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Robust sliding mode observer design for interconnected systems

Mokhtar Mohamed1, Xing-Gang Yan1, Sarah K. Spurgeon2 and Bin Jiang3

Abstract— In this paper, a class of nonlinear interconnected
systems is considered in the presence of structured and un-
structured uncertainties. The bounds on the uncertainties are
nonlinear and are employed in the observer design to reject
the effect of the uncertainties. Under the condition that the
structure matrices of the uncertainties are known, a robust
sliding mode observer is designed and a set of sufficient
conditions is developed such that the error dynamics are
asymptotically stable. If the structure of the uncertainties is
unknown, an untimately bounded observer is developed using
sliding mode techniques. The obtained results are applied to a
multimachine power system to demonstrate the effectiveness of
the developed methods.

I. INTRODUCTION

The development of advanced technologies has produced

corresponding growth in physical systems. Such systems can

be expressed by sets of lower-order ordinary differential

equations which are linked through interconnections. Such

models are typically called large scale interconnected sys-

tems (see, e.g.[7], [16]). Large scale interconnected systems

widely exists in the real world for example, the energy

systems and bilogical systems [1], [7]. One of the most

important examples of an interconnected system is the in-

terconnected power system or multimachine power system

which consists of multi power generators connected via a

power distribution network [13]. Naturally, the model of the

power system is inherently nonlinear containing disturbances

and uncertainties [8], [13].

Recently, sliding mode controllers have been successfully

applied for large scale power systems due to their effective-

ness and robustness against various disturbances [11]. Sliding

mode controllers for a single machine are proposed in [3] and

multimachine power systems are considered in [2]. In all the

results mentioned above, it is assumed that all the system

state variables are available. However, in practice, only a

subset of state variables is accessible/measurable. In order

to implement these control schemes, one of the choices is to

design an observer to estimate system states, and then use

the estimated states to form the feedback loop. Therefore, a

state estimation process is very important.

An observer-based controller is proposed in [6] by com-

bining a variable structure control with a reduced-order
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observer and this is applied to a power system stabilizer.

In [10] unknown-input observer-based monitors which can

estimate the system states as well as perform fault detection

and isolation are proposed and applied to a three-bus power

system example, which consists of one generator and two

loads. However, observer design in the presence of unknown

signals is very difficult in practice. An iteratively re-weighted

least squares method for power system state estimation is

presented in [9]. An extended complex Kalman filter is used

in [4] to enhance frequency estimation of distorted power

system signals. A sliding mode observer is presented in [5]

to develop a robust observer-based nonlinear controller and

then to construct state variables of the system and estimate

the perturbation including all the system nonlinearities and

uncertainties. In [8], a sliding mode observer is developed

for damper winding currents which are modelled as a 5-th

order system.

In this paper, a robust sliding mode observer is established

for a class of interconnected systems in the presence of

uncertainties. Both the known nonlinear interconnections and

uncertain nonlinear interconnections are considered. A set

of sufficient conditions is developed such that the error

dynamics are asymptotically stable if the structure of the

uncertainties is known and satisfies the constrained Lyapunov

equation. In the case when the structure of the uncertainties is

not available but the bounds on the uncertainties are known

constants, an ultimately bounded sliding mode observer is

proposed to estimate the states of the interconnected system.

All the bounds on the uncertainties involed in this paper

are nonlinear and are employed in the observer design to

reject/reduce the effect of uncertainties. The results obtained

are applied to multimachine power systems. Simulation for

a two machine power systems is used to demonstrate the

effectiveness of the developed results.

II. SYSTEM DESCRIPTION AND PRELIMINARIES

Consider a nonlinear interconnected system composed of

N subsystems as follows

ẋi=Aixi +Biui +∆φi(xi, ui) +Mi(x) + ∆Mi(x) (1)

yi=Cixi (2)

where xi ∈ Rni , ui ∈ U ∈ Rmi (U is the admissible control

set) and yi ∈ Rpi with mi ≤ pi ≤ ni are the state variables,

inputs and outputs of the i-th subsystem respectively. The

matrix triples (Ai, Bi, Ci) are constants with appropriate

dimensions and Ci are full column rank for i = 1, 2, · · · , N .

