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Abstract

This thesis argues that variable structure control theory finds application in immunology.

The immune system maintains a healthy state by using feedback to switch on and off

immune responses. Experimental and mathematical work has analysed the dynamics of

the immune response of T cells, relatively little attention has been paid to examine the

underlying control paradigm. Besides, in modelling and simulation studies, it is necessary

to evaluate the impact of uncertainty and perturbations on immunological dynamics. This

is important to deliver robust predictions and insights. These facts motivate considering

variable structure control techniques to investigate the control strategy and robustness of

the immune system in the context of immunity to infection and tolerance. The results

indicate that the dynamic response of T cells following foreign or self-antigen stimulation

behaves as a naturally occurring switched control law. Further, the reachability analysis

from sliding mode control highlights dynamical conditions to assess the performance and

robustness of the T cell response dynamics. Additionally, this approach delivers dynamical

conditions for the containment of Human Immunodeficiency Virus (HIV) infection by the

HIV-specific CD8+ T cell response and antiretroviral therapy by enforcing a sliding mode

on a manifold associated with the infection-free steady-state. This condition for immunity

reveals particular patterns for early diagnosis of eventual success, marginal and failure

cases of antiretroviral therapy. Together, the findings in this thesis evidence that variable

structure control theory presents a useful framework to study health and disease dynamics

as well as to monitor the performance of treatment regimes.
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Chapter 1

Introduction

1.1 Overview

This thesis presents an interdisciplinary research between control engineering and mathe-

matical immunology. In this thesis, the variable structure control paradigm is applied to

study the dynamics of the specific T cell response as well as to formulate dynamical condi-

tions for the maintenance of desirable immunological outcomes. The main objective is to

improve the understanding of health and disease dynamics by using a control approach in

order to contribute to modelling and simulation in immunology.

Control theory is a mature discipline in the analysis of dynamical systems with uncer-

tainty. Mathematical models of engineering or phenomenological processes are constructed

to capture the essential dynamics of the system in order to produce realistic input-output

behaviour. As an abstraction of reality, there are discrepancies between a model and the

real system. Furthermore, different factors such as ageing of the real system, disturbances,

neglected dynamics and variations in parameter values contribute to disparities between

every model and the real system. It is common practice to begin analysing the stability

and dynamical behaviour of the mathematical model at nominal conditions before consid-

ering potential uncertainties. In fact, it is important to design a control strategy which

exhibits robustness properties in order to enforce the desired stability and performance

despite uncertainty. Consequently, several analytical techniques have been developed to

study uncertain dynamical systems and to formulate robust control strategies.

1



Introduction 2

A fixed structure control approach consists in designing and imposing a single structure

control strategy such as a proportional feedback for the given system to meet the design

objectives and required robustness [3–5]. In contrast, a variable structure control approach

allows the control structure to change so that in high frequency the system dynamics can

achieve the desired dynamical behaviour and robustness properties [6–8]. This approach of-

fers several benefits and has been applied successfully to mechanical, electrical and chemical

systems [9–13]. Switching between different dynamics is advantageous because the desirable

properties of several subsystems can be combined so that the overall system possesses new

and enhanced dynamical behaviours, including properties that are not present in any of the

individual subsystems alone. Moreover, implementing a variable structure control strategy

has been demonstrated to yield strong robustness properties in the presence of parameter

uncertainties [7, 10, 14–16].

Sliding mode control is a special type of variable structure control [7, 10, 17]. In sliding

mode control, a switching function is chosen to ensure the system yields the desired stability

and performances when the states of the system lie on this manifold. Using Lyapanov

stability analysis [14–16, 18], a reachability condition, which represents a condition for the

sliding manifold to be attractive to the states of the system is, formulated. Next, a variable

structure control is designed to satisfy this reachability condition so that the system states

lie in the vicinity of the chosen switching function. Typically, a discontinuous or sigmoidal

control function is implemented [19–23]. The sliding mode control approach provides two

fundamental benefits: reduced order dynamics and total invariance to a certain class of

uncertainty implicit in the input channels [7, 10, 13, 24]. Furthermore, using the concept of

equivalent control, which represents the theoretical injection to maintain the sliding motion,

the dynamics of unknown input signals or disturbances can be reconstructed and estimated

[25–28]. Hence, the variable structure control theory provides a suitable framework for the

analysis of the systems with switching mechanisms, in addition to the impact of uncertainty

and disturbances.

In immunology, there is a need to understand the dynamics of the immune system in var-

ious contexts, such as acute infection, chronic infection and autoimmunity [29–31]. This

knowledge is important because it provides information on health and disease dynamics in

vivo and contributes to the improvement of treatment and prevention strategies. In recent

decades, mathematical studies have been conducted to investigate the dynamics of the im-

mune system [30, 32, 33]. Typically, a system of Ordinary Differential Equations (ODEs)
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inspired by Predator-Prey dynamics in ecology is constructed to model the immunological

phenomenon of interest. In addition to experimental studies, the mathematical modelling

of immune cells and virus dynamics in vivo has delivered relevant insights, including infor-

mation on HIV dynamics in vivo [34–36]

In order to formulate useful and robust predictions from a given model, it is important to

understand the impact of parameter and modelling uncertainty, as well as the discrepan-

cies between the observed dynamics and the dynamics produced by the model. In fact,

uncertainties in the model are associated with a number of different factors such as lack of

biological data for parameter estimation, unmeasurable state variables, ageing or patient-

to-patient variability. This motivates the use of tools from variable structure control in

immunological modelling and simulation because they enable the assessment of the effects

of uncertainty on the dynamics and predictions of the models.

Current findings in immunology present the immune system as a dynamical system with

feedback to maintain a robust healthy state in the body [2, 31, 37]. In fact, the immune sys-

tem can be regarded as a set of cellular and molecular feedback mechanisms which regulate

and control the immune response in order to preserve a healthy immunological homeostasis

[31, 38–40]. In [41], it was hypothesised that the population of immune cells and antibodies

either increases or decreases depending upon the antigen stimulation. The development

of experimental facilities has validated this hypothesis. Additionally, experimental studies

have provided kinetic data showing sharp changes in the population dynamics of T cells

following acute infection to achieve immunity and prevent tissue damage [1, 42, 43].

Following vigorous infection, the population of responding antigen-specific T cells increases

exponentially from a small number to a large number of cells at the peak of the response.

After this peak, which occurs a few days post-infection, a large number of T cells die and few

cells survive [44, 45]. This dynamical behaviour is known as the immune response program.

This immunological program dictates the expansion, contraction and memory phase of the

T cell response. From an immunological perspective, this dynamic control of the population

size of T cells occurs to contain the infection, as well as to prevent autoimmunity. Hence,

the population dynamics of the specific T cell response exhibit an inherent switching law

which underpins the observed cellular dynamics.

The cellular and molecular mechanisms driving the population dynamics of the specific T

cell response remain the subject of active research. Consequently, different mathematical
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approaches have been proposed to model the dynamics of the antigen-specific T cell response

[29, 38, 46, 47]. In previous analyses of the population dynamics of the specific T cell

response, experimental results on Lymphocytic Choriomeningitis Virus (LCMV) infection

in mice have often been considered. Experimental studies on LCMV infection in [1, 2,

48] have provided information on the kinetic variation of the number of CD8+ T cells

in the spleen over time after acute and chronic infection. These kinetic data have been

useful in the parameterisations of ODE models of the specific CD8+ T cell response. The

focus of previous modelling approaches was on formulating different biological hypotheses

for the immune response paradigm in order to explain the observed cellular dynamics

[1, 29, 39]. Nonetheless, the control features that these dynamics yield have not been

investigated. Further, previous mathematical studies neglected to analyse the robustness

of the expansion/contraction dynamics of the CD8+ T cell response following acute and

chronic infection.

A reason to consider that a switched control paradigm is at play is due to the fact that

despite the differences in mathematical expression and related biological assumptions, sen-

sible models of the T cell response provide a switching mechanism to engender the required

changes in T cell population dynamics to capture the expansion, contraction and memory

phase of the immune response. Additionally, a number of approaches have used saturation

functions to prescribe the required changes in T cell population [29, 46]. Interestingly, the

work in [38] referred to the immune response program as a switching process which governs

the dynamic response of T cells post-infection. Further, the authors in [38] investigated

the characteristics of candidate immune response functions. From the viewpoint of con-

trol engineering, the use of saturation functions to model the immune response program

engenders a dynamic change in feedback regimes. This motivates the investigation of the

synergies between the variable structure control paradigm and the T cell immune response

dynamics. These investigations are important to improve understanding of the dynamics

and robustness properties of the antigen-specific T cell response.

Besides, the dynamic response of the total T cell population plays a major role in the

maintenance of self-tolerance [31, 49, 50]. In mathematical studies, candidate immune

response functions have been proposed to describe the dynamic response of self-reacting

T cells in order to study the mechanism of self-tolerance and the onset of autoimmunity

[40, 51, 52]. It is important to analyse means by which candidate immune response functions
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establish a robust state of tolerance. This is useful to understand how self-tolerance is

maintained in vivo as well as to inform for candidate treatment for autoimmunity.

In the study of Human immunodeficiency Virus infection dynamics in vivo, the impact

of the HIV-specific CD8+ T cell response in the containment of the infection is a critical

research topic because it yields the potential for developing immunotherapies which will

relieve patients from the lifelong uptake of antiretroviral drugs [30, 36, 53]. It remains

unclear how the killing mechanisms of CD8+ T cells enforces an asymptomatic state in

HIV-infected patients. In the last three decades, different mathematical expressions have

been proposed to model the impact of HIV-specific CD8+ T cell response [30, 54, 55]. The

control of HIV infection is often evaluated by computing the reproductive ratio [34, 35, 56].

In effect, the reproductive ratio sets a static threshold condition to determine whether the

infection will spread or not.

Although it was mentioned that the HIV-specific CD8+ T cell response might control HIV

infection [56–58], no formal control analysis was conducted on this immunological control

mechanism. This motivates the analysis of the containment of HIV infection in vivo using a

control engineering approach. The objective is to improve the understanding of the control

performance of the HIV-specific CD8+ T cell response and antiretroviral therapy during

the progression of the infection.

1.2 Thesis organisation

The thesis is organized as follows:

Chapter 2 provides a background on the VSC paradigm. The purpose of this chapter is to

introduce analytical tools from VSC theory. The phase portrait analysis of the trajectories

of an oscillator system with different control strategies is used to illustrate the basic prin-

ciples and benefits of the variable structure control approach. Subsequently, a pendulum

system is used to present the framework of sliding mode control. The design procedure for

a sliding mode along with the reachability condition and the concept of the equivalent con-

trol are discussed. Moreover, a particular attention is given to show the robustness of the

closed-loop dynamics of the system, when a discontinuous or a sigmoidal control function

is applied.
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Chapter 3 begins with a background on immunology. Next, a VSC approach is used to

analyse the dynamics of the antigen-specific T cell response following vigorous infection.

Rather than formulating another candidate model, a variable structure control approach is

used to investigate the control features and robustness of the T cell response dynamics. It

is assumed that a dynamic control is at play because the immune system highly regulates

the cellular dynamics of T cells post-infection [2, 44, 45]. This regulation operates in

such a way that appropriate immunological feedback can be enforced in order to maintain

health. In essence, various feedback mechanisms are triggered following antigen stimulation,

and the outcome of the combined effects of these immunological feedback mechanisms

which promote or inhibit the immune response yield the observed kinetics of the T cell

population post-infection. Interestingly, the core of VSC consists of switching between

different feedback regimes according to a predefined switching logic that allows the system to

achieve the desired performance. A phase portrait analysis is conducted to assess the control

strategy of the immune system to elicit desirable immune response dynamics. Moreover, a

sliding mode control analysis is used to investigate the robustness of the immune response

dynamics.

Chapter 4 focuses on the mechanism of self-tolerance. A background on the biology of the

self-tolerance mechanism is provided at the beginning of this chapter. Afterwards, a simple

mathematical model of self-tolerance/autoimmunity is considered. Next, the characteristics

of a set of candidate immune response functions and their impact on the achievement of self-

tolerance are investigated. Candidate immune response functions are examined as candidate

control strategies. Thus, the stability and the dynamical behaviour of the resulting closed-

loop systems is analysed to understand the maintenance of or loss of self-tolerance. Finally,

a reachability analysis is performed to design an adaptive sliding mode controller which

models the inhibition of self-reacting effector T cells to achieve a robust self-tolerance

steady-state.

A VSC approach is used in Chapter 5 to study the containment of HIV infection by the

HIV-specific CD8+ T cell response. The model of HIV infection dynamics formulated in

[56] is chosen for analysis. The cytolytic killing mechanism of CD8+ T cells is treated as a

control input which aims to enforce a stable infection free steady-state. Further, a manifold

associated with the infection free steady-state is identified. A reachability analysis is used to

investigate conditions for this manifold to be attractive to the states of the chosen system.

This is used to examine the control of HIV infection in vivo.
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A case study is conducted in Chapter 6 to study the dynamics of HIV following initiation

of antiretroviral therapy. The basic model of HIV dynamics used in [35, 59, 60] is chosen.

A manifold associated with the infection free steady-state is identified and a dynamical

condition for the containment of HIV infection by antiretroviral therapy is formulated using

the reachability paradigm from variable structure control. Next, measurement of CD4+ T

cell count and HIV load in the peripheral blood are used to estimate all the parameters

of the model for a set of HIV infected patients. Data points collected in the first month

following initiation of antiretroviral drugs are used for the estimation. The reproductive

ratio as well as the reachability condition are computed for each patient to monitor and

predict the progression of HIV infection following initiation of antiretroviral therapy. The

reported clinical outcomes are used to assess the correctness of the predictions.

The final chapter is divided in two parts. First, the conclusions of the thesis are presented.

Then, future work to build on the main findings of the thesis are suggested.

1.3 Contributions

The contributions of this thesis lie within the realm of modelling and simulation in im-

munology. An overview is given in Fig. 1.1.. The novelty of the approach resides in the fact

Figure 1.1: The approach and contributions

that variable structure control theory is utilised to investigate health and disease dynamics.

The specific contributions are as follows:
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• The work in Chapter 3 demonstrates the synergies between the observed cellular

dynamics of the specific T cell response following vigorous infection and the variable

structure control paradigm. The dynamic response of antigen-specific T cell following

vigorous infection fits the variable structure control paradigm because changes in T

cell population kinetics are underpinned by switching between different immunological

feedback regimes in order to achieve immunity. In addition, the findings from the

sliding mode analysis reinforce the notion that T cell response dynamics represent a

closed-loop system, including a robust VSC law. Moreover, the reachability analysis

is shown to be a suitable means to assess the impact of uncertainty and perturbations

on the T cell response dynamics following acute and chronic infection.

• In Chapter 4, the VSC approach delivers further understanding of the impact of

candidate immune response functions for the maintenance of self-tolerance. Candidate

immune response functions reflect potential feedback regimes of the immune system

to ensure self-tolerance. The transient dynamics and stability of the self-tolerance

equilibrium are significantly dependent on the shape and characteristics of the immune

response function. The framework of sliding mode control is used to demonstrate

that a robust state of tolerance is achievable using an adaptive sliding mode control

mechanism modelling an active suppression of self-reacting effector T cells.

• In chapter 5 the framework of sliding mode control is seen to deliver a dynamical

condition for the containment of HIV infection by the HIV-specific CD8+ T cell

response. The cytolytic killing mechanism modelled with a double saturation function

is shown to operate as a boundary layer control strategy from the immune system

to contain the infection in vivo. The time evolution of this dynamical condition

for immunity indicates that the immunological requirements to contain HIV in vivo

changes during the course of the infection.

• The case study conducted in Chapter 6 presents the reachability paradigm as a tool

which delivers a time varying condition for the containment of HIV infection fol-

lowing initiation of antiretroviral therapy. Furthermore, the analysis of HIV patient

data using the reachability condition reveals a dynamical signature associated with

the outcomes of antiretroviral therapy. Together, the results show that the reacha-

bility paradigm is adequate to monitor and predict the progression of HIV infection

following initiation of antiretroviral therapy.
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The work in this thesis has produced the following articles:

1. Anelone, Anet J.N., Spurgeon, Sarah K., Modelling and simulation of the dynamics

of the antigenspecific T cell response using variable structure control theory, 2016,

PLOS ONE 11(11): e0166163. doi: 10.1371/journal.pone.0166163

2. Anelone, Anet J.N., Spurgeon, Sarah K., Prediction of the Containment of HIV Infec-

tion by Antiretroviral Therapy - a Variable Structure Control Approach, IET Systems

Biology, 2016, DOI: 10.1049/iet-syb.2016.0028

3. Anelone, Anet J.N., Orlov, Yury, Spurgeon, Sarah K., Synergies between the dynam-

ics of the immune response of T cells and the variable structure control paradigm,

Recent Advances in Sliding Modes (RASM), 2015 International Workshop on , vol.,

no., pp.1,6, 9-11 April 2015

4. Anelone, Anet J.N., Oza, Harsal B., Spurgeon, Sarah K., The immune system: A

variable structure control perspective, Proceedings of the 19th IFAC World Congress,

24-29 August 2014, Cape Town, South Africa.

5. Anelone, Anet J.N., Orlov, Yury, Spurgeon, Sarah K., Modelling the self-tolerance

mechanisms of T cells: An adaptive sliding mode control approach, Control (CON-

TROL), 2014 UKACC International Conference on, vol., no., pp.573,578, 9-11 July

2014 doi: 10.1109/CONTROL.2014.6915203

In short, this introductory chapter has presented the central avenues of the thesis. The

next chapter presents the methodology and the VSC paradigm in more detail.



Chapter 2

Variable Structure Control

Paradigm

2.1 Introduction

The adaptive immune response is a set of cellular and molecular mechanisms which aim to

destroy foreign pathogen and infected tissues as well as to prevent self damage within the

host [37, 40]. Experimental studies have demonstrated that the specific response of T cells

following infection with virus or bacteria engenders a number of changes in the metabolism,

physiology, population and behaviour of the responding cells to clear the infection [2, 43,

61]. Interestingly, mathematical studies in [1, 29, 38] have shown that a sigmoidal or a

discontinuous activation function can be used to prescribe realistic changes in the T cell

population dynamics following vigorous infection. In effect, various immunological feedback

mechanisms interact to activate or inhibit the T cell response to recover a healthy state.

Thus, the immune system is intrinsically a dynamical system consisting of feedbacks and

inherent immunological decision rules. Further, the dynamics of the specific T cell response

has been shown to exhibit some robustness with respect to changes in various factors such

as the initial number of responding cells or virus strains [29, 44, 45]. However, the presence

of pathogen might impair the dynamics of the specific T response and induce undesirable

outcomes [2, 37]. Consequently, it is important to quantify and analyse T cell and virus

dynamics to understand how immunity is achieved in vivo and to inform the design of

treatment [29, 30, 32].

10
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The field of control engineering is a mature discipline involved with the study of uncertain

dynamical systems. In fact, a set of tools have been developed to investigate how to main-

tain desired stability and performance in the presence of parameter and model uncertainty

and disturbances. In the early 1960s in the Soviet union, the seminal work of Emelyanov

and Barbashin introduced the concept of Variable Structure Control Systems (VSCS). The

publication of a book by Itkis (1976) and a survey paper by Utkin (1977) in English allowed

the VSC paradigm to be known outside of Russia. A VSCS is in essence a dynamical system

with a set of feedback structures and a decision rule based on the states of the system [7].

The designed decision rule allows the system to switch between different feedback dynamics

during its operation to achieve the desired performance. Besides, sliding mode control, a

special type of VSC, has been developed to satisfy stability and performance requirements

by designing a switched control law which confines the trajectories of the system to a chosen

manifold of the state space. Importantly, systems with a VSC law have been demonstrated

to possess some inherent robustness to uncertainty and disturbances [7, 13–16]. Further,

techniques derived from VSC theory have been shown to deliver sensible insights on the

impact of uncertainty and disturbances on the dynamical behaviour of systems [8, 62].

The design of a sliding mode control starts by defining a switching function which defines

associated manifold to prescribe a stable dynamical behaviour which meets all the prede-

fined constraints and requirements [7, 15, 22, 63]. Next, the existence condition for a sliding

mode also known as the reachability condition is formulated. Afterwards, candidate control

strategies are investigated to render the chosen manifold attractive to the trajectories of

the system. It is common to have a discontinuous control such as the unit vector control

[10, 14, 15, 22]. Fundamentally, the choice of the switching function and its parameters

determine the dynamical behaviour of the system whilst the control gain ensures that the

dynamics of the system reach and remain on the sliding manifold. The resulting closed-

loop dynamics consist of a reaching phase in which the switching function moves towards

the manifold of interest and a sliding phase in which the switching function is confined

to the sliding manifold. During the reaching phase, the dynamics of the system are not

robust to uncertainty and perturbations. However, when sliding motion starts the system

exhibits reduced order dynamics and complete invariance to ”matched uncertainty” i.e a

class of uncertainty and perturbations present in the input channels. These advantages

have motivated the development of sliding mode control strategies in various application

such as furnace control, automotive engine control, control of electric motors and control
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of chemical processes [8, 10]. in addition, the sliding mode control paradigm has been used

to design robust regulators, state observers, model-reference control, adaptive schemes and

fault detection techniques [62, 64–66].

Sliding mode control techniques have evolved to preserve the core benefits of reduced order

dynamics and robustness to matched uncertainty whilst addressing new challenges brought

by specific application requirements and constraints. In effect, it is often not possible to

have measurements of all state variables. As a result, a framework has been developed to

design sliding mode control in which the switching function has only a subset of state mea-

surements as inputs [13, 16, 24, 67]. This subset of state measurements is usually called the

system outputs. Additionally, a discontinuous control injection to enforce a sliding mode

is undesirable in some practical implementations because the discontinuous control action

generates chattering i.e high frequency switching around the sliding manifold [23]. From

the literature on sliding mode control, several adaptation methodologies have been designed

[23, 64]. An appropriate adaptation scheme needs to ensure the reachability condition holds

with the minimum required amplitude of control gain. The adaptation method developed

in [64] stops when ideal sliding motion occurs. In contrast, the method in [23] continues the

adaptation process using an estimate of the equivalent control i.e the ”average” action of

the applied discontinuous control when ideal sliding mode occurs. Recently, an adaptation

algorithm which provides the minimum possible magnitude of the discontinuous control

under parameter uncertainty as well as reduction of chattering in first order sliding mode

control has been introduced in [25].

Apart from adaptation strategies, the smoothing approach which consists of using a contin-

uous approximation of the discontinuous control function eliminates chattering but does not

allow the switching function to remain on the sliding manifold [15, 21, 22, 63]. Therefore,

the resulting closed-loop dynamics lose some robustness. Next, an integral sliding mode

control has been proposed in [17] to remove the non-robust reaching phase. Moreover,

higher order sliding mode controllers in which the discontinuous control is found in higher

order derivatives of the switching function have been developed to suppress chattering and

achieve high performance [20, 25, 68].

This chapter reviews theory of VSC with a particular interest on some key notions which

will be used later in this thesis to investigate T cell and virus dynamics in vivo.
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The chapter is organized as follows: the basic philosophy of the VSC paradigm is presented

in the first section. The next section, sliding mode control theory, a special class of VSC

is reviewed. Next, the robustness properties of VSC are demonstrated in the third section.

Finally, the last section summarizes the main features of VSC theory.

2.2 Basic principles of switched control system

The VSC paradigm consists of changing the control structures during the operation of the

system according to a switching logic to force the system to exhibit desired stability and

performance requirements. The following examples from [7, 10] are used to show cases

in which switching between different control structure is beneficial to achieve the desired

dynamical behaviour. Consider the second order dynamical system given as

d2y(t)

dt2
= u(t) (2.1)

which represents a double integrator system, a mass-spring damper with zero damping. The

initial conditions are y(0) = 1 and dy(0)
dt

= 0. The control objective is the establishment of

a stable motion of the dynamics of the system towards the origin using the control input

u(t).

The outcome of a single structure control strategy is investigated using the candidate linear

state feedback from [7]

u(t) = −ky(t) (2.2)

where the parameter k is a strictly positive scalar, equivalent to the spring constant. The

phase portrait of the dynamics of the closed-loop system generated by the negative feedback

(2.2) for two different values of k i.e k1 = 0.5 and k2 = 1.5 shows that the trajectories do

not move towards the origin, see Fig. 2.1. Therefore, this fixed structure control approach

does not achieve the required stability and performance. A Lyapanov analysis is conducted

to investigate the stability of the closed-loop system formed by the negative feedback (2.2).

In simple terms, Lyapanov stability theory states that if a positive definite function V can

be constructed using an algebraic combination of the state variables of the system, the

equilibrium of interest is asymptotically stable if the corresponding derivative is a negative

definite function of the state variables of the system [18]. From [10], a Lyapanov function
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Figure 2.1: Phase portrait of the double integrator system (2.1) with a fixed structure
control strategy (2.2).

for the system (2.1) is given as

V (y(t),
dy(t)

dt
) = y(t)2 +

(

dy(t)

dt

)2

(2.3)

Therefore, V (y(t), y(t)
dt

) is positive definite as required. After simplifications, the first order

derivative yields

dV (y(t), dy(t)
dt

)

dt
= 2y(t)

dy(t)

dt
+ 2

dy(t)

dt
u(t)

= 2y(t)
dy(t)

dt
(1− k) (2.4)

Consequently, to render
dV (y(t),

dy(t)
dt

)

dt
negative definite, when y(t)dy(t)

dt
< 0, k must be less

than unity but when y(t)dy(t)
dt

> 0, k must be greater than unity. Thus, the expression

(2.4) demonstrates that the magnitude of the gain k must change to allow the temporal

derivative of the Lyapanov function V (y(t), dy(t)
dt

) to be negative definite at all times so that

the resulting dynamics are asymptotically stable.

This is a motivation for the use of a switched control approach to achieve the desired
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control objective. In effect, the VSCS is characterized by a decision rule which purposefully

switches between different feedback dynamics during the process to achieve desired stability

and performance requirements. From (2.4), the following switching logic is suggested

u(t) =







−k1y(t) with 0 < k1 < 1 when s(y(t), dy(t)
dt

) < 0

−k2y(t) with 1 < k2 when s(y(t), dy(t)
dt

) > 0
(2.5)

where

s(y(t),
dy(t)

dt
) = y(t)

dy(t)

dt

The phase portrait of the closed-loop dynamics resulting from this VSC law, see Fig. 2.2,

shows that the trajectories of this VSCS exhibits an asymptotically stable motion towards

the origin. In fact, this VSC law forces the trajectories to move closer to the origin in

each quadrant. Thus, the desired stability and performance requirements are achieved

by switching between two different feedback gain according to the evolution of the state

variables. Hence, in this example, the VSC approach is shown to generate a dynamical

behaviour which cannot be realized using a single control structure approach. Besides,

Figure 2.2: Phase portrait of the double integrator system (2.1) with a variable structure
control (2.5).
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consider the same control objective being imposed on an oscillator system given as

d2y

dt
− ξ

dy

dt
+ u(t)y = 0 (2.6)

where ξ is a constant and u(t) is the control input. In the simulations, the parameter

ξ = 0.7 and the initial conditions are y(0) = 1 and dy(0)
dt

= 1. Here, a fixed structure

control where u(t) = 0.6 is shown to generate stable dynamics and to satisfy the desired

control objective, see the phase portrait in Fig. 2.3. Alternatively, the control objective can

Figure 2.3: Phase portrait of the oscillator system (2.6) with a stable fixed structure
control u(t) = 0.6 with poles at (−0.35 + 0.69i)

also be achieved using the following VSC law:

u(t) =







α if y(t)s(y(t), dy(t)
dt

) > 0

−α if y(t)s(y(t), dy(t)
dt

) < 0
(2.7)

where α is the chosen controller gain and the switching function

s(y(t),
dy(t)

dt
) = my(t) +

dy(t)

dt
(2.8)
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with

0 < m < −
ξ

2
−

(

ξ2

4
+ α

)
1
2

(2.9)

where m is a positive scalar designed using the stable poles of the system (2.6).

Importantly, the phase portrait of the closed-loop dynamics imposed by the VSC law (2.7)

with m = 1, see Fig. 2.4, shows that after a short transient the trajectories of the oscillator

system move in a straight line i.e ”slide” towards the origin whilst being confined to a man-

ifold i.e s(y(t), dy(t)
dt

) = 0 of the state-space. This specific dynamical motion, conventionally

called a sliding mode [7, 10, 13, 16, 22], will be discussed in the next section. In comparison,

Figure 2.4: Oscillator system (2.6) with a variable structure control law. α = 0.6 and
m = 1.1 from (2.9) (2.7).

the time evolution of the output y(t) in Fig. 2.5 shows that the VSCS with (2.7) produces

a faster motion to reach and remain at the origin as compared to the ones produced by the

stable fixed structure control strategy. In fact, the VSC (2.7) has been designed to exploit

the fact that the unstable subsystem with u = −0.6 possesses some rapid transient towards

the origin, see Fig. 2.6.
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Figure 2.5: Comparison of the output response y(t) of the oscillator system (2.7) gener-
ated by the stable fixed structure control in Fig. 2.3 versus the switched control in Fig. 2.4.
The output response of the oscillator system shows that the designed switched control law

yields a faster settling time than the stable feedback alone.

Together these findings evidence the ability of the VSC approach to generate new dynamical

properties and behaviour which are not inherent in any of the sub-systems. Changing the

dynamic structure of a system during its operation using an appropriate decision rule is

seen to be beneficial to achieve desired stability and performance requirements.

