of the train; Cluster A2 had 

average occupancy around 80% towards the rear of the train and 50% towards the 

middle of the train; Cluster A3 had average occupancy around 75% towards the rear of 

the train and 30% towards the middle of the train, which was the greatest range (i.e. 

‘most uneven’) of all the clusters, these eight stations were predominantly on the route 

identified by other metrics as being most susceptible to uneven loadings. 

For northbound services: Cluster B1 had average occupancy around 70% towards the 

middle of the train and 50% on other parts of the train; Cluster B2 had average 

occupancy around 80% towards the front of the train and 50% towards the middle of 

the train. 

It was found from the cluster analysis that patterns of inter-coach occupancy were often 

similar for neighbouring stations; this was also observed from the average occupancy 

heat maps. The finding that neighbouring stations had similar loading profiles was not a 

surprise, because in a situation where the net number of passengers alighting is 

relatively low, if a coach is busy on arrival at a station it will likely also be busy on 

departure. An important thing to note from this is that if a station has particularly 

uneven loadings, initiatives at that station in isolation may not be sufficient; i.e. if the 

problem is being caused by behaviours at a preceding station, it would be better to 

tackle the root cause of the problem ‘upstream’. In other words, prioritising effort to 

provide solutions at those stations with uneven loadings and high boarding flows may 

also alleviate crowding at several subsequent stations ‘downstream’. 

Several metrics were used to identify locations where uneven occupancy was most 

prevalent. Overall on around a third of services there were at least some passengers 

standing who could have been sitting down. Overall for all stations and times of day, 

2.0% of passengers on short trains and 1.8% of passengers on long trains were 

standing on departure, but there were sufficient seats elsewhere on the train for them 

to sit down. For one station on ‘busy’ trains, this metric was 9%. 
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The ‘ratio of car occupancy to train average’ was computed across all stations. A 

limitation of this existing metric is that it only explains the occupancy relative to other 

coaches and ignores the absolute occupancy; for example some early morning quiet 

services were classified as having very high loading diversity, even though there were 

no coaches at or near capacity. Because of this limitation, two new metrics to describe 

inter-coach loading diversity were proposed. 

Six classes were proposed based on the two busiest and two quietest coaches; around 

10% of long train departures were classified as ‘very uneven’ (‘H-L’), i.e. observations 

where at least two coaches had occupancy less than 75% and at least two coaches 

had occupancy greater than 100%. This metric was applied individually to each station 

and direction to identify in a systematic way the stations where the inter-coach loading 

diversity was high and was successful in overcoming the limitations of the existing 

metric. 

A limitation of the proposed new metric above is that it does not contain information on 

where along the train the crowded coaches are; in order to address this, a second new 

metric was also proposed. The train was split into ‘Rear’, ‘Middle’ and ‘Front’ and then 

all the ordered permutations of occupancy were considered. This metric was applied to 

one station that was identified as having particularly uneven loadings. In the afternoon 

and evening there were a large proportion of trains that departed classified as ‘H-H-L’, 

‘H-M-L’ or ‘H-L-L’, i.e. with coaches over capacity towards the rear of the train, but with 

spare capacity towards the front of the train. This metric was successful in quantifying 

at what point along the train the crowding occurred. 

5.1.2 RQ 2 – Link between inter-coach loading diversity and dwell times 

5.1.2.1 (2a) What was the distribution of dwell times and estimated boarding 
times? 

Data fusion with door locking data: ‘Sample 3’ 

As discussed in §5.1.1.1, the air suspension data was combined with timetable data to 

determine the direction of travel. This combined dataset was used for most of the 

analysis in the previous sections and has been referred to as 'Sample 2'. A third 

dataset was also available from the door systems, which consisted of one row for each 

time the doors unlocked and locked. This included the vehicle unit ID, but no position 
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data or train service ID. Despite the lack of position data it was possible to combine the 

door locking data with Sample 2, using the timestamp from the air suspension dataset, 

which was usually between the doors unlocking and locking. This was a relatively 

complicated join and required careful sorting of the two datasets, rather than using a 

‘lookup’. Of ‘Sample 2’, it was possible to join 75.2% of the data and this is referred to 

as ‘Sample 3’. 

The time at which the doors locked was compared against the scheduled departure 

time from the timetable dataset as a measure of late-running. 

Generating estimated boarding times 

No data was directly available on boarding times, although the dwell times (defined for 

this study as the time between the doors unlocking and locking again at a station) were 

used as a proxy to estimate the boarding times for train services that arrived late. This 

was only done for trains that arrived late, because for trains that arrived early or on-

time, it was likely that some of the dwell time would not include any boarding. In this 

study, ‘trains that arrived late’ was defined as instances in which a train arrived (i.e. the 

doors unlocked) at least one second after the scheduled departure time. 

Figure 24 presents the distribution of the dwell times for trains that arrived late and 

shows that these 'estimated boarding times' were typically between 50 and 120 

seconds. A small proportion of dwell times were over 180 seconds and these were 

excluded from the analysis in the remainder of this section, because they were 

considered likely to have been affected by reasons other than boarding. 

 

Figure 24 – Distribution of dwell time for services that arrived late (Sample 3)  
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5.1.2.2 (2b) To what extent were longer dwell times related to uneven coach-by-
coach occupancy? 

Average dwell times for late-running services, for different classes of inter-coach 
loading diversity 

The average dwell times for train services that arrived late (from Figure 24) were 

correlated against the six classes of inter-coach loading diversity (from Figure 21). This 

is shown in Figure 25 and Figure 26 for short and long trains, respectively. Those 

coloured red and orange represent the observations classified as ‘very uneven’ ('H-L') 

and ‘uneven’ ('H-M' or 'M-L'), whereas those coloured green represent observations 

classified as ‘even’ ('H-H', 'M-M' or 'L-L'). The vertical axis shows the average dwell 

time and the horizontal axis shows the total number of passengers on-board, grouped 

to the nearest 50. As would be expected, the average dwell times were typically larger 

for the busier trains, ranging from around 80 seconds when there were 200 passengers 

on-board up to around 100 seconds when there were 700 passengers on-board. 

The analysis suggested that there is a link between uneven loadings and dwell times. 

Trains classified as ‘very uneven’ (‘H-L’), i.e. with at least two coaches with occupancy 

less than 75% and at least two coaches with occupancy greater than 100%, typically 

had dwell times of approximately five to ten seconds greater than services that were 

classified as being ‘even’, with a similar total number of passengers on board. 

 

Figure 25 – Average dwell time for the six classes of inter-coach loading diversity, by 
total number of passengers on-board, short trains (Sample 3, trains that arrived late) 



Optimising the loading diversity of rail passenger crowding using on-board occupancy data 

 121   

 

Figure 26 – Average dwell time for the six classes of inter-coach loading diversity, by 
total number of passengers on-board, long trains (Sample 3, trains that arrived late) 

Summary 

The occupancy data was combined with door locking data and timetable data. Dwell 

times were calculated as the time between the doors unlocking and locking again at a 

station. The time the doors unlocked was also compared with timetable data to identify 

train services that arrived late. No data was directly available on boarding times, 

although the dwell times were used as a proxy to estimate the boarding times for train 

services that arrived late. 

These estimated boarding times were correlated against the new inter-coach loading 

diversity metric and the analysis suggested that there is a link between uneven 

loadings and dwell times. Trains classified as ‘very uneven’ (‘H-L’) on departure, i.e. 

with at least two coaches with occupancy less than 75% and at least two coaches with 

occupancy greater than 100%, typically had dwell times of approximately five to ten 

seconds greater than services that were classified as being ‘even’, with a similar total 

number of passengers on board. 
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5.2 Task 2 – Inter-train loading diversity: analysis of existing data 

Task 2 answered two groups of research questions; as discussed in §4.2, this was 

achieved through using the same dataset as in Task 1 (‘Sample 2’). 

 RQ 3 – Quantification of inter-train loading diversity (§5.2.1) 

 RQ 4 – Prediction of inter-train loading diversity (§5.2.2) 

5.2.1 RQ 3 – Quantification of inter-train loading diversity 

5.2.1.1 (3a) How did load factor vary by station, time of day and other attributes? 

Distribution 

The findings from the previous task demonstrated that it was possible to use air 

suspension data to detect coach-by-coach variations using the data cleansing 

approach described in §5.1.1.1. This same dataset was summed over all coaches to 

generate the estimated number of passengers on each departing train service. This 

estimate was divided by the capacity to generate the load factor. This was equivalent to 

the DfT definition that was introduced in §2.2.1 (DfT 2013b). 

Figure 27 shows the distribution of the load factor, banded into 5% bins. The 

observations to the right of the black line represent instances where a particular train 

service had more passengers than seats were available, as such this corresponds with 

the official definition of ‘over capacity’, as described in §2.2.1. This was the case for 

12.4% of observations, which as expected was lower in contrast to 15.1% of 

observations for individual coaches departing with occupancy over 100%, as shown 

previously in Figure 15.  
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Figure 27 – Distribution of load factor (total passengers / capacity) upon departure 
(Sample 2) 

The proportion of the sample in each of the four classes was as follows: 

 0% to 75%: (green) – 68.9% of the sample 

 75% to 100%: (amber) – 18.8% of the sample 

 100% to 125%: (red) – 7.8% of the sample 

 Over 125%: (purple) – 4.6% of the sample. 

As was discussed previously the primary focus of this research was to investigate 

localised crowding, both inter-coach and inter-train. As such the relative levels of 

crowding were of greater interest than the absolute levels of crowding. Comparison 

against ticket data in §5.1.1.1 suggested sensible results sufficient for relative 

comparisons, although caution must be taken when making any conclusions on 

absolute levels of crowding, because no robust validation against manual counts has 

been undertaken. 

In this section there follows a series of graphs showing the load factor, split by different 

variables. For each of these the top half presents the average load factor and the 

bottom half gives the partition of observations into the four classes listed above. The 

graphs give results separately for short trains (left) and long trains (right). 
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Variability by station 

For short trains, the average load factor ranged from 94% at one station to 32% at 

another station. Of note, from preliminary analysis in §5.1.1.2, a particular station was 

identified as having some of the highest instances where there was occupancy greater 

than 100% in some coaches, whereas it is ranked 17th in terms of load factor compared 

to other stations. These results are consistent, because it was also identified as one of 

the stations most susceptible to uneven inter-coach loadings from the metrics defined 

in Task 1. 