The terms ∆φi(xi, ui) and ∆Mi(x) are the uncertainties

in the i-th isolated subsystems and interconnections respec-

tively. The terms Mi(x) are the known interconnections for



i = 1, · · · , N .

Assumption 1. The uncertainties ∆φi(xi, ui) and ∆Mi(x)
have the decomposition

∆φi(xi, ui) = Ha
i ∆ξi(xi, ui), ∆Mi(x) = Hb

i∆Ei(x) (3)

where Ha
i ∈ Rni×ki and Hb

i ∈ Rni×ri are the distribution

matrices of the uncertainties, and

‖∆ξi(xi, ui)‖ ≤ ρi(xi, ui), and ‖∆Ei(x)‖ ≤ σi(x) (4)

where ρi(xi, ui) is known and Lipshitz about xi uniformly

for ui ∈ U , and σi(x) is known and Lipshitz about x.

Since Ci are full column rank, there exist nonsingular

matrices Tci such that

Āi =

[
Āi1 Āi2

Āi3 Āi4

]

:= TciAiT
−1
ci

, (5)

B̄i=

[
B̄i1

B̄i2

]

:= TciBi, C̄i =
[
0 Ipi

]
:= CiT

−1
ci

(6)

where Āi1 ∈ R(ni−pi)×(ni−pi), B̄i1 ∈ R(ni−pi)×mi and

B̄i2 ∈ Rpi×mi for i = 1, · · · , N . Then in the new coordi-

nates

x̄i = Tcixi (7)

system (1)-(2) can be rewritten as

˙̄xi1 = Āi1x̄i1 + Āi2x̄i2 + B̄i1ui + H̄a
i1∆φ̄i(x̄i, ui)

+M̄i1(x̄) + H̄b
i1∆M̄i(x̄) (8)

˙̄xi2 = Āi3x̄i1 + Āi4x̄i2 + B̄i2ui + H̄a
i2∆φ̄i(x̄i, ui)

+M̄i2(x̄) + H̄b
i2∆M̄i(x̄) (9)

yi = x̄i2 (10)

where x̄ = col(x̄1, x̄2, · · · , x̄N ), x̄i = col(x̄i1, x̄i2), x̄i1 ∈
Rni−pi , x̄i2 ∈ Rpi , Āij and B̄il are defined in (5)-(6) for

j = 1, 2, 3, 4 , l = 1, 2, i = 1, 2, · · · , N , and
[

H̄a
i1

H̄a
i2

]

: = TciH
a
i ,

[
H̄b

i1

H̄b
i2

]

:= TciH
b
i (11)

[
M̄i1(x)
M̄i2(x)

]

: = TciMi(x) (12)

∆φ̄i(x̄i, ui) = ∆ξi(T
−1
ci

x̄i, ui) (13)

∆M̄i(x̄) = ∆Ei(T
−1
ci

x̄) (14)

where H̄a
i1 ∈ R(ni−pi)×ki , H̄b

i1 ∈ R(ni−pi)×ri , and

M̄i1(·) ∈ R(ni−pi) for i = 1, 2, · · · , N .

Assumption 2. The matrix pair (Āi, C̄i) in (5)-(6) is observ-

able for i = 1, 2, · · · , N .

Under Assumption 2, there exists a matrix Li such that

Āi − LiC̄i is stable, and thus for any Qi > 0 the Lyapunov

equation

(Āi − LiC̄i)
TPi + Pi(Āi − LiC̄i) = −Qi (15)

has an unique solution Pi > 0 for i = 1, 2, · · · , N .