2.3 Sliding mode control design and properties

The pendulum system is selected to present the basic design principles and properties of

sliding mode control, a special class of VSC. In fact, the pendulum system is relatively

simple and has been used in the literature to review the theory and benefits of SMC

[10, 13, 14, 16]. Although, a single input single output system has been used to demonstrate

the basic principles of sliding mode control, these results hold for multiple input multiple

output systems. The dynamical equations modelling a pendulum system can be written as

d2y(t)

dt2
= −a1sin(y(t)) + u(t) (2.10)
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Figure 2.6: Phase portrait of the unstable sub-system of (2.7) with the fixed control
structure u(t) = −0.6 with poles at 0.5 and −1.2

where a1 is a positive scalar. The state variable y(t) is the variation over time of the angular

displacement of the attached object from the vertical. The chosen control input is u(t), the

force applied at the point of suspension. Consider that the states variables y(t) and dy(t)
dt

are measurable and the initial conditions are y(0) = 0 and dy(0)
dt

= 0. The control objective

remains to force the trajectories of the system to attain and stay at the origin.

The design process starts by analyzing a linear approximation of the pendulum system

(2.10). In effect, in the study of dynamical systems, it is sensible to study the dynamics

of a system without its nonlinearities to have an initial understanding of its dynamical be-

haviour [10, 14, 51, 69]. By neglecting the nonlinear term sin(y(t)) in (2.10), the dynamical

equations collapses to form a second order dynamical system corresponding to the double

integrator system in (2.1).

A sliding mode control strategy for the system (2.1) is designed using the switching function

(2.8). For the sake of simplicity, the following notation is adopted in the rest of the chapter:

s = s(y(t),
dy(t)

dt
) ṡ = ds

dt
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When the trajectories of the system (2.1) lie on the manifold formed by the switching line

s = 0,

dy(t)

dt
= −my(t) (2.11)

As a result, the dynamics of the system (2.1) exhibit a first-order decay towards the origin.

Therefore, the choice of the switching function (2.8) together with the switching line s = 0

is appropriate to generate the desired dynamical behaviour. Importantly, this motion is

independent of any applied control signal. It is worth noting that the double integrator

system (2.1) exhibits reduced order dynamics (2.11) during sliding motion.

Knowing that desirable dynamics are achieved when the trajectories of the system (2.1)

exhibit a sliding mode, the next step consists in defining sufficient conditions to force the

switching function to reach and to remain in the chosen sliding manifold. In the literature

of sliding mode control, this process is known as defining the reachability condition for a

sliding mode [7, 10, 13, 14, 16, 70]. In essence, to render the manifold s = 0 attractive,

lim
s→0+

ṡ < 0 and lim
s→0−

ṡ > 0 (2.12)

Conventionally, this expression is written as

sṡ < 0 (2.13)

Both expressions (2.12) and (2.13) are termed reachability conditions [7, 13, 14, 16]. To

satisfy this condition, the following candidate switched control law is proposed:

u(t) = −m
dy(t)

dt
− ρsign(s) (2.14)

where 0 < ρ is a scalar and sign(.) is the signum function.

From (2.13),

sṡ = s

(

m
dy(t)

dt
+ u(t)

)

< 0 (2.15)
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Fundamentally, this inequality reveals a dynamical condition to confine the trajectories of

the system to lie on the desired manifold and to enforce the desired stability and perfor-

mance requirements. Alternatively, a stronger condition called the η-reachability condition

given as

sṡ ≤ −η|s| (2.16)

where η is a small positive constant which is called reachability constant to guarantee that

a sliding mode will be reached in finite time [7, 13, 14, 16]

The η−reachability condition (2.16) becomes

sṡ = −ρ|s| < −η|s| (2.17)

since s sign(s) = |s|. Consequently , for 0 < η < ρ the candidate control (2.14) satisfies

the reachability condition (2.17) and ensures that the states reach the manifold s = 0 in

finite time and remains on it.

2.4 Robustness properties

Forcing the dynamics of the system (2.1) to lie on the switching manifold (2.8) is seen in

this case to prescribe a linear, first order dynamics (2.11) to the system where the choice of

the dynamical behaviour is entirely specified by the selection of the parameter m. In terms

of VSC, robust performance is synonymous with attainment of the dynamics prescribed by

the choice of switching surface despite the presence of model and parameter uncertainty [15,

21, 22, 63, 67]. Dynamical equations constructed to model phenomenological or mechanical

systems are intrinsically abstractions of real system. Besides, systems can change due to

ageing, accumulated damage, or perturbations. Further, the constructed model might be

simplified or linearized to facilitate the use of existing mathematical tools to analyse its

dynamics.

Let ω(t)be an unknown function of a time varying disturbance and M > ‖ω(t)‖. The

dynamical equation of the system (2.1) with this disturbance is given as

d2y(t)

dt2
= ω(t) + u(t) (2.18)
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Subsequently,

sṡ = s
(

mdy(t)
dt

+ ω(t) + u(t)
)

sṡ < − (ρ−M) |s| < −η|s| (2.19)

and the η-reachability condition is satisfied for ρ > M and 0 < η < ρ−M .

The nonlinear component of the pendulum system (2.10) has been ignored in the design

of the sliding mode control (2.14) to achieve stability and performance requirements. For

the pendulum system, ω(t) = −a1sin(y(t)). The robustness of the control (2.14) applied

to the pendulum system (2.10) is ensured when

sṡ = s
(

mdy(t)
dt

− a1sin(y(t)) + u(t)
)

= s (−a1sin(y(t))− ρsign(s)) < 0 (2.20)

This suggests that the feedback gain ρ must have sufficient magnitude to satisfy the reach-

ability condition (2.20) to enforce a sliding mode for the pendulum system (2.10), see

Fig. 2.7. Consequently for these settings, the dynamics (2.11) enforced by the switching

function are rendered insensitive to the effects of the unknown disturbances during the

sliding motion. In effect, when (2.20) holds, s = 0 after some fine time ts1 then ṡ = 0 for

all t > ts1. Interestingly, the expression of the dynamics of the pendulum system in the

sliding mode becomes (2.11). Thus, the dynamical behaviour of the pendulum system is

identical to the one of the double integrator system after sliding motion takes pace (see

the phase portrait in Fig. 2.8). This evidence that sliding mode system exhibits total in-

variance to a particular class of uncertainty, the so-called matched uncertainty, which acts

in channels where the control feedback acts directly [7, 10, 13–16, 63]. Fundamentally, to

achieve robustness, the magnitude of the applied control signal must be sufficiently large

to guarantee that the reachability condition holds in the presence of matched parameter

and uncertainty. Knowledge of the likely bound of the uncertainty rather than its exact

dynamical behaviour is sufficient to design a robust sliding mode control law.

To demonstrate the inherent robustness of VSCS, the notion of the equivalent control

introduced in [7] is presented. By definition [10, 16, 25], the equivalent control, usually

denoted ueq is the unique solution to the algebraic equation formed by equating the temporal

derivative of the switching function to zero. In essence, the equivalent control action is the
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Figure 2.7: Time evolution of the switching function (2.8) for the pendulum system
(2.10) with a1 = 0.5 under the switched control (2.14) with m = 1 and ρ = 1

Figure 2.8: Phase portrait of the double integrator system (2.1) and the pendulum
system (2.10) with a sliding mode
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theoretical control action needed to maintain sliding motion. It should be noted that the

equivalent control is only valid after the time at which sliding motion takes place. It is

not the actual discontinuous control signal applied to the system. The equivalent control

action can be regarded as the average injection produced by the applied control signal. The

inherent robustness of the closed-loop dynamics resulting from the VSC law is proven by

the fact that when the reachability condition (2.19) holds and s = 0,

ṡ = mdy(t)
dt

+ d2y(t)
dt

= mdy(t)
dt

+ ω(t) + ueq(t) (2.21)

= 0

Hence, the effects of the uncertainty is effectively cancelled as long as sliding motion holds

because the reachability condition (2.19) is satisfied.

. Besides, the concept of the equivalent control has been shown to be useful to investigate

the dynamics of the unknown input signals [10, 13, 14, 16].

In applications where the effects of a discontinuous control signal are undesirable, a contin-

uous approximation of the discontinuity is employed [15, 21, 22, 63]. A typical smoothing

function for the signum function is expressed as

s

|s|+ δ
(2.22)

where δ > 0 is a designed parameter which determines the steepness of this saturation

function. As a result, a continuous approximation of the control law (2.14) is given as

u(t) = −m
dy(t)

dt
− ρ

s

|s|+ δ
(2.23)

Using this smooth control signal with δ = 0.01, ideal sliding motion does not occur but the

switching function (2.8) is confined in a vicinity of the switching manifold where |s| < δ,

see Fig. 2.9. This motion of the system trajectories within this boundary layer is called a

pseudo-sliding mode [10]. In some applications, desirable performances can still be achieved

whilst remaining within a certain neighborhood of the sliding manifold [21]. Therefore,

maintaining the switching function within a certain boundary layer of the desired manifold
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using a smooth control signal has been shown to be good enough to achieve desired system

performance [10, 21].

Figure 2.9: Pendulum system (2.10) produced by a smooth control (2.23).

Since the continuous control (2.23) does not achieve ideal sliding motion, the effects of

matched uncertainty and disturbances cannot be completely rejected. Nevertheless, the

closed-loop dynamics still exhibit some level of robustness to parameter and model uncer-

tainty because the smooth control action behaves like a high gain control feedback during

pseudo-sliding mode [10, 21].

Of note, the choice of the parameter δ determines both the magnitude of the boundary layer

around the sliding manifold s = 0 as well as the steepness of the saturation function (2.22).

To achieve better performance and robustness, various approaches have been developed

to have δ as a function of time or state variables to produce a dynamic boundary layer

[15, 22, 63].

Interestingly, (2.22) is similar to saturation functions used to represent T cell activation

[1, 29, 71]. For instance, a common one is the Michaelis-Menten function [71–73] given as:

V0 = Vmax
S

S +Km
(2.24)
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where 0 ≤ S is the substrate concentration, Vmax > 0 the maximum rate produced at

maximal substrate concentration and Km > 0, the Michaelis-Menten constant. As a result,

the Michaelis-Menten function (2.24) shares identical properties with (2.23) when 0 ≤

s. Further, the Michaelis-Menten constant defines the steepness of the curvature of the

saturation function (2.24). The effects of the Michaelis-Menten function as an candidate

control function will be investigated in the next chapters.

2.5 Conclusion

In this chapter, the phase portrait analysis of engineering systems under a variable structure

control law was used to present the dynamical behaviour and benefits of variable structure

control systems. Similarly, in the following chapter, a phase portrait analysis will be con-

ducted to demonstrate the synergies between the dynamics of the specific T cell response

and the ones of engineering systems with a VSC law. Next, the dynamics of the specific T

cell response following vigorous infection will be studied from a variable structure control

perspective. The framework of sliding mode control presented in this chapter is used to

understand the switching mechanism of the specific T cell response. Moreover, this chap-

ter has shown that the reachability condition for a sliding mode defines a dynamical and

sufficient condition for any candidate control strategy to enforce desired stability and per-

formance requirements. In the following chapters, the reachability paradigm will be used

along with a model of dynamics of the Human immunodeficiency Virus (HIV) infection in

vivo to formulate a dynamical condition for immunity. Hence, the purpose of this chapter

was to provide the necessary background to understand the subsequent investigation of

T cells and virus dynamics using tools from variable structure control and sliding mode

control paradigm.



Chapter 3

Synergies Between the Dynamics

of the Immune Response of T Cells

and the Variable Structure Control

Paradigm

3.1 Introduction

In the previous chapter, it has been demonstrated that for a closed-loop system with a vari-

able structure control law, switching between different feedback regimes using information

from the states of the system is an approach to satisfy some constraints and performance

requirements. Interestingly, experimental studies in immunology reveal that the popula-

tion dynamics of the specific CD4+ and CD8+ T cell response following vigorous infection

are governed by an inherent ”immune response program” which changes the population

size and dynamic of the response to achieve immunity [32, 38, 39, 43, 44]. Furthermore,

experimental observations have shown that the T cell population dynamic resulting from

this immune response program exhibits some robustness to variations in some virological,

cellular and host factors [2, 39, 44, 45, 74].

Developing mathematical models and techniques to study T cell kinetics is important to

investigate the quantitative characteristics and dynamical features of T cell mediated im-

mune responses. In fact, it is crucial to understand the factors determining success or failure

27
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of the specific T cell response in various contexts such as transplantation, autoimmunity,

chronic infection and drug treatment [2, 29, 30, 42, 55]. The mathematical models of the

dynamics of the immune system can be constructed using a system of Ordinary Differential

Equations (ODEs) analogous to the Predator-Prey models from ecology [73]. These mod-

els describe the dynamics of some cellular and molecular phenomenon in an immunological

scenario of interest. Importantly, mathematical modelling and investigations have provided

several insights in immunology [29, 30, 32, 55].

Experimental studies have extensively investigated the kinetics of some antigen-specific

CD8+ T cell responses because this immune response has been shown to play a major

role in the control of infection [2, 38, 57, 75]. As a result, quantitative data have been

published and used to perform model-fitting and parameter estimation [1, 76]. Modelling

the specific T cell response involves defining a sensible mathematical relationship between

the antigen stimulation and the subsequent antigen-specific T cell population dynamics.

Mathematical modelling of the T cell population dynamics has shown that the immune

response program of CD8+ T cells can be appropriately modelled using a sigmoidal or a

discontinuous function [29, 38, 39]. In effect, candidate immune response functions dictate

the dynamical behaviour of the antigen-specific T cells. Importantly, the immune response

function influences both transient dynamics and the steady-states of T cell population

[43, 51, 55, 74, 76].

Consequently, the specific T cell response to pathogens can be regarded as a closed-loop sys-

tem because it consists of intrinsic biological feedback mechanisms which allow the immune

response to be activated and inhibited to remove the pathogen and maintain a healthy

state. Thus, tools from control theory can be used to analyse the performance of these

naturally occurring feedback mechanisms to understand dynamical factors underpinning

health or disease. The work in [77] has looked at the specific T cell response as a decen-

tralized control system in which the local interaction of different types of cells engenders

a population dynamic response. Interestingly, this dynamic response has been shown to

contain, a differential sensor, an on/off switch and an integral feedback.

The variable structure control paradigm introduced earlier is utilized in this chapter to

demonstrate the synergies between the dynamics of the specific T cell response and the

dynamics of engineering systems with a variable structure control law. Though the cellular

and molecular feedback mechanisms which take part in the immune response are still the

subject of active research, current findings in immunology provide compelling evidence that
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the dynamic response of the population of antigen-specific CD4+ and CD8+ T cells, as

shown in [1, 39, 44, 45] behaves as a variable structure control system.

As a VSC law, the immune response program is shown to enforce T cell expansion or

contraction dynamics for a given period of time according to some inherent immunological

law to achieve the control of acute infection. Moreover, this switching mechanism correlates

with changes in the metabolic energy regime of the responding T cells [32, 61, 78, 79].

The chapter is structured as follows: firstly, the biology of specific immune response of T

cells is reviewed. Secondly, the similarities between the VSC paradigm and the immune

response program are highlighted and discussed. Finally, a robustness analysis is conducted

to show that the specific T cell response exhibits some inherent robustness properties.

3.2 Review of the specific T cell response

The immune system consists of various cell populations which interact to achieve immunity

and maintain health [31]. The population of T cells or T lymphocytes is a type of white

blood cells which are produced by the bone marrow and matured in the thymus, a lymphoid

organ. The population of T cells consists of billions of clones having a unique T cell receptor

(TCR) which characterizes the specificity of the response. The TCR determines the binding

affinity of the clone to antigen i.e a complex of peptides bound to molecules of the major

histocompatibility complex (MHC). The T cell response is antigen specific because each T

cell clone is activated by a particular combination of peptides bound to MHC. A self-antigen

is formed by peptides derived from protein within the body whilst a foreign antigen is not.

The differentiation between self and foreign antigen by T cells is crucial because improper

activation of T cells by self antigen, known as autoimmunity, induces damage to self tissues

[31, 80]. Therefore, the dynamic response of T cells following antigen stimulation play an

important role in the control of infection and the maintenance of good health [2, 31, 42, 53].

Also T cell can further be classified based on their cell surface molecules or physiology. For

instance, CD4+ T cells are regarded as helper T cells because they contribute to the activity

of other immune cells. Whilst CD8+ T cells also known as killer T cells aim at destroying

foreign and infected tissues. Moreover, the population of T cells can be divided into different

subtypes based on their phenotypes [29, 37].
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Naive T cells are identified as conventional T cells whose unique antigen specific receptors

have never been stimulated by the matching self or foreign epitopes (antigen). The recog-

nition of the threat by the immune system involves identifying the presence of pathogen

destroying healthy cells. The presence of the threat usually leads to an increase in the

population of damaged cells and the production of antigen specific to the pathogen. In the

presence of signals from the innate immune response, immature Antigen Presenting Cells

(APCs) residing in the tissues absorb peptides at the site of the infection or inflammation.

As a result, APCs undergo maturation and become professional antigen presenting cells

which are the only type of cell capable of providing the required signals to activate naive

T cells. Naive T cells move towards APCs such as Dendritic cells (DCs) and macrophages,

scan them by brief contacts while they are constantly recirculating through the blood

stream and through the peripheral lymphoid[29, 40]. Two types of signals are needed from

professional APCs so as to activate naive T cells. Those signals are from the recognition of

naive T cell cognate antigen presented by professional APCs and from the interaction with

the co-stimulatory molecules on the same APCs [40, 81].

The activation of naive T cell stops their recirculation and activated T cells remain in

the peripheral lymphoid tissue. The immune response is produced by the maturation

of naive T cells, with proliferation and differentiation mostly into effector cells [40, 77].

Cytokine interleukin (IL)-2, produced by activated T cells and by other sources, drives

the reproduction of mature T cells [9, 37, 77, 82]. After differentiation of mature T cells,

effector T cells are released into the blood stream through the lyphagion and are directed

to the site of the infection. Subsequently, T cell-mediated immune response is performed

and supported by complementary immune system mechanisms such as B cells action.

From experimental studies on LCMV infection in mice [1, 2], measurements of virus titers

and LCMV-specific CD8+ T cells in the spleen at various days post acute infection produce

the trajectories displayed in Fig 3.1.

The initial number of activated T cell clones specific to the pathogen increases to a large

number to contain the infection. Following the eradication of the pathogen after an acute

infection, the population of activated T cells undergo a contraction phase in which activated

T cells die. Antigen-specific T cells are cleared from the infection site via apoptosis or

due to the effects of regulatory T cells [37, 39, 43, 50, 83]. Although the existence and

action of regulatory T cells has been proved and supported by different experimental and
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Figure 3.1: Time evolution of the population dynamics of specific CD8+ T cells after
acute infection from experimental data in [1, 2]

mathematical works, the mechanism by which regulatory T cells exert suppression remains

unclear [40, 84–89]. A proven and recognized apoptotic process is Cytokine Deprivation

Induced Death (CDID). CDID consists in causing T cell death by the depletion of cytokine.

This greatly reduces the growth factor of T cells [37, 90]. Independently of the mechanisms,

the contraction phase is needed so that responding T cells do not cause damage to the

surviving or surrounding healthy cells as well as to prevent autoimmunity. After the immune

response, a small number of activated cells survive the contraction phase and differentiate

into memory T cells. Immunological memory is formed from those remaining T cells.

Importantly, the response of memory T cells to the same antigen in case of acute infection

is better than the ones of naive T cell [2, 29, 74].

From this review of the immunology of the specific T cell response, it can be deduced

that suitable regulation of the activation, expansion and reduction of the population size

of specific T cell clones is required to satisfy immunological requirements. Similarly, in

engineering systems with a variable structure control law, appropriate switching between

different feedback structures is necessary to realise the desired outcome [7, 15, 16, 21, 22].
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Hence, it can be argued that the switching mechanism of the T cell response is an important

feature which underpins the achievement of immunity and the maintenance of good health.

3.3 Synergies between the dynamics of the immune response

of T cells and the variable structure control paradigm

In this section, VSC techniques are used to interpret recent experimental and mathematical

work related to the dynamics of the antigen-specific T cell response. In [29], the following

ODEs have been proposed to model the population dynamics of antigen-specific CD8+ T

cells following infection:

dN

dt
= σ + rN − aNF(t)N − dNN (3.1)

dA

dt
= F(t) (aNN + aMM + ρA)− (1−F(t))(mA)− dAA (3.2)

dM

dt
= (1−F(t))mA+ rMM − aMF(t)M − dMM (3.3)

The state variables N,A and M represent the time evolution of the population of naive,

activated and memory CD8+ T cells responding to a specific antigen following infection.

The parameters σ, rN and dN denote the production, replication and death rate of naive T

cells respectively. Activated T cells proliferate at a rate ρ, die at a rate dA and differentiate

into memory T cells at a rate m. The generated memory T cells replicate at a rate rM , get

activated at a rate aM and die at a rate dM . A brief description of the terms of the model

eq (3.1)-(3.3) is provided in Table 3.1 and Table 3.2. The likely range of the parameters

given in Table 3.2 are obtained from the work in [1, 29, 91].

Table 3.1: List of the state variables of the general model of the antigen-specific T cell
response eq (3.1)-(3.3)

State variable Symbol

Number of naive T cells N

Number of activated effector T cells A

Number of memory T cells M

The scenario of a primary specific CD8+T cell response to an acute infection [2, 43–45]

is considered. The model (3.1)-(3.3) has been chosen because the studies in [1, 29] have

demonstrated that it describes well the immunological phenomenon of interest. The state
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Table 3.2: List of parameters for the general model of the antigen-specific T cell response
eq (3.1)-(3.3)

Description Symbol Unit Nominal Value Likely Range

Production rate of σ day−1 0 0 ≤ σ
naive T cells

Replication rate of rN day−1 0 0 ≤ rN
naive T cells

Activation rate of aN day−1 1 0 < aN
naive T cells

Death rate of dN day−1 0.001 0.027 ≤ dN ≤ 0.007
naive T cells

Proliferation rate of ρ day−1 1.93 1.4 ≤≤ 3.0
activated T cells

Death rate of dA day−1 1 0.19 ≤ dA ≤ 1
activated T cells

Production rate of m day−1 0.05 0.008 ≤ m ≤ 0.05
memory T cells

Replication rate of rM day−1 0 0 ≤ rM
memory T cells

Activation rate of aM day−1 1 0 < aM
memory T cells

Death rate of dM day−1 0.01 0 ≤ dM
memory T cells

Immune response F(t)) 0 ≤ F(t)) ≤ 1
function

variables, parameters and the complexity of mathematical representation have been de-

signed to capture the impact of various cellular or molecular mechanisms involved in the

specific T cell response to foreign pathogen.

The default initial conditions are: N(0) = 100;A(0) = M(0) = 0 is chosen to be the default

initial conditions as in [1, 29]. The default parameter values, taken from [29], are as follows:

σ = rN = 0 day−1; dN = 0.001 day−1; aN = 1 day−1; ρ = 1.93 day−1; dA = 1 day−1;

m = 0.05 day−1; rM = 0 day−1; aM = 1day−1; dM = 0.01 day−1. These initial conditions

and biological rates are analogous to the ones used in some previous studies [1, 29].

The immune response program of CD8+ T cells is defined by the function 0 ≤ F(t) ≤ 1.

Here, the impact of F(t) on the population dynamic of responding CD8+ T cells is examined

from a control engineering perspective to demonstrate that the immune response program

[38] fits the variable structure control paradigm [7, 15, 21, 22, 63].
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Now, the dynamical behaviour produced by a fixed structure immune response function

with F(t) = 0 and F(t) = 1 is investigated using a phase portrait analysis as in Chapter

2. The phase portrait of the closed-loop dynamics with F(t) = 1 shows that this structure

leads to a motion away from the unique equilibrium located at the origin, see Fig 3.2.

This motion corresponds to an exponential increase in the population size of activated T

cells. As a result, this fixed structure engenders the clonal expansion phase only. The

stability analysis of the system reveals that this clonal expansion phase is underpinned

by an unstable dynamic because the equilibrium has an unstable pole. This unstable

dynamic leading to a rapid increase in the number of activated T cells is desirable to achieve

protective immunity quickly [2, 91]. However, a prolonged expansion phase of activated T

cells can lead to detrimental effects such as autoimmunity [37, 42, 92]. In contrast, stable

dynamics and a reduction of the population of activated T cells are enforced by the fixed

structure with F(t) = 0. The phase portrait, see Fig 3.2, shows that the dynamics of the

system move towards the origin. Imposing this structure right after the initiation of an

infection is undesirable because it prevents clonal expansion to take place. Nevertheless,

this structure is useful after the clearance of the infection to enforce the contraction and

memory phase of the specific T cell response. From these closed-loop dynamics with a fixed

structure immune response program, it is clear that an immune response function with a

single structure is not able to provide the required and observed dynamical changes in the

population of antigen-specific T cells following infection. In fact, F(t) must be designed to

describe a realistic relationship between the antigen stimulation and the dynamic response

of T cells following infection [1, 29, 38, 39].

Interestingly, experimental and mathematical studies [1, 29, 39] have demonstrated that the

following discontinuous immune response program can be used to reproduce the dynamics

of the specific T cell response

F(t) = 1 if ton ≤ t ≤ toff

F(t) = 0 otherwise (3.4)

where experimental records have provided

• ton: the time (in days) at which the number of activated T cells starts to increase to

combat the infection
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Figure 3.2: Phase portrait analysis of the T cell population dynamics of (3.1)-(3.3) with
an activation function having a fixed structure. Top: the trajectory of the T cell response
generated by F(t)) = 1 is shown. This induces unstable dynamics and a motion away from
the origin. The trajectory depicts an exponential and unbounded expansion of activated
T cells. Bottom: the trajectory of the T cell response generated by F(t)) = 0 is seen. The
trajectory exhibits a stable motion towards the origin. This motion depicts the contraction

of the population of activated T cells and the formation of memory T cells.

• toff : the time (in days) at which the decay of the population of activated T cells is

enforced after the infection

It is worth to mention that ton and toff are not external inputs. In vivo, these parameters

are indeed influenced by the states of the system.. For more details, please refer to [1, 29,

38, 93].

The output dynamics and phase portrait generated by (3.4) are shown in Fig. 3.3. During

the expansion phase i.e F(t) = 1, this induces an unstable positive feedback with motion

of the trajectories away from the origin. This motion ensures rapid increase in the number

of activated T cells as required to respond to infection [2, 43, 48, 94]. Next, when F(t) = 0
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is enforced, the immunological control structure switch to a stable negative feedback which

forces the decay of the activated T cells and the production of memory T cells is imposed

on the system. Individually, each feedback structure is inappropriate to reproduce the T

cell response observed post-infection. Therefore, without a suitable switching mechanism

between these different immunological feedback structures, the population dynamic of the

T cell response is not consistent with experimental data. Hence, the model (3.1)-(3.3) of the

T cell response dynamics without switching behaviour is unable to replicate the dynamic

behaviour observed in practice [29, 38, 51, 77].

The time-based on/off activation function (3.4) defines a switched control law and enables

the system to exhibit appropriate immunological feedback control. T cell population dy-

namic from the expansion phase to the contraction phase is underpinned by a sharp switch-

ing from a positive to a negative feedback. The VSC viewpoint on modelling the dynamics

of the immune response of T cells implies that there exists an inherent immunological

switching logic associated with F(t) which governs the response of the T cells. Although

early work has argued that changes in the population dynamics of T cells post-infection are

orchestrated by an intrinsic time-based autonomous program [1, 29, 38], recent experimen-

tal and mathematical publications in immunology suggest that changes in the population

dynamics of T cells after infection are the result of interactions between different immuno-

logical feedback mechanisms which increase or decrease the population size of responding

T cells [2, 38, 93, 94]. The immunological dynamics involved in this inherent switching rule

are still the topic of active research [2, 94]. Hence, this suggests that the VSC paradigm is

a suitable means to explain the observed antigen-specific T cell response following vigorous

infection.

In [1, 29], a candidate Michaelis-Menten function has been utilized to provide a smooth

switching process between the activation and the inhibition of the specific T cell response

based on the time evolution of the antigen concentration following viral infection. This

saturation function is expressed as

F1(t) = F(B) =
B

h+B
(3.5)

Where B is the antigen concentration and h > 0 is the antigen concentration at which

F(B) is half maximal. Consider the pathogen dynamics given as

dB

dt
= rB − kBA (3.6)
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Figure 3.3: Population dynamics of the specific T cell response of the model (3.1)-(3.3)
with a discontinuous immune response function (3.4).

where r is the replication rate of the pathogen and k is the killing rate by activated CD8+

T cells [91]. Let a closed-loop system formed by (3.1)-(3.3),(3.6) with the immune response

function (3.5). let B(0) = 1000, r = 5 day−1 and k = 310−8 day−1 from [29, 91]. The

time evolution of the total antigen-specific T cell population, see Fig 3.5 is consistent with

the ones observed in experimental studies [1, 2, 43]. Furthermore, the corresponding phase

portrait, see Fig 3.5 depicts a stable dynamics towards the origin after a transient period.

Though, the subsystems with F1(t) = 1 and F1(t) = 0 independently exhibit unstable and

stable dynamics, yet the switching strategy with (3.5) ensures the overall motion is stable

and desirable in terms of speed of response. This dynamical behaviour is typical of VSCS

[13, 14, 16, 22]. From the viewpoint of variable structure control [7, 13, 14], (3.5) defines a

switching logic to enforce the clonal expansion phase and then contraction phase according

to the antigen density. In effect, this saturation function induces appropriate variation with

time of the population size of antigen-specific T cell in response to infection [1]. Hence,

the phase portrait analysis of the specific T cell response presents a strong case for the

synergies between the dynamics of the specific T cell response and the ones of engineering

systems with a variable structure control law. Indeed, realistic models of the specific T cell

response [29, 32, 38, 39] are shown to support the reasoning that the function modelling
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Figure 3.4: Simulation of the scenario of CD8+ T cell population dynamics following
acute infection. Top: Time evolution of the population dynamics of the antigen-specific T
cell response, closed-loop system formed by (3.1)-(3.3),(3.6). Bottom: the time evolution
of the antigen-dependent activation function eq (3.5). Following infection, the magnitude
of the activation function is at a maximum. This induces the reduction of the state N
and an increase of the state A. The state variable N decreases because naive T cells
become activated T cells. The state variable A increases due to the expansion of the
population of activated T cells. When the magnitude of the immune response function
falls to zero, the expansion phase is interrupted. There is production of memory T cells,
the state M increases whilst the activated T cells undergo contraction i.e the state A
decreases. Consequently, the activation function prescribes the variation over time of the

total population of the antigen -specific T cells (N +A+M) following infection.

the immune response program of T cells can be considered as a VSC feedback control.