Variability by scheduled departure time 

Figure 28 presents the load factor, split by time period. This shows that 1600-1859 was 

typically the busiest time period, with average load factor being 91% for short trains 

and 67% for long trains, likewise the proportion of observations classified as ‘busy’ (i.e. 

with load factor over 75% occupancy) being 65% for short trains and 34% for long 

trains. At the other end of the scale, 0000-0659 was the least busy time period with 

average occupancy being 34% and 27% and the proportion of services classified as 

‘busy’ being 10% and 5%, for short and long trains respectively. Figure 29 suggests 

similar patterns, but presented for half-hour time periods, where for example ‘0730’ 

represents all services scheduled to depart between 0730 and 07597. 

                                                

7
 There was a relatively low number of services scheduled to depart between 0100 and 0459 and these 

time periods were therefore excluded from the graph. 
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Figure 28 – Load factor average (top) and banded (bottom), by scheduled departure time 
period (Sample 2) 
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Figure 29 – Load factor average (top) and banded (bottom), by scheduled departure half-
hour time period (Sample 2) 

Variability by day of week 

Figure 30 presents the load factor, split by day of week. This shows that Fridays and 

Sundays were typically the busiest days, with average load factor being around 80% 

for short trains and 60% for long trains, likewise the proportion of observations 

classified as ‘busy’ being around 55% for short trains and 30% for long trains. 

Thursdays tended to be the next most busy day of the week, with Saturdays tending to 

be the least busy. 
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Figure 30 – Load factor average (top) and banded (bottom), by day of week (Sample 2) 

Variability by month 

Figure 31 presents the load factor, split by month8.This suggests that November, 

December and February tended to be the busiest months, with average load factor 

being around 80% for short trains and 60% for long trains, likewise the proportion of 

observations classified as ‘busy’ being around 55% for short trains and 25% for long 

trains. All other months typically had a similar average load factor, around 70% for 

short trains and 55% for long trains, while the proportion of observations classified as 

‘busy’ being around 45% for short trains and 20% for long trains. Each week across the 

time period was coded as being either term time or school holiday. As shown in Figure 

                                                

8
 As discussed in §5.1.1.1, data was available for an 11-month period from the start of April 2013 to the 

end of February 2014, although timetable data was not available for October 2013 
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32, there were some differences between term time and school holiday, both in terms 

of average loading factor and the proportion of services classified as being busy. 

 

Figure 31 – Load factor average (top) and banded (bottom), by month (Sample 2) 
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Figure 32 – Load factor average (top) and banded (bottom), by school holiday (Sample 2) 

Variability by late-running 

Figure 33 presents the load factor, split by actual departure, banded into ‘On time’, ‘1 to 

10 minutes late’, ’10 to 60 minutes late’ and ’60 to 120 minutes late’9. Here the 

timestamp for departure from the air suspension dataset was used rather than from the 

door locking dataset, i.e. 'Sample 2' rather than 'Sample 3'. This shows that late-

running trains were typically busier than those running on time, with average load factor 

being around 80% for short trains and 60% for long trains, likewise the proportion of 

                                                

9
 There were 347 observations with delay greater than 120 minutes, which have been filtered from the 

analysis. 
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observations classified as ‘busy’ being around 50% for short trains and 25% for long 

trains. One possible reason for this is that when trains run late, they start to carry 

passengers who were planning to catch the subsequent service. Another possible 

reason is that for trains that are busy anyway, boarding times may take longer and thus 

contribute to late-running; in this case there may be some inter-relationship with the 

other variables already discussed earlier in this section. 

 

Figure 33 – Load factor average (top) and banded (bottom), by late-running (Sample 2) 

Standard deviation and coefficient of variation 

The coefficient of variation is defined to be the average divided by the standard 

deviation and is used as a relative measure for variability. Most stations had coefficient 

of variation around 0.4, with similar values for both short trains and long trains, 

although a few stations had higher coefficient of variation, over 0.6. 
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The variability by time of day is explored below for two stations by plotting a time series 

of average load factor plus and minus one standard deviation for half-hour periods 

throughout the day; see Figure 34 and Figure 35. For these graphs, '0730' represents 

all scheduled departures from 0730 to 0759 and so on. These two stations had higher 

coefficient of variation than most other stations and their daily profile had particularly 

high peaks in the afternoon around 1600 to 1759, perhaps explaining the high 

coefficient of variation. The profile for one station oscillated from being relatively higher 

for the xx00-xx29 periods compared to the xx30-xx59 periods, which was explained by 

some trains terminating nearby while other trains continued through to a more distant 

destination.  
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Figure 34 – Average load factor +/- standard deviation for one station (Sample 2) 
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Figure 35 – Average load factor +/- standard deviation for another station (Sample 2) 

5.2.1.2  (3b) What metrics are appropriate to quantify the inter-train loading 
diversity? 

Application of existing metrics 

As identified in the literature review in §2.2.4.1, the TRB (2003) issued guidance that 

introduced the concept of ‘loading diversity’, of which they defined three types: “1. 

Loading diversity within a car”; “2. Loading diversity among cars of a train”; and “3. 

Unevenness of passenger demand during the peak hour”. For the third type of loading 

diversity, where there are more passengers on some trains by time of day, they defined 

a metric called ‘peak hour factor’.  

“Peak hour factor = (passenger volume in peak hour) / (4 * passenger volume in 

peak 15 mins)” 

The peak hour factor gives a value between 0.25 and 1, where a higher value means 

that the passenger demand is more evenly spread over the peak hour. This measure 

was originally contrived for use with light rail services, which often have much higher 

frequency than heavy rail. As such this measure was adapted as follows: 

“Heavy rail peak hour factor = (passenger volume in two hour peak period) / (4 * 

passenger volume in peak 30 mins)” 
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Figure 29 showed that the 0700-0859 and 1600-1759 time periods were typically busy 

and thus the 'heavy rail peak hour factor' was proposed for these time periods. This 

identified the situations where a small shift earlier or later than the peak 30 minutes 

within peak two hour periods would result in a substantially quieter service. Of the 

stations for which this metric was calculated, the station with the profile shown in Figure 

34 had the lowest value, likely explained by the oscillating pattern. 

Summary 

The services with highest average load factor were identified across all stations, both 

by different routes and times of day. The variability of load factor according to different 

variables was investigated, with time of day yielding the greatest range, although train 

length, day of week, month and late-running also having an effect.  

Time series graphs of average load factor with standard deviation were presented for 

selected stations, illustrating a range of profiles across the network. The TRB ‘peak 

hour factor’ metric was modified to identify the stations where a small shift of 

passengers taking earlier of later trains would yield the greatest smoothing of 

occupancy. 

5.2.2 RQ 4 – Prediction of inter-train loading diversity 

5.2.2.1 (4a) What techniques can be applied to predict load factor, based on 
historic data? 

As discussed in §2.4, classification techniques are used for supervised learning 

problems where the dependent variable is categorical. Such techniques were applied in 

order to predict the (banded) load factor for a particular train in the future. As discussed 

in §4.2 the Naïve Bayes algorithm was implemented on a training dataset for different 

groups of predictor variables and the accuracy, precision and recall of this classifier 

was measured through applying the model to a test dataset. 

Thresholds: relationship between inter-coach and inter-train occupancy 

As discussed in §5.1.1.1, there are a variety of classifications in the literature for load 

factor of two, three or four classes, with different thresholds. In order to select a 

number of classes with appropriate thresholds for load factor, the relationship between 

inter-coach and inter-train occupancy was investigated. 



Optimising the loading diversity of rail passenger crowding using on-board occupancy data 

 134   

Figure 36 shows the load factor banded in 5% intervals along the horizontal axis, with 

the lightest grey indicating observations where no coaches had occupancy over 100%, 

going through to the darkest grey where three or more coaches had occupancy over 

100%. This showed that: 

 For trains with load factor less than around 75%, typically most services had 

no coaches with occupancy over 100%; 

 For trains with load factor between 75% and 100%, most had at least one 

coach with occupancy over 100%; 

 And for trains with load factor over 100%, most had three or more coaches 

with occupancy over 100%. 

This suggested that for the prediction task three classes would be sufficient, with 

thresholds being: ‘0 to 75%’; ‘75 to 100%’; and ‘Over 100%’ (indicated by the dotted 

line below). 

 

Figure 36 – Relationship between inter-coach and inter-train occupancy (Sample 2) 

Historic average: baseline model 

A convention for supervised learning tasks is to split the dataset into a training dataset 

and a test dataset, with typical ratios being 2:1 or 1:1 (Bramer 2007). The ‘Sample 2’ 

dataset was split 50:50; weeks were numbered from 1 to 48, with ‘odd’ weeks forming 

the training dataset and ‘even’ weeks forming the test dataset. 
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As a baseline for the predictive model, the ‘historic average’ was computed for each 

station in each direction. The average load factor was computed for each half-hour 

period on the training dataset; this was essentially the same as Figure 29, but done for 

each station and each direction, although only on half of the dataset and for short and 

long trains combined. The average load factor was then used to classify each half-hour 

period for each station and direction as either ‘0 to 75%’, ’75 to 100%’ or ‘Over 100’.  

The rationale for this choice of baseline model was that ‘time of day’ in half-hour 

periods showed the highest variability of all the predictor variables considered. The 

sample size for each station and each half-hour period was relatively high (typically 

ranging between 20 and 100), although if further variables (such as day of week) were 

added, in some instances this sample size would have become too small for robust 

results. 

Models tested 

The Naïve Bayes algorithm was implemented, as described in §2.4.2.1. The following 

categorical predictor variables were used: 

 1. Train length: Short; Long 

 2a. Time of day: 0000-0659; 0700-0959; 1000-1559; 1600-1859; 1900-2359 

 2b. Time of day (half-hour periods): 0000-0030; 0030-0059; …; 2330-2359 

 3. Day of week: Mon; Tue; Wed; Thu; Fri; Sat; Sun 

 4a. Month (inc holiday weeks): Apr; May; Jun; Jul; Aug; Sep; Nov; Dec; Jan; 

Feb 

 4b. Month (exc holiday weeks): Apr; May; Jun; Jul; Sep; Nov; Dec; Jan; Feb 

 5. Delay: On time; 1-10 mins late; 10-60 mins late; 60-120 mins late 

Six different Naïve Bayes models were implemented on the training dataset, with a 

mixture of predictor variables, as indicated in Table 10.  
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Table 10 – Description of Naïve Bayes models 

Name Technique Description 
Predictor variables included 

1 2a 2b 3 4a 4b 5 

Baseline - Historic average  
 

      

Model A Naive Bayes 
Four variables on train length, time of day, 

day of week and month 
       

Model B Naive Bayes 
A variation on Model A, using half-hour 

periods, rather than longer time periods 
       

Model C Naive Bayes 
A variation on Model B, excluding all 

weeks that were school holidays
10

 
       

Model D Naive Bayes 
A variation on Model B, excluding 

information on train length 
       

Model E Naive Bayes 
A variation on Model B, including 

information on train delays 
       

Model F Naive Bayes 
A variation on Model C, including 

information on train delays 
       

Model A used four predictor variables on train length, time of day (periods), day of 

week and month; from the univariate analysis, all of these predictor variables seemed 

to be relevant and so this was a good choice for a first model.  