Assumption 3. There exist a matrices F a
i ∈ Rki×pi and

F b
i ∈ Rri×pi such that the solution Pi to the Lyapunov

equation (15) satisfies the constraint

H̄aT
i Pi = F a

i C̄i (16)

H̄bT
i Pi = F b

i C̄i (17)

Introduce partitions of Pi and Qi which are conformable

with the decomposition in (8)-(10) as follows

Pi =

[
Pi1 Pi2

PT
i2 Pi3

]

, Qi =

[
Qi1 Qi2

QT
i2 Qi3

]

(18)

Then, from Pi > 0 and Qi > 0 that Pi1 > 0, Pi3 >

0, Qi1 > 0 and Qi3 > 0.

The following results are required for further analysis.

Lemma 1. If Pi and Qi have the partition in (18), then under

Assumption 3

(i) P−1
i1 Pi2H̄

a
i2 + H̄a

i1 = 0 if (16) is satisfied.

(ii) P−1
i1 Pi2H̄

b
i2 + H̄b

i1 = 0 if (17) is satisfied.

(iii) The matrix Ai1 + P−1
i1 Pi2Ai3 is Hurwitz stable

if the Lyapunov equation (15) is satisfied.

Proof. See Lemma 2.1 in [14].

III. SLIDING MODE OBSERVER DESIGN

A. The structure matrices of the uncertainties are known

Consider the system in (8)-(10). Introduce a linear coor-

dinate transformation

zi =

[
Ini−pi

P−1
i1 Pi2

0 Ipi

]

︸ ︷︷ ︸

Ti

x̄i (19)

In the new coordinate system zi, system (8)-(10) has the

following form

żi1=(Āi1 + P−1
i1 Pi2Āi3)zi1 + (Āi2 − Āi1P

−1
i1 Pi2

+P−1
i1 Pi2(Āi4 − Āi3P

−1
i1 Pi2))zi2 + B̄i1ui + P−1

i1 Pi2

×B̄i2ui + M̄i1(T
−1z) + P−1

i1 Pi2M̄i2(T
−1z) (20)

żi2= Āi3zi1 + (Āi4 − Āi3P
−1
i1 Pi2)zi2 + B̄i2ui

+H̄a
i2∆φ̄i(T

−1
i zi, ui) + M̄i2(T

−1z)

+H̄b
i2∆M̄i(T

−1z) (21)

yi= zi2 (22)

where zi = col(zi1, zi2) with zi1 ∈ Rni−pi . From Assump-

tion 1, (13) and (14)

‖∆φ̄i(T
−1
i zi, ui)‖≤ρi((TiTci)

−1zi, ui):=ρ̄i(zi, ui)(23)

‖∆M̄i(T
−1z)‖≤σi((TTc)

−1z) := σ̄i(z) (24)

and ρ̄i(zi, ui), σ̄i(z) satisfy the Lipschitz condition

‖ρ̄i(zi, ui)− ρ̄i(ẑi, ui)‖ ≤ ℓρ̄i
‖zi − ẑi‖ (25)

‖σ̄i(z)− σ̄i(ẑ)‖ ≤ ℓσ̄i
‖z − ẑ‖ (26)

Here ℓρ̄i
may be a function of ui.



For system (20)-(22), consider a dynamical system

˙̂zi1 = (Āi1 + P−1
i1 Pi2Āi3)ẑi1 + (Āi2 − Āi1P

−1
i1 Pi2

+P−1
i1 Pi2(Āi4 − Āi3P

−1
i1 Pi2))yi + B̄i1ui + P−1

i1 Pi2

×B̄i2ui + M̄i1(T
−1ẑ) + P−1

i1 Pi2M̄i2(T
−1ẑ) (27)

˙̂zi2 = Āi3ẑi1 + (Āi4 − Āi3P
−1
i1 Pi2)ẑi2 + B̄i2ui

+M̄i2(T
−1ẑ) + di(·) (28)

ŷi = ẑi2 (29)

where ẑ = col(ẑ1, y), and the injection term di(·) is defined

by

di(·) = (‖H̄a
i2‖ρ̄i(ẑi, ui) + ‖H̄b

i2‖σ̄i(ẑ) + ‖Āi4

−Āi3P
−1
i1 Pi2‖‖yi − ŷi‖+ ki)sgn(yi − ŷi) (30)

where ρ̄i(ẑi, ui) = ρ̄i(ẑi1, yi, ui) and σ̄i(ẑ) = σ̄i(ẑ11, y1,
ẑ21, y2, · · · , ẑN1, yN ).