This suggests that the response of the population of antigen-specific T cells observed in

experiments [2, 94, 95] is the result of switching between different immunological dynamics.

Different mathematical functions, motivated by different biological assumptions, have been

proposed to describe T cell response dynamics following antigen stimulation. The differ-

ences in the expression of the immune response function reflect various views on the charac-

teristics of the immune response program. From predator-prey dynamics in the domain of

ecology, a mass action kinetic has been assumed and utilized in different studies [54, 55, 96].

Besides, various saturation functions have been formulated from a Michaelis-Menten anal-

ysis of the process of T cells binding to APCs [1, 46]. These saturation functions output

the maximal T cell proliferation when the antigen stimulation or concentration is high.
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Figure 3.5: Phase portrait of the trajectories of the specific T cell response. Closed-
loop system formed by (3.1)-(3.3),(3.6) with the sigmoidal antigen-dependent activation

function (3.5)

Fundamentally, using sigmoidal or discontinuous candidate immune response program, sim-

ilar results can be obtained. For instance, the following candidate saturation function has

been proposed in [46]:

F2(t) = F(B) =
B

1/K +B +A
(3.7)

where K is a Michaelis-Menten like constant reflecting the ability of activated T cells

to proliferate. This function incorporates a double saturation mechanism based on the

antigen concentration and the population of activated T cells. Interestingly, this candidate

function has been shown to generate a net expansion of T cell population when the antigen

concentration exceeds a certain threshold.

Apart from these antigen dependent immune response functions, experimental studies on

the CD4+ and CD8+ T cell response dynamics following vigorous infection have observed

that the clonal expansion continues for few days after the clearance of the infection [2, 39,

97]. Additionally, experimental studies have successfully determined the precise timings

and magnitude of the expansion and contraction of the population of specific CD8+ T cells
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for different viral or bacterial infection [29, 44, 45, 74]. These findings have motivated the

development of antigen-independent immune response program which provide a continuous

or a discontinuous switch between the extremum of F1(t) post infection [29, 38, 98]. Using

these timings provided by experimental data, some models of the antigen-independent

response are constructed using a time based switching logic [29, 76, 99].

Nevertheless, the recent experimental studies such as [2, 93, 94, 97, 100] suggest that the

type of pathogen strains, the initial infection dose or early curtailment of the infection and

antigen presentation induce changes in the duration and magnitude of the clonal expansion.

Therefore, it can be argued that the timings and magnitude of the expansion and the

contraction phase are produced by cellular and molecular feedback mechanisms [32, 38,

93]. Consequently, current thoughts consider that the immune response program of T

cells consists of an antigen-dependent phase followed by an antigen independent phase

[38, 47, 93, 97].

From this review of the immune response program, it is proposed that the population dy-

namic of the specific T cell response following infection incorporates a switching mechanism

based on some inherent dynamics to enforce the expansion and the contraction phase at

appropriate timings to achieve immunity. Therefore, it can be argued that the dynamical

behaviour of the specific T cell response is prescribed by an inherent switched control feed-

back which aims to combat infection and maintain health. Hence, this work suggests that

immunological objectives could be achieved via a VSC mechanism.

3.4 Robustness analysis

In immunology, there is a need to understand the factor sustaining or impairing the specific

T cell response [2, 31, 32, 42]. In the context of designing a control strategy for an engineer-

ing system, a robustness analysis is conducted to investigate how modelling and parameter

uncertainty affect the stability and the performance enforced by the designed control action

[10, 67, 101]. Formulating the immune response function as a VSC law is useful to provide

a constructive framework to investigate the effects of uncertainty and perturbations on the

T cell population dynamics.
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Uncertainty associated with the model of the specific T cell response (3.1)-(3.3) can be

related to changes in biological rates, neglected immunological dynamics such as the dy-

namics of APCs and perturbations caused by pathogen. In the following, the term du is

introduced to represent some biological perturbations in the dynamics of the activated T

cells. It is worth to mention that instead of this additive perturbation, parameter and

modelling uncertainty can also be considered. The dynamical equation for the population

of activated T cells becomes

dA

dt
= F(t) (aNN + aMM + ρA+mA)− (m+ dA)A+ du (3.8)

This is motivated by the fact that the dynamic of the population of activated T cells can

be impaired by the effects of pathogen following infection [2, 42, 48, 52, 57, 102]. In this

section, a particular type of VSC, the so-called sliding mode control [13–16] is used to

analyse the dynamics of the specific T cell response observed experimentally [2, 45, 103].

In Chapter 2, sliding mode control principles have been reviewed using the classical example

of the pendulum system [7, 10]. A switched control strategy was formulated to drive and

then constrain the states of the pendulum system to lie within a close neighbourhood of a

predefined switching function. Furthermore, the choice of the switching function has been

shown to dictate the dynamic behaviour of the system. Additionally, the switching function

provides a measure of the desired performance of the system. Here, the sliding mode control

framework and analytical tools are not used to design and implement a controller but to

study the immune response function as a VSC immanent in the dynamics of the specific T

cell response.

The following switching function,

s1 = A (3.9)

is chosen because the manifold s1 = A = 0 is associated with the absence of an ongoing

immune response and a healthy state. Furthermore, s1 = 0 enforces a stable immunological

steady-state. The reachability condition to attain and maintain sliding mode on s1 = 0 is

given as:

s1
ds1
dt

< 0

A (F(t) (aNN + aMM + ρA+mA)− (m+ dA)A+ du) < 0 (3.10)
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Note that s1 is always non-negative because this switching function represents a number

of cells. The expression of the reachability condition (3.10) reinforces that the immune

response function F(t) plays a major role in the determination of the dynamical behaviour

of the specific T cell response. Considering the values of biological rates estimated in various

studies, see Table 3.2 and [1, 29, 91], (3.10) shows that the immune response program is

robust to variations in the values of these biological rates due to changes in virus strains and

epitopes. In essence, despite the occurrence of biological perturbations following infection,

the immune response function must satisfy s1
ds1
dt

> 0 to induce the clonal expansion phase

for a certain period of time to clear the infection as well as switch to s1
ds1
dt

< 0 to enforce the

contraction and memory phase of the specific T cell response. Consider the time evolution

of the reachability condition in Fig 3.6 from the simulation of the specific T cell response

in Fig 3.4. Initially, s1 moves away from the chosen sliding manifold s1 = 0. However,

this transient dynamic is necessary from an immunological standpoint because it enforces

the rapid proliferation of activated T cells to contain the infection to achieve protective

immunity [1, 2]. After the transient phase of the clonal expansion, the manifold s1 = 0 is

rendered attractive by the immune response function. As a result, the trajectory of s1 is

driven towards the origin and the contraction and memory phase of the T cell response is

induced. Hence, the reachability analysis used here, delivers analytical conditions for the

immune response program to prescribe desirable T cell population dynamics.

The simulation of the model for an extended time period shows that the switching function

(3.9) exhibits a sequence of oscillations rather than lying on the manifold s1 = 0. These

oscillations are caused by frequent rebound of the pathogen. In fact, the considered dy-

namical equation (3.6) for the pathogen growth dynamic does not produce a steady-state

behaviour matching that of acute viral/bacterial infection [2, 44]. However, the transient

dynamics generated by the resulting closed-loop system is consistent with the ones of the

primary antigen-specific CD8+ T cell response up to day 28 [29].

Thus, the dynamics of the model after day 28, do not allow the reachability condition to

remain satisfied. Hence, the reachability analysis is shown to capture the discrepancies

between the dynamical behaviour of the model and experimental observations in [1, 2, 29].

The limitation of this model is due to the mathematical relationship between the pathogen

dynamic (3.6) and the candidate antigen-dependent immune response function (3.6). On

the one hand, the mathematical expression of eq (3.6) has an unstable pole i.e r > 0 at the

healthy state where B = 0. This feature allows the model to reproduce the rapid growth of
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Figure 3.6: Time evolution of the sliding surface and reachability condition for the
dynamics of the specific T cell response described by the closed-loop system formed by

(3.1),(3.3),(3.6) and (3.10) with the antigen-dependent activation function (3.5)

the pathogen in the early days post infection but also prevents the model exhibiting realistic

kinetics of pathogen decay and clearance observed after acute infection [2]. On the other

hand, the candidate antigen-dependent immune response function (3.6) solely relies on

the pathogen dynamics to provide the required switch in the feedback regime governing the

population dynamics of T cells. Although this simple expression delivers reasonable results,

it is clear that the connection between the antigen stimulation and T cell response dynamics

is more sophisticated. Consequently, in other studies it is important to determine the

boundaries within the model match experimental observation and to investigate a sensible

relationship between the kinetics of the pathogen concentrations and the kinetics of T cell

populations.

From this point onwards, the work focuses on the time window from day 0 to day 28

post-infection because these dynamics match the ones observed in experimental studies

[2, 29].

The analysis of the simulation of the model eq (3.6)-(3.3) with eq (3.5) reveals that the

model appropriately captures the dynamics of the T cell response to acute infection for a

given period of time.
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After considering the nominal case with du = 0 in Fig 3.4 and Fig 3.6, the impact of

perturbation signals on the population dynamic of the specific T cell response is examined

by analysing the dynamics of the system in the sliding mode. Assume that after a time ts,

the sliding mode occurs and s1(t) =
ds1
dt

= 0 for all t > ts1 . It follows that ṡ1 = A = 0 and

thus an equivalent control action, introduced in Chapter 2 section 4, can be computed as

follows:

F(t)eq = −
du

anN + amM
(3.11)

By substituting (3.11) in (3.8), it is seen that the action of the immune response cancels

the effects of the disturbance in the sliding mode. This demonstrates that the immune

response program effectively possesses some robustness properties.

Furthermore, consider a candidate Lyapanov function for the reduced order dynamics given

by V (N,M) where

V (N,M) = N +M (3.12)

dV (N,M)

dt
= −(anN + amM)F(t)eq − dNN − dMM (3.13)

This Lyapanov function is positive definite as required [104] because the state variables

N ≥ 0 and M ≥ 0. From (3.11), it can be deduced that when the perturbation signal

is a function of A, the dynamics in the sliding mode are not affected and remain stable.

Nevertheless, this type of perturbation can drastically influence the transient dynamics of

the immune response when they have a sufficient magnitude to change the sign of s1
ds1
dt

,

see (3.10). In practical implementation of sliding mode control, it is well known that

though some disturbances are cancelled when sliding mode is reached, they might impair

the reaching phase and transient dynamics of the system [10, 13, 16, 17, 22]. In the VSCS

example presented in Chapter 2, it has been seen that the designed discontinuous control

action provides complete invariance to parameter and modelling uncertainty when sliding

mode occurs.

In experimental and mathematical studies of the kinetics of the virus-specific memory CD8+

T cell response following chronic infection, it has been shown that the clonal expansion

phase is impaired [2, 48]. In effect, activated memory CD8+ T cells undergo a block in

their proliferation and the clonal expansion phase does not last long enough to clear the

infection [2]. The simulation experiment conducted in Fig 3.7 shows a perturbation signal
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Figure 3.7: Time evolution of the reachability condition and total population of antigen-
specific T cells in the presence of a strong biological perturbation. du = −2A for t > 8 and
du = 0 otherwise. Model of the specific T cell response described by the closed-loop system
formed by (3.1),(3.3),(3.6) and (3.10) with the antigen-dependent activation function (3.5)

du = −2A which occurs during clonal expansion. The resultant population dynamic of the

T cell response is consistent with the ones observed in experiments. From the reachability

analysis, it is clear that when the disturbance signal occurs, the condition s1
ds1
dt

to maintain

cell proliferation is no more satisfied. This causes an early and undesirable reduction of

the population size of activated T cells. From a VSC standpoint, the magnitude of the

proliferation of activated memory CD8+ T cells must be boosted to keep s1
ds1
dt

> 0 as long

as required to achieve protective immunity despite chronic infection.

Though the disturbance signal du = −2A alters the transient dynamics of the T cell re-

sponse, (3.11) shows that this is effectively a zero perturbation in the sliding mode because

s1 = A = 0. The Lyapanov stability analysis from (3.12)-(3.13) confirms that the dynamics

in the sliding mode remain stable when du = −2A. Besides, a disturbance signal which is

a time-invariant function or a function independent of the population of activated T cells

or a function of the virus dynamic does not vanish in the sliding mode, see (3.11). Of

note, this type of perturbations are completely rejected when the immune response func-

tion establishes a sliding mode. In Chapter 2, it was demonstrated that when the designed
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control action enforces sliding mode, the control action totaly rejects the effects of matched

uncertainty such as non-vanishing perturbation signals acting in the input channel.

Although the population dynamic of CD8+ T cells exhibits some inherent robustness prop-

erties, some biological phenomena such as unwanted T cell activation have the potential to

disturb feedbacks regulating the appropriate dynamic and population size of CD8+ T cells

[37, 40, 42, 45]. In fact, inappropriate activation or inhibition of the immune response of T

cells can lead to inflammation-induced tissue damaged, persistent infections or autoimmu-

nity [2, 31, 42, 105]. In a VSCS under the effects of disturbance, failure of the reachability

condition is synonymous with the inability of the designed control action to enforce a slid-

ing motion in the presence of these disturbances [10]. In other words, the magnitude of

the control action is insufficient to cancel the effects of the disturbance. In such cases, a

different equilibrium (stable or unstable) is exhibited by the system.

The scenario of an inappropriate CD8+ T cell activation caused by non-specific prolifer-

ation signals or bystander effects [9, 37, 40, 52] is simulated in Fig 3.8. This simulation

demonstrates that when a potent disturbance signal occurs (in this case an inappropriate

activation), the immune response program fails to overcome the effects of the disturbance.

Consequently, the reachability condition is no longer satisfied and the sliding motion is lost.

Hence, failure of the dynamical conditions provided by the reachability analysis in presence

of disturbance is congruent with inappropriate T cell response dynamics.

3.5 Conclusion

In this chapter, experimental and mathematical studies on the specific T cell response

dynamics following infection [2, 29, 38, 39, 76] have been revisited from a control engi-

neering standpoint. The immune response program, the function describing the dynamical

behaviour of antigen-specific T cells in response to the infection, has been shown to pos-

sess characteristics similar to the ones of a variable structure control law. In essence, this

function switches between different feedback regimes to enforce the clonal expansion phase

followed by the contraction and memory phase of the T cell response to achieve immunolog-

ical requirements. Furthermore, the robustness properties of the dynamics of the specific

T cell response observed in experimental studies have been formally assessed using tools

from sliding mode control theory.
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Figure 3.8: Time evolution of the reachability condition and total population of antigen-
specific T cells following infection with an undesirable proliferation signal du at day 23.
Model of the specific T cell response described by the closed-loop system formed by

(3.1),(3.3),(3.6) and (3.10) with the antigen-dependent activation function (3.5)

Collectively, the results of this chapter motivate the analysis of the immune system as a

closed-loop feedback system in which the immune response function changes T cell popu-

lation dynamics to respond to threat and to maintain health. Importantly, analytical tools

from variable structure control are shown to provide sensible means to study the dynamics

of proper and improper T cell responses.

Consequently, control engineering techniques are used to examine the dynamics of tolerance

and autoimmunity in the next chapter. Furthermore, the dynamics of Human Immunodefi-

ciency Virus infection in vivo are considered and the reachability analysis is used to provide

dynamical conditions to enforce the containment of the infection by the HIV-specific CD8+

T cell response and by antiretroviral drugs.



Chapter 4

Self-Tolerance Mechanism of T

Cells, a natural VSC

4.1 Introduction

In this chapter, the characteristics of the control mechanism governing the self-tolerance

dynamics of T cells are studied using tools from control theory. The novelty of this ap-

proach resides in the use of VSC techniques to study tolerance mechanism of the immune

system. Candidate immune response functions are analysed as different control strategy

to achieve tolerance. Motivated by the synergies between the immune system and VSCS

shown in Chapter 3, the sliding mode control paradigm introduced in Chapter 2 is used

to design an adaptive sliding mode control modelling immunological feedbacks which sup-

presses autoimmune responses and achieve a robust tolerance steady-state.

The maintenance of a healthy state by the immune system is underpinned by an appropriate

regulation of immune responses to clear infection as well as to prevent damage of self tissues

[31, 32]. The notion of self-tolerance of the immune system refers to the ability of the

immune system to both prevent and suppress autoimmune responses i.e immune responses

targeting self tissues. In effect, the immune system incorporates feedback mechanisms

to regulate the dynamics of self-reacting T cells to establish a healthy tolerance state.

Consequently, the healthy state enforced by the immune system is maintained despite the

presence of self-antigen and self-reacting T cells.

48
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The relation between the density of self-antigen and the inducement of tolerance or autoim-

munity influences the dynamics of immune cells and determines the maintenance or loss of

a healthy state. Different immune response functions have been proposed in [40, 51, 52] to

investigate different ways in which the density of self antigen induces the activation/prolif-

eration of self-reacting T cells. Fundamentally, these candidate immune response functions

establish a positive feedback between the density of self antigen and the population dynam-

ics of self-reacting T cells.

When a linear or a Michaelis-Menten immune response function is used, the work in [40,

51] have shown that the concept of the reproductive ratio can be used to determine the

maintenance of the tolerance steady-state. In effect, the reproductive ratio in this context

highlights a steady-state condition for the stability of the tolerance steady-state. This

approach infers that the break down of tolerance state imposed by the immune response

function is sensitive to changes in the values of the biological rates of the model. In contrast,

when a sigmoidal immune response function is considered, the reproductive ratio cannot

be defined and the attainment of the tolerance steady-state depends on the density of self

antigen. Hence, the framework of the reproductive ratio is not robust to changes in the

mathematical formulation of the immune response function.

The framework of control engineering is considered because the work in Chapter 3 has

demonstrated that the specific T cell response to acute infection is effectively a closed-loop

dynamical system. Furthermore, the control analysis performed in Chapter 3 has proved

that the immune response program, which dictates T cell population dynamics following

infection, fits the variable structure control paradigm presented in Chapter 2. In fact, the

immune response program operates as a variable structure control law which changes in T

cell population dynamics to clear the infection and restore a healthy state. Moreover, it

was shown that analytical tools from sliding mode control provide means to examine the

conditions for the robustness of the closed-loop dynamics imposed by the immune response

function. Motivated by these results, the framework of sliding mode is utilized to formulate

a dynamical condition for the immune response function to enforce a robust tolerance

steady-state.

Current findings in immunology indicate that self-tolerance is not only due to a weak

positive feedback between the density of self antigen and the responding CD4+ or CD8+ T

cells [31, 50, 80, 83]. In fact, the population dynamic of regulatory T cells has been shown

to be crucial for the maintenance of a robust tolerance state. The action of regulatory T
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cells operates a negative feedback suppressing ongoing autoimmune responses [31, 86, 106].

In the mathematical studies in [9, 40, 87, 107] where the population of regulatory T cells

is modelled explicitly, the gain of the feedback engendered by regulatory T cells must have

a sufficient magnitude to enforce the tolerance steady-state. The similitude between the

robustness properties of high gain linear state feedback systems and discontinuous systems

have been proven by control theory [10, 21]. Further, it is demonstrated that a discontinuous

feedback inhibiting autoimmunity can indeed establish a robust tolerance steady-state.

The organisation of the chapter is as follows. First, the tolerance mechanisms of the immune

system are reviewed. Next, a model of the immune system is considered and the impact

of some candidate immune response functions on the maintenance of tolerance is analysed.

Finally, a sliding mode control analysis is performed to model a robust tolerance mechanism.

4.2 Review of tolerance mechanisms

The seminal paper of Medawar [108] introduced the notion of immune tolerance to self

tissues in 1953. This early work shows that there is a central mechanism of tolerance exerted

by the thymus. It was first thought that tolerance was established by the elimination of all T

cells in the thymus. Subsequent experimental studies [106] clarified that many autoreactive

T cells undergo clonal deletion in the thymus due to negative selection. Unexpectedly, it

was found that some T cells with a high affinity to self antigen are preferentially selected and

survive to form the population of natural regulatory T cells (nTregs). Nonetheless, there

are autoreactive T cells which are able to exit the thymus and circulate in the lymphoid

and peripheral blood stream.

Furthermore, there exist peripheral tolerance mechanisms which prevent or shut down

immunogenic responses against self tissues [31]. The activation and clonal expansion of T

cells requires three signals: antigen presentation signal, costimulatory signal and cytokine

IL-2 signal. Inappropriate T cell activation signals at the cell surface engender clonal

deletion and/or anergy. Interestingly, each of these signals is associated with a certain

tolerogenic process [31]. In addition, the combination of these signals at the cell surface

obeys a particular decision-making rule to induce antigen-specific T cell responses [37].

In fact, the avidity of the T-cell-receptor (TCR) interaction with cognate antigen must

exceeds a certain threshold to activate the T cell [109, 110]. This activation threshold is

determined by a certain costimulatory molecule [111] and the avidity is influenced by both
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the affinity of the antigen with the TCR and the quantity of available antigen [110]. Hence,

different molecular feedback mechanisms allow the immune system to tolerate the presence

of mature autoreactive T cells in the peripheral blood and tissues [31, 106].

Besides, recent experimental studies have demonstrated the existence of regulatory T cells

and their dominant role in the control of immune responses elicited by self and foreign

antigen as well as the maintenance of immunological homeostasis [31, 42, 50, 86, 88, 106].

In addition, to the existing population of natural regulatory T cells, adaptive regulatory T

cells are generated from naive CD4+ T cells during inflammation [31, 106]. The activities

of both natural and adaptive regulatory T cells provides an active mechanisms to generate

robust tolerogenic responses and maintain a robust tolerance steady-state [31, 50, 86]. In

the case of autoimmunity, an insufficient number of regulatory T cells or defective regulatory

T cells are found at the site of the inflammation or damage [50, 92, 106]. Thus, the state

of autoimmunity results from an improper balance between immunigenic and tolerogenic

mechanisms. Interestingly, therapeutic strategies have shown that the healthy balance can

be restored using cytokine IL-2 to increase the number and/or to enhance the efficiency of

regulatory T cells [31, 92].

Collectively, current experimental findings reinforce the notion of tolerance as active mech-

anisms which dynamically regulate and control immune responses [31, 92]. Fundamentally,

the induction and maintenance of tolerance is achieved by the interactions between different

types of cells and molecular pathways. Appropriate switching between feedback regimes

that trigger or suppress the immune response is accomplished by the immune system to

provide required immunological actions to sustain good health [2, 31, 42, 80]. Consequently,

there exists strong synergies between the dynamics of the immune system and the dynamics

of engineering systems with a switched control law shown in Chapter 2. Inherent immuno-

logical switching rules in combination with cellar and molecular feedback mechanisms allow

the immune system to change its dynamics (expansion or reduction of some cell population)

to achieve immunity and tolerance. It can be argued that experimental results and insights

on the mechanisms of tolerance [31, 106] constitute compelling evidence for the notion of

the immune system as a robust variable structure control system.



Chapter 4. Self-Tolerance Mechanism of T Cells, a natural VSC 52

4.3 Analysis of dynamics of self-tolerance

A simple mathematical model as been presented in [51] to study the mechanisms under-

pinning the dynamics of tolerance and autoimmunity. The dynamical equations are given

as:

Ṫ = λ− µT − βTC

Ḋ = βTC − αD (4.1)

Ċ = u− γC

The state variables are T , the population of healthy target cells (cells/ml), D the population

of damaged target cells (cells/ml) and C, the population of self-reacting T cells (cells/ml)

destroying target cells. Note that in the model (4.1), the effects of other molecular or

cellular dynamics such as cytokine Il-2, dentritic cells or regulatory T cells are implicit.

Various mathematical models have been proposed to study the dynamics of self-tolerance

[9, 40, 51, 82, 107, 112]. The differences in the dynamical equations are due to differences

in modelling assumptions and focus of the investigations. A block diagram of the model

(4.1) is given in Fig. 4.1.

Figure 4.1: Model (4.1) of self-tolerance/autoimmunity where the immune response func-
tion describes the dynamic response of self-reacting T cells after self-antigen stimulation

The model (4.1) has been chosen due to its simplicity and especially due to the fact that

it describes the dynamical interactions between self reactive T cells and the targeted self

tissues. This simplicity facilitates the mathematical analysis to study the impact of the

immune response function in the context of self-tolerance. Additionally, it was shown in
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[51] that this model produces reasonable qualitative behaviour despite the fact that various

cell populations such as antigen presenting cells, regulatory T cells and some molecular

dynamics are not explicitly represented in the dynamical equations.

Here, the model (4.1) describes the scenario of an autoimmune response of C, a population

of self-reacting T cells (CD4+ or CD8+ T cells) towards a target tissue T after simulation

by self antigen from damaged target cells D. Consequently, the default initial conditions

are chosen to be T (0) = λ
µ
;D(0) = 1;C(0) = 0 as in [51].

Target cells are produced at a constant rate λ and die at a constant rate µ. Thus, the

population growth of healthy cells (T ) is assumed to be affine in this model. The parameter

β describes the efficacy of the damage process induced by autoreactive T cells. From [51],

β also refers the rate at which immune cells find target cells and the rate at which the

target cells are successfully attacked by immune cells. The parameters α and γ denotes the

death/clearance rate of damaged cells and autoreactive effector T cells respectively. It is

assumed that there are constant death rates for each type of cell. Of note, these biological

parameters and state variables are non-negative due to their biological meanings.

The default parameter values are taken from [51] and given as: λ = 10; µ = 0.1; β = 0.5;

α = 1.1; γ = 0.1.

Consider u, an immune response function influencing the dynamic response of the popu-

lation of self-reacting T cells following self antigen stimulation. A candidate closed-loop

dynamics formed by

u = FPI(D) (4.2)

The personal immune response function approach in [51, 52] effectively assumes that dif-

ferent people have different immune response characteristics. The function u is studied

here as an inherent immunological control feedback for the closed-loop model (4.1). The

impact of candidate mathematical functions for u to model the establishment of tolerance

or autoimmunity will be investigated from a control standpoint.

The general expression of the equilibrium of the system (4.1) is given as;

Tss =
λ

µ+ βCss
; Dss =

βTssCss

α
; Css =

u

γ
(4.3)
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and the Jacobian matrix of the equilibrium (4.3) is given as:

J =











−µ− βCss 0 −βTss

βCss −α βTss

0 du
dD

−γ











(4.4)

From (4.3), it is clear that the immune response function u determines both the expression

and magnitude of the steady-state of the cell population. In experimental studies [31, 80,

113, 114], the population size of target cells and self-reacting effector T cells are sensible

indicators to monitor and diagnose autoimmunity. It can be deduced from (4.3) that the

immune response function influences the observed immunological steady-states.

The trivial equilibrium

T0 =
λ

µ
; D0 = C0 = 0 (4.5)

where u = 0, corresponds to a tolerance steady-state because the population of target cells

is not affected by autoreactive T cells. From a control perspective, a means to achieve

robust tolerance is to ensure that the population dynamics of the system (4.1) attain and

remain at this healthy equilibrium irrespective of initial conditions, parameter and model

uncertainty. The characteristic equation obtained from the computation of the Jacobian

matrix (6.9) at this trivial equilibrium is given as:

(ss + µ)(ss + α)(ss + γ) = 0 (4.6)

Consequently, the tolerance steady-state (4.5) is stable because the characteristic equation

(4.6) has three real and negative poles which are −µ,−α and −γ [51, 69]. Recall that these

biological decay rates are positive.

Next, consider the stability and performance of the open-loop system where u is not a

function of the states of the system. This open-loop system has only one equilibrium, see

(4.3). From the characteristic equation of the open loop system, a root-locus analysis is

performed. Changes in the values of u in Fig. 4.2 demonstrate that the immunological

steady-state is imposed by the considered open-loop system. Although changes in the

magnitude of u affects the amplitudes of the poles, they remain in the left hand side of the

complex plane. Nevertheless, different values of u lead to different clinical interpretations of
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the exhibited immunological steady-state due to the associated changes in the population

size of target cells and self-reacting effector T cells.

Figure 4.2: Variation of the poles with respect to an increase in the value of the open-loop
control 0 ≤ u ≤ 2 for the system (4.1)

The simulations in Fig. 4.3 and Fig. 4.4 produced using different constant values of u

depict a tolerance and an autoimmune disease steady-state respectively. As the value of

u increases from zero, the population of self-reacting effector T cells C increases and this

leads to the reduction of the population of healthy target cells. Consequently, the dynamics

of the system move away from the tolerance steady-state and attains a stable non-trivial

autoimmune disease steady-state.

Now, consider the closed-loop dynamics formed by (4.2), an antigen dependent immune

response function is considered. The function FPI(D) is effectively an immune response

program [1, 32, 38, 80] which defines how the density of self antigen influences the ac-

tivation/proliferation of self-reacting effector T cells. From a control standpoint, (4.2)

represents a state feedback which closes the loop for the system (4.1). Consequently, can-

didate immune response functions proposed in the literature [46, 51, 52] are examined as

candidate feedback regime which determine the dynamics of the immunological response

upon antigen stimulation.