Model B was designed to be the same as Model A, with the exception of using half-

hour periods rather than larger bins in order to understand the impact of this selection. 

Model C was designed to be the same as Model B, but excluded all weeks that were 

school holidays, in order to understand the effect of excluding this part of the sample.  

Model D was the same as Model B, although information on train length was excluded. 

The purpose of this model was that it is not always known far in advance whether a 

short or long train will be allocated to a particular service, so in practice it may not be 

possible to use the variable on length of train. 

Model E was the same as Model B, but included information on train delays; similar to 

train length this variable would only be available in near-real time. Likewise, Model F 

was similar to Model C, having excluded all weeks that were school holidays, although 

                                                

10
 This removed May Day weekend, May half term, Summer Holiday, Christmas/New Year and February 

half term. Easter was not included in the 11-month period and timetable data was not available for all of 

October. On filtering holiday weeks, all months had at least one ‘odd’ week and one ‘even’ week, with the 

exception of August. 
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it also included information on train delays to understand the effect of including this 

variable. 

5.2.2.2 (4b) What was the accuracy, precision and recall of these predictors? 

The left half of Table 11 shows the actual data from the test dataset, whereas the right 

half presents the predictions from applying the models to the test dataset. The 

highlighted cells on the diagonals show instances where the models accurately 

predicted what actually happened, whereas the other two cells not highlighted in each 

row show instances where the model incorrectly predicted what happened.  

For example in reading the top row, the Baseline Model accurately predicted for 

57.14% of instances that they were classified as ‘0 to 75%’, but for the other 10.78% of 

instances that actually were ‘0 to 75%’, it gave incorrect predictions (10.23% being ’75 

to 100%’ and 0.55% being ‘Over 100%’). The final column is the model prediction recall 

(accuracy of the positive predictions) for that class, e.g. for the top row, 

57.14%/67.9%=84.13%. The precision is also given for each model (fraction of the 

positives that the model identified). 

The percentage in the bottom right corner is the sum of the diagonal, i.e. the proportion 

of instances that were accurately predicted for all classes combined. The sample size 

varied slightly for different models due to the different predictor variables; for example 

filtering school holidays (‘4b’) reduced the sample size compared to other model runs. 
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Table 11 – Model predictions compared to actual observations (Sample 2, test dataset) 

 

The baseline historic average model had overall accuracy of 67.3%, which although 

relatively high represented a poor performance in particular in predicting the ‘Over 

100%’ class, correctly predicting 2.1% of instances as being in this class and 

incorrectly predicting 10.7% of instances as being in this class (i.e. a recall of 16.4%). 

Model A gave improved accuracy over the Baseline Model, with overall accuracy 

71.96% and better performance on the ‘Over 100’ class (recall of 30.1%), although 

poorer performance on the ’75 to 100%’ class (recall of 17.8%). 
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Model B (using half-hour periods rather than larger bins) gave a further improvement 

over Model A, with overall accuracy 73.54%. There were three variations on Model B: 

 Model C (excluded all weeks that were school holidays) had improved accuracy 

compared to Model B from 73.54% to 73.79%. 

 Model D (excluded information on train length) had reduced accuracy from 

73.54% to 71.16%.  

 Model E (included information on train delays) had marginally improved 

accuracy from 73.54% to 73.66% 

Model F (included information on train delays) had marginally improved accuracy 

compared to Model C from 73.79% to 73.9%. 

For the most part, the precision was higher than the recall, i.e. the models tended to 

predict crowded conditions only when there was relative confidence that this was the 

case. 

The results for Model C were investigated for selected stations and it was found that 

the accuracy varied substantially across the network. Typically the model performed 

less well at the busier stations. However, for one station, although it achieved 95.69% 

accuracy overall, the model predicted all departures to be ‘0 to 75%’ and so didn’t 

detect any of the busy services from this station (recall of 0%). 

Preliminary investigation into decision trees 

A further model, Model G, used the same predictor variables as Model C, but using a 

decision tree (see §2.4.2.2) rather than the Naïve Bayes technique. Model C had the 

highest overall accuracy of the Models A-D and so the same variables were selected 

for Model G. (Model E and F had higher overall accuracy than Model C, but included 

the late-running of trains as a predictor variable, which in practice would not be 

available far in advance). 

Model G was only built only for one station as an initial investigation into the decision 

tree approach. The order in which attributes were split was determined by maximising 

the information gain at each split, i.e. calculating the entropy for each option and 

choosing the feature that resulted in the largest reduction in entropy. 
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As shown in Table 12, the overall accuracy of the model was 82.57% (compared to 

60.80% for Model C for this station). Also of note, Model G had particularly high 

precision for this station, making incorrect predictions in 0.5% of instances. Model G 

also offered substantially higher recall for this station, although offered no prediction in 

16.9% of cases. 

Table 12 – Decision tree predictions compared to actual observations (Sample 2, test 
dataset) 

 

The preliminary results of the decision tree model were promising, suggesting that this 

may warrant further investigation in a future study. The technique used was one of the 

simplest types of decision tree; there are many other variations as listed in Table 2, 

along with a range of other techniques that may also be applicable. 

Summary 

Classification techniques are used for supervised learning problems where the 

dependent variable is categorical. Such techniques were applied in order to predict the 

(banded) load factor for a particular train in the future. The Naïve Bayes algorithm was 

implemented on a training dataset for different groups of predictor variables and the 

accuracy, precision and recall of this classifier was measured through applying the 

model to a test dataset. 

From looking at thresholds used elsewhere, as well as investigating the relationship 

between inter-coach and inter-train occupancy, three classes of load factor were 

justified: ‘0 to 75%’; ’75 to 100%; and ‘Over 100%’. Six variations of the Naïve Bayes 

model were tested with different selections of predictor variables. The model using train 

length, departure time (half-hour periods), day of week and month (excluding school 

holiday weeks) yielded overall accuracy of 73.8%, which was an improvement over the 

‘historic average’ (half-hour periods) baseline model, with overall accuracy of 67.3%. 

Adding information on delays only had a marginal improvement; however, this would 

not be known in advance, suggesting that models without the delay variable may be 

more appropriate. Ideally information on the train length would be included in the model 
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if this was available, because this had a relatively large impact on the accuracy of the 

results. The predictions would likely be improved with additional information not 

currently included in the models; e.g. including information on scheduled events that 

are expected to have an impact on occupancy. 

A decision tree was also implemented for departures from one station and had a 

substantial improvement over the Naïve Bayes models for this station. This preliminary 

investigation suggested that decision trees and possibly other techniques may warrant 

further investigation in a future study.  
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6 Findings: staff workshop 

This section presents the findings for the third task outlined in the methodology section: 

 Task 3 – Perceived causes and effects of loading diversity, both inter-coach 

and inter-train (§6.1). 

6.1 Task 3 – Perceived causes and effects of loading diversity, 
both inter-coach and inter-train 

Task 3 answered one group of research questions: RQ 5 – Perceived causes and 

effects of loading diversity. As discussed in §4.3, this was achieved through a focus 

group with nine of the train operator’s frontline staff. This was a relatively small task 

that provided supporting qualitative information to the primary data analysis tasks in §5, 

both in corroborating the findings relating to which trains were typically busy, but also in 

offering insights into the perceived causes and effects. 

6.1.1 RQ 5 – Perceived causes and effects of loading diversity 

6.1.1.1 (5a) From the perspective of frontline staff, which services had high 
levels of inter-coach local crowding? 

Focus group participants were asked in turn to describe experiences of where some 

parts of trains are crowded, while there are seats available elsewhere.  

It was noted that at two particular stations the middle of the train is often crowded, 

while coaches at the end of the train have spare capacity. A possible explanation was 

that a large proportion of passengers typically board near the stairs at these stations, 

which is by the middle of the train. 

“The stairs are right by the middle of the train, so people are going to get on those 

first doors… people do just hang around at the bottom of the stairs.” 

At a different terminus station, the coaches at the end of the train nearest the ticket 

gates were said to be typically the most crowded, with spare capacity further down the 

train. The reason for this was considered to be because passengers often take the first 

seat that they see. 
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“For trains that aren't really busy, passengers approach the train and see that the 

first coach is busy, but then might see one spare seat in the second coach and will 

take that and so on. So you find that the one end is very busy, but the coaches 

further down the platform are completely empty.” 

The feedback from staff for these three stations was consistent with the patterns 

identified from the air suspension data in Task 1. This corroborates the findings and 

goes some way to suggest that primary data analysis task provided meaningful results. 

6.1.1.2 (5b) From the perspective of frontline staff, which services had high 
levels of inter-train local crowding? 

Participants were asked for their experiences on which were the most crowded 

services, by time of day, time of week and time of year. The consensus was that for 

‘destination’ terminus stations, the last off-peak train before the evening peak and the 

first off-peak train after the evening peak are particularly busy, whereas for commuter 

stations, it is typically busy for boarding during the weekday morning services before 

0900 and then most busy for people getting off the train in the evening. 

Participants talked about large seasonal variations, with higher levels of crowding in the 

school holidays and in the week before Christmas. It was also noted that there are 

spikes in crowding due to local events near some stations, for example concerts or 

football matches. 

Again, the feedback from staff on inter-train crowding was consistent with the patterns 

identified from the air suspension data in Task 2 and corroborated the findings on 

which trains every day were typically busy and also the variability due to events near 

some stations. 

6.1.1.3 (5c) What were the perceived causes of inter-coach local crowding? 

Participants were asked what they thought were the main factors that caused local 

crowding on trains. The consensus was that the cause of these situations was a 

mixture of several factors. For crowding on platforms, the following factors were 

discussed: 

 Fixed: 
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o The location of the stairs and entrance/exit to the platform was noted as 

a key factor, with many passengers not walking down the platform when 

waiting for the train to arrive. 

o Other platform features were also mentioned, such as the location of 

seating and the canopy (in wet weather). 

o Station bottlenecks were considered to contribute to the problem. 

 Variable: 

o Platform alterations can cause a ‘last-minute panic’, whereby 

passengers board at the first available door. 

o As discussed previously the time of day has a large influence, in 

particular with the busiest trains being the last off-peak train before 

evening peak and first off-peak train after evening peak. 