Let ei1 = zi1− ẑi1 and eyi
= yi− ŷi. Then from (20)-(22)

and (27)-(29), the error dynamical equation is described by

ėi1=(Āi1 + P−1
i1 Pi2Āi3)ei1 + [M̄i1(T

−1z)− M̄i1(T
−1ẑ)]

+P−1
i1 Pi2[M̄i2(T

−1z)− M̄i2(T
−1ẑ)] (31)

ėyi
= Āi3ei1 + (Āi4 − Āi3P

−1
i1 Pi2)eyi

+ [M̄i2(T
−1z)

−M̄i2(T
−1ẑ)] + H̄a

i2∆φ̄i(T
−1
i zi, ui)

+H̄b
i2∆M̄i(T

−1z)− di(·) (32)

where di(·) is given in (30) for i = 1, 2, · · · , N .

From the structure of the transformation matrix Ti in (19)

and the fact that ẑi = col(ẑi1, yi), it follows that

‖T−1z − T−1ẑ‖ = ‖e1‖ (33)

where

e1 := col(e11, e21, · · · , eN1) (34)

Therefore,

‖M̄i1(T
−1z)− M̄i1(T

−1ẑ)‖ ≤ ℓM̄i1
‖e1‖ (35)

‖M̄i2(T
−1z)−Mi2(T

−1ẑ)‖ ≤ ℓM̄i2
‖e1‖ (36)

Theorem 1. Under Assumptions 1−3, the error system (31)

is asymptotically stable if the matrix WT + W is positive

definite, where the matrix W = [wij ]N×N
, and its entries

wij are defined by

wij=

{
λmin(Qi1)− 2

[
‖Pi1‖ℓM̄i1

+ ‖Pi2‖ℓM̄i2

]
, i = j

−2
[
‖Pi1‖ℓM̄i1

+ ‖Pi2‖ℓM̄i2

]
, i 6= j

(37)

where Pi1, Pi2 and Qi1 are given in (18).
Proof. For system (31), consider a Lyapunov function can-

didate V =
∑N

i=1 e
T
i1Pi1ei1. Then, the time derivative of V

along the trajectories of system (31) is given by

V̇ =

N∑

i=1

{

eTi1[Pi1(Āi1 + P−1
i1 Pi2Āi3)

T + (Āi1

+P−1
i1 Pi2Āi3)Pi1]ei1 + 2‖Pi1‖‖ei1‖

{[
ℓM̄i1

+‖P−1
i1 Pi2‖ℓM̄i2

]
‖e1‖

}}

≤

N∑

i=1

{

− eTi1Qi1ei1 + 2‖ei1‖
{[

‖Pi1‖ℓM̄i1

+‖Pi2‖ℓM̄i2

]
‖e1‖

}}

(38)

From the definition of e1 in (34)

‖e1‖ ≤

N∑

j=1

‖ej1‖ = ‖ei1‖+

N∑

j=1

j 6=i

‖ej1‖ (39)

Then, from (38) and (39)

V̇ ≤

N∑

i=1

{

− eTi1Qi1ei1 + 2‖ei1‖
{[
‖Pi1‖ℓM̄i1

+‖Pi2‖ℓM̄i2

][
‖ei1‖+

N∑

j=1

j 6=i

‖ej1‖
]}}

≤−

N∑

i=1

{{
λmin(Qi1)− 2

[
‖Pi1‖ℓM̄i1

+ ‖Pi2‖ℓM̄i2

]}

×‖ei1‖
2 −

N∑

j=1

j 6=i

2
[
‖Pi1‖ℓM̄i1

+ ‖Pi2‖ℓM̄i2

]

×‖ei1‖‖ej1‖
}

(40)

Then, from the definition of the matrix W in (37) and the

inequality above, it follows that

V̇ ≤ −
1

2
XT [WT +W ]X

where X = [‖e11‖, ‖e21‖, · · · , ‖eN1‖]
T .