Chapter 4. Self-Tolerance Mechanism of T Cells, a natural VSC 56

Figure 4.3: Simulation of the open-loop system u = 0 in system (4.1).

Figure 4.4: Autoimmune disease scenario when the open-loop u = 0.7 in system (4.1)

A basic approach is to suppose that the proliferation of autoreactive T cells is proportional

to the antigen density. This leads to the linear immune response function given as
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FPI1(D) = kD (4.7)

where k > 0 is the average magnitude of activation/production of T cells responding to

antigen stimulation [51]. This formulation of the immune response function has been used

in various studies [40, 51, 54]. The use of (4.7) reduces the complexity of the mathematical

model. The closed-loop system with (4.7) has two steady-states: the tolerance steady-

state (4.5) and a non-trivial equilibrium located at TL1 = αγ
βk

;DL1 = λ
α
− µγ

βk
;CL1 = λk

αγ

corresponding to an autoimmune disease state. The relation λβk − µγγ = 0 obtained

from the characteristic equation at the tolerance equilibrium determines the sign of the

poles at the equilibrium. Therefore, the stability of the equilibria is dictated by parameter

values. This relation obtained at the steady-state underpins the reults produced by the

reproductive ratio R0 =
βkT0

γα
in [51].

From a biological perspective, (4.7) implies that self-tolerance is accomplished when the

magnitude of the activation rate k is small enough to keep the tolerance equilibrium (4.5)

stable despite the density of self antigen. The state of tolerance is lost and an autoimmune

disease steady-state is reached when the value of k is large or due to variations in the

values of the biological rates. From a control perspective, (4.7) represents a linear state

feedback, as such, the dynamics prescribed by (4.7) are sensitive to parameter variations

and modelling uncertainty, see simulation results in [51]. Changes in the value of any

single parameter or multiple parameters can trigger autoimmunity. Consequently, the use

of (4.7) generates some unrealistic insights on the robustness of the tolerance steady-state.

For instance, changes in the value of λ, the production rate of target cell can induce

autoimmunity and this is not realistic [31, 80].

Alternatively, a number of investigators have assumed a Michaelis-Menten kinetics to for-

mulate the immune response function as follows:

FPI2(D) =
mD

Km +D
(4.8)

where m is the maximum proliferation rate of self-reacting T cells and Km is the antigen

concentration at which the proliferation rate is half maximal [1, 29, 40, 51, 71, 98]. The

function (4.8) is a hyperbolic function which is well established in enzyme kinetics within

chemistry. Additionally, it has been applied in a diverse range of systems including ecology,

the immune response and analysis of epidemics, functional response [71–73]. At low antigen
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concentration, when D ≪ Km, FPI(D) = m
Km

D so that the rate is directly proportional to

the antigen concentration. At high antigen concentration, FPI(D) = m so that the rate is

maximal and independent of antigen concentration. When D = KM , then FPI(Km) = m
2

and KM is equal to the antigen concentration at which the reaction rate is half its maxi-

mal value [71–73]. Thus, the Michaelis-Menten function (4.8) is effectively an asymptotic

switching curve. The stability and performance characteristics of the closed-loop system

with are sensitive to parameter variations [51].

Using the linear approximation (4.7) or the Michaelis-Menten function (4.8), the system

(4.1) has a tolerance steady-state (4.7) and a nontrivial equilibrium associated with an

autoimmune disease state. When one equilibrium is stable, the other one is unstable.

The parameter values of the system determine which one of these equilibria is stable.

Importantly, these functions yields poor robustness properties and do not allow a dynamic

switch of the immune system between tolerance state and a state of autoimmunity upon

self antigen stimulation as observed in experimental studies [31, 80, 113].

Consider the candidate Holling type III personal immune response function from [51] given

as

FPI3(D) =
mD2

D2 + h2
(4.9)

where m is the maximum proliferation rate of immune cells and h is the antigen concentra-

tion at which the proliferation rate is half maximal. This function can also be referred to as

a sigmoidal Hill function. The nonlinearity is achieved by increasing the effect of the stateD

and the variable KM of the Michaelis-Menten candidate (4.8). (4.9) suggests that the pro-

liferation of rate of activated T cells saturates at high antigen density. The resulting closed-

loop system has three equilibria which exist if and only if λ2β2m2−4µγα2h2(µγ+βm) > 0,

see analysis in [51]. There is the tolerance steady-state (4.5), an unstable transient equilib-

rium E− and a autoimmune disease steady-state E+ . The poles of the tolerance equilibrium

are : −µ;−α;−γ. These poles are negative because these parameters are positive biological

constants. Therefore, the tolerance steady-state is always stable. It has been proven that

whenever E+ exists it is always stable if µ >> γ. E− is a saddle equilibrium having a

two-dimensional stable manifold and a one dimensional unstable manifold. It was shown in

Fig. 8 in [51] that E− depicts a boundary surface between the absorbing domain of E0 and

E+. When the antigen population is small the stable trivial equilibrium is reached, whereas

the stable autoimmune disease equilibrium is experienced when the antigen concentration

is large. As a result, the closed-loop system with (4.9) is a bistable system. The initial
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conditions influence the dynamic response produced by the sigmoidal immune response

function (4.9). Hence, the nonlinear state feedback generated by (4.9) generates a new dy-

namical behaviour and changes the mathematical structures of the equilibria, leading to a

bistable immune system with some robustness properties. It can be deduced that (4.9) acts

as a smooth variable structure control for the system (4.1) because it changes the dynamic

response and structure of the system based on the antigen density.

In chapter 3, it has been demonstrated that the dynamics of the specific T cell response

behaves as a variable structure control system in which the control law is defined by the

immune response function. Further, the dynamical behaviour and robustness properties

generated by the immune response function were shown to be similar to the ones of engi-

neering systems with a discontinuous control feedback.

Considering the immune response function as a control switch, it can be deduced that there

are strong similarities between the dynamics of VSCS shown in Chapter 2 and the closed-

loop dynamics produced by biologically-inspired saturation functions [29, 46, 51, 52] for

the immune responses. As seen in Chapter 2, the choice of the feedback strategy and its

magnitude determines the robustness properties. This contributes to new understanding

the nature of feedback mechanisms underlying biological phenomena.

Motivated by the observed activation threshold of the immune response [31, 82, 109, 115]

and knowledge of variable structure control, a discontinuous function which models this

switching mechanism and yields an improvement in the robustness of the immunological

steady-states is proposed. This discontinuous immune response function given as

FPI4(D) =
1

2
m (S + 1) (4.10)

S = sign(D − h) =
D − h

‖D − h‖

where h is an antigen threshold, has been developed from a control engineering perspective.

This function reflects an activation/proliferation of antigen-specific T cells which depends on

a threshold based on the antigen stimulation (density) as observed in experimental studies

[31, 80, 109–111]. An on/off immunological switch is constructed using a sign function

based on D. To yield a non-negative output, the sign function is shifted in the positive

quadrant. The amplitude of the response m, is the saturation (maximum) proliferation
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rate of the attacking autoreactive T cells. It has a step-like behaviour made up of a brutal

(sharp) change in its output, the proliferation of autoreactive T cells. The discontinuous

behaviour also yields antigen tolerance but implies an instantaneous change of behaviour

(activation/inhibition). The behaviour of the discontinuous personal immune response

function is the switching logic which changes the mathematical structure of the immune

system whilst moving between the healthy and the autoimmune disease state.

The closed-loop system with (4.10) has three equilibrium points: the tolerance equilib-

rium (4.5) a transient equilibrium and an autoimmune disease equilibrium. The output of

(4.10) determines which equilibrium is enforced. Considering the case where S = −1 =>

FPI(D) = 0 which means that the population of antigen is less than the threshold, the

tolerance equilibrium point is obtained.. The Jacobian is evaluated at (4.5). The roots of

the characteristic equation are : −µ;−α;−γ. Since death rates are always positive, the

poles are always negative. Therefore, the tolerance steady-state is always stable.

When the concentration of antigen is equal to the antigen threshold that is S = 0 <=>

FPI = m/2. the immune response is in a transient phase so it produces half the maximum

proliferation rate of autoreactive T cells. The transient equilibrium point is:

T1 =
2λγ

βm+ 2µγ
; D1 =

βλm
α(βm+2µγ) ; C1 =

m

2γ
(4.11)

The Jacobian at this equilibrium point is evaluated. The characteristic equation is a third

order polynomial having positive coefficients for all powers of sS . The Routh-Hurwitz

stability criteria are applied and the transient equilibrium (4.11) is unstable. Now, the

immunological scenario where D > h <=> S = 1 <=> FPI(D) = m. This indicates that

the antigen threshold is surpassed and the personal immune response function delivers the

maximum proliferation rate. The resultant equilibrium point is expressed as:

T2 =
λ

µ+ mβ
γ

; D2 =
mβλ

mβα+αµγ
; C2 =

m

v
(4.12)

This non-trivial equilibrium (4.12) is associated with an active autoimmune response and

the reduction of the population of target cells. The Jacobian at this equilibrium (4.12)



Chapter 4. Self-Tolerance Mechanism of T Cells, a natural VSC 61

is evaluated and its eigenvalues are: −α;−γ;−(µ + mβ
γ
). Since biological parameters are

always positive, the eigenvalues are all negative. Therefore, this autoimmune disease steady-

state is also stable. Hence, when the concentration of antigen is above the threshold, the

immune response is activated and a stable chronic autoimmune disease state is exhibited.

The function (4.10) thus provides a discontinuous switch between a stable tolerance steady-

state and a stable autoimmune disease steady-state. It should be noted that the stability

of these equilibria is insensitive to parameter variations. Importantly, the closed-loop dy-

namics generated by this discontinuous immune response function exhibit bistability and

robustness to parameter uncertainty.

In summary, the nature of the immune response function significantly impacts the stability

and robustness properties of the system (4.1) as seen in Table 4.1. The behaviour of the

reviewed immune response switching curves upon antigen stimulation is shown in Fig 4.5.

In simulations, using the analytical expression of the equilibria, each candidate function can

be parameterized to have identical numerical coordinates for a stable non-trivial equilibrium

to reach a common autoimmune disease steady-state. The purpose of Fig 4.6 is to highlight

that each candidate immune response function engenders a particular transient dynamics.

Thus, the nature of FPI(D) influences the stability, performance and robustness of the

observed immunological states as well as their corresponding mathematical structures. It

can be concluded that the immune response function of the form FPI(D) which models a

positive feedback for the proliferation of self-reacting T cells by self antigen must change

its structure dynamically to allow the immune system to switch between the tolerance and

the autoimmune disease state.

Collectively, the analysis of the impact of the immune response function on the maintenance

of self-tolerance [40, 51, 52] reinforces the argument that the immune response function is

an immanent VSC feedback which governs the dynamic response of T antigen-specific T

cells as well as the establishment of tolerance and autoimmune disease steady-state.

In Chapter 2, it has been seen that analytical tools from sliding mode control theory

delivers means to investigate the stability, performance and robustness of VSCS. Further,

the work in Chapter 3 proves that the framework of sliding mode control provides sensible

insights on the dynamical behaviour and robustness of the specific T cell response following

acute infection. Consequently, if the state of tolerance can be associated with an attractive

manifold of the state-space, a reachability analysis can be performed to investigate the
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Figure 4.5: Different personal immune response curves (4.7)-(4.10): - linear, + Michaelis-
Menten, o sigmoidal and x discontinuous.

performance of the immune response function, as an inherent control to achieve robust

tolerance.

4.4 Sliding mode control framework

The framework of sliding mode control is considered to investigate the dynamics of tol-

erance due to the fact that the immune system as demonstrated in the previous sections

Table 4.1: Comparison of the mathematical structures and robustness of the immune
system due to changes in the personal immune response function.

Personal immune Qualitative
response function behaviour

Proportional to Stability and
antigen performance of

concentration as in the two equilibria are
equation (4.7), [116] sensitive to parameter values

Michaelis Menten Similar to
as in (4.8), [51] above

Sigmoidal Bistability
(Holling type III) Saddle equilibrium

equation (4.9), [51] Robust performance

Discontinuous switch Bistability
based on antigen population Unstable equilibrium

equation (4.10) Robust performance
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Figure 4.6: 3D plot of the dynamical behaviour of the immune system (4.1). Compari-
son of the transient dynamics resulting from the implementation of the candidate immune
response functions (4.7)-(4.10). H.S.: Healthy tolerance steady-state (4.5), A.S.: Autoim-
mune disease steady-state. T : Target cells, D: damaged cells and C: self-reacting effector

T cells.

incorporates an intrinsic VSC feedback, the immune response function which determines

immunological responses and outcomes. Further, the reachability paradigm is used as a

tool to assess dynamical conditions for the maintenance of tolerance. This adds to the

state-of-the-art because when the reproductive ratio can be defined, it only provides a

time invariant steady-state condition for the maintenance of tolerance [40, 51]. Further-

more, analytical tools from sliding mode control are utilized to assess the robustness of

the immunological dynamics prescribed by the immune response function in the context of

tolerance/autoimmunity as performed in chapter 3 in the scenario of infection.

A switching function given as:

s = D + C (4.13)

has been designed using self antigen and autoreactive T cell dynamics because these dy-

namics are strongly involved with the dynamic response of the immune system to enforce

tolerance homeostasis [31, 80, 109, 113, 117]. Importantly, the manifold s = 0 is associated
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with the tolerance steady-state (4.5). Consequently, the tolerance state will be exhibited

when the states of (4.1) lie on this manifold.

The reachability condition, introduced in Chapter 2, is expressed as:

sṡ < 0

From (4.1) and (4.13),

sṡ < s(βTC − αD + u− γC) (4.14)

This inequality represents a dynamical condition for the immune response function u to

allow the states of the system (4.1) to attain and remain on the manifold s = 0 associated

with the tolerance steady-state (4.5). Consequently, the reachability condition (4.14) is a

means to determine in the maintenance or loss of the tolerance state.

As seen in the previous section, the antigen-dependent immune response functions (4.7)-

(4.10) describe a positive feedback mechanism in which the increase of the density of self

antigen leads to an activation/proliferation of self-reacting T cells which causes the re-

duction of the population size of self tissues. Consequently, the output of the candidate

immune response functions (4.7)-(4.10) where u = FPI(D) must vanish after self antigen

stimulation to allow their respective closed-loop dynamics satisfy (4.14). In effect, when

the output FPI(D) → 0 and vanishes because this leads to C → 0 and an exponential decay

of the states of the system towards the manifold s = 0.

When the reachability condition (4.14) is satisfied, it follows that s = ṡ = 0. The dynamics

of the system under sliding mode are reduced to

Ṫ = λ− µT (4.15)

since C− > 0. This dynamical equation for the target cell population has a unique equilib-

rium λ
µ
and a stable pole at −µ. It can be deduced that when immune response function

render s = 0 attractive and achieves tolerance, the effects of self-reacting T cells on the

population dynamic of target cells are cancelled.
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In essence, the candidate immune response function (4.7)-(4.10) describe the positive feed-

back of self antigen stimulation on the activation/proliferation of self-reacting effector T

cells. Autoimmunity sets off when the magnitude of this positive feedback is sufficient to

fail the reachability condition (4.14) and induces proliferation of autoreactive effector T

cells. In immunology, it is well know that the presence of self antigen also triggers cellular

and molecular mechanisms such as regulatory T cells and co-stimulatory molecules to sup-

press autoimmune responses [31, 50, 84, 86, 106, 111]. The action of these mechanisms can

be regarded by biologists as regulatory loops that the immune system possesses to main-

tain robust tolerance homeostasis. Further, in mathematical studies where the dynamics

of regulatory T cells explicitly represented [40, 87, 107], they produce a negative feedback

to slow down or stop the proliferation of self-reacting T cells.

Current findings in immunology show that the immune system possesses regulatory mech-

anisms to suppress unwanted immune responses [31, 50, 86]. Physiologically, self-tolerance

or autoimmune response inhibition is driven by immunological mechanisms which induce

the death of activated autoimmune effector T cells [31, 86, 88]. Based on self antigen stim-

ulation, the dynamics of regulatory T cells and other molecular signals produce a negative

feedback to suppress autoimmunity and maintain a robust tolerance equilibrium.

The work in Chapter 2 has shown that when reachability condition for a sliding mode is

satisfied, the states of the system are driven to chosen sliding manifold and remain on it. As

a result, the closed-loop dynamics prescribed by the chosen sliding manifold are exhibited.

In effect, the reachability analysis is used to design a VSC strategy to render the sliding

manifold attractive to the states of the system. Motivated by the synergies between the

control mechanisms of the immune system and the VSC paradigm shown in the previous

sections, sliding mode control techniques are used to design a negative feedback modelling

the effects of regulatory loops which inhibit autoimmunity. Since the manifold (4.13) is

associated with the tolerance steady-state, a VSC strategy is designed to achieve a sliding

monde on this manifold to produce a robust feedback to inhibit autoimmunity. Consider

the following discontinuous function which yields autoimmune response inhibition when D

and C are present:

u1 = −ρsgn(s) = −ρ
s

|s|
= −ρ

D + C

|D + C|
(4.16)
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The reachability condition (4.14) becomes:

sṡ ≤ s(βTC − αD − ρsgn(s)− γC)

sṡ ≤ |s|(βTC − αD − γC − ρ) < 0 (4.17)

Since s > 0, the sign of (4.21) depends only on ṡ. The reachability condition thus reduces

to:

βTC − αD − γC − ρ < 0

βTC − αD − γC < ρ (4.18)

The amplitude of the controller for which the reachability condition is satisfied is sought.

Failure of the reachability condition is a condition for failure of self-tolerance. For a range of

initial conditions, a static value of ρ can be chosen to guarantee that the condition (4.18) is

met and the sliding surface is reached. From (4.18), it can be noticed that the reachability

condition is a function of the state variables and parameter values. The amplitude of ρ

required to satisfy this condition will vary during the motion. The adaptation algorithm in

[25] has been designed assuming a sliding mode condition which is a time-varying parameter

bounded above and below. (4.18) does not directly yield an implementable controller in

the case where parameters are uncertain.

It is an open problem to design a dynamic adaptive gain controller which produces the

minimum magnitude of the discontinuity under uncertainty before and after ideal sliding

motion.

An adaptation scheme is considered to reflect the fact that the regulatory loops of the

immune system produces a dynamic response to suppress autoimmunity [31, 80, 86, 88].

The adaptation method considered here is a control gain proportional to the state variables.

This tuning of the magnitude of the discontinuity has the benefit of reducing high control

activity [10, 15]. Let ρ be a function of the state variables.

ρ = ρo + βoTC (4.19)

where ρo is a small constant. This produces the following adaptive sliding mode control
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u1 = −(ρo + βTC)sign(s) (4.20)

A block diagram of this self-tolerance mechanism is given in Fig. 4.7.

Figure 4.7: Model (4.1) of self-tolerance/autoimmunity where the immune response func-
tion u (4.20) is an adaptive sliding mode control feedback which imposes a robust state of

self-tolerance via inhibition of self-reacting T cells

The ability of this function to enforce the tolerance steady-state and to render the manifold

s = 0 is proven by substituting (4.20) in the expression of the reachability condition (4.14).

This yields

sṡ < s(βTC − αD − (ρo + βoTC)sgn(s)− γC) < 0

−βδTC − αD − γC − ρo < 0 (4.21)

since |s| = sign(s) and s > 0 and βδ = βo − β > 0. As a result, u1 satisfies the reachability

condition. The desired negative feedback control action u1 ensures that the trajectories of

(4.1) reach the manifold s = 0 in finite time and remain on it. Consequently, he stable

healthy tolerance steady-state (4.5) is enforced.

Consider the nominal values of the parameter of system (4.1) taken from [51]: λ = 10;

µ = 0.1; β = 0.5; α = 1.1; γ = 0.1;βo = 1; ρo = 0.0.

The purpose of the simulation in Fig. 4.8 is to demonstrate that function (4.20) as a

regulatory feedback is capable of forcing the system trajectories to move and remain at the

self-tolerance equilibrium (4.5). The negative feedback (4.20) engenders a rapid inducement
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of inhibition of autoreactive T cells due to a step-like function. Fig. 4.10 shows that the

reachability condition is satisfied during the whole simulation. Therefore, the manifold s is

attractive and the states D and C attain s = 0 after a fine time and stay on it, see Fig. 4.10.

Thus, the dynamical behaviour of the immune system induced by the discontinuous self-

tolerance feedback is shown to exhibit a sliding mode which enforce the tolerance state.

Figure 4.8: Immunological dynamics driven to the tolerance steady-state (4.5). Closed-
loop system (4.1) with the negative tolerance feedback (4.20) .

When an ideal sliding mode takes place after a time ts, s = ṡ(t) = 0 for all t >= ts.

The concept of the equivalent control introduced in Chapter 2 is considered. Here, the

equivalent control represents the theoretical injection required to maintain sliding motion

on (4.13) to exhibit tolerance. From ṡ(t) = 0, the expression of the equivalent control is

given as:

ueq = αD + γC − βTC (t >= ts) (4.22)

The time evolution of the equivalent control action, see Fig. 4.11 illustrates the variation

over time of the magnitude of the suppression signal acting on the population dynamic

of autoreactive T cells C due to the intrinsic self-tolerance control feedback (4.20). This
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Figure 4.9: Time course of the switching function (4.13). Closed-loop system (4.1) with
the negative tolerance feedback (4.20).

exemplifies the notion that self-tolerance as an active immunological VSC action to maintain

desirable homeostasis and a healthy state [31, 40, 50, 83]. The amplitude of the equivalent

control is proportional to the state variables. Considering the trivial equilibrium values

of the state variables, it is clear that in the absence of disturbance, the equivalent control

action vanishes when the tolerance equilibrium (4.5) is attained. This can occur in sliding

mode control and may be expected at nominal conditions [23].

The dynamical behaviour of the immune system with respect to changes in one or more

parameter values is analysed. The parameter values used in the mathematical studies

of self-tolerance dynamics in [51, 52] are chosen to test the stability and performance of

the design control outside of nominal conditions. Changes in parameter values represent

changes in the rate of biological processes such as production rates and death rates. The

following uncertain parameters are considered: λ = 2, µ = 0.1, β = 0.45, α = 0.145,

γ = 0.01.

Unfortunately, it has not been possible to obtain experimental data for the model (4.1).

As discussed in [82], mathematical models to study self-tolerance dynamics have not yet
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Figure 4.10: Time course of the reachability condition (4.21). Closed-loop system (4.1)
with the negative tolerance feedback (4.20).

Figure 4.11: Time course of ueq, the equivalent control signal (4.22) t > ts = 5days.
Closed-loop system (4.1) with the negative tolerance feedback (4.20)
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been enriched by kinetics data from mouse or human experiments. In contrast, mathemat-

ical investigations have benefited from experimental studies on HIV infection dynamics to

deliver sensible immunological insights [30, 35]. This motivates the study of HIV infection

dynamics in the next Chapters.

Simulations are conducted in Fig. 4.12 to compare the robust stability and robust perfor-

mance of (4.20) with the ones generated by a linear feedback u2 = kD. In [51], u2 has been

shown to achieve nominal stability and performance of the tolerance state.

Looking at Fig. 4.12, the immunological rates are different from the ones which have been

discussed in the nominal case. Parameter variations in λ and µ affect the steady-state pop-

ulation size of target cells. Although the population of healthy cells has greatly decreased,

the dynamical behaviour induced by (4.20) satisfy the reachability condition (4.14) and

exhibits a tolerance state. In effect, the concentration of self antigen and autoreactive T

cells are driven to zero and the trajectories reach and remain on the sliding manifold (4.13).

Unlike u1, the control u2 cannot reject the perturbation in parameter values. In fact, u2

does not satisfy the reachability condition (4.14). This comparison of the immunological

behaviours is evidence that (4.20) achieves robust stability and robust performance of the

healthy immune system.

The effect of modelling uncertainty in (4.1) is investigated. Changes in the assumed growth

function of target cells are considered to reflect different tissue growth dynamics. The linear

growth process of target cells in (4.1) is substituted by a logistic and density dependent

process as in [51]. The dynamical equation related to the target cells becomes:

Ṫ = λ+ (pT )(1−
T

L
)− µT − βTC (4.23)

Here, target cells can be created both by a constant production rate λ and by the prolif-

eration of existing target cells with p as the maximum proliferation rate. Also, the target

cell population saturates at a predefined carrying capacity L.

The expression of the reachability condition in (4.21) prove that the adaptive scheme in-

cluded in the control (4.20) allows this control feedback to keep the inequality (4.21) true

despite the variation of the population size of target cells. As a result, the manifold s = 0

remains attractive to the states of the system and self-tolerance is achieved despite changes
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Figure 4.12: Comparison of the performance of control laws u1 in (4.20) and u2 = kD
with parameter disturbance: λ = 2, µ = 0.1, β = 0.45, α = 0.145, γ = 0.01 and k = 0.002

in the dynamics of target cells. The dynamical behaviour of the system trajectories is sim-

ilar to that observed in Fig. 4.8. During ideal sliding motion s = D + C = 0. Since D > 0

and C > 0, D = C = 0 when sliding mode occurs. Therefore, the term βTC vanishes

in (4.23). This means that when the control (4.20) enforces a sliding mode and achieve

tolerance, the dynamics of target cells are not impaired by the effects of self-reacting T

cells. Hence, the self-tolerance dynamics generated by the control law (4.20) are robust

to changes in the dynamics of target cells. This matches with the immunological reality

because the tolerance state is exhibited in vivo for various tissues [31, 92].

Together, the results of the conducted robustness analysis demonstrate the synergies be-

tween sophisticated immunological control mechanisms and robust engineering control strate-

gies.

4.5 Conclusion

In this chapter, tolerance mechanism have been examined from a control engineering per-

spective. Analytical and numerical analysis highlight that the characteristics of the immune
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response function determine the establishment and maintenance of a robust tolerance state.

Furthermore, feedback mechanisms to establish a robust tolerance steady-state are inves-

tigated using the framework of sliding mode control introduced in Chapter 2. A manifold

associated with the tolerance steady-state has been identified and the conditions for en-

forcing sliding motion on this manifold are determined. Conditions for the establishment

of self-tolerance by the immune response function are found to be consistent with condi-

tions for a sliding mode. Importantly, the reachability condition delivers a nonlinear tool

to assess and monitor immunological dynamics. The study of self-tolerance mechanisms of

the immune system strengthens the argument that the immune system is naturally a VSCS

because the establishment of tolerance is achieved by inherent immunological switching

logic and feedback loops.

The advantage of the sliding mode control approach is based on the fact that it binds

immunological requirements with the reachability conditions. As seen in this chapter,

this provides a means to understand how a given immunological control feedback realise

the desired immunological outcome. In the context of HIV infection, it is important to

understand how the HIV-specific CD8+ T cell response achieves immunity. Consequently,

analytical tools from sliding mode control will be used in the next chapter to investigate

the containment of HIV infection in vivo by the HIV-specific T cells response. Finally, in

Chapter 6, the availability of patient data from HIV clinical trials motivates a case study

in which the reachability paradigm is used to monitor the containment of HIV infection by

antiretroviral drugs.



Chapter 5

Evaluation of the Conditions for

the containment of HIV infection

by the HIV-specific CD8+ T Cell

response, a Variable Structure

Control Perspective

5.1 Introduction

In this chapter, it is demonstrated that the reachability paradigm introduced in Chapter 2

can be utilized to formulate a dynamical condition for the control of HIV infection by the

HIV-specific CD8+ T cell response.

HIV is a persistent infection which mainly targets CD4+ T cells and in most cases leads

to Acquired Immune Deficiency Syndrome (AIDS) [30, 37, 118]. Experimental studies

have demonstrated that the HIV-specific CD8+ T cell response is a major immunological

dynamic opposing the spread of infection in the host [30, 55, 57, 58]. It is of current

interest to understand how the HIV-specific CD8+ T cell response contains HIV infection

[30, 57, 119]. It is not clear whether immunity is achieved by the cytolytic or the non-

cytolytic killing mechanism of HIV-specific CD8+ T cells [55, 56, 75]. This motivates the

74
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use of control theory to formally investigate the control action of the killing mechanism of

the HIV-specific CD8+ T cell response.

Mathematical modelling of HIV dynamics in vivo has significantly contributed to the un-

derstanding of the HIV pathogenesis along with the design of treatment regimes to boost

the immune response and/or to reduce the severity of the infection [30, 53, 60]. Early math-

ematical models of HIV dynamics in vivo can be found in the seminal papers [60, 120]. A

third order model can encompass the observed biological characteristics of the acute phase

of HIV infection using the variation over time of the population of healthy CD4+ T cells,

the infected population of CD4+ T cells which produce new virion along with the concen-

tration of the HIV-1 free virus [35, 60]. Although this model describes experimental data

well, it does not include the dynamics of the HIV-specific CD8+ T cell response explicitly

[55, 60].

HIV-specific CD8+ T cells combat HIV by killing HIV infected cells [57, 118, 119]. Early

thoughts assumed that HIV-specific CD8+ T cells kill HIV-infected cells whilst they are

producing new virion [56, 58, 60, 102] but recent studies proved that HIV-specific CD8+ T

cells have a minor impact on the death rate of virus-producing HIV-infected cells [30, 58, 75].

Current findings suggest that HIV-specific CD8+ T cells kill HIV-infected cells via a cy-

tolytic mechanism during the eclipse phase of the infection, before infected cells start pro-

ducing new virion. Furthermore, the non-cytolytic mechanism of HIV-specific CD8+ T

cells has been demonstrated to have an important role on the containment of the infection

by preventing the infection of new cells [35, 56, 75]. Consequently, these features have been

explicitly incorporated in recent models to improve the realism of the model as well as the

understanding of the impact of the HIV-specify CD8+ response on the containment of the

infection [56, 58].