For crowding on trains, the following factors were discussed: 

 Fixed: 

o The design of the train was discussed as not being ideal, in particular 

there being a lack of luggage space, with some luggage space not 

obvious to passengers. 

o It was felt that the layout of the train makes it difficult to move from one 

coach to the next coach when there were some passengers standing. 

 Variable: 

o Obstructions on the train make the situation worse by making it difficult 

to move along the train; this was perceived to be equally an issue in 

both the aisles and the vestibules: prams, sometimes quite large; 

luggage, in particular at certain times of year, such as summer and 

Christmas; and shopping. Bicycles were also mentioned, but these were 

considered to have a small impact. – “The quantities of luggage and the 

prams stop people from getting through. You get one or two stop in an 

aisle and nobody else can get past them, so it is that obstruction factor.” 
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o On occasion the heating or ventilation is faulty in some coaches, which 

can lead to crowding in the coaches that are not faulty. 

o The behaviour of different types of traveller also has a bearing: 

commuters often board the coach that they know will be closest to the 

exit on arrival and so be first to leave the station, in particular for 

commuting stations; leisure travellers / more infrequent travellers have 

different behaviour, often with more luggage and are less familiar with 

the train layout. – “You have all your different types of passengers as 

well. For example, the commuters know exactly where to stand and they 

do every day of the week. Then there are also the ones who are just 

going out for the day.” 

6.1.1.4 (5d) What were the perceived causes of inter-train local crowding? 

Participants were asked what they thought were the main factors that caused inter-train 

local crowding. It was felt to be obvious that the busiest times were those when most 

people wanted to travel, for example commuters wanting to travel in peak hours, 

spectators wanting to travel at the time of football matches and so on. One participant 

said that some passengers were unaware of ticketing restrictions; for example people 

with railcards tend to use off-peak trains, but often are not aware that they are entitled 

to use their discount on peak fare services. They suggested that crowding could be 

alleviated by encouraging these passengers to travel on less busy trains, in particular 

where there is a high student population. 

6.1.1.5 (5e) What were the perceived effects of crowding, both inter-coach and 
inter-train? 

Participants were asked for their opinions on the effects of crowding on trains. Various 

negative effects on passenger satisfaction, comfort and welfare were discussed. There 

were also several examples of where uneven boarding was exacerbating the problems 

of crowding and making it harder for the on-train staff to carry out their responsibilities 

and resulted in making their job more stressful. The effects of crowding on performance 

and revenue were also raised. 

These impacts would be expected to lead to costs to train operators, for example by 

contributing to increased delay minutes and more indirect costs, such as reduced 

customer satisfaction and staff morale. 
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Summary 

A focus group was held with a mixture of train staff and station staff. Participants 

identified that there were some parts of the network that often had some coaches fully 

occupied, while other coaches had spare seats. For some stations it was the middle of 

the train that was often crowded and the end of the train had spare capacity, whereas 

for other stations the opposite was true. For terminus stations, the last off-peak trains 

before the evening peak and the first off peak-trains after the evening peak were 

identified as being particularly busy, whereas for commuter stations a tidal pattern was 

identified. Seasonal variations and crowding due to events were also discussed. 

Feedback from staff was consistent with the patterns identified from the air suspension 

data in Tasks 1 and 2. 

The consensus was that the cause of these situations was a mixture of several factors, 

including the location of the entrance to the platform and the tendency for commuters 

to use the coach that was nearest to the exit at their destination station. Other factors 

were raised, such as luggage and buggies in the aisles and vestibules, which made the 

situation worse by making it difficult to move along the train. 

Participants were asked for their opinions on the effects of crowding on trains. Their 

responses were grouped into three categories: impacts on passengers; impacts on 

staff; and impacts on revenue. These impacts would be expected to lead to costs to 

train operators, for example by contributing to increased delay minutes and more 

indirect costs, such as reduced customer satisfaction and staff morale. 
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7 Discussion 

This section discusses the following: 

 The implications of the key findings from §5 and §6 and how these relate to 

existing research (§7.1); 

 Limitations of the datasets used (§7.2); 

 Discussion on additional questions not covered in the study (§7.3). 

7.1 Implications of findings 

The implications of the findings for each of the research questions are discussed in 

turn. 

7.1.1 RQ 1 – Quantification of inter-coach loading diversity 

The literature review identified the following gaps and opportunities: 

 Gap: “The literature review did not find any academic research on the use of 

APC data in rail in the UK, which may be because the data is owned by the 

train operators and is commercially sensitive”. 

 Gap: “Existing UK measures for rail crowding do not reflect coach-by-coach 

variations, nor do they reflect variations across the peak period; furthermore, 

American metrics for ‘loading diversity’ are not readily applicable to heavy rail, 

although they are a good starting point”. 

 Opportunity: “APC data has the potential to be used to investigate a wide 

range of questions surrounding on-train crowding”. 

Regarding the first and third bullet points, a large sample of APC data was obtained 

from a train operator, which enabled the possibility for novel research to be undertaken. 

The air suspension data was analysed to investigate patterns in coach-by-coach 

occupancy and to identify services where some coaches were over capacity while 

other coaches had spare capacity. 

It was possible to use the air suspension data to generate estimated coach-by-coach 

occupancy on departure and this showed that there was uneven occupancy on many 
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train services and these trends were station-specific. For example, it was found that for 

trains departing some terminus stations there was clear evidence to suggest very 

uneven loading. There were very clear repeated trends, which were corroborated with 

qualitative evidence from a focus group with staff (§6.1.1.1). A particular station was 

identified where a real-time system may not be appropriate because of the repeated 

nature of the trends; better solutions at this station might be either static or variable 

message signs saying ‘Please walk down platform’. 

A range of several techniques were developed for visualising the data; this included the 

use of heat maps which were identified from the literature review in §2.2.3.3 (Itoh et al. 

n.d.) and were successfully adapted to investigate patterns in coach-by-coach 

occupancy. Such techniques would be applicable to similar datasets for other train 

services.  

A cluster analysis was undertaken on the average coach-by-coach occupancy data for 

long trains to identify stations with similar patterns in a more robust manner. In the 

southbound direction three of the six clusters had some coaches with average 

occupancy over 70% with other coaches below 55%, while for northbound this was true 

for two of the five clusters; 15 stations were assigned to these clusters for southbound 

services and seven stations for northbound services, which suggested that uneven 

loadings may be a more common issue for southbound trains, compared to northbound 

trains. For southbound services, Cluster A1 comprised stations where on average the 

middle of the train was quite busy, while the rear of the train was quiet; the opposite 

was true for Clusters A2 and A3, with varying levels of average occupancy. Cluster A3 

had the greatest range in average occupancy of all the clusters, i.e. it was the ‘most 

uneven’. For northbound services, Cluster B1 comprised stations where on average the 

middle of the train was quite busy, while other parts of the train were quiet; the opposite 

was true for Cluster B2. There were often similar stations in the respective southbound 

and northbound clusters, which suggested that for some but not all stations there were 

similar patterns in both directions. 

A key finding from the cluster analysis was that patterns of inter-coach occupancy were 

often similar for neighbouring stations; this was also observed from the average 

occupancy heat maps. The finding that neighbouring stations had similar loading 

profiles was not a surprise, because in a situation where the net number of passengers 

alighting is relatively low, if a coach is busy on arrival at a station it will likely also be 

busy on departure. An important thing to note from this is that if a station has 

particularly uneven loadings, initiatives at that station in isolation may not be sufficient; 



Optimising the loading diversity of rail passenger crowding using on-board occupancy data 

 149   

i.e. if the problem is being caused by behaviours at a preceding station, it would be 

better to tackle the root cause of the problem ‘upstream’. In other words, prioritising 

effort to provide solutions at those stations with uneven loadings and high boarding 

flows may also alleviate crowding at several subsequent stations ‘downstream’. 

Uneven inter-coach crowding was identified to be prevalent at some but not all stations. 

This suggests that efforts to address uneven occupancy should be targeted at 

particular stations based on insights from existing data, rather than blanket 

implementation at all stations. 

In order to quantify the scale of the problem, it was estimated that across all departures 

around 2% of passengers were standing while there were sufficient seats for them to 

sit down. For busy services from one station, this measure was estimated to be 9%, 

which represents a substantial proportion of passengers at this station who were being 

unnecessarily inconvenienced. 

Regarding the second bullet point on the lack of suitable existing metrics, various 

measures were calculated to distinguish between even and uneven services in a 

systematic way. There are existing metrics (§2.2.4.1), but these were not readily 

applicable to the problem at hand. Two new metrics to describe inter-coach loading 

diversity were proposed that, unlike existing metrics, contain information relative to the 

capacity. 

Six classes were proposed based on the two busiest and two quietest coaches; around 

10% of long train departures were classified as ‘very uneven’ (‘H-L’), i.e. observations 

where at least two coaches had occupancy less than 75% and at least two coaches 

had occupancy greater than 100%. This metric was applied individually to each station 

and direction to identify in a systematic way the stations where the inter-coach loading 

diversity was high and was successful in overcoming the limitations of the existing 

metric. 

A limitation of this proposed new metric is that it does not contain information on where 

along the train the crowded coaches are; in order to address this, a second new metric 

was also proposed. The train was split into ‘Rear’, ‘Middle’ and ‘Front’ and then all the 

ordered permutations of occupancy were considered. This metric was applied to one 

station that was identified as having particularly uneven loadings. In the afternoon and 

evening there were a large proportion of trains that departed classified as ‘H-H-L’, ‘H-

M-L’ or ‘H-L-L’, i.e. with coaches over capacity towards the rear of the train, but with 
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spare capacity towards the front of the train. This metric was successful in quantifying 

at what point along the train the crowding occurred. 

The new metrics are a contribution to knowledge that can be used by other researchers 

working in the field of loading diversity, as well as by train operators to better 

understand patterns of crowding across their network. 

7.1.2 RQ 2 – Link between inter-coach loading diversity and dwell times 

Another gap identified by the literature review was:  

 Gap: “There is evidence to suggest that optimising the distribution of 

passengers on the train may lead to dwell time savings, but there is only limited 

research on the extent of these savings”. 

The occupancy data was combined with door locking data and timetable data. Dwell 

times were calculated as the time between the doors unlocking and locking again at a 

station. The time the doors unlocked was also compared with timetable data to identify 

train services that arrived late. No data was directly available on boarding times, 

although the dwell times were used as a proxy to estimate the boarding times for train 

services that arrived late. 