Hence, the conclusion follows from WT +W > 0. △
Remark 1. The proof of Theorm 1 further shows that the

stability of the dynamics (31) are actually independent of

eyi
. This fact will be used to show the stability of the sliding

motion later. From the stability of Theorem 1, it follows that

there exists a constant β such that

‖e1‖ ≤ β, i = 1, 2, · · · , N (41)

where β can be estimated using the approach given in [14].

For system (31)-(32), consider a sliding surface

S = {(e11, ey1
, e21, ey2

, · · · , eN1, eyN
)
∣
∣ey1

= 0,

ey2
= 0, · · · , eyN

= 0} (42)

From the structure of the error dynamical system (31)-(32), it

follows that the system (31) will dominate the sliding motion

associated with the sliding surface (42).



Theorem 2. Under Assumptions 1-3, system (31)-(32) is

driven to the sliding surface (42) in finite time and remains

on it if

ki ≥ (‖Āi3‖+ ℓM̄i2
+ ‖H̄a

i2‖ℓρ̄ + ‖H̄b
i2‖ℓσ̄)β + η (43)

where β is determined by (41) and η is a positive constant.

Proof. From (32)

N∑

i=1

eTyi
ėyi

=

N∑

i=1

eTyi

{

Āi3ei1 + (Āi4 − Āi3P
−1
i1 Pi2)

×eyi
+ [M̄i2 −

ˆ̄Mi2] + H̄a
i2∆φ̄i(T

−1
i zi, ui)

+H̄b
i2∆M̄i(T

−1z)− di(·)
}

≤

N∑

i=1

{

‖Āi3‖‖ei1‖‖eyi
‖+ ℓM̄i2

‖eyi
‖‖e1‖

+‖H̄a
i2‖ρ̄i(zi, ui)‖eyi

‖+ ‖H̄b
i2‖σ̄i(z)‖eyi

‖

+‖(Āi4 − Āi3P
−1
i1 Pi2)‖eyi

‖2 − ‖eyi
‖

{
‖H̄a

i2‖ρ̄i(ẑi1, yi, ui) + ‖H̄b
i2‖σ̄i(ẑ)

+‖Āi4 − Āi3P
−1
i1 Pi2‖‖eyi

‖+ ki)sgn(eyi
)
}}

(44)

From (41), ‖ei1‖ ≤ β. Applying (41) to (44), it follows that

N∑

i=1

eTyi
ėyi

≤
N∑

i=1

{{
(‖Āi3‖+ ℓM̄i2

+ ‖H̄a
i2‖ℓρ̄i

+‖H̄b
i2‖ℓσ̄i

)β − ki
}
‖eyi

‖
}

(45)

Applying (43) to (45)

eTyi
ėyi

≤ −η‖eyi
‖ (46)

This shows that the reachability condition is satisfied.

Hence the conclusion follows. △

Theorems 1 and 2 show that (27)-(29) is an asymptotic

observer of system (20)-(22).

B. The structure of the uncertainties are unknown

Now, if the structure of the uncertainties ∆φi(xi, ui) and

∆Mi(x) in the system (1)-(2) are unknown, which implies

that Assumption 1 does not hold, then an asymptotic observer

usually is not available. An ultimately bounded observer will

be designed. The following Assumption is required.

Assumption 4. The uncertainties ∆φi(xi, ui) and ∆Mi(x)
in system (1)-(2) satisfy

‖∆φi(xi, ui)‖ ≤ εi (47)

‖∆M̄i(x)‖ ≤ Υi (48)

where εi and Υi are positive constants.