The outcome of a viral infection in a host is classically evaluated using the reproductive

ratio R0 which measures the number of new cells that a single infected cell produce at the

start of infection when there is no target cell limitation [34, 35]. The reproductive ratio is

an algebraic combination of some biological rates which can be retrieved using the constant

term of the characteristic equation of the nonlinear dynamical equations of an HIV dynamic

model linearized at the infection-free steady-state [35, 56]. Typically, when R0 < 1, the

infection-free steady-state is stable and the infection will not spread. Since the parameters
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associated with the killing efficacy the HIV-specific CD8+ T cell response are included in

the expression of the reproductive ratio, the condition for the containment of the infection

depends on the HIV-specific CD8+ T cell killing mechanism to enforce the reproductive

ratio to be below unity [35, 56, 121]. Thus, the framework of the reproductive ratio provides

a static condition which infers that the condition for the containment of the infection solely

depends on the values of some biological rates rather than population dynamics.

However, recent studies argue that the immunological requirements for the containment of

the infection rather than being static changes during the course of the infection [34, 102,

119]; the immunological requirements might be weaker before the peak of the virus load

due to the small number of viral particles at the site of the infection [34]. The work in

[122] suggested that the failure of the HIV-specific CD8+ T cell response to eradicate the

infection is explained by a low ratio between the number of effector HIV-specific CD8+ T

cells and the population size of the infected cells (target) at the early stage of the infection

before the peak of the virus load. The effector/target ratio increases after the peak of

the virus load and a greater immunological pressure is exerted on the infection dynamics.

Furthermore, experiments have demonstrated that the depletion of virus-specific CD8+ T

cells post infection leads to an increase of the virus load [56]. Hence, the framework of

the reproductive ratio does not encompass the emerging notion that the condition for the

containment of the infection changes during the course of the infection according to changes

in biological rates and population dynamics [30, 34, 102, 119].

The dynamic of HIV in vivo is inherently a closed-loop system because natural control

strategies such as the non-cytolytic and the cytolytic mechanism of the HIV-specific CD8+

T cell response are intrinsically applied by the immune system to eradicate HIV infection

[30, 56, 58]. Therefore, models of HIV dynamics in vivo can be analysed using the tools of

control theory to evaluate the performance of the HIV-specific CD8+ T cell response and

to develop additional feedback strategies, which in this context amounts to hypothesizing

treatment regimes.

Exploring immunological mechanisms from the perspective of control engineering can be

found in several papers in the literature relating to both theoretical biology and control
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engineering. A significant set of publications focus on enhancing the action of the immune

response and antiretroviral drugs to contain the infection.

Optimal control strategies have been investigated to design treatments. In [123], the control

analysis has postulated the early start of treatment to improve success. The method pro-

posed in [124] offers some robustness with parameter perturbation. The control and therapy

strategy is to have a slow reduction of the drugs dosage during the course of the treatment.

This investigation was inspired from an optimal control strategy which developed a minimal

cost function for drugs therapy in HIV [125].

Model predictive control techniques have been considered due to problems with safety and

difficulty of implementation of the continuous treatment regime resulting from optimal

control strategies [126]. In [127], interrupted drug scheduling was investigated. Using this

approach, a new optimal control law is computed at each sampling period. This has the

benefit of boosting the immune response to provide stability of the immunological state

and to exhibit robustness to parameter and model uncertainty [126, 127].

Besides, nonlinear two loop feedback controls law is developed in [128]. An inner controller

aims to cancel the effects of the nonlinearity caused by the product of healthy CD4+ cell

and virus state variables. Using exact linearization methods and measurement of the virus

concentration, this inner controller is a function of time which changes by steps. This

control law infers that the HIV-1 dynamics progresses according to a series of switched

linear dynamic models. As a result, the control signal of the inner controller is not smooth.

The control action of the outer loop feedback is based on the availability of measurement of

both virus and CD4+ concentrations. In fact, the outer controller compensate the intrinsic

nonlinearity of the model using the product of the virus concentration and the sum of

uninfected and infected CD4+ concentrations.

The outer loop with a static gain feedback control law manipulates the inner lop and

achieves the tracking of the reference ( low level) HIV concentration. The smooth control

signal is obtained in the absence of noise in the outputs. As in [129, 130], a discrete time

version of the control action is implemented for satisfying practical constraints of measure-

ments. The stability and performance of the control strategy is deteriorated with increase

in the interval between blood samples. A trade-off between the design of sophisticated

control laws and selection of sampling times is suggested to be investigated.
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In [131], a control Lyapanov function approach has been used to design a treatment regime

for HIV. Using the basic HIV-1 model and parameter values from [132], the nominal design

is performed. The most efficient design is to apply the control strategy into the infected

cells dynamic. The performance is influenced by parameter uncertainty and noise in the

input channel. In presence of +or - 20% variation, the controller reduces dramatically

the virus load but the concentration of uninfected T cells fails to reach its desired healthy

equilibrium. It interesting to note that the decrease in the value of the natural decay rates

is improves the performance.

In [130], the model developed in [133] has been considered for designing a singularity free

nonlinear controller. From knowledge of the dynamics of HIV-1 infection, the model is

divided into two subsystems. In the finite region corresponding to the origin, a local non-

negativity and singularity free controller is designed using a decoupled Lyapanov function

over the origin. In the other region, complement to the origin, the properties of the system

are exploited using backstepping techniques and a global controller is constructed. Consid-

ering the periodical acquisition of blood samples, the control action trough HAART drugs

administration to the patient is fixed during the sampling interval to model medical prac-

tice as in [37, 134, 135]. The assumption is that the efficacy of the drugs is constant during

the sampling interval.

The antiretroviral therapy is adjusted according to measurement of the viral load obtained

from a blood sample at a particular instant. In other words, the control action is changed

according to the region in which the system is currently in. Furthermore, the blood sampling

period is adjusted with respect to the severity of the infection which is determined by the

measured virus concentration. For instance, an aggressive control action is applied in the

complement region with a high sampling period because the virus concentration is larger

than the predefined threshold. Unlike in [129], the control energy can be significantly

reduced when the viral load is close to zero due to the fact that an softer control action is

applied in this region. Hence, the nonlinear control law implemented in [130] is a variable

structure like control strategy [7].

A theoretical sliding mode controller has been investigated as a candidate treatment strat-

egy in [136]. The nominal design of the controller was performed on a basic HIV-1 model

such as the one in [60] with parameters values from [137]. The desired healthy equilibrium

is shifted to the origin to ease the construction of the sliding surface. The sliding surface

consists of both (uninfected and infected)T cells and virus concentration dynamics. The
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control action is bounded in the range [0; 1]. This is to reflect the effectiveness of the drugs.

For example, when U = 1, drugs have 100% efficacy. Right after the sliding surface is

reached, the discontinuous control action is deliberately replaced by the equivalent con-

troller. A Lyapanov analysis has been used to prove the stability of the desired virus free

equilibrium under the closed-loop control. The simulations have shown robust stability

and performance with respect to parameter uncertainty. Although the publication [136]

stands as one of the first attempt proposing a discontinuous control as a treatment strategy

for HIV-1, the controller design needs to be improved by including constraints related to

practical issues such as the availability of clinical data [138].

Evaluating the condition for the containment of the infection by the HIV-specific CD8+ T

cell response using a Variable Structure Control (VSC) approach can be motivated from

the following observations:

1. Experimental studies in [119] show that the dynamic response of an elite CD8+ t cell

response contains HIV infection and reduces HIV load below the limit of detection

50 RNA/ml. It has been shown in Chapter 2 that in a variable structure control

system, the control structure changes during the process according to a predefined

switching law to achieve desired performance [7, 10, 13, 16, 22]. Further, the work in

Chapter 3 has demonstrated that the immune response program of the specific CD8+

T cells [30, 55, 56, 139] is effectively an inherent VSC law which dictates the dynamic

of the response according to some immunological law. Besides, the recent study in

[139] has demonstrated using a double saturation function is appropriate to model

the cytolytic mechanism of CD8+ T cells. The findings of this study reveal that

the structure of the killing action changes during the course of a viral infection and

saturates according to the population size of target cells and CD8+ T cells. Hence,

the cytolytic mechanism of CD8+ T cells can be regarded as an inherent VSC to kill

infected cells and achieve immunity.

2. The immune system is a highly robust system, maintaining a steady-state corre-

sponding to health or disease in the presence of perturbations and disturbances. A

potent cytolytic CD8+ killing action is most simply represented with a large con-

stant killing rate [35, 56]. Alternatively, a Michaelis-Menten Function with a small

Michaelis constant and an appropriate saturation rate can be designed to produce

similar effects at steady-state [56]. These functions are effectively high gain negative
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feedback where the latter is very similar to the continuous approximations used in the

domain of engineering to implement discontinuous control strategies. Control theory

has demonstrated the similarities between the robustness properties of high gain lin-

ear state feedback systems and discontinuous systems [7, 10, 15, 16, 22]. Further,

implementation of discontinuous control strategies in the domain of engineering has

been routinely carried out using smooth approximations to the discontinuous func-

tion; one example is the so called unit vector control law [10]. Moreover, Chapter 4

shows that there are strong similarities between the two domains and the functions

used to provide practical robustness.

3. It has been demonstrated that the function describing the killing mechanism of the

HIV-specific CD8+ T cell response and the magnitude of this killing action influence

the immunological steady-state and the outcome of the infection [56]. In the domain

of sliding mode control, the dynamics will typically attain a desired steady state which

is defined by the chosen sliding surface when the so called reachability condition is

met [7, 15, 16, 22]. When the reachability condition fails to hold, the system will

exhibit different dynamics, usually exhibiting a different equilibrium. If appropriate

sliding manifolds can be designed to represent the biological phenomena, a reachability

analysis can be used to formally assess the condition for the containment of the

infection by the HIV-specific CD8+ T cell response.

Unlike the static condition provided by the reproductive ratio computed at the infection-free

steady-state, the novelty and the major contribution of the VSC approach resides in the fact

that the reachability analysis provides a dynamical condition for the HIV-specific CD8+

T cell response to reach and maintain the infection-free steady-state. Furthermore, this

condition encompasses the nonlinearities of the model and exhibits some robustness prop-

erties with respect to parameter and modelling uncertainty. Importantly, the dynamical

condition for immunity provided by the VSC analysis can be reproduced by experimental

studies such as the one in [34, 35] using estimation of the size of the different population

and the biological rates involved in the population of dynamic of infected cells in which the

HIV-specific CD8+ T cell response is acting.

This chapter is structured as follows: In section 1, a model of HIV dynamics in vivo in

which HIV-infected cells are killed in the eclipse phase is presented. In section 2, the
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dynamical condition for immunity using the VSC paradigm is formulated. Next, this con-

dition is tailored to candidate control function modelling the cytolytic killing action of the

HIV-specific CD8+ T cell response. Afterwards, the steady-state condition for immunity

using the reproductive ratio is computed and analysed in section 3. Finally, in section 4,

simulation experiments are conducted to support the analytical analysis and the notion

that the dynamical condition for immunity from the reachability analysis is an appropriate

tool to monitor the immunological requirements to eradicate the infection.

5.2 Model description

The model studied in [56] is considered for investigating the condition for the containment

of the infection by the HIV-specific CD8+ T cell response. The state variables are the

population of uninfected CD4+ T cells T , the population of HIV-infected CD4+ T cells

in the eclipse phase I, the population of HIV-infected CD4+ T cells which produces new

virion P , the dynamics of free virions V (virus load per ml) and the population dynamic

of HIV-specific CD8+ T cells E. The dynamical equations are given as:

dT

dt
= λ− δTT − βTV

dI

dt
= fβTV − γI − δT I + uC

dP

dt
= γI − δPP

dV

dt
= pP − δV V

dE

dt
= gE − δEE (5.1)

The immune response function for the proliferation of HIV specific CD8+ T cells follows a

Michaelis-Menten process and is expressed as:

g =
gmaxI

hg + I + E
(5.2)

where hg has been set to zero [55, 56].
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The non-cytolytic killing mechanism of the HIV-specific CD8+ T cells is modelled by the

parameter f with range 0 ≤ f ≤ 1 [56, 58, 140]. A candidate expression for f is given as:

f =
1

1 + ǫE
(5.3)

where 0 ≤ ǫE, and ǫ represents the efficacy of CD8+ T cells exerting non-cytolytic killing

of HIV-infected cells in the eclipse phase.

The cytolytic mechanism of the HIV-specific CD8+ T cell response is encompassed in the

parameter uC where uC ≤ 0. A block diagram of this process is given in Fig. 5.1.

Figure 5.1: Model (5.1) of HIV infection dynamics in which infected cells in the eclipse
phase are killed by the cytolytic effect of CD8+ T cells

In this chapter, the cytolytic mechanism of HIV-specific CD8+ T cells is treated as an

intrinsic immunological control action because it is assumed that HIV-specific CD8+ T

cells control/contain HIV infection in vivo via cytolytic mechanism, i.e killing of HIV in-

fected cells in the eclipse phase [55, 56]. The non-cytolytic mechanism is not the focus but

constitutes a candidate immunological means to contain the infection in vivo [55, 58, 75].
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The infection free steady-state located at the trivial equilibrium of the model (5.1) is given

as:

Ts0 =
λ

δT
; Is0 = Ps0 = Vs0 = Es0 = 0 (5.4)

Throughout the chapter, the term condition for immunity is defined as the condition that

the killing mechanism of the CD8+ T cell response needs to satisfy for zeroing the state

variable I, the population of HIV-infected CD4+ T cells in the eclipse phase to reach and

maintain the infection-free steady-state. Thus, the control objective of uC is to satisfy the

condition for immunity.

5.3 Dynamical condition for immunity using the reachabil-

ity analysis

As in Chapter 3, the framework of sliding mode control is utilized to investigate the per-

formance of the specific T cell response. Here, a sliding manifold representing the immuno-

logical objective of the HIV-specific CD8+ T cell response is defined and a reachability

condition is formulated to ensure that immunity is achieved. The sliding surface is given

as:

sE(t) = I (5.5)

In this sliding mode control approach, the HIV-specific CD8+ T cell response in the ideal

case is thought to render the manifold sE = 0 attractive. In the sliding mode,

sE(t) = I = 0 and
dsE
dt

= 0 (5.6)

defines the dynamical behaviour of the system (5.1). In fact, the sliding surface sE is

selected so that ideal sliding motion yields a stable infection-free steady-state. It should
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be mentioned that the sign of sE(t) is non-negative at all times because it relates to the

number of HIV-infected CD4+ T cells in the eclipse phase I ≥ 0.

The temporal derivative of the sliding surface is:

dsE
dt

=
dI

dt

= fβTV − (γ + δT )I + uC (5.7)

Next, the concept of the equivalent control, introduced in Chapter 2 is considered. The

equivalent control uCeq, the effective control action required to maintain sliding motion on

sE = 0, is retrieved from dsE
dt

= 0 as follows:

uCeq = −fβTV + γI + δT I (5.8)

Hence, the equivalent control is meaningful and represents quantities that can be measured

or estimated [35, 59, 141].

Here, the reachability condition, introduced in Chapter 2, is given as:

sE
dsE
dt

< 0

I (fβTV − (γ + δT )I + uC) < 0 (5.9)

(fβTV − (γ + δT )I + uC) < 0

since 0 ≤ I by definition. This inequality formulates a dynamical condition for the HIV-

specific CD8+ T cell response to zero the population dynamic of HIV-infected cells I in

the eclipse phase to ensure immunity. This dynamical condition for immunity is the main

contribution of this chapter.

This dynamical condition also infers that the negative feedback provided by the HIV-

specific CD8+ T cell response should overcome the positive feedback of HIV pathogenesis

encompassed by the product βTV . When immunological dynamics satisfy (5.9), sE = 0

is rendered attractive and the population dynamics of the system (5.1) move towards the

infection-free steady-state (5.4). Thus, the inequality (5.9) reflects the balance between the

progression of the infection and the immunity provided by the HIV-specific CD8+ T cell
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response [35, 57, 122]. In fact, the term fβTV is a dominant component which sustains HIV

pathogenesis. As a result, the condition for immunity is mainly influenced by the infection

rate β, the population size of uninfected cells and the virus load. This suggests that the

killing mechanism of the HIV-specific CD8+ T cell response might operate as an adaptive

control mechanism which aims to provide a sufficient magnitude to achieve and maintain

immunity despite fluctuation in the magnitude of the term βTV . This interpretation is

consistent with the study conducted in [122] in which the killing action of the HIV-specific

CD8+ T cells after vaccination has been demonstrated to be insufficient to prevent viral

growth due to a low effector to target cell ratio at the beginning of the infection.

In Chapter 2, it has been shown using the example of the pendulum system that when

the system exhibits a sliding mode, the closed-loop dynamics become robust to matched

uncertainty and perturbations. Typically, the magnitude of the control action is designed

to satisfy the reachability condition despite parameter and modelling uncertainty present

in the dynamic where the control action is applied. As a result, the dynamical behaviour

of the system prescribed by the choice of the sliding surface is enforced and the dynamics

exhibit some invariance properties.

Furthermore, the robustness of the killing mechanism of the virus-specific CD8+ T cell

response can be observed in experimental and mathematical studies on acute Lymphocytic

Choriomeningitis Virus (LCMV) infection [2, 29, 43, 91]. In these studies, the immunity

provided by the virus-specific CD8+ T cell response is robust to various biological factors

such as changes in the initial number of responding CD8+ T cells, changes in the rate of

clonal expansion, changes in virus strains and in the biological rates associated with the host

mice. Additionally, clinical studies have shown a great variety in the population of HIV-

infected individuals called elite HIV controllers which are able to maintain the virus load

in their body below the limit of detection without receiving any treatment [30, 37, 57, 58].

This suggests that an elite HIV-specific CD8+ T cell response is robust to changes in the bi-

ological rates and infection dynamics associated with the difference between patients along

with differences in virus strains.

The expression (5.9) provides a means to clarify the effects of uncertainty in the values

of biological rates and population dynamic of the system (5.1) on the containment of the

infection. In fact, the work in [55, 122, 140] on modelling HIV dynamics in vivo pointed
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out that some of the constant parameters in (5.1) represents biological rates which vary

according to time or to some population dynamics during the course of the infection. For

instance, the infection rate β is influenced by the antibody response to HIV [142]. Also,

HIV pathogenesis seems to create a positive feedback which activates uninfected CD4+ T

cells and increases their number as a function of the virus load [143]. From (5.9), it is

possible to argue that that the condition for immunity is insensitive to changes in the exact

mathematical representation of the population of uninfected CD4+ T cells T , the popula-

tion of infected CD4+ T cells which produces new virion P , the dynamics of free virion V

and the population dynamic of HIV-specific CD8+ T cells E. As a result, the condition

for immunity (5.9) exhibit some robustness with respect to modelling uncertainty in these

dynamics because these uncertainty do not appear in the expression of the reachability

condition (5.9). Nevertheless, parameter and modelling uncertainty in the dynamic where

the killing action of the HIV-specific CD8+ response is present influence the magnitude

of the dynamical threshold and they might cause (5.9) to fail. In essence, the dynamical

condition for immunity provided by the reachability analysis holds despite changes in the

initial condition of the system. This means that the condition can be used to investigate

different infection scenario and vaccination strategies [30, 35, 122].

It should be noted that this condition for immunity is irrespective of a particular candidate

control function. In [55, 122], the mathematical representation of the HIV-specific CD8+

T cell response has been shown to influence the immunological requirement to contain the

infection. This reachability analysis proves that the dynamical condition for immunity is

invariant to the explicit mathematical formulation of the cytolytic or non-cytolytic killing

mechanism of the HIV-specific CD8+ T cell response. The inequality (5.9) supports the

notion that both cytolytic or non-cytolytic killing mechanism of HIV-specific CD8+ T cells

are important to enforce immunity [58, 75, 140]. The expression of a candidate function

for the killing mechanism of the HIV-specific CD8+ T cell response rather than affecting

the condition for immunity changes the immunological insights retrieved when considering

a particular function [55, 56, 122].

Importantly, the dynamical condition for immunity can be examined in experimental stud-

ies by estimating the size of the different population and the biological rates involved in the

population of dynamic of infected cells in which the killing mechanism HIV-specific CD8
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T cells is acting. For instance, the dynamical threshold can be evaluated in the studies in

[35, 140] and [122] using the expression of the population dynamic of productively infected

cells because in these studies the cytolytic mechanism of the HIV-specific CD8+ T cells

acts on this dynamic. As a result, the time evolution of the condition for immunity can

be analysed for different combination of parameter values and initial condition. Thus, the

condition for immunity provided by the VSC analysis can be used to compare the evolution

of the immunological requirement to contain the infection using experimental data from

different patients [35, 140].

Hence, this reachability analysis supports the notion that the condition for immunity

changes during the course of the infection [30, 34, 122].

5.3.1 Candidate control function modelling the cytolytic killing mecha-

nism

A number of mathematical approach based on different biological assumptions have been

proposed to model the HIV-specific CD8+ T cell response [55, 122, 140]. Functional re-

sponses inspired from ecology or Michaelis-Menten functions from enzyme-substrate kinet-

ics are often used to model the expansion and cytolytic killing action of the HIV-specific

CD8+ T cell response [55, 56, 139]. The mathematical expression of the function describ-

ing the killing mechanism and the population dynamic of the HIV-specific CD8+ T cell

response are both sensible because they influence the transient dynamics as well as the

steady-states of the model along with the corresponding interpretation of the impact of the

HIV-specific CD8+ T cell response on the containment of the infection [35, 55, 56, 122, 140].

Typically, functions modelling the cytolytic killing mechanism of CD8+ T cells have the

following form:

uC = −KI (5.10)

where CD8+ T cells kill infected cells at a rate K which encompasses the cytolytic killing

process [35, 140]. This immunological control action is effectively an intrinsic negative state



Chapter 5. Evaluation of the Conditions for the containment of HIV infection by the
HIV-specific CD8+ T Cell response, a Variable Structure Control Perspective 88

feedback which opposes the infection dynamics in vivo. The simplest approach is

K1 = k (5.11)

where k is a constant killing rate. A candidate linear state feedback is thus formulated as:

uC1 = −K1I (5.12)

The condition for immunity (5.9) associated with (5.12) can be written as:

fβTV − (γ + δT )I − kI < 0

fβTV

I
− (γ + δT ) < k (5.13)

This inequality shows that the killing rate k acting as the gain of the immunological control

feedback must be high enough to satisfy these inequalities to render the manifold sE = 0

attractive. This supports the notion that increasing the cytolytic killing rate to a sufficient

level is a mean to contain the infection [56, 58]. Thus, a strong cytolytic killing action by

HIV-specific CD8+ T cells is analogous to a high gain state feedback [10, 56]. Nevertheless,

modelling a potent cytolytic action with a large and fixed value of the killing rate makes

the system suffering from the lack of robustness (such as sensitivity to changes in biological

rates) of linear state feedback control [10, 21] and the resultant dynamics of the model

might not reflect the robustness of the immunity associated elite HIV-specific Cd8+ T cell

response [30, 57, 144]. this .

A more realistic assumption is to consider that the cytolytic killing rate of HIV-specific

T cells changes during the time course of the infection [122, 140]. Recently, a general

functional response of the cytolytic killing mechanism of CD8+ T cells has been formulated

[139]. A double-saturation (DS) function with two different saturation constants has been

demonstrated to encompass different cytolytic killing processes. Here, the killing rate is

dynamical and it is a function of the population of infected cells I and the population of

HIV-specific CD8+ T cells E as follows:
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K2 =
k′E

1 + E/hE + I/hI
(5.14)

where hE and hI are the saturation constant of the population of HIV-specific CD8+ T

cells E and the population of infected cells (target) in the eclipse phase I respectively. The

parameter k′ is a mass action killing rate. As a result, the candidate control action with

the DS function is given as:

uC2 = −K2I = −
k′EI

1 + E/hE + I/hI
(5.15)

Tailoring the reachability condition to (5.15), the candidate control action constructed using

the general functional response from [139] produces:

fβTV − (γ + δT )I −
k′EI

1 + E/hE + I/hI
< 0 (5.16)

This reveals that there exists a dynamical threshold above which the population size of

effector HIV-specific CD8+ T cells renders the manifold sE = 0 attractive and forces the

decay of the infection. This dynamical condition highlights that changes in the population

size of infected cells I and HIV-specific CD8+ T cells induce variation in the magnitude of

the killing action and this influences the satisfaction of the condition for immunity. This

contributes to the findings in [102] where it has been shown using a bifurcation analysis that

the apoptosis of HIV-infected cells and HIV-specific CD8+ T cells affect the immunological

steady-state and the severity of the infection.

Further, the value of the saturation constants hE and hI plays an important role on the sat-

isfaction of the condition for immunity because the value of these biological rates influences

the magnitude of the immunological control action. This result extends the findings in [139]

where thef efficacy of the cytolytic killing process has been associated with the value of the

saturation constants hE and hI of effector CD8+ T cells and target cells respectively.
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Hence, the reachability analysis supports the emerging notion that the population size of

target cells and virus-specific CD8+ T cells and their corresponding saturation constant

determine the ability of the cytolytic killing action of virus-specific CD8+ T cells to ”con-

trol” the infection and to achieve immunity [56, 91, 122, 139].

In Chapter 2, it has been seen that when a continuous approximation of the discontinuous

sign() function is implemented, ideal sliding motion can longer be achieved. Instead, the

applied continuous control action keeps the states of the system within a vicinity of the

sliding manifold. From the expression (5.15), it is clear that the candidate DS function is

not discontinuous. Consequently, it is argued that the cytolytic mechanism of the CD8+ T

cell response operates as a nonlinear negative state feedback which forces the population size

of infected cells to be confined in a neighbourhood of the ideal sliding manifold sE = I = 0.

Consequently, using the results of Chapter 2 on smoothed variable structure control sys-

tems, it can be concluded that the immunological control action of the cytolytic mechanism

of the HIV-specific response modelled with the DS function (5.15) rather than zeroing the

population of infected cells, forces the population size of infected cells to remain at small

steady-state level determined by the magnitude of the cytolytic killing action. Moreover,

the DS function, as a nonlinear control feedback, provides some robustness of the immuno-

logical dynamics to uncertainty during sliding motion [10, 21, 22, 63].

5.4 Steady-state condition for immunity provided by the

reproductive ratio

The reproductive ratio R0 represents the number of new infected cells that a single infected

cell produces in absence of target cell limitation [34, 35, 56]. Here, the concept of the

reproductive ratio is reviewed from a control engineering perspective. In the study of

virus dynamics, the reproductive ratio is a well-known tool used to evaluate the outcome

of infection [34]. The reproductive ratio represents the number of newly infected cells

produced by one infected cell during its lifetime, assuming there is no limitation of target

cells [34]. The expression of the reproductive ratio derived in [56] using the infection-free

steady-sate of model (5.1) is as follows:
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R0 =
λ

δT

γ

γ + δI

1

δP

p

δV
fβ (5.17)

where the first factor is the population size of T at the infection-free steady-state see (5.4).

The second factor is the probability that an infected cell becomes a virus-producing cell

before it dies. The third factor is the lifetime of a virus-producing cell. The fourth factor

is the number of virus particles produced per infected cell, and the last parameter repre-

sents the infection rate for a single virus particle in presence of the non-cytolytic effects of

HIV-specific CD8+ T cells.

The Jacobian matrix of the system (5.1) at the trivial equilibrium (5.4) is given as:

J =























−δT 0 0 −βλ
δT

0

0 −δI − γ 0 fβλ
δT

0

0 γ −δP 0 0

0 0 p −δV 0

0 0 0 0 g − δE























(5.18)

The characteristic equation can be written as

(s− g + δE)(a4s
4 + a3s

3 + a2s
2 + a1s

1 + a0s
0) (5.19)
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where the coefficients of the polynomial are as follows:

a4 = 1

a3 = (δT + (δV δT + δT δI + δT δP + δTγ)/δT )

a2 = (δV δT + δT δI + δT δP + δTγ + (δV δT δI

+δV δT δP + δT δIδP + δV δTγ + δT δPγ)/δT )

a1 = (δV δT δIδP − fβγλp+ δV δT δPγ) /δT

+δV δT δI + δV δT δP

+δT δIδP + δV δTγ + δT δPγ

a0 = −fβγλp+ δT δIδP δV + δTγδP δV (5.20)

The expression of the reproductive ratio can be computed using a0 = 0 as in [40, 51]. From

a0 = 0, the ratio can be formulated:

−fβγλp+ δT δIδP δV + δTγδP δV = 0

R0 =
fβγλp

δT (γ + δI)δP δV
(5.21)

Hence, the expression of the reproductive ratio is retrieved using the stability analysis of the

system (5.1) linearised at the infection-free steady-state (5.4). It is clear that the value of R0

above or below unity influences the sign of a0. When R0 < 1, a0 > 0 and the characteristic

polynomial of fourth order has no sign changes. Using Descartes rule of sign as in [40, 145],

it is possible to deduce that the infection-free steady-state is stable. Whilst R0 > 1 implies

a0 < 0 and the fourth order characteristic polynomial has a positive pole. As a result,

the infection-free steady state is unstable. Thus, the behaviour of R0 influences the sta-

bility of the infection free steady state of the system along with the outcome of the infection.

This well know feature of R0 [56, 60] has been revisited to evidence that the condition for

the stability of the infection-free steady-state i.e the outcome of the infection using the

reproductive ratio (??) is a steady-state argument. Indeed, the poles of the system (5.1)

change during the time evolution of the state variables i.e the time course of the infection.

As a result, the value of R0 is inappropriate to determine the outcome of the infection when

the system is not at steady-state. Hence, the reproductive ratio has limitations as a means

to monitor dynamically the containment of the infection by the HIV-specific CD8+ T cell
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response.