These estimated boarding times were correlated against the new inter-coach loading 

diversity metric and the analysis suggested that there is a link between uneven 

loadings and dwell times. Trains classified as ‘very uneven’ (‘H-L’) on departure, i.e. 

with at least two coaches with occupancy less than 75% and at least two coaches with 

occupancy greater than 100%, typically had dwell times of approximately five to ten 

seconds greater than services that were classified as being ‘even’, with a similar total 

number of passengers on board. 

These results suggest that if it were possible to optimise the distribution of passengers 

along the train for ‘uneven’ services, then typically up to ten seconds per stop could be 

saved for affected services. The size of this potential saving is not unsubstantial, in 

particular when such delays would be cumulative for each stop on a route. For example 

supposing a ten-second saving was made at each stop for a service with 20 station 

calls, this could equate to a time saving of over three minutes. This benefit would 

primarily be for late-running services in that services that are on-time cannot leave 

before their scheduled departure time, although it would have the benefit for services 
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that are running on time that they would be less likely to be delayed due to boarding 

delay.  

As discussed in §2.2.5, the relationship between loading diversity and boarding times is 

likely two-fold.  Firstly, the boarding time for a whole train is equal to the maximum 

boarding time of each individual door, thus if a disproportionate number of passengers 

board and alight from one particular door this will result in higher overall boarding time. 

Secondly, there is research from multiple studies to suggest that once the vestibule 

reaches a certain threshold of crowding, the flow rate at which passengers can board 

reduces. Thus it is intuitive that optimising boarding patterns along the platform will 

result in lower boarding times, although this relationship is likely non-linear if there is an 

interactive effect of crowding in vestibules. 

7.1.3 RQ 3 – Quantification of inter-train loading diversity 

The occupancy data was used to investigate patterns of inter-train occupancy and the 

three gaps/opportunities listed above for RQ 1 were also relevant here for RQ 3. 

The services with highest average load factor were identified across all stations, both 

by different routes and times of day. The variability of load factor according to different 

variables was investigated, with time of day yielding the greatest range, although train 

length, day of week, month and late-running also had an effect.  

Time series graphs of average load factor with standard deviation were presented for 

selected stations, illustrating a range of profiles across the network. The TRB ‘peak 

hour factor’ metric was modified to identify the stations where a small shift of 

passengers taking earlier of later trains would yield the greatest smoothing of 

occupancy. 

 

7.1.4 RQ 4 – Prediction of inter-train loading diversity 

An opportunity identified by the literature review was: 

 Opportunity: “There are many different data mining techniques that may be 

readily applicable to help realise the potential offered by APC data”. 
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The Naïve Bayes algorithm was implemented on a training dataset for different groups 

of predictor variables and the accuracy of this classifier was measured through 

applying the model to a test dataset. 

From looking at thresholds used elsewhere, as well as investigating the relationship 

between inter-coach and inter-train occupancy, three classes of load factor were 

justified: ‘0 to 75%’; ’75 to 100%; and ‘Over 100%’. Six variations of the Naïve Bayes 

model were tested with different selections of predictor variables. The model using train 

length, departure time (half-hour periods), day of week and month (excluding school 

holiday weeks) yielded overall accuracy of 73.8%, which was an improvement over the 

‘historic average’ (half-hour periods) baseline model, with overall accuracy of 67.3%. 

Adding information on delays only had a marginal improvement; however, this would 

not be known in advance, suggesting that models without the delay variable may be 

more appropriate. Ideally information on the train length would be included in the model 

if this was available, because this had a relatively large impact on the accuracy of the 

results. The predictions would likely be improved with additional information not 

currently included in the models; e.g. including information on scheduled events that 

are expected to have an impact on occupancy. 

A decision tree was also implemented for departures from one station and had a 

substantial improvement over the Naïve Bayes models for this station. This preliminary 

investigation suggested that decision trees and possibly other techniques may warrant 

further investigation in a future study. 

The review of solutions identified that some train operators already use APC data to 

provide information on the level of crowding for a particular service through a variety of 

information channels (§2.3.6). In particular the Swiss rail operator provides information 

on the predicted level of crowding for a particular service on their ticketing website. 

Although an improvement over the baseline model, accuracy of 74% from the Naïve 

Bayes model is perhaps not sufficiently accurate to be of value to rail users. However, 

preliminary results for an approach using decision trees were promising, which 

suggests that with further research such techniques may have potential to power 

predictive crowding information services, for example on ticketing websites. 
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7.1.5 RQ 5 – Perceived causes and effects of loading diversity 

A focus group was held with a mixture of train staff and station staff (§6.1.1), in which 

participants discussed particular stations and services that often had uneven loadings 

and high levels of crowding. These findings were similar to those observed in the 

occupancy data analysis task and thus went some way to validating these results. 

Feedback from staff provided many examples of where uneven boarding was 

exacerbating the problems of crowding and making it harder for them to carry out their 

work. The consensus from the focus group was that the cause of these situations was 

a mixture of several factors, including the location of the entrance to the platform and 

the tendency for commuters to use the coach that was nearest to the exit at their 

destination station 

From the literature review, Kim et al. (2014) found that about three-quarters of subway 

users in South Korea reported choosing a specific coach intentionally and of these 

when asked to explain their motivation, 70% said “to minimise the walking distance to 

exit when they disembarked at a destination station” (§2.2.4.2). These results align 

partially with the focus group, although the train staff did not perceive this to be the 

main cause, with a variety of other factors also contributing to uneven loading. 

It would be interesting to conduct a survey of passengers to get information on why 

they choose particular coaches and how this varies for different trip purposes and 

areas of the network. This would be a useful extension to the study, but has already 

been covered to a certain extent from existing studies, such as Kim et al. (2014), albeit 

primarily for commuters on a subway. 

An opportunity identified by the literature review was: 

 Opportunity: “Crowding on trains in the UK is an important problem from both 

a passenger and operator perspective. As such, investigating measures to 

ease crowding would likely yield benefits to both passengers and operators.” 

Focus group participants were asked for their opinions on the effects of crowding on 

trains. Their responses were grouped into three categories: impacts on passengers; 

impacts on staff; and impacts on revenue. These impacts would be expected to lead to 

costs to train operators, for example by contributing to increased delay minutes and 

more indirect costs, such as reduced customer satisfaction and staff morale. 
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The qualitative evidence obtained on the wide range of impacts of crowding suggests 

that if solutions were implemented to address localised crowding, there may be 

benefits to both users and operators. More specifically, the potential benefits of such 

systems might include: 

 Passenger comfort, satisfaction and welfare – Reduced crowding both on-train 

and on-platform would likely lead to better physical comfort if more passengers 

are seated rather than standing, reduced perceived value of time and 

perception of better value for money, all of which could lead to improved 

passenger satisfaction. Depending on the type of solutions, associated benefits 

could be improved information on the location of luggage and cycle storage 

spaces and improved access to on-train services such as the buffet car/trolley. 

 Staff welfare – For train staff, reduced crowding on-train could lead to easier 

movement throughout the train and possibly in turn reduced staff stress. For 

train staff, better information and more even distribution of passengers along 

the platform may also lead to reduced workload and stress. 

 Performance and revenue – If more even loadings resulted in reduced dwell 

times for late-running services, this would have a direct financial benefit to train 

operators. If there was reduced crowding on-train, staff would likely be able to 

perform their duties more effectively. If there was improved customer 

satisfaction this would likely lead to more passengers being encouraged to use 

rail. 

It would be interesting to conduct a survey of passengers to investigate passenger 

perceptions and attitudes to crowding and how important it is to them. This would be a 

useful extension to the study, but has already been covered to a certain extent by 

existing studies, such as those summarised in §1.1. 

7.2 Limitations 

Some limitations of the datasets used are discussed below. 

7.2.1 Occupancy data 

As discussed in §4.1, the datasets obtained were quite comprehensive in their 

coverage of a large proportion of the train fleet over an 11-month period. This had 
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advantages over traditional survey approaches of giving a complete picture of trends 

rather than a sample for a few stations over a much shorter time period (such as those 

in §2.2.4.2). Another advantage of this approach was the negligible cost of data 

collection, in that it was automatically produced as a by-product ‘exhaust’ from the 

suspension system.  

A limitation of the statistics produced was that they were sensitive to the assumption on 

average passenger weight, which was taken to be 80kg; if this assumption is too low 

then the proportion of standing passengers would be over-estimated and crowding 

would not be as high as suggested. Despite this limitation, the primary focus of this 

research was to investigate localised crowding, both inter-coach and inter-train; as 

such the relative levels of crowding were of greater interest than the absolute levels of 

crowding. Comparison against ticket counts suggested sensible results sufficient for 

relative comparisons, although caution must be taken when making any conclusions on 

absolute levels of crowding, because no robust validation against manual counts has 

been undertaken. 

It would be useful to collect manual counts to calibrate the method for generating the 

air suspension passenger counts and to give greater confidence in the findings from 

the air suspension occupancy data. This could be achieved through surveyors 

collecting passenger counts while walking along the length of the train, or alternatively 

through manual cordon counts of the doors and vestibules using CCTV data. The 

calibration exercise could lead to refinements to the methodology for generating the 

occupancy counts. 

A further limitation of the analysis was that no information was available on boarding 

and alighting flows. An advantage of door sensors, where available, is that 

assumptions are not required around the average weight of passengers; additionally, 

door sensors are able to provide bi-directional boarding and alighting flows, whereas 

weight sensors cannot. However, door sensors may be susceptible to ‘drift’ in the 

running total on-board and also to provide accurate passenger counts for each coach, 

additional door sensors are required between carriages. As discussed in §7.1.1, 

prioritising effort to provide solutions at those stations with uneven loadings and high 

boarding flows should be considered. 

If information on boarding and alighting flows was available (e.g. for door sensor data, 

or possibly ticketing data), it may be possible to identify the stations that were the ‘root 
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cause’, i.e. at which stations the effort should be targeted for solutions to smooth the 

crowding. 

7.2.2 Dwell time data 

The analysis used the times the doors locked and unlocked for late-running services as 

a proxy for overall boarding time. An extension to the work could be to also investigate 

the boarding times and passenger boarding and alighting flows at each door; this was 

not possible from the weight-based APC data, but would be possible if combined with 

door sensor data if available. 

There are several existing research studies that have investigated the factors affecting 

boarding times through both real-world and laboratory experiments, such as 

Wiggenraad (2001), Lee et al. (2007), Fujiyama et al. (2008) (see §2.2.5). The mean 

alighting and boarding time per passenger has been found to be typically around one 

second, although this increases or decreases depending on various conditions, such 

as passenger mobility, platform design, vehicle design and crowding effects. 