In this case, in the new coordinate z the system (1)-(2) is

described by

żi1 =(Āi1 + P−1
i1 Pi2Āi3)zi1 + (Āi2 − Āi1P

−1
i1 Pi2

+P−1
i1 Pi2(Āi4 − Āi3P

−1
i1 Pi2))zi2 + B̄i1ui

+P−1
i1 Pi2 × B̄i2ui + M̄i1(T

−1z) + P−1
i1 Pi2

×M̄i2(T
−1z) + ∆φ̃i1(T

−1
i zi, ui) + ∆M̃i1(T

−1z)(49)

żi2 = Āi3zi1 + (Āi4 − Āi3P
−1
i1 Pi2)zi2 + B̄i2ui

+M̄i2(T
−1z) + ∆φ̃i2(T

−1
i zi, ui) + ∆M̃i2(T

−1z)(50)

yi = zi2 (51)

where
[

∆φ̃i1(T
−1
i zi, ui)

∆φ̃i2(T
−1
i zi, ui)

]

=T−1
i

[
∆φi1(T

−1
i zi, ui)

∆φi2(T
−1
i zi, ui)

]

(52)

[
∆M̃i1(T

−1z)

∆M̃i2(T
−1z)

]

=T−1
i

[
∆M̄i1(T

−1z)
∆M̄i2(T

−1z)

]

(53)

and zi = col(zi1, zi2) with zi1 ∈ Rni−pi . From (47)-(48),

there are constants εai , εbi , Υa
i and Υb

i such that

‖∆φ̃i1(T
−1
i zi, ui)‖ ≤ εai (54)

‖∆φ̃i2(T
−1
i zi, ui)‖ ≤ εbi (55)

‖∆M̃i1(T
−1z)‖ ≤ Υa

i (56)

‖∆M̃i2(T
−1z)‖ ≤ Υb

i (57)

Now consider dynamical systems

˙̂zi1 = (Āi1 + P−1
i1 Pi2Āi3)ẑi1 + (Āi2 − Āi1P

−1
i1 Pi2

+P−1
i1 Pi2(Āi4 − Āi3P

−1
i1 Pi2))yi + B̄i1ui

+P−1
i1 Pi2B̄i2ui + M̄i1(T

−1ẑ)

+P−1
i1 Pi2M̄i2(T

−1ẑ) (58)

˙̂zi2 = Āi3ẑi1 + (Āi4 − Āi3P
−1
i1 Pi2)ẑi2 + B̄i2ui

+M̄i2(T
−1ẑ) + di(·) (59)

ŷi = ẑi2 (60)

where ẑ = col(ẑ1, y). The injection term di(·) is defined by

di(·) = (‖∆φ̃i2(T
−1
i ẑi, ui)‖+ ‖∆M̃i2(T

−1ẑ)‖+ ‖Āi4

−Āi3P
−1
i1 Pi2‖‖yi − ŷi‖+ ki)sgn(yi − ŷi) (61)

Let ei1 = zi1− ẑi1 and eyi
= yi− ŷi. Then from (49)-(51)

and (58)-(60), the error dynamical equation is described by

ėi1=(Āi1 + P−1
i1 Pi2Āi3)ei1 + [M̄i1(T

−1z)− M̄i1(T
−1ẑ)]

+P−1
i1 Pi2[M̄i2(T

−1z)− M̄i2(T
−1ẑ)]

+∆φ̃i1(T
−1
i zi, ui) + ∆M̃i1(T

−1z) (62)

ėyi
= Āi3e1 + (Āi4 − Āi3P

−1
i1 Pi2)eyi

+ [M̄i2(T
−1z)

−M̄i2(T
−1ẑ)] + ∆φ̃i2(T

−1
i zi, ui)

+∆M̃i2(T
−1z)− di(·) (63)