Experimental studies [34, 35] have observed that the value of R0 is influenced by the HIV-

specific CD8+ T cell response. Here, the cytolytic mechanism of the HIV-specific CD8+

T cells is encompassed in δI, the death rate of infected cells in the eclipse phase [56]. As a

result, δI = δT +K because it is assumed that the death rate of infected cells in the eclipse

phase is equal to the one of uninfected cells in absence of the cytolytic killing action of

HIV-specific CD8+ T cells [55, 56].

Thus, the expression of the reproductive ratio can be rewritten as:

R0 =
λγpfβ

δT δP δV (γ + (δT +K))
(5.22)

The expression of the reproductive ratio in (5.22) shows that both the non-cytolytic mecha-

nism and the cytolytic mechanism of the HIV-specific CD8+ T cell response affect the value

of R0 and the outcome of the infection [56]. As per experimental data, the reproductive

ratio decreases in the presence of the HIV-specific CD8+ T cell response [34, 35, 56].

Using the framework of the reproductive ratio, the cytolytic killing rate of HIV-specific

CD8+ T cells should force and maintain the reproductive ratio (5.22) below unity to erad-

icate the infection [34, 35, 56]. Mathematically, this is formulated as:

R0 < 1

K > fβλγp−δT γδP δV
δV δT δP

− δT (5.23)

The inequality (5.23) is effectively a steady-state condition for the infection-free steady-

state to have negative poles and to be stable. Therefore, the gain of the state feedback

control (5.10) should exceed a critical threshold value determined by the values of the

biological rates present in the right hand side of the inequality (5.23). In other words, a

sufficient cytolytic killing rate is needed to eradicate the infection. Further, (5.23) implies

that stability of the infection-free steady-sate i.e the eradication of the infection is sensitive

to changes in the values of the biological rates involved in the expression of the reproductive

ratio. This implies that the cytolytic mechanism of the HIV-specific CD8+ T cells is not
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Table 5.1: Values of biological rates

Parameter Value

λ 2105( cells
day

)

δT 0.1(day−1)

β 310−8(day−1)

f 1(day−1)

γ 1(day−1)

δI 0.1(day−1)

δP 1(day−1)

ρ 2300(day−1)

δV 23(day−1)

g 1.5(day−1)

hg 0cells

δE 0.5(day−1)

robust to uncertainty and perturbations in these biological rates because changes in these

biological rates affect the required killing rate [35, 56, 140]. This implies a lack of robustness

of the HIV-specific CD8+ T cell response which might not be realistic [57, 144].

5.5 Simulation experiments

Immunological experiments are simulated to show that the dynamical condition for im-

munity (5.9) provided by the reachability analysis appropriately tracks the immunological

requirements for immunity during the course of the infection and is superior to the steady-

state condition (5.23) formulated using the reproductive ratio (5.22). In the simulations,

the initial condition depicts a scenario where the population of uninfected CD4+ T cells

is at steady-state T (0) = λ
d1
, the infection is assumed to be induced by a single virion

I(0) = P (0) = 0;V (0) = 1 and precursor HIV-specific CD8+ T cells E(0) = 1. The pa-

rameter values shown in Table 5.1 are taken from [56].

The population dynamics of the system (5.1) in the absence of a killing action from HIV

specific CD8+ T cell response i.e g = 0 and uC = 0 are displayed in Fig. 5.2. This

simulation models experimental studies in which CD8+ T cells are depleted in order to

assess their impact of HIV load in vivo [57, 146, 147]. From a control engineering standpoint,

this simulation experiment is regarded as an analysis of the open loop dynamics of the

system. The open-loop dynamics in Fig. 5.2 are consistent with the experimental findings
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in [146, 147] because they show a large viral load steady-state along with the reduction of

the population of target CD4+ T cells when HIV-specific CD8+ T cells are absent.

Figure 5.2: Open-loop system (5.1). Simulation of HIV infection in the absence of a
killing action from the HIV-specific CD8+ T cell response. T (0) = 2.106; I(0) = P (0) = 0;

V (0) = E(0) = 1. f = 1;K = gmax = 0.

Using the biological rates given in Table 5.1, the reproductive ratio (5.22) is R0 = 5.45

and the numerical value of this steady-state condition for immunity using the reproductive

ratio is given as:

K > 4.9 (5.24)

This inequality is effectively a threshold that the cytolytic killing rate must exceed to

produce negative poles to render the infection-free steady-state stable, see characteristic

equation (5.19)-(5.20). Since uC = 0, K = 0 for the open-loop dynamics. As a result,

(5.24) is not satisfied and the dynamics will not reach the infection-free steady-state. As

in [56], the reproductive ratio indicates that the infection will spread.

The purpose of Fig. 5.3 is to show the time evolution of the dynamical condition for immu-

nity when there is no HIV-specific CD8+ T cell response. This is regarded as the condition
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for immunity of the open-loop dynamic where there is no control action. Although the

steady-state condition for immunity (5.24) using R0 has a static value, the reachability

analysis through Fig. 5.3 demonstrates that the condition for immunity changes during the

time evolution of the infection. Concurrently, the magnitude of the sliding surface changes

during the infection, see Fig. 5.4. Since the reachability condition is not met, the manifold

of interest sE = 0 is not reached and sE attains a non-trivial steady-state value associated

with the HIV infection steady-state.

Figure 5.3: Time evolution of the dynamical condition for immunity (5.9) in absence of
the HIV-specific CD8+ T cell response uC = 0.

From a VSC stand-point, the following dynamical insights can be formulated. Firstly, it is

worth to note that the positive peak of the condition for immunity, see Fig. 5.3 is associated

with the peak of the virus load, see Fig. 5.2. From Fig. 5.3 and Fig. 5.4 It can be noticed

that at the early days following infection (before the peak in viral load) the magnitude of

the immunological action required to achieve immunity is smaller. Thus, the VSC analysis

reinforces the notion that early therapeutic interventions are desirable [30, 34]. Secondly,

the transient negative phase of the dynamical condition for immunity, see Fig. 5.3 shows

that the saturation effects caused by the limitation of target cells whilst reducing the viral

load satisfy the condition for immunity.
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Figure 5.4: Time evolution of the sliding surface (5.5) with uC = 0.

It can be concluded that the analysis of the open-loop dynamics show that the framework

of sliding mode control is a superior tool to examine the infection dynamics as compared

to the reproductive ratio because the formulated condition for immunity determines the

outcome of the infection as well as highlights time varying immunological requirements to

achieve immunity. This is a contribution from the VSC analysis in this HIV study.

5.5.1 Constant cytolytic killing action

Consider the closed-loop system formed by candidate control function uC1 (5.12) with a

fixed killing rate k = 10day−1.

The value of R0 with this candidate control action is R0 = 0.5. Note that k has been

chosen to satisfy the steady-state condition (5.24) provided by the reproductive ratio. Con-

sequently, the infection-free steady-state (5.4) is stable and the infection does not spread.

This result is congruent with the numerical analysis in [56] where it was shown that increas-

ing the killing rate of CD8+ T cells above the value K = 5day−1 produces a reproductive

ratio below unity and leads to the eradication of the infection.
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Similarly, the time evolution of the dynamical threshold Fig. 5.5 is always negative and this

predicts the decay of the infection because the condition for immunity (5.9) is satisfied. In

effect, the population of infected cells in the eclipse phase I will keep on decreasing and

this leads to a continuous reduction of the virus load.

Figure 5.5: Time evolution of the dynamical condition for immunity (5.13) with the
cytolytic killing mechanism of the HIV-specific CD8+ T cell response uC1 = −10I .

The time evolution of the sliding surface Fig. 5.6 shows that the large killing rate of the

candidate cytolytic killing mechanism uC1 produces negative feedback, see Fig. 5.7, of

sufficient magnitude to force the switching function sE to decay exponentially towards

the desired manifold sE = 0. As a result, the immunological objective is met and the

trajectories of the system move towards the infection-free steady-state.

It is worth to mention that the fast transient observed in Fig. 5.5- 5.7 is due to the fact

that a large and constant magnitude of ( k = 10 day−1) of cytolytic killing action has been

utilized in the simulation. These figures represent a proof-of-concept to support the notion

that a potent killing action from HIV-specific CD8+ T cells is adequate to enforce a sliding

mode on sE = I = 0, to contain HIV infection, and maintain an infection-free steady-state.

However, this high and constant cytolytic killing action might not be realized by CD8+ T

cells in vivo.
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Figure 5.6: Time evolution of the sliding manifold (5.5) with uC1 = −10I

Figure 5.7: Time evolution of the control action (5.12) with uC1 = −10I

It can be deduced that the framework of sliding mode control applied to HIV dynamics in

vivo delivers suitable tools to evaluate the outcome of the infection.
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5.5.2 Dynamical cytolytic killing action

Consider the closed-loop system where (5.15) is the control. The general functional response

from [139] is selected to investigate the containment of the infection because it is a sensible

model of the cytolytic killing mechanism. In [56], the specific case of a monogamous killing

process derived from (5.15) was considered to study the impact of the cytolytic killing

of HIV-infected cells in the eclipse phase. This monogamous killing process describes a

cytolytic mechanism where a single effector CD8+ T cell kills target cells. Mathematically,

this monogamous killing process is expressed as:

uC3 = − kmaxEI
hk+E+I

(5.25)

with k′ = kmax

hk
and hk = hE = hI . The maximum killing rate is kmax and the parameter

hk which is effectively a Michaelis-Menten constant defines the immune responsiveness

[56, 139]. The resultant monogamous killing mechanism (5.25) uC3 with the maximum

killing rate kmax = 50 day−1 and the saturation constant hk = 1 as in [56].

The expression (5.25) is chosen to conduct the following analysis to build on the findings

in [56]. Using numerical analysis, it has been shown in [56] that (5.25) influences the

steady-state level of the virus load. It was found that reducing hk increases the efficacy

of the killing process and leads to a reduction in the steady-state value of virus load.

Consequently, the findings in [56] motivates a control engineering approach to provide

an analytical framework to formally assess (5.25) as a control mechanism to eradicate HIV

infection in vivo. Moreover, (5.25) was selected to demonstrate the benefits of the dynamical

condition for immunity over the reproductive ratio.

From [56], the reproductive ratio written as a function of the candidate control action (5.25)

is as follows:

R0 =
λγpfβ

δT δP δV (γ + (δT + kmaxE
hk+I+E

))
(5.26)

Here, the value of R0 changes over time due to changes in the killing rate of uC3 during

the course of the infection.
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The purpose of Fig. 5.8 is to display the time evolution of the biological population dynamics

of the closed-loop system (5.1) with the considered monogamous cytolytic killing action.

The transient dynamic and the steady-state of the dynamic of free-virion is reduced by the

cytolytic killing of HIV-infected cells I by the HIV-specific CD8+ response.

Figure 5.8: Closed-loop dynamics (5.1). Simulation of HIV infection with a potent HIV-
specific CD8+ response with uC1. T (0) = 2.106; I(0) = P (0) = 0; V (0) = E(0) = 1.

f = 1; hk = 1

From Fig. 5.9 which illustrates the control effort of the monogamous killing cytolytic killing

action during the time evolution of the infection, it can be seen that the control effort is in

the neighbourhood of the critical threshold (5.24) computed using the reproductive ratio.

Fig. 5.10 reveals that the value of reproductive ratio changes during the time course of

the infection. As per the numerical analysis in [56], R0 approaches unity at steady-state

when the control action (5.25) is applied. Importantly, the value of the reproductive ratio

during the transient dynamics of the system is misleading to assess the outcome of the

infection because the value of R0 fluctuates above and below unity during the transient

phase. R0 < 1 wrongly suggests the eradication of the infection from day 0 to day 10 and

from day 18 to day 22, see Fig. 5.10. This is due to the fact that the poles of the system

(5.1) vary during the infection before the population dynamics reach a steady-state. This

shows the limitation of the reproductive ratio to reflect appropriately the condition for
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Figure 5.9: Time evolution of the control action (5.25) with uC3 hk = 1

Figure 5.10: Time evolution of the reproductive ratio using uC3 (5.25) with hl = 1.

immunity when the system is not at steady-state.
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The time evolution of the reachability condition displayed in Fig. 5.11 reveals that the

condition for immunity is not met at the beginning of the infection in contrast with the

prediction of the reproductive ratio. Although, the considered control action uC3 reduces

significantly the dynamical threshold for immunity but it does satisfy the dynamical con-

dition for immunity (5.16) the manifold of interest sE = 0 is not reached (see Fig. 5.12).

Nevertheless, it should be noted that the candidate monogamous cytolytic killing action

uC3 contains the infection to a low level steady-state close to the infection-free steady-state

by keeping the sliding surface close to the desired manifold after a transient period (see

Fig. 5.12). Therefore, VSC analysis allows the monitoring of the condition for immunity

and the impact of the killing action of the HIV-specific CD8+ T cells during the infection.

Figure 5.11: Time evolution of the dynamical condition for immunity (5.16) with the
cytolytic killing mechanism of the HIV-specific CD8+ T cell response uC3 (5.25)

In [56], it has been shown using a numerical analysis that the value of hk affects the

steady-state population size of infected cells I and the steady-state level of the virus load.

Using the sliding mode framework, changes in the saturation constant hk influence the

magnitude of the control effort (killing action) uC3 as well as distance between the manifold

of interest sE = 0 and the value of sE generated by uC3 with a particular value of hk. The

reachability condition is not satisfied when hk is large. This reinforces the notion that the

saturation constant plays an important role to achieve immunity [56, 139]. Thus, failure
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Figure 5.12: Time evolution of the sliding surface (5.5) with uC3 (5.25).

of the reachability condition explains why this cytolytic killing mechanism fails to zero the

population dynamic of infected cells I and to eradicate the infection.

Although the manifold of interest sE = 0 is not attained using the cytolytic killing function

uC3, this candidate control action keeps the sliding surface in the neighborhood of the

desired sliding manifold and contains the infection within a region close to the infection-

free steady-state (see Fig. 5.12 and Fig. 5.8). In effect, the virus load is below the limit of

detection which is 50 RNA copies per ml from [56, 148] and the population of uninfected

CD4+ T cells is near its infection-free equilibrium. Therefore, from a clinical perspective,

this candidate cytolytic killing mechanism produces a desirable outcome.

Thus, the cytolytic control functions which maintain the sliding surface in the vicinity of

the sliding manifold sE = 0 can be classified as elite HIV-specific CD8+ response when the

control action forces the virus load to remain below the limit of detection [30, 36, 56, 58].

Consequently, the condition for immunity can be relaxed to force the infection dynamics to

remain within a boundary region associated with the virus limit of detection and other clin-

ical requirements. Mathematically, this means that the condition for immunity is reduced

to sE < δ where δ is an upper bound associated with desirable clinical outcome.
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These results supports the notion that immunological requirements for the eradication of

HIV infection changes during the time course of the infection and the ability of the HIV-

specific cytolytic mechanism to induce immunity is influenced by the population size of

infected cells and effector Cd8+ cells and their corresponding saturation constant.

Importantly, these findings cannot be retrieved using the reproductive ratio because R0

suggests just that the infection will decay but does not articulate the decay of the infection

in finite time neither a decay to zero.

5.6 Conclusion

In this chapter, tools from VSC theory have been used to articulate a dynamical condition

for the cytolytic killing mechanism of the HIV-specific CD8+ T cell response to zero the

population of infected cells I. This dynamical condition has been demonstrated to monitor

the immunological requirements for immunity during the time evolution of the infection ap-

propriately. Failure of the candidate HIV-specific CD8+ response to satisfy the dynamical

condition for immunity is consistent with failure of the CD8+ T cell response to reach and

maintain the infection free steady-state. Additionally, the dynamical condition for immu-

nity as compared to the steady-state conation provided by the reproductive ratio describes

the immunological requirements for immunity during the course of the infection well.

In the next chapter, the approach developed in this chapter will be applied to investigate the

effects of antiretroviral drugs to achieve the containment of HIV infection in vivo. In effect,

it has been proven in this chapter that HIV infection dynamics in vivo are effectively a

closed-loop system with the HIV-specific immune response as an intrinsic control feedback.

As a result, the uptake of antiretroviral drugs represents an outer control feedback to

contribute to the containment of the infection.



Chapter 6

Case Study: Prediction of the

Containment of HIV Infection by

Antiretroviral Therapy - a Variable

Structure Control Approach

6.1 Introduction

A case study is conducted in this chapter to demonstrate that the reachability paradigm

from Variable Structure Control (VSC) theory presented in Chapter 2 is a suitable frame-

work to monitor and predict the progression of the HIV infection following initiation of

antiretroviral therapy.

In the previous chapter, it has been demonstrated that HIV infection dynamics in vivo

represent a closed-loop system in which the effects of the HIV-specific CD8+ T cell response

operates as a VSC feedback to contain the infection. In the majority of patients infected

with HIV this inherent control mechanism fails to clear the infection and recover a healthy

state [30, 37, 149].

Antiretroviral therapy (ART) seeks to perturb the pathogenesis of the virus to allow infected

individuals to stop exhibiting HIV related symptoms and to recover a certain level of

immunity so that the quality of their lives can be improved [149]. Thus, ART can be viewed

106
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as an outer-loop control strategy applied to enforce recovery. Using current experimental

facilities, the standard clinical data for diagnosis and monitoring HIV infection in patients

are the total number of CD4+ T cells measured by flow cytometry and HIV viral load

measured by Polymerase Chain Reaction (PCR) [148–151]. ART attempts to reduce HIV

load and this usually leads to recovery to a suitable level of CD4+ T cell count (> 200

cell/mm3) in the peripheral blood [30, 150, 152]. However, this desirable outcome is not

always achieved and the design of appropriate ART, the prediction of outcomes using

clinical data and the assessment of virologic failure are the subject of active experimental

and mathematical research [59, 153].

To allow mathematical models of HIV dynamics to be used as a tool for personalized clinical

diagnosis and ART, it is crucial to estimate all the biological rates of the chosen model for

each patients [59, 152, 154]. This can be a challenging problem using standard clinical data

[59, 138, 154]. Further, current experimental facilities do not allow direct measurement of

some pertinent state variables, such as the population dynamic of HIV-specific CD8+ T

cells or infected CD4+ T cells in the eclipse phase [30, 55, 148]. Due to these practical

limitations, the HIV model utilized in Chapter 5 is not selected to conduct the following

investigations.

A third order Ordinary Differential Equation (ODE) model has been shown to encompass

the observed biological characteristics of the acute phase of HIV infection using the variation

over time of the population of healthy CD4+ T cells, the infected population of CD4+

T cells which produce new virions along with the concentration of the HIV-1 free virus

[60]. Using techniques from engineering, the authors in [137, 141] have proved that the

parameters of this model can be estimated from standard clinical data. This method

is based on the computation of higher-order derivatives of the output measurements to

formulate a set of identification equations and the solution of this system of equations

allows the computation of the biological rates of the HIV model. Subsequently, a multiple

time point (MTP) estimation algorithm using values at different time instants to reduce the

need for higher-order derivatives of the output measurements has been used to formulate

the identification equations [59].

Statistical estimation methods such as the simplex method [35], the differential evolution

method [59] and the Monte-Carlo approach [148, 155] have been implemented to estimate

HIV parameters in patients following the initiation of antiretroviral treatment. More recent

contributions in this area can be found in [154, 156]. Together, this literature demonstrates
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that the third order model of HIV infection correlates well with clinical data obtained

from patients undergoing antiretroviral treatment [59, 148, 154] and that HIV dynamic

parameters estimated a few weeks after initiation of ART can be used to investigate the

impact of ART on the progression of HIV infection for individual patients [152, 153, 155].

In the literature [59, 60, 153], the impact of antiretroviral drugs on the progression of HIV

infection has been investigated using the concept of the reproductive ratio R0 presented

in Chapter 5. In fact, using the values of the parameter estimated for the basic HIV

model, the reproductive ratio is calculated to determine the progression of the infection

[35, 59, 60]. For the basic third order ODE HIV model, the expression for R0 is a function

of the model parameters and not the states and thus a time-invariant condition for the

containment of the infection is formulated. The work in Chapter 5 along with other studies

[30, 34, 57, 102] argue that the condition for the containment of the infection rather than

being static changes during the course of the infection. Furthermore, the work in [153] has

shown that the value of the reproductive ratio estimated at different weeks after the start

of ART can switch from R0 < 1 to R0 > 1 in the later weeks due to the appearance of drug

resistance.

The purpose of this case study is to utilize the analytical tools from sliding mode control

as alternative means to investigate the dynamics of HIV infection following antiretroviral

therapy.

From the classical example of a pendulum system with a sliding mode, shown in Chapter 2,

it is worthy to note that a manifold of the state space can be formulated to encompass the

control objectives imposed on a system. Furthermore, the reachability analysis provides

means to investigate how a given control input can satisfy the reachability condition so that

the desired control objectives are met. Thus, by binding the desired dynamical behaviour

with the attainment of a sliding mode, this VSC approach delivers tools to monitor the

closed-loop dynamics and assess the performance of the considered control input.

Additionally, a sliding mode control approach has been used in Chapter 5 to formulate

a dynamical condition for the containment of HIV infection by the HIV-specific CD8+ T

cell response. The result in Chapter 5 shows that the dynamical condition for immunity

provided by the reachability analysis appropriately monitors the progression of the infection.

As compared to the reproductive ratio, the VSC approach provides additional insights on



Chapter 6. Case Study: Prediction of the containment of HIV Infection by Antiretroviral
Therapy - a Variable Structure Control Approach 109

HIV infection dynamics. These findings provides a strong motivation to conduct this case

study.

The chapter is organized as follows: Firstly, the HIV model and the reproductive ratio

are outlined. In Section 6.3 a dynamical condition for the containment of HIV infection by

antiretroviral therapy is formulated using the reachability paradigm from variable structure

control. The clinical data sets used for the study and the method used to estimate the

parameters of the model are described and evaluated in Section 6.4. Section 6.5 presents

the results of the simulation experiments conducted to show that the proposed dynamical

condition for immunity is a reliable tool for early diagnosis of the outcome of antiretroviral

therapy on HIV infection.

6.2 System model

The dynamical equations of HIV infection for patients being treated with antiretroviral

therapy can be written as:

dT

dt
= λ− δTT − β0TV + u1(t)

dP

dt
= β0TV − µ1P − u1(t)

dV

dt
= k0P − µ2V − u2(t) (6.1)

with δT < µ1 [59, 60, 96]. The state variables are the number in cell/mm3 of uninfected

target CD4+ T cells (T ), the number in cell/mm3 of HIV-infected CD4+ T cells producing

new virions (P ) and the concentration in RNA copies/ml of HIV-1 free virions (V ). Fig. 6.1

is provided to improve the understanding of the dynamical system (6.1).

.

Uninfected CD4+ T cells are produced by the thymus at a rate λ (in cell/day) and die

at a rate δT (in day−1). HIV infects healthy CD4+ T cells at a rate β0 (in µlvirion/day

x10−3). HIV-infected CD4+ T cells produce new virions at a rate k0 (in virion/day) and

die at a rate µ1 (in day−1). HIV free virions are cleared at a rate µ2 (in day−1) in the

peripheral blood. As in [59, 60, 148], these six biological rates are non-negative and assumed

to be constant for a given patient. The functions u1(t) and u2(t) represent the action of

reverse-transcriptase (RT) and protease inhibitor (PT) drugs respectively. The effect of
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Figure 6.1: Model (6.1) of HIV infection dynamics following antiretroviral therapy (ART)

antiretroviral drugs on HIV infection dynamics can be modelled as follows:

u1 = η1β0TV (6.2)

u2 = η2k0P (6.3)

where 0 ≤ η1 < 1 and 0 ≤ η2 < 1 are constants related to the efficiency of the deployed

RT and PT drugs, assuming that 100 percent drug efficacy cannot be achieved [60, 157].

The action of antiretroviral therapy will be considered from the perspective of control

engineering and regarded as a control action which seeks to enforce the containment of the

HIV infection. In practice, antiretroviral therapy is declared efficient when it reduces and

maintains the HIV viral load in the peripheral blood stream below the threshold of 50 HIV

RNA copies/ml [157]. The available output measurements of (6.1) are assumed to be

y1(t) = T (t) + P (t); y2(t) = V (t) (6.4)

where y1(t) is the total number in cell/mm3 of CD4+ T cells in blood samples collected

from patients [150, 152, 154]. This choice is motivated by the information available in the

clinical data sets used for later validation of the proposed methodology.
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The clinical trial data available relates to the period following the initiation of antiretroviral

therapy and thus it is not possible to estimate the values of β0 and k0 [148, 150, 154]. Thus

β0(1− η1) and k0(1− η2) i.e the resultant effects in vivo of the uptake of RT and PT drugs

respectively will be considered and in the model (6.1), the following substitutions are made

β = (1− η1)β0 (6.5)

k = (1− η2)k0 (6.6)

to yield the closed-loop representation

dT

dt
= λ− δTT − βTV

dP

dt
= βTV − µ1P

dV

dt
= kP − µ2V (6.7)

This parametrization of the effects of antiretroviral drugs is as used in previous studies

[59, 148, 157]. The model (6.7) has two equilibrium points. There is a trivial equilibrium

corresponding to an infection-free steady-state at

Ts0 =
λ

δT
; Ps0 = Vs0 = 0 (6.8)

The Jacobian of the system (6.7) linearised at the infection-free steady-state (6.8) is given

by

J =











−δT 0 −βλ
δT

0 −µ1
βλ
δT

0 k −µ2











(6.9)

The characteristic equation of (6.9) is

1

δT
(s+ δT )(a2s

2 + a1s+ a0) = 0 (6.10)

where the coefficients of the polynomial are given by:

a2 = δT

a1 = δTµ1 + δTµ2

a0 = −λβk + δTµ1µ2 (6.11)
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Using Descartes’ rule of sign as in [40, 145], the stability of the infection-free steady-state is

assessed by counting the number of sign changes in the characteristic polynomial in (6.10).

Since the biological rates of the model (6.7) are all positive, the coefficients a2 > 0 and

a1 > 0. It remains to investigate the sign of the coefficient a0 in (6.11).

As in Chapter 5 section 3, the reproductive ratio can be utilized to assess the stability of

the infection-free steady-state. For the system (6.7), the reproductive ratio is given as:

R0 =
λ

δT

1

µ1

k

µ2
β (6.12)

The first factor is Ts0, the population size of uninfected CD4+ T cells T at the infection-

free steady-state, see (6.8). The second factor is the lifetime of a virus-producing cell.

The third factor is the number of virus particles produced per infected cell and the final

parameter represents the infection rate for a single virus particle. Whether the value of R0

is above or below unity influences the sign of a0 and thus determines the stability of the

infection free steady-state. When R0 < 1, a0 > 0 and the quadratic polynomial has no sign

change. Using Descartes’ rule of signs [145], this implies that the roots of the quadratic

polynomial are negative. As a result, the HIV model (6.7) linearised at the infection-free

steady-state (6.8) has negative poles. Thus, the infection free-steady state is stable when

R0 < 1. In contrast, R0 > 1 implies a0 < 0. Consequently, there exists a sign change

in the second order polynomial in (6.10) which indicates a positive pole. As a result, the

infection-free steady state (6.8) is unstable when R0 > 1. Mathematical investigations in

[116] have proved that if R0 ≤ 1, the infection free steady-state is globally asymptotically

stable (GAS).

The expression for the non-trivial equilibrium is given by:

Ts1 =
µ1µ2

βk
; Ps1 =

λ
µ1

− δTµ2

βk
; Vs1 =

λk

µ1µ2
−

β

δT
(6.13)

From the results in [35, 116], the non-trivial equilibrium (6.13) is stable when R0 > 1.

This non-trivial equilibrium can represent either an undesirable steady-state corresponding

to chronic infection or a desirable steady-state depending on the parameter values [30,

35, 60, 152]. Since the surrogate markers of the progression of HIV infection in clinical

diagnosis are the measurements of the total number of CD4+ T cells (T + P ) and HIV

load in the peripheral blood stream, a chronic infection steady-state is characterized by a
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low number of CD4+ T cells and a large HIV viral load in the peripheral blood samples.

A corresponding steady-state of asymptomatic infection which can be enforced as a result

of efficient antiretroviral treatment is usually associated with a high number of CD4+ T

cells and HIV load below the limit of detection of 50HIV RNA copies/ml [150, 152]. The

state space of the HIV model (6.7) can be partitioned into two regions. In one region,

HIV is harmful for the infected individual and the corresponding immunological dynamics

and steady-states in this region are undesirable. In the other region, HIV infection is

asymptomatic and the related immunological dynamics and steady-state in this region are

desirable from a clinical perspective. It is thus of interest to develop mathematical tools to

define the boundaries of these regions as well as to predict the location of the steady-state

enforced by antiretroviral therapy to inform clinical diagnosis.

6.2.1 The reproductive ratio, a steady-state condition for the success of

antiretroviral therapy

Using the framework of the reproductive ratio, antiretroviral therapy must force and main-

tain R0 below unity following initiation of treatment to prevent the spread of HIV infection

[30, 116, 155, 158]. The effectiveness of antiretroviral therapy is encompassed in the prod-

uct kβ because the HIV model (6.7) does not allow decoupling of the effects of RT and PT

drugs [155]. Thus, the condition for antiretroviral drugs to eradicate HIV infection derived

from the reproductive ratio is given by

R0 < 1

kβ < 1
Ts0

µ1µ2 (6.14)

(1− η2)(1− η1) <
1

Ts0

µ1µ2

β0k0

where Ts0 = λ
δT
. This inequality is a steady-state condition for the infection-free steady-

state to have negative poles and hence to exhibit stable behaviour. The inequality (6.14)

implies that antiretroviral drugs achieve eradication of HIV infection when the effective

control action exceeds a critical threshold value determined by the biological rates.