7.3 Effectiveness of solutions to influence loading diversity 

Two further gaps/opportunities were identified from the literature review: 

 Gap: “Although a wide range of solutions have been proposed that would seek 

to optimise loading diversity, only limited evaluation evidence is available on 

the impact of such systems”. 

 Opportunity: “The use of APC door sensors and weight sensors on trains is 

becoming increasingly widespread in the UK, with it being specified for 

installation on all new trains and already over 40% of existing trains equipped”. 

An additional group of questions was posed at the end of §3 on the effectiveness of 

solutions to influence loading diversity: 

 How can the solutions be categorised, both inter-coach and inter-train? 

 How would passengers interact with the solutions, both inter-coach and inter-

train? 

 What would be the impacts of the solutions, both inter-coach and inter-train? 
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 What are the most promising solutions, both inter-coach and inter-train? 

It was unfeasible to conduct full-scale pilots within the scope of the MPhil; 

nevertheless, the findings from the literature review on solutions (§2.3) have been 

summarised and various aspects for future work in this area have been considered 

below. 

7.3.1 (a) How can the solutions be categorised, both inter-coach and 
inter-train? 

There are a wide range of measures to increase rail capacity in general, such as longer 

trains with more coaches, creating more train services by running trains closer 

together, building new rail lines and so on. This study has not covered these measures, 

because the overall concept proposed was not to increase total capacity per se, but 

rather to help make the most of the existing available capacity, for example, so that no-

one is standing when seats are available. 

The literature review identified a number of potential measures that could be used to 

help to reduce uneven loadings, ranging from lower-cost measures that could be 

implemented in the shorter term to also higher-cost measures that would require longer 

term investment decisions. Passengers’ behaviour can be influenced by simple 

direction signs, notices and announcements, as well as by more complex measures 

such as real-time information and changes to station layouts. Solutions have been 

categorised into eight categories of intervention, both by the approach used and their 

desired effect. 

The approach has been split into three types: 

 Active passenger management – solutions with a dynamic or real-time element; 

 Passive behavioural modifiers – static solutions that seek to subconsciously 

modify user behaviour; 

 Static crowding information – static information on historic levels of occupancy. 

The desired effect, i.e. the type of loading diversity that the solutions are trying to 

address, has been split into four types: 

 Within coach – spreading loadings out within a particular coach; 
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 Inter-coach – spreading loadings out between coaches on a particular train; 

 Inter-train – spreading loadings between multiple trains; 

 Inter-route – spreading loadings between multiple routes. 

The eight categories are defined in Table 13, with links to the section of the literature 

review in which examples were discussed in greater detail. The number of examples in 

this ‘toolkit’ of solutions is expected to grow in time as such interventions are 

increasingly piloted and implemented. 

Table 13 – Proposed categorisation of ‘solutions toolkit’ to optimise loading diversity 

Approach Desired 

effect 

Solution category Examples 

found 

Active 

passenger 

manageme

nt 

Inter-

coach 

1. Active passenger management: inter-coach real-

time information  

e.g. real-time platform displays or apps with information 

on where to stand on the platform in order to be more 

likely to get a seat 

See §2.3.1 

Inter-

coach 

2. Active passenger management: inter-coach near 

real-time seat reservations 

Modifications to algorithms for seat reservations to assign 

certain origin-destination trips for advanced tickets to 

particular coaches 

See §2.3.2 

Inter-

train 

3. Active passenger management: inter-train real-time 

information  

e.g. a personalised smartphone app with real-time 

information / predictions on the loading of subsequent 

trains with suggestions like, ‘You are more likely to get a 

seat if you take a later train’ 

See §2.3.5 

Inter-

route 

4. Active passenger management: inter-route real-

time information 

e.g. real-time crowding information for alternative routes, 

possibly inter-modal as well 

Not covered in 

thesis, but 

perhaps 

relevant for 

urban light rail 

Passive 

behavioural 

modifiers 

Inter-

coach 

5. Passive behavioural modifiers: inter-coach 

platform design 

e.g. modifications to platform designs to subconsciously 

modify behaviour, such as moving information screens or 

benches 

See §2.3.4 
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Within-

coach 

6. Passive behavioural modifiers: within-coach train 

design 

Increasing the capacity through design of train layout, 

such as fewer seats, removal of toilets, larger vestibules 

or wider doors 

Not main 

focus of 

thesis, but 

partially 

covered in 

§2.2.5 

Static 

crowding 

information 

Inter-

coach 

7. Static crowding information: inter-coach static 

information 

Fixed signage, e.g. “Walk to end of platform ->”, based on 

historic trends in the data and repeated patterns 

See §2.3.3 

Inter-

train 

8. Static crowding information: inter-train static 

information 

Information on posters or ticketing websites on the typical 

patterns of loading 

See §2.3.6 
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7.3.2 (b) How would passengers interact with the solutions, both inter-
coach and inter-train? 

Human factors 

Human factors considerations are discussed in Table 14 for each category in the toolkit 

of solutions. 

Table 14 – Human factors considerations for each category in the toolkit 

Category Human factors considerations 

1. Active 

passenger 

management: 

inter-coach real-

time information 

In order to be able to achieve the desired response real-time information must 

be made available and in a form that is identifiable, comprehensible and 

trustworthy: 

 Information must be presented clearly and unambiguously. People 

standing at the platform must be able to see (or hear) the information, and 

be able to do this at useful locations. Ideally the information would be 

identifiable along the length of the platform, but as a minimum it should be 

available at the point where passengers first enter the platform so they can 

make an informed decision where to stand. Visually presented information 

must be clearly visible and (if relevant) readable. If information is presented 

audibly this must be clear and account for background noise. 

 The information must be simple enough to avoid potential confusion and 

intuitive enough to cater for people of differing language, culture or 

experience of the system. Symbols and colour-coding would probably be 

most easily comprehended by the majority of people, although ‘traffic-light’ 

colour coding may be difficult for red-green colour-blind individuals. 

 Real-time information must be perceived to be accurate and up-to-date. 

This means the information must accurately represent the actual situation 

on-board the train, and must be presented in enough time to allow people to 

act on the information. The information should also be able to cater for last-

minute changes in the advice as if this is not conveyed it could be perceived 

as incorrect advice. If people grow to mistrust the system it will lose its 

effectiveness. 

2. Active 

passenger 

management: 

inter-coach near 

real-time seat 

reservations 

There would be no human factors considerations, because no decision is 

required by the passenger. 
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Category Human factors considerations 

3 and 4. Active 

passenger 

management: 

inter-train or 

inter-route real-

time information  

The critical factor as to the success of this approach is likely to be in ensuring 

that the information is made available at a point in time where the user is 

reasonably able to alter their travel plans. For example, if on arrival at a station 

a traveller is informed that the next train is full and that the following train is less 

full, the individual’s decision on whether to act on that information is likely to be 

influenced significantly by the arrival time of the following train. How long a 

traveller is prepared to wait is itself likely to be influenced by a host of other 

factors, such as: how long their overall journey is expected to take; the purpose 

of their travel (e.g. potential scheduling commitments); trust in the information 

provided (both as to the predicted waiting time and the certainty that they will 

get a seat); facilities at the station (leisure, food and drink, toilets, seating, 

waiting rooms); weather conditions (linked to waiting facilities); whether or not 

they are booked on a particular service. The effectiveness of any measures may 

therefore vary considerably between stations, between individuals, and at 

different times of the day/year. Measures seeking to encourage passengers to 

take alternative trains would therefore likely be more effective if the information 

can be provided in advance, perhaps when buying a ticket online or through the 

use of a smartphone app. However, an app could be expected to have limited 

market penetration and would be limited by how far in advance information is 

available to pass on. 

5 and 6. Passive 

behavioural 

modifiers 

Such measures have the advantage that information does not need to be 

identified and comprehended by individuals, instead relying on people to simply 

take the path of least resistance. Before employing such nudge tactics it is 

necessary to consider how different people may behave under different 

circumstances, and to be aware of the potential for unintended consequences of 

changing the flow of crowds. 

7. Static 

crowding 

information: 

inter-coach  

The purpose of static inter-coach crowding information is to persuade 

passengers to change their choice of coach. Providing information to 

passengers about such patterns of crowding may be less susceptible to issues 

of trust as with real-time information, as passengers may accept that the 

guidance will not be right all the time. 

8. Static 

crowding 

information: 

inter-train  

The purpose of static inter-train crowding information is to persuade passengers 

to change their time of travel. Posters may be a useful way of targeting regular 

commuters; however, providing information at the point of sale may allow more 

opportunity to influence the travel choices of individuals making one-off 

journeys. 

The optimisation challenge for inter-coach solutions 

Regarding all inter-coach solutions, it should be noted that there are essentially two 

optimisation problems that in some cases may not be complementary: 
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 Spreading occupancy evenly across the train (to reduce crowding and improve 

passenger comfort, satisfaction and welfare, as well as staff welfare) 

 Spreading the number of boarders and alighters evenly across the platform (to 

reduce dwell times) 

As an example, there is some evidence to suggest that some commuters tend to use 

coaches closest to their exit, meaning it is likely more people alight at these doors 

compared to other doors along the train. As such, if the primary goal is to optimise 

dwell times, it would likely be best to instruct boarding passengers to use other parts of 

the platform. However, if the primary goal is to optimise levels of crowding, it may be 

best to instruct the boarding passengers to use the doors where most people have just 

alighted, because there may now be more capacity on that coach. 

Furthermore, there is a possibility that such interventions might make the situation 

worse; for example, the type of information (message channel, message location/size, 

message content etc) will have an effect on how many passengers comply with the 

instruction and there is the possibility that ‘too many’ will comply and more people than 

intended move to other parts of the platform. Therefore if piloting such real-time 

systems, it may be sensible to initially trial at a station with a relatively low number of 

passengers and different types of messages, starting with the least intrusive first before 

piloting at a busier station. 

It seems that most real-time inter-coach solutions identified in §2.3.1 focus purely on 

how busy each coach is on the approaching train before anyone has alighted, i.e. there 

is no predictive element on the expected boarding and alighting flows. 

7.3.3 (c) What would be the impacts of the solutions, both inter-coach 
and inter-train? 

While the review identified a number of approaches that could in principle be adopted, 

very little published evaluation evidence was found of the impact of such measures, 

namely: i) impact on how even occupancy is on the train; ii) impact on boarding times; 

iii) whether such interventions are safe.  