Theorem 3. Under Assumptions 2 and 4, the system (62) is

an ultimately bounded stable if the function matrix WT +W

is positive definite, where the matrix W = [wij ]N×N
, and

its entries wij are defined by

wij=

{
λmin(Qi1)− 2

[
‖Pi1‖ℓM̄i1

+ ‖Pi2‖ℓM̄i2

]
, i = j

−2
[
‖Pi1‖ℓM̄i1

+ ‖Pi2‖ℓM̄i2

]
, i 6= j

(64)



where Pi1, Pi2 and Qi1 are from (18).
Proof. For system (62), consider the same Lyapunov function

as in the proof of Theorem 1. Following a similar proof as

in Theorem 1, it is obtained

V̇ ≤−

N∑

i=1

{{
λmin(Qi1)− 2

[
‖Pi1‖ℓM̄i1

+ ‖Pi2‖ℓM̄i2

]}

‖ei1‖ −

N∑

j=1

j 6=i

2
[
‖Pi1‖ℓM̄i1

+ ‖Pi2‖ℓM̄i2

]
‖ej1‖

}

‖ei1‖

+2
N∑

i=1

‖Pi1‖
[
εai +Υa

i

]
‖ei1‖ (65)

Then, from the definition of the matrix W in theorem 2 and

the inequality above, it follows that

V̇ ≤ −
1

2
XT [WT +W ]X + µX

= −(
1

2
λmin(W

T +W )‖X‖ − µ)‖X‖ (66)

where µ = 2
√

∑N

i=1(‖Pi1‖
[
εai +Υa

i

]
)2 and X = [‖e11‖,

‖e21‖, · · · , ‖eN1‖]
T .

It is clear to see that V̇ < 0 if µ < 1
2λmin(W

T + W ).
Therefore system (62) is ultimately bounded. △

For the system (62)-(63), consider the same sliding surface

S given in (42). It is straightforward to see that Theorem 3

implies that the sliding mode of the system (62)-(63) asso-

ciated with the sliding surface S given in (42) is ultimately

bounded.

Theorem 4. Under Assumptions 2 and 4, the system (62)-

(63) is driven to the sliding surface (42) in finite time and

remains on it if

ki ≥ (‖Āi3‖+ ℓM̄i2
+ ℓ∆φ̃i2

+ ℓ∆M̃i2
)β + η (67)

where β is determined by (41) and η is a positive constant.

The proof can be obtained directly from Theorem 2.

Remark 2 The sliding mode observer in z coordinates is

provided in (27)-(29) or (58)-(60). Therefore the estimate x̂i

for xi can be given by x̂i = (TiTci)
−1ẑi, where Tci and

Ti are given in (7) and (19) respectively and ẑi is given in

(27)-(29) or (58)-(60).

IV. SIMULATION EXAMPLE

In this section, the excitation control problem for a mul-

timachine power system is considered. Let xi = [xi1 xi2

xi3] = [δi − δi0 ωi ∆Pei] with ∆Pei ≡: Pei − Pmi0 for

i = 1, 2, · · · , N . It is assumed that, Pmi = Pmi0 = constant

since only excitation control is considered and δi is the gen-

erator power angle [rad], Pei is electrical power [p.u.], and

ωi is relative speed [rad/s]. All terms are explained in [15].

Then by using direct feedback linearsation compensation for

the power system as in [12], the multimachine power system

can be described by the system (1)− (2) with

Ai =





0 1 0
0 − Di

2Hi
− ω0

2Hi

0 0 − 1
T ′

doi



 , Bi =





0
0

T ′
doi





Ci =

[
1 0 0
0 0 1

]

The following uncertainties are added to the isolated systems

∆φ1(x1, u1) =





0
0
0.5





︸ ︷︷ ︸

Ha
1

|x11| | sinu1|
︸ ︷︷ ︸

∆ξ1(x1,u1)

(68)

∆φ2(x2, u2) =





0
0
0.2





︸ ︷︷ ︸

Ha
2

| sin2(x21 + x23)|
︸ ︷︷ ︸

∆ξ2(x2,u2)

(69)

where |∆ξ1(x1, u1)| < |x11| | sinu1| = ρ1(x1, u1) and

∆ξ2(x2, u2) < | sin2(x21 + x23)| = ρ2(x2, u2).
The input control variables, interconnection and its uncer-

tain terms are chosen the same as in [15]. Choose

Tci =





0 1 0
1 0 0
0 0 1



 for i =, 1, 2, · · · , N. (70)