As discussed in Chapter 5, the framework of the reproductive ratio has some limitations,

When (6.14) is not satisfied, the generated value of R0 alone cannot be used to predict

whether the non-trivial equilibrium (6.13) is located in a state space region associated with

a chronic infection state or an asymptomatic state. In effect, the value of R0 alone does not
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provide information on the magnitude of the CD4+ T cell population and HIV viral load

at the nontrivial equilibrium. As will be demonstrated later in this chapter, there are also

cases where the prediction from R0 alone is seen to contradict the clinical outcome [155].

The reproductive ratio paradigm is thus seen to have limitations as a means to monitor

and predict the containment of HIV infection following drug treatment.

6.3 A reachability condition to monitor the containment of

HIV infection

In the context of HIV infection dynamics in vivo, the work in Chapter 5 has demonstrated

that these dynamics form a closed-loop system in which the specific immune response of

CD8+ T cells against HIV is an intrinsic VSC feedback applied by the immune system to

contain the infection. Furthermore, it has been shown that the reachability paradigm intro-

duced in Chapter 2 can be used to formulate a dynamical condition for the containment of

HIV infection in vivo. Importantly, this approach provides a nonlinear means to determine

and monitor the progression of the infection.

In this section, the approach used in Chapter 5, is considered to investigate dynamical

requirements for the containment of HIV infection in vivo following the initiation of an-

tiretroviral therapy.

It will be seen that the variable structure control paradigm will be particularly useful in

explaining dynamic behaviour which occurs within a boundary layer of the infection free

steady-state. Currently measured data and analytical analysis has produced conflicting

conclusions in such cases [30].

The formulation of a reachability condition to monitor the containment of HIV infection

involves defining an appropriate switching function to describe the desired clinical outcome

of the treatment. A candidate switching manifold is chosen to be compliant with the

objective of antiretroviral therapy to reduce and maintain the HIV viral load below the

limit of detection. The hypothesis is that in the ideal case, the uptake of antiretroviral

drugs, as a control mechanism, has to force the HIV infection dynamics to attain and

remain on the infection-free steady-state (6.8).
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A valid candidate switching function is

sE(t) = P (t) (6.15)

because the manifold sE(t) = P (t) = 0 in which the population dynamic of productively

infected CD4+ T cells vanishes has been observed to be a naturally occurring attractive

manifold in the state-space of (6.7) when the trajectories exhibit a stable motion towards

the infection free steady-state (6.8). The reachability condition for exhibiting a sliding

mode is expressed as

sE
dsE
dt

< 0 (6.16)

sE (βTV − µ1P ) < 0 (6.17)

(βTV − µ1P ) < 0

This inequality is fundamentally a dynamical condition for the manifold sE(t) = 0 to be

attractive. In the present context, enforcing a sliding motion on sE(t) = 0 is synonymous

with achieving the containment of HIV infection. In order to ensure (6.16) attains and

remains at a negative value, the therapeutic control u1 associated with the effects of an-

tiretroviral drug therapy must have a sufficiently large magnitude to overcome the positive

feedback β0TV associated with the HIV pathogenesis. The reachability condition (6.16)

thus represents a dynamical condition for antiretroviral drugs to force the dynamics to

lie within a neighbourhood of the manifold sE(t) = 0. The inequality (6.16) represents

a dynamical condition for antiretroviral drug therapy to contain HIV infection. It should

be noted that assessing the sign of dsE
dt

is sufficient to determine whether the reachability

condition is satisfied due to the fact that sE(t) = P (t) ≥ 0 because it represents the number

of infected CD4+ T cells producing new virions. The reachability condition (6.16) can be

written as:

βTV − µ1P < 0 (6.18)

It is interesting to note that the expression (6.17) can be written in terms of the output

dynamics and their derivatives to allow direct monitoring of the condition for immunity
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using the measured state variables if desired:

dsE
dt

= βy1y2 −
(

βy2+µ1

k

)

(ẏ2 + µ2y2) < 0 (6.19)

This expression for the reachability condition, which is a function of both η1 and η2 demon-

strates that RT and PT drugs work synergistically to achieve the containment of HIV

infection.

6.4 Parameter identification

It is clear that whether seeking to monitor the clinical outcome of antiretroviral drug

therapy in the treatment of HIV using the reproductive ratio or the proposed reachability

condition, it is first necessary to determine patient dependent parameter estimates based

upon available clinical measurements.

6.4.1 The clinical data sets

Two clinical trials have been considered to evaluate the use of the reachability condition

(6.18) as a tool to monitor the containment of HIV infection following antiretroviral therapy.

From the theoretical point of view, it is desirable to have a large number of data points

at equally spaced intervals. However, practical constraints related to the collection and

analysis of blood samples from HIV infected individuals influence the timings and number of

the measured data [138, 148, 159]. The selected data sets are chosen to test the practicality

of the approach.

The first data set relates to the EDV05 clinical trial conducted at the Centre Hospitalier

Universitaire (CHU) de Nantes, France [148, 152, 157]. In this study, measurements of

the total number of CD4+ T cells and HIV viral load in the peripheral blood stream were

collected following the initiation of Highly Active Antiretroviral Therapy (HAART). The

facilities used in that study allowed HIV viral load to be measured up to the limit of

1.6log10(RNAcopies/ml) i.e 50(RNAcopies/ml). As in [148, 152], the data collected in

the first 21 days are used to compute estimates of the biological rates. This information is

then used to predict the outcome of the full treatment regime. The data measured following

the initial period of 21 days are used to validate the resulting theoretical predictions of the
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efficacy of the treatment. The EDV05 trial has been considered because model parameters

have been estimated by other studies for this patient data [148, 152, 155, 160]. This is

useful to compare the results of the parameter estimation approach adopted in this work

as well as to test the formulated dynamical condition for immunity (6.18). In this chapter,

the syntax pti is used to refer to the patients involved in the EDV05 trial where i denotes

a specific patient number. Note that the results of pt10 are discarded because there is no

clinical data available from the final follow-up visit in the clinical trial. Thus, the efficiency

of the treatment cannot be validated.

The longitudinal data recorded by the AIDS Clinical Trials Group (ACTG 315) [150, 159]

are also chosen to verify the performance of the proposed reachability condition for cases of

success and failure of HAART. Here, the syntax pai is used to refer to the patients involved

in this study. For this trial, data points in the interval [0, 30] days are used to compute the

estimates of the biological rates. The limit of detection of HIV free virion in this trial is

2log10(RNAcopies/ml) i.e 100(RNAcopies/ml). Data below this limit were tabulated as

1.699log10(RNAcopies/ml). As in [161], data below the limit of detection are not used to

estimate the biological rates. As discussed in [138], the selection of a patient data along

with segmentation of the data period into data used for parameter estimation and data

used for the validation of prediction is driven by the availability of sufficient data points

to perform the parameter estimation. The rate at which patient data is sampled differs

from study to study and is not constant across a given study. This realistic scenario of

data availability will be seen not to affect the predictions. Patient data which do not have

data points covering a six month period (≥ 160 days) are discarded due to the fact that

no information is available to confirm the predictions and to assess the long term efficacy

of the antiretroviral therapy.

6.4.2 Parameter identification procedure

Previous mathematical analysis [59, 137, 152] has proved the algebraic and practical iden-

tifiability of the parameter set λ, δT , β, µ1, k, µ2 of the model (6.7) using the output mea-

surements (6.4).

In [59], it was shown that the multi-point identification method provides some advantage

over the higher order identification method used in [137, 141, 162] because it allows the
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computation of the estimates using a finite set of output data points instead of computing

the higher order derivatives of the output measurements.

Here, the multi-point identification method described in [59] is applied to identify the six

biological parameters λ, δT , β, µ1, k, µ2 of the model (6.7) using measurements taken at

irregular intervals within a set period following initiation of antiretroviral treatment for

patients across the two data sets. A pseudo code is provided in the appendix A.

For each patient, shape-preserving piecewise cubic interpolation is used to generate a con-

tinuous stream of data points within the range of the discrete set of measured clinical data

considered for the computation of the estimates of the biological rates. Next, the least-

squares polynomial that are the best fit for y1(t) and y2(t) are computed to evaluate the

time derivatives of the measurements at different time points as in [154]. The degree of

the least-squares polynomial for each patient is selected to improve the quality of the fit.

Subsequently, the following multi-point identification process is carried out. Consider y2

and its time derivative up to the third order

y
(3)
2 =

(

y−1
2 ẏ2 − δT − βy2

)

(ÿ2 + (µ1 + µ2)ẏ2 + µ1µ2y2)

+λkβy2 − µ1µ2ẏ2 − (µ1 + µ2)ÿ2 (6.20)

The identification coefficient θ1 is defined as:

θ1 = (β, δ, ρ, ν, η) (6.21)

where

β = β; δ = µ1; ρ = δT ; ν = µ1µ2;µ = µ1 + µ2; η = λkβ (6.22)

This implies that four of the six parameters of the model (6.7) can be identified using

measurement of y2 and corresponding derivatives. The values of the parameters λ and k

are indistinguishable and only their product λk can be estimated. Consider the right hand

side of (6.20):

f(t, θ1, y2, ẏ2, ÿ2, y
(3)
2 ) =

(

y−1
2 ẏ2 − δT − βy2

)

[ÿ2 + µẏ2 + vy2]

+ηy2 − νẏ2 − µÿ2 (6.23)
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Assume that the quantities (y2, ẏ2, ÿ2, y
(3)
2 ) are either available from direct measurement or

can be constructed from measurements at five different time points. Denote the values of

(y2, ẏ2, ÿ2, y
(3)
2 ) at t = ti as (y2(i), ẏ2(i), ÿ2(i), y

(3)
2 (i)) and

fi = f
(

t(i), θi, y2(i), ẏ2(i), ÿ2(i), y
(3)
2 (i)

)

for i = 1, ..., 5. Using these measurements, a system of five equations and five unknowns

can be constructed:

ϕ1 =
(

y
(3)
2 (i)− fi

)

= 0 (6.24)

If

det

(

δϕ1

δθ1

)

6= 0 (6.25)

then by the implicit function theorem, the system of equations (6.24) has a unique solution

for θ1. This solution provides an estimate of the biological rates δT , β, µ1 and µ2. However,

λ and k cannot be identified using measurement of y2 alone.

To recover the remaining parameters, the first derivative of y1 is written in terms of the

output dynamics as follows:

ẏ1 = λ− δT y1 − δPP (6.26)

where µ1 = δT + δP . Using the expression for ẏ2, the state variable P can be written in

terms of the output dynamics y2 and its first derivative as

P =
1

k
(ẏ2 + µ2y2) (6.27)

Substitute (6.27) into (6.26) to obtain

ẏ1 = λ− δT y1 −
δP
k

(ẏ2 + µ2y2) (6.28)

Define the identification coefficient θ2 as:

θ2 = (λ, δT , ξ, σ)
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where ξ = δP
k

and σ = µ2δP
k

. Let the identification function be

g(t, y1, ẏ2, y2) = λ− δT y1 − ξẏ2 − σy2 (6.29)

The multi-point identification process [59] is performed to estimate θ2. Here, the values

of (ẏ1, y1, ẏ2, y2)) are needed at four different time points to construct a system of four

equations and four unknowns to estimate θ2. Consequently, the identification equation is

given by

ϕ2 = (ẏ1(j)− gj) = 0 (6.30)

where ẏ1(j) and gj denote the values of ẏ1 and g(t, y1, ẏ2, y2) at four time points for j =

1, ..., 4. Proceeding as before, estimates of the biological rates λ,δT and µ2 can be computed.

Nevertheless, µ1 and k cannot be identified using (6.30) only.

It is worth to mention that the computation of the derivatives of the output measurements

y1 and y2 is delicate process because it plays a major role in the parameter estimation

procedure. This difficulty is partially due to the fact that the clinical data are sparse.

Different methods have been proposed to estimation of the time derivatives of the clinical

data such as in [59, 137, 152, 154] or to avoid this step using alternative methods such as in

[156, 161]. Here, the time derivatives of the output measurements are obtained using the

least-squares polynomial method, see appendix A for more details.

Combining θ1 and θ2 from (6.24) and (6.30) respectively, it is possible to construct estimates

of the six biological rates in the model (6.7). In the presented results, λ, δT and µ2 are

taken from θ2, β and µ1 = −−ν−ν2+4µ
1
2

2 are taken from θ1 and k = η
λβ

.

The estimation process is conducted for each patient and resulting numerical solutions of

the model (6.7) are obtained using the Runge-Kutta method [154]. To estimate the quality

of the fits, error vectors are constructed where the error at each data point is given by

ey1(ti) = y1(ti)− ŷ1(ti) (6.31)

ey2(ti) = y2(ti)− ŷ2(ti) (6.32)

for i = 1, ..., n where i is the time point of the corresponding measurement and n is the

number of measurements collected within a set period. ŷ1(ti) and ŷ2(ti) are the estimated

values of the total number of CD4+ T cells and HIV viral load produced from the numerical
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model which uses the estimated parameters. The relative accuracy of the output dynamics

produced using the estimated biological rates is evaluated from

ay1 = 100
n
∑

i=1

e2y1(ti)

y1(ti)2
(6.33)

ay2 = 100
n
∑

i=1

e2y2(ti)

y2(ti)2
(6.34)

for i = 1, ..., n.

6.4.3 Parameter estimation results

In the results presented, a set of patients from each clinical trial has been randomly picked.

Note that the values of the estimated biological rates presented in the following tables are

rounded. The values of the parameters with the accuracy required to reproduce all of the

results can be found in the appendix B. The tabulated biological rates may not identically

reproduce the results presented for the reproductive ratio as the values of the estimates

produced by the identification algorithm are used to compute R0, ay1, ay2. As will be

seen in the results presented, the dynamics exhibit good robustness to such changes in the

parameter values.

Previous work in the literature has estimated parameter values for the dynamics of HIV

infection in the course of antiretroviral drug treatment [59, 152]. Here biological rates

estimated using the Monte Carlo approach from [148, 152] are used to benchmark the

results presented in this chapter. For both estimation approaches, the initial conditions are

selected such that T (0) + P (0) = y1(0) and V (0) = y2(0) where the values of y1(0) and

y2(0), see (6.4), are taken from the clinical data set relating to the EDV05 trial as published

in [152]. It is important to note that for both approaches all the parameter estimates are

generated only using data obtained during the initial 30 days of the period of the trial.

Motivation for this study is to be able to obtain patient specific data that can be used to

predict the likely outcome of the current drug treatment. If the eventual outcome is likely

to be unsuccessful, modification of the antiretroviral drug treatment can take place based

on the patient specific parameter estimates. In this work, the measured data obtained

across the remainder of the trial will be used to validate the parameter estimates as will

the known clinical outcome.
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Table 6.1: Estimates of the biological rates taken from [148, 152]. Common
parameters:δT = 0.01day−1, µ1 = 0.05day−1 and µ2 = 0.28day−1

Results T (0) + P (0) V (0) λ β k R0 ay1 ay2
pt1 200+176 106 8.13 1.94e-07 0.04 4.50e-04 4.28 9.25

pt2 138+92 105.4 9.53 3.27e-07 0.21 0.0047 14.76 8.81

pt3 110+75 104.54 1.77 8.24e-07 0.41 0.0043 13.36 2.44

pt4 120+85 105.3 5.45 7.10e-08 293.00 0.809 7.06 22.90

pt5 200+183 104.82 6.76 3.94e-07 0.004 7.6098e-05 2.75 5.51

pt6 205+200 104.972 6.94 1.21e-07 46.80 0.2807 7.40 21.76

pt7 5+4 105.07 3.01 2.43e-06 0.008 4.17e-04 147.01 85.19

pt8 80+42 105.3 6.41 8.15e-07 0.002 7.46e-05 5.31 5.92

pt9 68+50 105.21 5.36 7.23e-07 0.003 8.30e-05 11.13 3.95

pt11 10+13 106.02 2.08 1.79e-07 0.012 3.19e-05 11.90 12.31

pt12 200+105 105.7 7.66 2.56e-07 0.002 2.80e-05 4.71 12.56

Table 6.1 reports the results of the Monte Carlo approach from [148, 152]. Table 6.2 shows

the results obtained for the procedure described in this chapter. A major difference between

the two estimation methods is that the algorithm chosen in [148, 152] uses the same values

of the decay parameter δT , µ1 and µ2 for all patients. Nevertheless, as argued in [154],

it is preferable to estimate all parameters to improve personalized treatment and clinical

decisions. For example, when comparing the values of the reproductive ratio R0 presented

in Table 6.1 with the corresponding values in Table 6.2 it is clear that the parameter values

generated from the methodology presented in this chapter generate more realistic values.

Biological rates estimated using the procedure presented in this chapter and patient data

from the ACTG 315 trial are shown in Table 6.3.

Table 6.2: Estimates of the biological rates produced by the identification method pre-
sented in this chapter. Initial conditions are identical to those in Table 6.1

Results λ δT β µ1 k µ2 R0 ay1 ay2
pt1 427.15 0.98 4.09e-04 1.002 1.65 0.39 0.73 3.10 13.74

pt2 525.63 1.13 1.14e-05 3.07 530.50 0.94 0.95 6.44 25.51

pt3 137.97 0.70 0.0028 0.90 0.75 0.49 0.92 20.56 7.56

pt4 91.34 0.21 8.44e-05 0.37 3.50 0.46 0.72 7.97 38.6

pt5 511.21 1.16 0.0014 1.23 0.106 0.48 0.107 0.78 6.25

pt6 447.26 0.87 3.83e-04 1.08 0.98 0.20 0.87 3.25 22.72

pt7 48.54 0.88 1.05e-04 1.09 237.41 1.98 0.63 21.23 84.15

pt8 77.45 0.30 2.39e0-5 0.67 72.35 0.66 1.002 0.91 0.10

pt9 255.40 0.83 2.45e-04 1.48 4.66 0.50 0.46 9.50 0.08

pt11 20.23 0.24 2.11e-05 1.59 717.20 0.76 1.008 5.67 0.1

pt12 216.15 0.47 5.53e-04 0.53 0.57 0.87 0.30 0.54 0.01
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Table 6.3: Estimates of the biological rates produced by the identification method pre-
sented in this chapter.

Results λ δT β µ1 k µ2 R0 ay1 ay2
pa3 19.44 0.05 1.83e-04 0.39 24.61 0.33 11.50 1.50 1.16

pa8 72.46 0.18 7.39e-04 1.05 2.49 0.38 4.95 2.10 0.07

pa10 117.28 0.15 4.15e-05 0.53 16.93 0.35 2.85 21.24 0.21

pa13 46.06 0.19 3.82e-04 0.65 0.03 0.27 0.01 1.92 2.17

pa24 118.39 0.34 4.84e-05 0.45 9.10 0.37 0.89 0.75 0.38

pa34 169.72 0.44 1.30e-04 0.46 4.67 0.49 1.01 3.90 3.44

pa38 137.66 0.49 1.76e-04 0.58 3.54 0.28 1.03 5.64 23.12

pt43 234.49 0.64 2.93e-04 0.73 0.45 0.19 0.33 0.86 10.98
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The estimated parameter values obtained by the proposed method and presented in Tables

6.2 and 6.3 of the six biological rates of the basic HIV model (6.7) using patient data from

the first period of both clinical trials are reasonable and close to the ones published in other

studies [59, 154, 155, 161].

Fig. 6.2-6.5 are displayed as examples to show that the output dynamics produced by the

estimated biological rates are realistic. In all figures, the parameter estimates have been

obtained from clinical measurements obtained in the early phase of the trial and later

measurements are presented to validate the output response predicted from the model.

Fig. 6.2-6.3 illustrate cases in which the uptake of antiretroviral drugs enforces the contain-

ment of HIV load to a small level along with the recovery to a desirable CD4+ T cell count.

Fig. 6.4 relates to cases of immunological failure characterized by a desirable low steady-

state HIV load and poor recovery of CD4+ T cell count. Fig. 6.5 depicts a case in which an-

tiretroviral therapy fails. The figures reinforce that the estimation method used in this work

produces responses similar to the ones generated by other studies [30, 148, 153, 154, 161]

and the responses align well with subsequent measurements obtained later in the drug trial

and not used within the parameter estimation procedure.

Figure 6.2: Comparison of the time evolution of measured CD4+ T cell count and HIV
load versus its estimates for pt1 using the HIV model (6.7).
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Figure 6.3: Comparison of the time evolution of measured CD4+ T cell count and HIV
load versus its estimates for pt8 using the HIV model (6.7).

Figure 6.4: Comparison of the time evolution of measured CD4+ T cell count and HIV
load versus its estimates for pt11 using the HIV model (6.7).
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Figure 6.5: Comparison of the time evolution of measured CD4+ T cell count and HIV
load versus its estimates for pa3 using the HIV model (6.7).

The data used to estimate the parameters can be expected to incorporate measurement error

and it is important to consider the likely effect of such errors on the computed parameter

estimates. A comprehensive review of the practical issues relating to the estimation of the

parameters of the dynamics of HIV can be found in [138]. Results from both structural

and statistical analysis have shown that it is sensible to estimate the parameters using

measurements in the early weeks following the initiation of antiretroviral therapy because

the transient phase after the initiation of treatment contains more dynamic information

[137, 138, 163]. This supports selecting measurements in the first month following initiation

of treatment as adopted in this study. A statistical noise model for HIV standard clinical

data has recently been determined in [161]. The local polynomial regression technique

used in [154] was used to smooth the longitudinal data and to estimate the measurement

noise. After conducting normality tests with the Chi-square and Lilliefors tests, the authors

concluded that a multiplicative zero mean Gaussian noise affects both measurements of

CD4+ T cell count and HIV load. Further, similar noise parameters i.e sample mean and

standard deviation have been found for two patient data. Interestingly, an earlier study on

noise characteristics based on visual observations of the noise on the viral load data also

suggested that the noise might follow a Gaussian distribution [163]. Simulation studies
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in a number of publications have incorporated a zero mean Gaussian noise with different

levels of standard deviation to the numerical solutions of the basic HIV model to test

the practical identifiability of the biological rates [59, 154, 156, 164]. Collectively, these

simulation results provide evidence that reasonable parameter estimates can be obtained

in the presence of noise in the measured data. Furthermore, the estimated biological rates

from patient datasets has been shown to produce viral load dynamics which closely match

the trajectory of observed data [148, 154, 161, 163].

To determine the robustness of the biological rates determined in this study to measure-

ment noise, the established noise model from [161] was added to the patient data and a

second set of parameter estimates was computed. The responses of the HIV model with

parameter estimates generated in the presence of additional noise are compared with the

results obtained with parameter estimates obtained without additional noise for pt1 and pa3

in Fig. 6.6 and Fig. 6.7. respectively. This reinforces that the output dynamics generated

by the estimated biological rates are not dramatically affected by noise and the traces are

visually indistinguishable. Hence, the infection dynamics following antiretroviral treatment

are shown to exhibit some robustness with respect to measurement noise.

Figure 6.6: Comparison of the time evolution of measured CD4+ T cell count and HIV
load for pt1. Original data and the responses generated with parameters estimated in the
presence of additional noise and without additional noise are presented. HIV model (6.7).
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Figure 6.7: Comparison of the time evolution of measured CD4+ T cell count and HIV
load for pa3. Original data and the responses generated with parameters estimated in the
presence of additional noise and without additional noise are presented. HIV model (6.7).

6.5 Prediction of the outcome of antiretroviral treatment

For each patient listed in Table 6.2 and 6.3, the proposed reachability analysis for the

containment of HIV infection is evaluated to predict the outcome of HAART. Note that

these predictions are based only on measured data obtained in the first 30 days following

treatment. The predictions are then compared with clinical outcomes determined from

examining the CD4+ T cell count and HIV viral load at the conclusion of the clinical trial.

The findings show that the time evolution of the reachability condition (6.18) and the

switching function (6.15) exhibit a particular dynamical behaviour characterizing desirable

and undesirable outcomes. This underpins the discrimination of outcomes.

The predictions from the reachability analysis and indeed the reproductive ratio are con-

gruent with clinical outcomes for all patients except pt7 and pa24. For patient pt7 and pa24,

the reachability analysis suggests that HIV infection will be contained. This prediction fails

for pa24 because, despite the fact that HIV load fell below 100(RNAcopies/ml) within 56

days following the initiation of treatment, a significant viral rebound i.e y2(175) = 670.03

was measured at the final visit of the trial, see Fig. 6.8. Similarly, the data for pt7 in [152]
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shows a large viral rebound i.e y2(29) = 2.53 to y2(149) = 5.41log10(RNA copies/ml) and

the HIV viral load at the final clinic visit is y2(212) = 2.58log10(RNA copies/ml). These

results may correspond to cases where model predictions fail due to the appearance of drug

resistance or viral rebound [153]. The results are now explored in situations corresponding

to effective treatment, marginal cases and cases where treatment fails.

Figure 6.8: Comparison of the time evolution of measured CD4+ T cell count and HIV
load versus its estimates for pa24 using the HIV model (6.7).

6.5.1 Effective treatment

The following results are associated with patients where antiretroviral drugs reduce and

then maintain HIV load in the peripheral blood below the limit of 100(RNA copies/ml) i.e

2log10(RNA copies/ml) within six months. These cases relate to patients pt1, pt2, pt3, pt4,

pt5, pt6, pt9, pt12, pa13, pa38, and pa43. For these patients, the reproductive ratio is below

unity, see Table 6.2 and 6.3 and the existing methods successfully predict that antiretroviral

treatment will be able to eradicate the infection. The time evolution of the reachability

condition, see Fig. 6.9-6.10 for pt1 and pa13 respectively, are representative of the dynamical

behaviour of the reachability condition in the other patients in this category. Antiretroviral

drugs in these patients are able to render and maintain the reachability condition negative
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some 5 days after the initiation of treatment. As a result, the magnitude of the switching

function (6.15) is driven to zero and the dynamics of the system (6.7) are forced to move

and remain at the infection-free steady-state (6.8) such as in Fig. 6.2 for pt1. Thus, the

reachability analysis predicts that antiretroviral drugs are successful in eradicating the

virus in these patients. Importantly, it should be noted that there is no oscillation in the

magnitude of the reachability condition in the first weeks and the term βTV keeps on

decreasing before and after the reachability condition is satisfied.

Figure 6.9: Time evolution of the dynamical condition for immunity (6.18) using simu-
lation results for pt1

6.5.2 New insight into marginal cases

Using the values of the biological rates estimated in [148, 152], patients pt1, pt2, pt3, pt4,

pt5, pt6, pt8, pt9, pt11 and pt12 have a reproductive ratio below unity, see Table 6.1. The

reachability analysis indicates that HIV dynamics engendered by these estimates reach and

remain at the infection free steady-state for all these patients. Nevertheless, the multi-

point estimation method used here combined with the reachability analysis reveals insight

into marginal cases in which the HIV viral load is not completely eradicated by HAART

and remains at an undetectable level in the steady-state. From a clinical point of view,
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Figure 6.10: Time evolution of the dynamical condition for immunity (6.18) using sim-
ulation results for pa13

treatment of patient pt8 is efficient because the antiretroviral drugs reduce and maintain

the HIV viral load below the limit of detection of 50RNA copies/ml i.e 1.699log10(RNA

copies/ml) within six months. Nevertheless, the value of the reproductive ratio is above

unity in this case, see Table 6.2. Although antiretroviral drugs are classified as efficient,

the value of the reproductive ratio infers that the infection may not be eradicated. The

existing prediction methodology using R0 appears to contradict the clinical outcome. In

contrast, this prediction is not supported by the reachability analysis because though the

time evolution of the reachability condition in Fig. 6.11 shows that antiretroviral drugs are

able to maintain the reachability condition negative i.e βTV −µ1 < 0, the switching function

sE(t) does not reach the manifold of interest. Nevertheless, it should be noted that sE(t)

reaches a steady-state value which is close to the desired sliding manifold sE(t) = 0. Similar

results are obtained for patient pa34 where it is seen from Fig. 6.12 that the reachability

analysis predicts the patient will have an asymptomatic status despite the fact that the

detection limit of HIV load was 100RNA copies/ml.

Unlike the measured HIV load data of pt8, measurements of HIV load for pt11 remain

above the limit 2log10(RNA copies/ml). However, the last measurement 2.02log10(RNA

copies/ml) is very close to this threshold, see data in [152]. Here again, although the R0 > 1
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for pt11, clinicians found this patient asymptomatic because the HIV load is relatively low.

The reachability analysis conducted using the biological rates estimated here indicates that

sE(t) for pt11 attains a steady-state value close to the desired sliding manifold sE(t) = 0,

see Fig. 6.13. Further, the estimated steady-state of the HIV viral load is located in a

region where i.e Vs1 < 2log10(RNA copies/ml). Further insight can be gained from

Figure 6.11: Time evolution of the switching function (6.15) and dynamical condition
for immunity (6.18) for pt8

the phase portrait of the sliding surface. Fig. 6.14-6.15 reveal that the trajectories move

towards an equilibrium point close to the origin. This suggests that the infection dynamics

move and remain at a clinically desirable steady-state located close to the infection free

steady-state for both pt8 and pt11. It can be thus deduced that the limit of detection of the

HIV viral load in the peripheral blood can be associated with a boundary layer in which

the steady-state of HIV viral load is desirable.

In the field of control systems, the concept of boundary layer control is well established

[10, 15, 21, 22] and it is acceptable to have a control action which forces the sliding surface

to remain within a region close to zero. It is well known that the assumed dynamics of

the switching behaviour in the control strategy directly impact on the characteristics of the

boundary layer. In Chapter 2, it has been demonstrated that a smooth switch control law
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Figure 6.12: Time evolution of the switching function (6.15) and dynamical condition
for immunity (6.18) for pa34

Figure 6.13: Time evolution of the switching function (6.15) and dynamical condition
for immunity (6.18) for pt11



Chapter 6. Case Study: Prediction of the containment of HIV Infection by Antiretroviral
Therapy - a Variable Structure Control Approach 134

can be used to generate a boundary layer control action which achieves desirable perfor-

mance despite the fact that ideal sliding motion is not exhibited. Further, the investigations

on the HIV-specific CD8+ T cell response in Chapter 5, have shown that although a potent

killing efficacy is not able to enforce ideal sliding motion, an asymptomatic steady-state can

be exhibited. Consequently, the concept of boundary layer control explains the difference

between the clinical observation and the outcome inferred from the reproductive ratio for

these patients. The origin is not attained but the outcome is sufficiently close to the desired

outcome and within the limits of accuracy of the measurement approach to be clinically

satisfactory.