As discussed above in §7.1.2, one aspect of this study was to identify the potential 

dwell time savings if such systems were able to deliver more even occupancy, although 

this has only partially addressed this gap. There remain unanswered questions on 

whether the solutions will work and in which situations they will work and in turn deliver 
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the potential benefits identified (see §7.1.5); this lack of evaluation evidence needs to 

be addressed before such systems are implemented.  

A suggested approach would be to conduct pilots and impact evaluations of various 

solutions from the toolkit. This might involve pilot trials of interventions supported by 

‘Before’ and ‘After’ monitoring to assess the impact of these measures in particular on 

occupancy, dwell times and user acceptance. Furthermore, after the evaluation has 

finished interventions would need to be supported by ongoing monitoring to understand 

how effects change over time. Such work should be undertaken in the context of the 

RSSB Platform Train Interface Strategy (RSSB 2015). 

Considerations for future impact evaluations are discussed in Table 15 for each 

category in the toolkit of solutions. 

Table 15 – Considerations for pilots and impact evaluations for each category in the 
toolkit 

Category Considerations for pilots and impact evaluation 

1, 3 and 4. 

Active 

passenger 

managemen

t: real-time 

information 

(both inter-

coach or 

inter-train) 

Pilot trials of real-time passenger information on loadings, using existing air 

suspension data – The review of existing solutions identified pilots of real-time 

passenger information systems of coach-by-coach occupancy of the incoming train, 

the most advanced of which was the Dutch pilot (§2.3.1.1). It may be possible to 

replicate a more basic version, but using existing systems. This would involve 

downloading air suspension data off the train in real-time, processing it and sending 

to the next station before the train arrives, then displaying a message on existing CIS. 

A pilot of such a system at a selected station would require effort at the system 

design stage and monitoring through video surveys to complement existing data 

sources. There would also be a human factors element, in particular on the most 

appropriate way to display the message. 

Pilot trials of real-time passenger information on loadings, using new door 

counters for passenger counts – A more advanced version of a real-time system 

would be to use automatic door counters to generate the passenger counts. The 

main benefit of this approach would be that it would contain information on the 

boarding and alighting flows at each door, so could seek to optimise the passenger 

flows as well as the passenger occupancy. A potential pitfall with such systems is that 

they may have an adverse impact in that ‘too many people comply with the 

announcements’ and they could actually increase boarding times. Another key thing 

to be investigated is that optimising boarding times would not necessarily result in 

more even crowding. Such systems may therefore need to include predictions for the 

number of alighting passengers from each door as well as predictions on which doors 

the boarding passengers should use. This may be necessary to ensure no adverse 

impacts for dwell times or crowding. 
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Category Considerations for pilots and impact evaluation 

2. Active 

passenger 

managemen

t: inter-

coach near 

real-time 

seat 

reservations 

Modifying the seat reservation system to direct advanced bookings to the least 

crowded coaches – For train services with seat reservations, it is possible to 

develop an algorithm to allocate a reserved seat to passengers in particular coaches 

based on their origin station. This might involve: analysing coach-by-coach seat 

reservation data; estimating the proportion of trips that the modified algorithm would 

affect through looking at ticket data; developing the algorithm; collecting data for a 

trial period to see the effect of the new algorithm on the reservations and also the 

overall occupancy and dwell times. 

5 and 6. 

Passive 

behavioural 

modifiers 

Modifying platform layouts and train layouts to sub-consciously modify 

passenger behaviour – Rather than providing information, measures could be 

implemented that seek to modify passenger behaviour through the use of ‘nudge’ 

tactics (§2.3.4). This might involve: conducting desktop analysis for selected stations 

of fixed features and train stopping positions; creating a shortlist of stations for site 

visits; collecting observations of passenger behaviour at the selected stations; 

creating a list of measures for particular stations that may be appropriate; assessing 

the impact on occupancy and dwell times after a trial period. In particular this could 

be aligned with any station redevelopments that this information could 

inform/influence. 

7. Static 

crowding 

information: 

inter-coach  

Installation of fixed signs to direct passengers to the least crowded ends of the 

train on selected station platforms – Some London Underground stations have 

signs pointing to less busy ends of the platform (§2.3.3); a similar implementation 

could be trialled on selected station platforms. This might involve: using the existing 

analysis along with ticket data to identify a shortlist of stations for the fixed signs; 

considering human factors options for installing the type of sign (location; size; 

message content); assessing the impact on occupancy and dwell times after a trial 

period. 

8. Static 

crowding 

information: 

inter-train  

Providing passenger information on the ‘expected’ level of crowding on 

specific trains – Rather than spreading passengers out to other coaches, this 

measure would seek to encourage passengers to take earlier or later trains. This 

could be achieved through information on a ticketing website (e.g. §2.3.6.1). Such 

information systems could be powered by the findings from Task 2 to indicate the 

most appropriate techniques. An alternative approach could be to use posters 

(§2.3.6.2), which may have higher exposure to passengers, although with a lower 

level of detail on particular services. A ticket website approach would have the benefit 

of being more likely to influence behaviour, because would be at the point of sale. 

The impacts of the intervention could be assessed through an assessment of 

changes in occupancy, supported by passenger surveys. 
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For such pilots, typically a three-stage evaluation would be appropriate: 

 Stage 1 – One of the key insights from the findings in §5 was that the patterns 

of inter-coach and inter-train occupancy vary substantially in different 

circumstances. For any future pilots a proposed necessary first step therefore is 

to conduct, similar to as done here, a spatio-temporal analysis of uneven 

occupancy using data from automatic passenger counters across all stations 

and train services, applying the new metrics identified. This should be combined 

with passenger flow data if available to identify the 'root cause' stations. This 

review of existing data could be complemented with the collection of new data 

in a human factors study in order to take into account the trip purpose and type 

of passengers to understand the behavioural drivers. The outcomes of this first 

stage would be as follows: 

o A better understanding of inter-coach crowding, i.e. for which stations 

and services uneven loadings is most prevalent and the potential for 

improvement; 

o A better understanding of the causes and effects of inter-coach 

crowding; 

o A better understanding of inter-train occupancy, i.e. how occupancy 

varies by time of day and the potential for 'spreading the peak'; 

o Identification of which stations would form suitable locations for pilots of 

solutions from the toolkit. 

 Stage 2 – Based on the findings of Stage 1, appropriate solutions should be 

piloted at carefully selected stations and the effects of the interventions on 

passenger behaviour should be assessed. This should comprise a 'Before' and 

'After' impact evaluation using quantitative analysis from video surveys, 

supported by qualitative analysis from passenger questionnaires and focus 

groups. Such studies could focus on the following measures: 

o Impact on passenger comfort, satisfaction and welfare, including the 

average coach-by-coach occupancy and other loading diversity metrics; 

o Impact on performance, including dwell times for late-running services; 
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o Impact on staff welfare, including ability to carry out duties effectively 

and stress. 

The outcome of this stage would be to collect measurable evaluation evidence 

on the effectiveness of the solutions to inform whether implementation at other 

locations may be appropriate. 

 Stage 3 – Following the findings from the pilots in Stage 2, it may be 

appropriate to implement solutions at other stations. This would need to be 

accompanied by ongoing monitoring to assess any changes in behaviour as 

passengers adapt over time. 

7.3.4 (d) What are the most appropriate solutions, both inter-coach and 
inter-train? 

Robust conclusions on which solutions are most appropriate cannot be made without 

evidence from future impact evaluations on their impact as discussed in §7.3.3. 

Nevertheless, it can be concluded that the selection of the most appropriate solution 

would likely depend on the nature of each station and other factors: 

 Variability of occupancy patterns – As discussed in §7.1.1, static solutions 

may be most appropriate where the distribution of passengers is often a 

repeated trend; for example at a terminus where the end of the train closest to 

the station is often more heavily crowded than the other end of the train. 

However, for situations where the distribution of passengers is more variable, 

real-time measures may be more appropriate. 

 Platform layouts – Observational studies or interviews on passenger 

behaviour on platforms could reveal the underlying causes for uneven loading 

patterns at particular stations. Where such causes are identified, solutions that 

seek to passively modify behaviour may be an appropriate first step before 

attempting more expensive ‘Active passenger management’ solutions. 

 Availability of technology – The selection of intervention will likely depend on 

the availability of existing technology, namely the coverage of APC sensors on 

the train (either weight-based and/or door sensors), but also the nature of CIS 

on the platform. The proportion of the UK fleet that is equipped with some type 

of APC system was around 40% as of 2010 and it is understood that this 

proportion has since increased. 
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 Types of passengers – It is likely that the type of passengers on a service 

would have an influence on the effectiveness of any solutions, in particular the 

journey purpose and whether they are regular or occasional rail users. 

 Boarding flows – Stations with relatively lower boarding flows may be a lower 

priority compared to other stations, because there may be less potential for 

making a substantial difference. 

 Funding available – The choice of solution will naturally be affected by the 

availability of funding. However, as discussed in the points above the most 

expensive solution may not necessarily be the best choice and it may be 

possible to achieve the same or greater benefits through less expensive 

alternatives. 
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8 Conclusions, recommendations, contribution and further 
work 

8.1 Conclusions 

This thesis aimed to investigate the hypothesis, “Automatic passenger counting (APC) 

data has the potential to deliver more even loadings on trains through the provision of 

new real-time and static solutions; furthermore, such solutions have benefits of reduced 

dwell times and reduced crowding and are of value to rail passengers and train 

operators”.  

An 11-month sample of data was obtained from a UK train operating company, which 

included air suspension pressure, the times the doors lock/unlock and timetable 

information. The research aims were to address the gaps identified in the literature 

review, while exploiting opportunities offered by data mining techniques and the 

manipulation of the sample of on-train data.  

The concept of 'loading diversity' has been defined as having four components: ‘Within 

coach’ (near doors within a coach); ‘Inter-coach’ (from coach to coach); ‘Inter-train’ 

(between trains across the peak period); ‘Inter-route’ (between different routes). Based 

on the type of data that was available, this study investigated ‘inter-coach’ and ‘inter-

train’ occupancy. 

Based upon the findings in §5 and §6 and the discussion in §7, it can be concluded 

that: 

 It was possible to use the air suspension data to generate estimated coach-by-

coach occupancy on departure. The primary focus of this research was to 

investigate localised crowding, both inter-coach and inter-train. As such the 

relative levels of crowding were of greater interest than the absolute levels of 

crowding. Comparison against ticket counts suggested sensible results 

sufficient for relative comparisons, although caution must be taken when 

making any conclusions on absolute levels of crowding, because no robust 

validation against manual counts has been undertaken. 

 There was uneven inter-train occupancy on many train services and these 

trends were station-specific, i.e. for some stations it was usually one end of the 
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train that was busiest, whereas for other stations it was the middle of the train 

where this was the case.  