The system matrices after transformation x̄i = Tcixi with

comparing (5)− (6) are

Āi1 = −
Di

2Hi

, Āi2 =
[
0 − ω0

2Hi

]

Āi3 =

[
1
0

]

, Āi4 =

[
0 0
0 − 1

T ′

doi

]

B̄i1 = 0, B̄i2 =

[
0
1

T ′

doi

]

∆M̄i1 = 0, ∆M̄i2 =

[
0
1

]

Φi(x)

In order to illustrate the results obtained in this paper, con-

sider two machine power systems where all the parameters

are chosen as in [15]. Then, let Q1 = Q2 = I3.

By direct computation, The solutions of Lyapunov equa-

tion (15) P1 and P2 can be found and under the transforma-

tion xi = (TiTci)
−1zi with Tci and Ti defined in (70) and

(19), the two machine power systems can be described in z

coordinates as in the form of (20)− (22) with

‖ρ̄1(z1, u1)‖ ≤ |z121|| sinu1|

‖ρ̄2(z2, u2)‖ ≤ | sin2(z221 + z222)|

and

|σ̄1(z)| ≤ (γI
11| sin z121|+ γII

11 |(z11 + 0.2311z121|))

+(γI
12| sin z221|+ γII

12 |(z21 + 0.4412z221|))

|σ̄2(z)| ≤ (γI
21| sin z121|+ γII

21 |(z11 + 0.2311z121|))

+(γI
22| sin z221|+ γII

22 |(z21 + 0.4412z221|))



Therefore,

|σ̄1(z)− σ̄1(ẑ)| =
[
γII
11 γI

11 + 0.2311γII
11 0 γII

12 γI
12 + 0.4412γII

12 0
]

×[‖z − ẑ‖]

|σ̄2(z)− σ̄2(ẑ)| =
[
γII
21 γI

21 + 0.2311γII
21 0 γII

22 γI
22 + 0.4412γII

22 0
]

×[‖z − ẑ‖]

where γI
11 = 0.9, γI

12 = 0.7355, γII
11 = γII

12 = 1.4 and

γI
21 = 0.966, γI

22 = 0.788, γII
21 = γII

22 = 1.5. Thus

ℓσ̄1
= 2.69224 and ℓσ̄2

= 2.88532.

By direct computation, it follows that the matrix WT +W

is positive definite. Thus, all the conditions of Theorem 1
are satisfied. Therefore the dynamical system (27)− (29) is

an asymptotic observer of the system (20) − (22) which is

well defined and x̂i = (TiTci)
−1ẑi is an estimate of xi =

[xi1 xi2 xi3] = [δi− δi0 ωi ∆Pei]. The simulation results

are presented in Figs 1 and 2, which show the effective of

the designed observer.

V. CONCLUSION

In this paper, a robust sliding mode observer has been

designed for a class of interconnected systems in the presence

of uncertainties. Both the known nonlinear interconnections

and uncertain nonlinear interconnections have been dealt

with separately to reduce the effects of the interconnections.

Sufficient conditions have been provided such as that the

error dynamics are asymptotically stable if the structure of

the uncertainties is known. An ultimately bounded sliding

mode observer is proposed to estimate the states of the

interconnected system if the structure of the uncertainties

is not available. All the bounds on the uncertainties involved

in this paper are nonlinear and are employed in the observer

design to reject/reduce the effect of uncertainties. The ob-

tained results have been applied to a multimachine power

system to show the feasibility of the proposed approach.
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Fig. 1. The time response of 1st subsystem states x1 = col (x11, x12, x13)
and their estimation x̂1 = col (x̂11, x̂12, x̂13)
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Fig. 2. The time response of 1st subsystem states x2 = col (x21, x22, x23)
and their estimation x̂2 = col (x̂21, x̂22, x̂23)
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