Figure 6.14: Phase portrait of the sliding surface (6.15) for pt8

Figure 6.15: Phase portrait of the sliding surface (6.15) for pt11
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6.5.3 Failure cases

The following results relate to patients pa3, pa8 and pa10 for whom antiretroviral drugs are

unable to reduce and maintain the HIV viral load below 100RNA copies/ml i.e 2log10(RNA

copies/ml) within six months. In all cases of failure of antiretroviral treatment, the esti-

mated biological rates predict a steady-state viral load Vs1, see (6.13), which exceeds that

limit significantly. Furthermore, the reproductive ratio (6.12) is above unity in all failure

cases, see table 6.3. Therefore, the value of the reproductive ratio suggests that antiretro-

viral drugs are not able to render the infection-free steady-state (6.8) attractive and to

eradicate the virus. To investigate the performance of antiretroviral drugs in these pa-

tients, the reachability analysis is performed. From Fig. 6.16, it can be deduced that the

effects of antiretroviral drugs for pa3 are not sufficient to zero the switching function (6.15).

In fact, sE(t) does not vanish because the magnitude of the reachability condition (6.18)

becomes negative for only a very short period of time and then becomes positive. Impor-

tantly, this dynamical behaviour of the reachability condition in Fig. 6.17 for pa3 is the

same in all cases where antiretroviral drugs are inefficient, see Fig. 6.18. The oscillatory

Figure 6.16: Time evolution of the switching function (6.15) along with the dynamical
condition for immunity (6.18) for pa3

behaviour observed in the reachability condition reflects the fact that antiretroviral drugs in
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Figure 6.17: Time evolution of the dynamical condition for immunity (6.18) using sim-
ulation results for pa3

Figure 6.18: Time evolution of the dynamical condition for immunity (6.18) using sim-
ulation results for pa8 and pa10



Chapter 6. Case Study: Prediction of the containment of HIV Infection by Antiretroviral
Therapy - a Variable Structure Control Approach 137

these patients are not able to maintain the reachability condition at the required negative

level following the initiation of treatment. Fig. 6.17 shows that the effects of antiretro-

viral drugs cannot satisfy βTV < µ1P for a prolonged period following the initiation of

treatment. As a result, the time evolution of the reachability condition predicts that the

antiretroviral drugs in these patients are unable to enforce the infection-free steady-state

i.e to eradicate the virus. Moreover, the phase portrait of the sliding surface, see Fig. 6.19,

for these failure cases demonstrates that the HIV infection dynamics do not reach the infec-

tion free steady-state located at the origin but attain a chronic HIV infection steady-state.

For instance, the phase portrait of pa3 shows dynamics moving away from the origin to

reach a chronic infection steady-state whilst the dynamics of pa10 move towards the origin

but stop at a chronic infection steady-state. Importantly, the comparative analysis of the

phase portrait of the sliding surface for different patients reinforces the fact that the tran-

sient dynamics induced by the antiretroviral treatment are diverse in failure cases. This

motivates the design of personalized antiretroviral treatment regimes to improve efficacy

and demonstrates that the reachability analysis presented in this chapter may be helpful

in developing appropriate treatments.

Figure 6.19: Phase portrait of the sliding surface (6.15) for pa3, pa8 and pa10

6.6 Conclusion

In this chapter, the dynamics of HIV infection following initiation of antiretroviral therapy

has been considered as a case study to demonstrate that the framework of the VSC paradigm
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finds applications in immunology. Here, tools from sliding mode control paradigm have been

utilized to assess the performance of antiretroviral drugs for HIV infection. From the results

in Chapter 5, HIV infection dynamics can be regarded as a closed-loop system with the

HIV-specific immune response as an inherent VSC feedback.

Motivated by these findings, the effects of antiretroviral drugs have been treated as an

outer-loop control input to contain the infection in vivo. The basic model of HIV infection

dynamics from [30, 60] has been chosen for this case study because its parameters have

been estimated using measurement of CD4 T cell count and HIV load collected during

clinical trials. Following the approach developed in Chapter 5, a manifold associated with

the infection-free steady-state has been identified. The reachability analysis introduced in

Chapter 2, has been used to formulate a dynamical condition for antiretroviral drugs to

render this manifold attractive in order to enforce the containment of the infection in vivo.

Using two HIV clinical data sets, predictions of the outcome of treatment for a set of pa-

tients have been made using the established reproductive ratio and the proposed dynamical

condition. The results show that the reachability paradigm is superior to the reproductive

ratio because the reachability condition highlights specific dynamical characteristics corre-

sponding to healthy, unhealthy and marginal outcomes.

Hence, the case study conducted in this chapter demonstrates that the framework of VSC

delivers additional insights on immunological dynamics. Consequently, this chapter moti-

vates the use of the VSC paradigm to study the dynamics of the immune system in health

and disease. The main conclusions and future work are articulated in the next chapter.



Chapter 7

Conclusions and Future work

7.1 Conclusions

In this thesis, the dynamics of the immune system have been analysed using the variable

structure control paradigm. The novelty of the approach resides in the fact that the dy-

namics of the immune system in health and disease are examined as a closed-loop system in

which the dynamic response of T cells operates as a control. Collectively, the findings pro-

vide clear evidence to support the argument that the dynamic response of T cells operates

as a variable structure control to achieve immunity and self-tolerance. This means that

the immune system switches between different feedback regimes to establish and maintain

a robust, healthy state. Importantly, this thesis contributes to knowledge in mathematical

immunology because it demonstrates that the framework of VSC is adequate to deliver

insights on the robustness of immunological dynamics. It has been proven that the reach-

ability paradigm from sliding mode control is a novel and efficient means to assess the

performance of the specific T cell response and candidate therapies.

The specific contribution is summarized as follows:

• Synergies between the dynamics of VSCS and the population dynamics of the antigen-

specific T cell response are demonstrated using a phase portrait analysis. This analysis

indicates that the immune response program which describes the dynamic response

of T cells following infection is, in essence, a variable structure control strategy to

prescribe the required changes in T cells population size to achieve the clearance of

the pathogen and the maintenance of a healthy state. From a VSC point of view,
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the dynamical behaviour of the population of the specific CD8+ T cell response

observed after acute or chronic infection is an output of a sophisticated switch be-

tween immunological feedback which promotes or inhibits the immune response. This

switching mechanism seems to be based on the dynamical effects of the interaction

of different molecular and cellular activities following antigen stimulation. Thus, the

immune response program is a switched control feedback strategy which highlights

the changes in the feedback regimes underpinning the specific T cell response.

• A reachability analysis has been conducted using a manifold associated with a healthy

steady-state to highlight switching conditions to enforce robust expansion and con-

traction dynamics. This has been shown to be useful to assess the impact of uncer-

tainty and perturbations on the T cell response dynamics. These conditions have been

used to explain the robustness of the T cell response dynamics during acute infection,

as well as why the T cell response dynamics are impaired during chronic infection.

The analysis of the specific immune response of T cells using a VSC approach opens

a new framework to evaluate immunological dynamics, and might assist the design of

treatment regimes to yield robust immune response dynamics.

• Candidate immune response functions have been analysed as candidate immunological

feedback regime for self-tolerance. A threshold immune response function based on

the concentration of self-antigen has been constructed to model a threshold based

activation/proliferation of self-reacting effector T cells. Besides, an adaptive sliding

mode control has been designed to model the suppression of self-reacting T cells by the

immune system. The control analysis conducted shows that the nature and shape of

candidate immune response function determines the dynamic response of the immune

system and the stability of the tolerance steady-state. Additionally, a reachability

analysis was conducted using a manifold associated with the tolerance steady-state.

This reachability analysis shows how the dynamic response of the immune system can

enforce a robust state of tolerance.

• The reachability paradigm has been utilized to analyse the control attributes of the

cytolytic killing mechanism of HIV-specific CD8+ T cell response on the containment

of HIV infection dynamics in vivo. Using a manifold associated with the infection-free

steady-state, the reachability analysis delivers a dynamical condition for immunity

which is used to monitor the control performance of the HIV-specific CD8+ T cell

response during the course of the infection. The results indicate that the cytolytic
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killing mechanism modelled with a double saturation function operates a continuous

variable structure control law which yields a boundary layer control of the infection

dynamics in vivo. The dynamical condition for immunity also supports the emerging

notion that the immunological requirements for the containment of HIV infection

changes during the course of the infection.

• The VSC approach has been demonstrated to be a novel means for the evaluation

of the impact of antiretroviral therapy on HIV infection dynamics in vivo. A VSC

approach has been used to deliver a dynamical condition for the containment of HIV

infection in vivo by antiretroviral therapy. The basic model of HIV infection dynamics

from [59] has been selected and clinical data from HIV-infected patients has been

used to parameterize this model. Unlike the condition from the reproductive ratio,

the reachability condition delivers a time varying condition for the infection dynamics

to reach and remain at the HIV infection-free steady-state. The findings show that

methodology captures the dynamical characteristics of eventual successful, failed and

marginal outcomes. Hence, the reachability paradigm from VSC theory is a suitable

framework to monitor and predict the progression of the Human Immunodeficiency

Virus (HIV) infection after initiation of antiretroviral therapy.

Together, the findings of the different chapters demonstrate that variable structure control

theory finds application in modelling and simulation in immunology. Importantly, the

approach developed in the thesis makes use of the reachability paradigm to deliver sensible

insights on the robustness of immunological dynamics. This doctoral research encourages

the use of techniques from variable structure control theory to investigate the dynamics of

biological systems with uncertainty.

The work on this thesis was limited by several factors. The approach relies on the fact

that a sensible mathematical model of the given phenomenon is available for analysis.

Furthermore, the availability of clinical data and reliable parameter estimates affect the

scope of the mathematical analysis. Thus, it is recommended to have a good understanding

of the biology represented by the mathematical model. A close collaboration between

experimental and mathematical studies is highly desirable.
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7.2 Future work

The findings of this thesis motivate the use of the variable structure control paradigm to

improve understanding of the dynamics of the immune system as well as to design efficient

therapeutic strategies.

Future work suggestions from headline finds are as follows:

• In [2, 74, 94], it was shown that the expansion, contraction and memory phase of

the specific CD8+ T cell response exhibits different magnitude and kinetics following

re-infection with the same antigen. In this thesis, the dynamics of the antigen-specific

CD8+ T cell response to acute infection has been considered to show that the immune

response program is, in essence, a VSC law governing the population dynamics of the

response. Motivated by the work of this thesis, it will be interesting to use these

experimental data to construct a mathematical model and to apply a VSC approach

to investigate what are the advantages and disadvantages related to changes in the

kinetics of CD8+ T cell expansion, contraction and memory following re-infections

with respect to the establishment of protective immunity. Since the immune response

program is treated as an inherent VSC control, the basic idea is to understand the im-

pact of consecutive infection on the parameters, switching behaviour and performance

of this immunological control mechanism. The findings from this research yield the

potential to inform the design and scheduling of vaccines to achieve better outcomes.

• The variable structure control paradigm supports results on the design of successful

vaccines for chronic infections. To confirm this point, consider the experimental

studies in [2] in which the dynamic response of memory CD8+ T cells specific to

LCMV is impaired following infection with a high viral load. The experiments in

[2] have revealed that activated LCMV-specific memory CD8+ T cells experience a

block in sustaining cell proliferation during this chronic infection. Further, it was

found that an immunological mechanism defined as CD4+ T cell help is a candidate

means of therapeutic intervention. Interestingly, in this context, using an appropriate

model of the specific CD8+ T cell response along with the variable structure control

paradigm, a reachability condition can be formulated to define a dynamical condition

required to maintain the expansion of activated LCMV-specific memory CD8+ T cells

following chronic infection. Moreover, this reachability condition together with the
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expression for the equivalent control can be used to quantify the level of CD4+ T cell

help required to sustain the proliferation dynamic of memory CD8+ T cells in order

to enforce immunity.

• Immunological failure is characterized by a level of CD4+ T cells below 200/mm3

during six months of efficient antiretroviral treatment. The biological mechanisms

inducing immunological failure are not fully understood. Different mathematical

functions supporting different biological assumptions have been investigated in the

literature [152, 155, 160]. Using measurements of the total number of CD4+ T cells

and HIV viral load collected from patients in the first month initiation of an efficient

antiretroviral therapy, the authors in [152, 155, 160] have identified candidate time

invariant parameters to predict immunological failure. To build on this work, it is

assumed that immunological failure is caused by an unknown input i.e unknown bio-

logical dynamics affecting the population dynamics of CD4+ T cells. Using standard

HIV clinical data along with the basic model of HIV dynamics in [152], a sliding mode

observer can be constructed. The idea is to use the equivalent control to reconstruct

the dynamic associated with immunological failure. The objective is to elucidate the

characteristics of immunological failure. The findings could be combined with the

results from this thesis to improve early diagnosis and monitoring of antiretroviral

therapy.

• In [58, 75], it has been pointed that the non-cytolytic mechanism of the HIV-specific

CD8+ T cell response is also an adequate means to contain HIV infection in vivo.

Of note, the parameter representing the non-cytolytic mechanism is present in the

expression of the dynamical condition for immunity and represents a candidate control

action to satisfy the dynamical condition for immunity and contain the infection in

vivo. Using the approach developed in this thesis and the data from [75], it could

be possible to assess the time evolution of the dynamical condition for immunity for

different killing mechanism of the HIV-specific CD8+ T cell response. The impact

of the non-cytolytic and the cytolytic mechanism as two inherent control feedback

of the HIV-specific CD8+ T cell response can be analysed using the framework of

sliding mode control. The dynamic advantages of each mechanism alone and the

complementarity of these mechanisms will be investigated to elucidate ways in which

CD8+ T cells contain HIV infection in vivo. The findings could be useful to inform

robust control mechanisms in the domain of engineering.
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• The paper [36] has investigated the control of HIV infection mainly using bifurcation

techniques. It was shown that the cytolytic killing rate of the HIV-specific CD8+ T

cell response and the size of the latent cell reservoir influence the progression of the

infection after cessation of antiretroviral therapy. This thesis has demonstrated that

the HIV-specific CD8+ T cell response and the effects of antiretroviral drugs in vivo

can be analysed as control inputs which aim to enforce a stable and asymptomatic

steady-state. Motivated by the findings of this thesis, it will be interesting to write

the analytical expression of a manifold associated with the post-treatment control of

HIV infection. The objective is to use this manifold to conduct a reachability analysis.

In essence, this will yield a dynamical condition for the killing efficacy of HIV-specific

CD8+ T cells and antiretroviral drugs to control HIV infection in vivo. It is of

great importance to understand how early uptake of antiretroviral drugs can help the

HIV-specific CD8+ T cell response to establish an asymptomatic state and maintain

this state even after the interruption of antiretroviral therapy [30, 36]. Hence, the

VSC approach used in this thesis has great potential to improve understanding of

functional cure of HIV.
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Pseudo-code of the Multi-Point

Identification Method

Pseudo-code

-Get experimental data -Get time data sp3=[0 4 8 9 11 14 17 30 47 60 91 ];

-Get Cd4+ count Tvl= [ 122 133 177 172 208 174 231 201 251 262 276 ];

get virus load Vvl=[5.38 4.57 3.93 3.76 3.64 3.31 3.12 2.78 2.74 2.42 1.6 ]; -Convert virus

log from the log scale to the decimal scale

V lg = 10.(V vl);

- get initial condition x01=[80;42;Vlg(1)];

- safe copy of measurements Tvla=Tvl; Vlga=Vlg;

- Apply a scaling factor

mxV=max(Vlg(1:6));

mxT=max(Tvl(1:6));

- Get data points of the first 21 days Vlg=Vlg(1:6)./mxV;

Tvl=Tvl(1:6)./mxT;

– copy time points sp=sp3; - t=[0:0.00001:21]; - Get multiple data points
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Vm=interp1(sp(1:6),Vlg(1:6),t,’pchip’,’extrap’); -

Tm=interp1(sp(1:6),Tvl(1:6),t,’pchip’,’extrap’);

-Compute polynomial polynomial -get some value for py (order of the polynomial) n2=0;

polypatienty2=polyfit(t,Vm,py);- - grid - -

-differentiate the polynomials

dp2=polyder(polypatienty2); d2p2=polyder(dp2); d3p2=polyder(d2p2);

-

-choose a set of 5 distinct time points within 0 21 - lpb lower bound, upb uppper bound

spd=linspace(lpb,upb,5); -

- get the values to compute the identification system

y2patientest=[polyval(polypatienty2,spd)]’; y2dotdata=[polyval(dp2,spd)]’; y2dbdotdata=[polyval(d2p2,sp

y2tdotdata=[polyval(d3p2,spd)]’;

- compute identification equation

syms B R V M E real ;

fom = ((y2patientest.( − 1)). ∗ y2dotdata−R−B. ∗ y2patientest). ∗ ( y2dbdotdata+M. ∗

y2dotdata+ V. ∗ y2patientest) + E. ∗ y2patientest− V. ∗ y2dotdata−M. ∗ y2dbdotdata;

-solve identification matrix for virus load

rest3=vpasolve(eqest2);

Check for unique solution rb=rest3.B; if ( length((rb)) ==1) - - Check the sign of biological

rates

if((rest3.B(1)) > 0ANDAND(rest3.R(1)) > 0ANDAND(rest3.E(1)) > 0ANDAND(rest3.V (1))

0ANDAND(rest3.M(1)) > 0 )

pdest=(rest3.R(1));

mu1t = −(0.5. ∗ (−rest3.V (1)− ((rest3.V (1).2) + 4. ∗ rest3.M(1)).(0.5) ) );

-Computation of estimates from virus load and CD4+ measurements
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- Get polynomial -px polynomial order polypatienty1=polyfit(t,Tm,+px); polypatienty2=polyfit(t,Vm,p

-differentiate the polynomials

dp1=polyder(polypatienty1); dp2=polyder(polypatienty2); d2p2=polyd

- get time points

spds=linspace(lpbs,upbs,4); - - Get vakues

y1patientest=[polyval(polypatienty1,spds)]’; y1dotdata=[polyval(dp1,spds)]’;

y2patientest=[polyval(polypatienty2,spds)]’; y2dotdata=[polyval(dp2,spds)]’;

- Compute identification equation [m,n]=size(sp3(1:4)); omega=[ones(n,1) y1patientest

y2dotdata y2patientest];

- rom1=rank(omega) syms TH1 TH2 TH3 TH4 om =[TH1; TH2 ;TH3 ;TH4];

eqest=omega*om;

dom1=[diff(eqest(1),TH1) diff(eqest(1),TH2) diff(eqest(1),TH3) diff(eqest(1),TH4);diff(eqest(2),TH1)

diff(eqest(2),TH2) diff(eqest(2),TH3) diff(eqest(2),TH4);diff(eqest(3),TH1) diff(eqest(3),TH2)

diff(eqest(3),TH3) diff(eqest(3),TH4);diff(eqest(4),TH1) diff(eqest(4),TH2) diff(eqest(4),TH3)

diff(eqest(4),TH4)];

detom1=det(dom1);

if (detom1 = 0)

eqests=y1dotdata -omega*om;

- Solve identification equation (25) rest=vpasolve(eqests);

Check for unpique solution if ( length((rest.TH1)) ==1)

if ( rest.TH1(1) ¿0 )

- Get estimates

pses=double(rest.TH1);

pdes=(-rest.TH2);

pmu2es=(rest.TH4/rest.TH3);
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Besg=(rest3.B(1)); pdesg=(rest3.R(1));

mu1 = −(0.5. ∗ (−rest3.V (1)− ((rest3.V (1).2) + 4. ∗ rest3.M(1)).(0.5) ) ); mu2g = (0.5. ∗

(−rest3.V (1) + ((rest3.V (1).2) + 4. ∗ rest3.M(1)).(0.5) ) );

pdesa=(pdes+pdesg)/2;

K= ((rest3.E)./(rest3.B.*pses));

mu2=(mu2g+pmu2es)/2;

- -get virus steady-state level

ssVn= (pses*K)/(mu1*pmu2es) - (pdes/Besg);

-Filter for realistic parameter values

- check the sign of the biological rates

if(rest.TH1(1) > 0ANDANDrest.TH2(1) < 0ANDANDrest.TH3(1) < 0ANDANDrest.TH4(1)

0)

if ( mu1t ¿ pdes )

if ( ssVn ¡= ( 100/mxV) ) - -

if (mxT*(pses/pdes) ¿=200)

if (mu1t¡=3.5) if (pmu2es¡=6) if (pdes¡2)

- pses=double(pses);

pdesg=double(pdesg);

mu2g=double(mu2g); Besg=double(Besg); K=double(K); mu1=double(mu1); pmu2es=double(pmu2es);

pdes=double(pdes);

- Validation check of the output dynamics

- estimation time window tspana=[0 21];

- solve the model with the estimates

odehiv=@(t,x)hivode3(t,x,pses*mxT,pdes,pmu2es, Besg/mxV,K*mxV/mxT,mu1 );

[t5,x7]=ode23s(odehiv,tspana,x01);
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-Check for positivity of the state variables

-Check for fitness with experimental data

y1sim=x7(:,1)+x7(:,2); y2sim=x7(:,3);

dpl=sum(sum(sp3¡=max(tspana)));

y1s=zeros(1,dpl)

for idp=2:dpl y1s(idp)=y1sim(sum(t5¡=sp3(idp))); end y1s(1)=y1sim(1);

y2s=zeros(1,dpl)

for idp=2:dpl y2s(idp)=y2sim(sum(t5¡=sp3(idp))); end y2s(1)=y2sim(1);

-Compute the error ey1= mxT.*[Tvla(1:dpl)-y1s]’;

ey2= mxV.*[Vlga(1:dpl)-y2s]’;

Check the fit

dey1h = 100 ∗ (sum(ey1.2)/sum((mxT. ∗ Tvla(1 : dpl)′).2))

dey2h = 100 ∗ (sum(ey2.2)/sum((mxV. ∗ V lga(1 : dpl)′).2))

-Filter for better fitting

if ( ( (dey2h+dey1h)¡= (dey2i + dey1i) ) )

dey2i=dey2h

dey1i=dey1h - - Save the results

-save settings spd=spd

spds=spds

px1=px

px2=px py=py

q=q

ddetom1=(detom1)

mxTi=mxT mxVi=mxV
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dey1h=dey1h

dey2h=dey2h

ser=dey2h+dey1h

- Save estimates

pses=(rest.TH1)

pdes=(-rest.TH2)

Besg=(rest3.B(1))

mu1 = −double(0.5. ∗ (−rest3.V (1)− ((rest3.V (1).2) + 4. ∗ rest3.M(1)).(0.5) ) )

K= ((rest3.E)./(rest3.B.*pses))

pmu2es=(rest.TH4/rest.TH3)

psesm=(rest.TH1)*mxT Besgm=(rest3.B(1))/mxV Km=K*mxV/mxT

Reproductiveration = double((pses ∗Besg ∗K)/(pdes ∗mu1 ∗ pmu2es))

- - ssVn=ssVn

ssVm= (pses*mxT*K*mxV/mxT)/(mu1*pmu2es) - (pdes/(Besg/mxV)); ssVm=double(ssVm)

ET=mxT*(pses/pdes)

-End ifs -End loops

-End
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Estimates of HIV Dynamics

Parameters following

Antiretroviral Therapy

Pseudo code of the multi-point method

Parameter estimation results

The following are the results of the parameter estimation procedure described

in Chapter 5. The computational process has produced these estimates with a

high precision. It is shown in the next section that such high precision is not

compulsory and biologically relevant.

Patient pt1

λ = 427.1534026447107000 δT = 0.9876391196788116 β = 0.0004093987658605 µ1 =

1.0026999999999999 k = 1.6594605365105060 µ2 = 0.3979593353698864

Patient pt2

λ = 525.6326523532495700 δT = 1.1393025728584869 β = 0.0000114292728371 µ1 =

3.0764000000000000 k = 530.5060041665457200 µ2 = 0.9490449503506817

Patient pt3
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λ = 137.9741119638239900 δT = 0.7038155848335397 β = 0.0002826190338890 µ1 =

0.9031000000000000 k = 7.5114253152300359 µ2 = 0.4962904358494573

Patient pt4

λ = 61.1615973565333850 δT = 0.2155640611980289 β = 0.0000844969285702 µ1 = 0.3746000000000000

k = 5.2335290818264886 µ2 = 0.4525321093719749

Patient pt5

λ = 511.2167264389443600 δT = 1.1618006804012180 β = 0.0013574984809959 µ1 =

1.2355000000000000 k = 0.1063031494385558 µ2 = 0.4802282398429222

Patient pt6 λ = 447.2664063299146200 δT = 0.8700912309267833 β = 0.0003833533433395

µ1 = 1.0826000000000000 k = 0.9867397078338738 µ2 = 0.2044200509728017

Patient pt7 λ = 48.5473106245905160 δT = 0.8822498032971305 β = 0.0001059037437115

µ1 = 1.0950000000000000 k = 237.4106883197578400 µ2 = 1.9837037442920844

Patient pt8 λ = 32.0253577139126050 δT = 0.1226941299773771 β = 0.0000224738651096

µ1 = 0.6715000000000000 k = 163.5680183774189200 µ2 = 1.4160782657508266

Patient pt9 λ = 255.4070488046519600 δT = 0.8378135735937042 β = 0.0002456884900764

µ1 = 1.4867999999999999 k = 4.6674823943125769 µ2 = 0.5083553798664283

Patient pt11 λ = 20.2317632084434820 δT = 0.2487626750256210 β = 0.0000211458811785

µ1 = 1.5947000000000000 k = 717.2060327118180100 µ2 = 0.7670342435229737

Patient pt12 λ = 216.1561150733994300 δT = 0.4764870265142694 β = 0.0005537155404234

µ1 = 0.5379000000000000 k = 0.5742665980752227 µ2 = 0.8759987609017709

Patient pa3 λ = 19.4408623647801560 δT = 0.0568538325062474 β = 0.0001830425581339

µ1 = 0.3996000000000000 k = 24.6106645104727730 µ2 = 0.3349133769729255

Patient pa8 λ = 72.4635991045300470 δT = 0.1841155797175370 β = 0.0007394551099452

µ1 = 1.0537000000000001 k = 6.9008108987446164 µ2 = 0.3845808819584701

Patient pa10 λ = 117.2810831471476300 δT = 0.1525813697842263 β = 0.0000415717722124

µ1 = 0.5315000000000000 k = 16.9338333596265510 µ2 = 0.3564434330432689

Patient pa13 λ = 43.2603737796453630 δT = 0.1980028036690134 β = 0.0014961695065872

µ1 = 0.6526000000000000 k = 0.0087237030026186 µ2 = 0.2784742989866295
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Patient pa24 λ = 118.3944765066074500 δT = 0.3494973739820475 β = 0.0000484570236368

µ1 = 0.4511000000000000 k = 9.1057495433492903 µ2 = 0.3718590222853928

Patient pa34 λ = 169.7212477179362800 δT = 0.4489658853123205 β = 0.0001301732247592

µ1 = 0.4607000000000000 k = 4.6706068433784020 µ2 = 0.4924810339778832

Patient pa38 λ = 137.6607843710946200 δT = 0.4911172096189913 β = 0.0001765832669711

µ1 = 0.5892000000000000 k = 3.5485606943201660 µ2 = 0.2886473516225888

Patient pa43 λ = 234.4995186440960100 δT = 0.6425517170861793 β = 0.0002931044629164

µ1 = 0.7370000000000000 k = 0.4583934984202140 µ2 = 0.1987462564206444

Robustness to precision

The 16 digit precision for the estimates was obtained because the identification procedure

computed in Matlab used a 16 digit precision. The estimated biological rates are float

numbers because the unique solutions of the system of equations (6.19) and (6.25) used to

compute the estimates are produced with a 16 digit precision. As mentioned in the paper,

these estimates with full accuracy are used for the simulations.

The output dynamics of the basic HIV model exhibits some robustness to the precision of

the estimates. The results for patient pt1, pt8 and pa3 are shown to provide some evidence.

The Matlab vpa () command which is a variable-precision floating-point arithmetic function

was used to obtain 2 significant digits for the parameters of these patients. The results are

as follows:

Patient pt1

λ = 433

δT = 0.99

β = 0.00041

µ1 = 1

k = 1.7

µ2 = 0.4

Patient pt8 λ = 32

δT = 0.12

β = 0.000022
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µ1 = 0.67

k = 166

µ2 = 1.4

Patient pa3 λ = 19

δT = 0.057

β = 0.00018

µ1 = 0.4

k = 25

µ2 = 0.33

Fig. B.1, Fig. B.2 and Fig. B.3 show a comparative analysis of the output dynamics pro-

duced by the estimates with full precision and the ones with 2 significant digits. These

graphs confirm that the output dynamics of the model exhibit some robustness to the

precision chosen for the estimates because the trajectories are relatively close to each other.

Figure B.1: Comparison of the time evolution of the estimated dynamics of CD4+ T cell
count and HIV load with different precision. Results for pt1. l (6.7).
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Figure B.2: Comparison of the time evolution of the estimated dynamics of CD4+ T cell
count and HIV load with different precision. Results for pt8. l (6.7).

Figure B.3: Comparison of the time evolution of the estimated dynamics of CD4+ T cell
count and HIV load with different precision. Results for pa3. l (6.7).
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