 A cluster analysis on average coach-by-coach occupancy identified stations 

with similar patterns of inter-coach occupancy, in particular: 

o For southbound services, Cluster A1 comprised stations where on 

average the middle of the train was quite busy, while the rear of the train 

was quiet; the opposite was true for Clusters A2 and A3, with varying 

levels of average occupancy. Cluster A3 had the greatest range in 

average occupancy of all the clusters, i.e. it was the ‘most uneven’. For 

all other stations (Clusters A4, A5, A6) average occupancy was 

relatively lower. 

o For northbound services, Cluster B1 comprised stations where on 

average the middle of the train was quite busy, while other parts of the 

train were quiet; the opposite was true for Cluster B2. For all other 

stations (Clusters B3, B4, B5) average occupancy was relatively lower. 

 A key finding was that patterns of inter-coach occupancy were often similar for 

neighbouring stations. This was not a surprise, because in a situation where the 

net number of passengers alighting is relatively low, if a coach is busy on arrival 

at a station it will likely also be busy on departure. An important thing to note 

from this is that if a station has particularly uneven loadings, initiatives at that 

station in isolation may not be sufficient; i.e. if the problem is being caused by 

behaviours at a preceding station, it would be better to tackle the root cause of 

the problem ‘upstream’. In other words, prioritising effort to provide solutions at 

those stations with uneven loadings and high boarding flows may also alleviate 

crowding at several subsequent stations ‘downstream’. 

 It was found that uneven loadings often resulted in passengers having to stand 

while seats were available elsewhere on the train. It was estimated that across 

all departures, around 2% of passengers were standing while there were 

sufficient seats for them to sit down. For busy services from one station, this 

measure was estimated to be 9%, which represents a substantial proportion of 

passengers at this station who were being unnecessarily inconvenienced. 

 Existing inter-coach 'loading diversity' metrics were found to be inadequate and 

two new measures have been defined and applied to the dataset to 
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successfully quantify uneven occupancy. The new metrics are a contribution to 

knowledge that can be used by other researchers working in the field of loading 

diversity, as well as by train operators to better understand patterns of crowding 

across their network. 

 Estimated boarding times were correlated against the new inter-coach loading 

diversity metric and the analysis suggested that there is a link between uneven 

loadings and dwell times. Trains classified as ‘very uneven’ (‘H-L’) on departure, 

i.e. with at least two coaches with occupancy less than 75% and at least two 

coaches with occupancy greater than 100%, typically had dwell times of 

approximately five to ten seconds greater than services that were classified as 

being ‘even’, with a similar total number of passengers on board. This suggests 

that a key benefit to industry of inter-coach solutions may be in the potential to 

reduce boarding times and in turn reduce the number of late-departing services. 

 Different predictive models were applied to predict how busy a particular train 

will be in the future. The Naïve Bayes model using predictor variables of train 

length, departure time (half-hour periods), day of week and month (excluding 

school holiday weeks) yielded overall accuracy of 73.8%, which although an 

improvement over the baseline model (67.3%) is perhaps not sufficiently 

accurate to be of value to rail users. However, preliminary results for an 

approach using decision trees were more promising. 

 Feedback from staff through a focus group was consistent with the patterns 

identified from the air suspension data. There was indicative evidence to 

suggest that main factors to influence ‘inter-coach loading diversity’ could be: 

for boarding passengers, the station layout (e.g. location of stairs and platform 

entrances/exits); for alighting passengers, the type of travellers (e.g. commuters 

more likely to choose carriage close to exit on arrival). A range of other factors 

that may influence passenger behaviour were also discussed. 

 Feedback from staff on the effects of crowding on trains was grouped into three 

categories: impacts on passengers; impacts on staff; and impacts on revenue. 

These impacts would be expected to lead to costs to train operators, for 

example by contributing to increased delay minutes and more indirect costs, 

such as reduced customer satisfaction and staff morale. 
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 A review of solutions identified a number of interventions for reducing uneven 

loadings on trains, in both metro operations and longer distance inter-city trains. 

The purpose of this review was to understand what concepts have been 

proposed or piloted and to explore the extent to which there exists evaluation 

evidence on their impact. The literature review identified a number of potential 

measures that could be used to help to reduce uneven loadings, ranging from 

lower-cost measures that could be implemented in the shorter term to also 

higher-cost measures that would require longer term investment decisions. 

Solutions have been categorised into eight categories of intervention, both by 

the approach used and their desired effect. 

 While the review identified a number of approaches that could in principle be 

adopted, very little published evaluation evidence was found of the impact of 

such measures, or their costs. A simulation study by the Korean Transport 

Institute concluded that a 15% reduction in dwell times could be achieved by 

giving passengers real-time information on where seats are most likely to be 

available, however no equivalent figure has been identified from an in-service 

trial.  

8.2 Recommendations 

It can be concluded that APC data can be used to understand patterns in uneven 

occupancy and loading diversity, which is an important first step before attempting to 

address the issue with any interventions. Furthermore, the analysis of the three on-train 

datasets found that uneven inter-coach loadings have a measurable impact on dwell 

times, with the dwell time cost of uneven occupancy being estimated at between five to 

ten seconds per station. Based on these findings it is recommended that further actions 

should be taken to manage passenger boarding and promote more even loadings. 

Uneven inter-coach crowding was identified to be prevalent at some but not all stations. 

It is therefore recommended that efforts to address uneven occupancy should be 

targeted at particular stations based on insights from existing data, rather than blanket 

implementation at all stations. 

For the stations analysed in this thesis, the various indicators point to one station in 

particular as being a candidate for some type of intervention. There was evidence to 

suggest crowding at the rear of the train, with spare capacity towards the front of the 

train and furthermore that this has a knock-on impact for downstream stations. There 
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were very clear repeated trends, suggesting that an appropriate solution might be 

either a static sign (e.g. as in Figure 7) or a variable message sign (activated only at 

busy times in the afternoon) saying, for example, ‘Please walk down platform to find a 

seat’, see §7.1.1. 

For stations on a different route, the opposite trend was observed, where often the 

middle of the train was the most heavily utilised section of the train. It is recommended 

to pilot similar interventions at this station, although with the messages reversed to 

encourage people to use the end of the train. 

8.3 Contribution to scholarship 

This area of study is an emerging field and my thesis contributes to the Literature on 

this subject in several ways: 

 I propose two new metrics to describe inter-coach loading diversity that, unlike 

existing metrics, contain information relative to the capacity – namely the 

unordered metric of ‘two busiest coaches and two quietest coaches’ and the 

ordered metric of ‘Front-Middle-Rear’ occupancy. 

 I have revealed a link between the inter-coach loading diversity metrics and 

estimated boarding times, with trains classified as ‘very uneven’ on departure 

typically having dwell times of approximately five to ten seconds greater than 

services that were classified as being ‘even’ with a similar total number of 

passengers on board. The methodology used is repeatable for other 

researchers working with similar datasets on other train services. In particular, it 

may be possible to obtain more robust estimates where door sensor data is 

available, rather than just weight-based sensors and door locking data, as in 

this study. 

 I have conducted preliminary investigations into applying classification 

supervised learning techniques to predict the load factor for a given service and 

these predictors were an improvement over taking the historical average. With 

further research such techniques may have potential to power predictive 

crowding information services, for example on ticketing websites. 
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8.4 Further work 

The second part of the hypothesis was that “such solutions have benefits of reduced 

dwell times and reduced crowding and are of value to rail passengers and train 

operators”. This thesis went some way towards this by identifying a potential dwell time 

saving of between five and ten seconds per station on ‘uneven services’ if it was 

possible to optimise boarding flows; however further work is required in order to fully 

answer this part of the hypothesis. 

A variety of interventions that use APC data in some way have been identified in the 

literature review; these solutions have been categorised and discussed. However, 

there was almost no published evaluation evidence on the impact of the various 

solutions and so there remain many unanswered questions on their impact and 

effectiveness: whether they would be safe; whether they would work; and if so in which 

situations they would work; and in turn what benefits they would provide. This lack of 

evaluation evidence needs to be addressed before such systems are implemented. An 

outline has been given in §7.3 for a proposed impact evaluation methodology for pilots 

of the eight categories of solutions. It is recommended any evaluations comprise three 

stages: 

 Stage 1 – For any future pilots a proposed necessary first step is to conduct, 

similar to as done here, a spatio-temporal analysis of uneven occupancy using 

data from automatic passenger counters across all stations and train services, 

applying the new metrics identified. This should be combined with passenger 

flow data if available to identify the 'root cause' stations. This review of existing 

data could be complemented with collection of new data in a human factors 

study in order to take into account the trip purpose and type of passengers to 

understand the behavioural drivers.  

 Stage 2 – Based on the findings of Stage 1, appropriate solutions should be 

piloted at carefully selected stations and the effects of the interventions on 

passenger behaviour should be assessed with a 'Before' and 'After' impact 

evaluation. 

 Stage 3 – Following the findings from the pilots in Stage 2, it may be 

appropriate to implement solutions at other stations. This would need to be 

accompanied by ongoing monitoring to assess any changes in behaviour as 

passengers adapt over time. 
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Regarding the selection of which intervention may be most appropriate and at which 

station, the recommended overall approach is a ‘problem looking for a solution’ rather 

than a ‘solution looking for a problem’. Although it may be tempting to opt for the most 

expensive real-time system, it may be the case that simpler solutions are more 

appropriate. It is therefore recommended that lower-cost initiatives in the toolkit are at 

least considered first before opting for higher-cost solutions. The selection of the most 

appropriate solution would likely depend on the nature of each station and so before 

selecting the location of pilot and type of solution several factors need to be taken in to 

account, such as: variability of occupancy patterns; platform layouts; availability of 

technology; types of passengers; boarding flows; funding available; other factors. 

The following specific areas for further work would also be useful extensions to the 

study. 

 The existing analysis should be combined with boarding and alighting flow data, 

ideally from APC door sensor data if this was available or alternatively from 

ticket flow data. In particular it would be of value to investigate which of the 

stations identified by the cluster analysis were the ‘root cause’, i.e. at which 

stations the effort should be targeted for solutions to smooth the crowding, see 

§7.1.1. 

 Regarding inter-train predictive crowding information, further work is required on 

techniques to predict levels of occupancy for a given service, see §7.1.4.  

 Passenger surveys could be conducted to investigate in more depth the causes 

and impacts of loading diversity, see §7.1.5. 

 An extension to the study could be to collect manual counts to calibrate the 

method for generating the air suspension passenger counts, see §7.2.1. 
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