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An algebraic proof for the Umemura polynomials
for the third Painlevé equation

Peter A. Clarkson∗, Chun-Kong Law†, Chia-Hua Lin‡

September 5, 2016

Abstract

We are concerned with the Umemura polynomials associated with the third Pain-
levé equation. We extend Taneda’s method, which was developed for the Yablonskii–
Vorob’ev polynomials associated with the second Painlevé equation, to give an algebraic
proof that the rational functions generated by the nonlinear recurrence relation satisfied
by Umemura polynomials are indeed polynomials.

1 Introduction

The third Painlevé equation (PIII)

d2w

dz2
=

1

w

(

dw

dz

)2

− 1

z

dw

dz
+

αw2 + β

z
+ γw3 +

δ

w
, (1.1)

where ′ = d/dz and α, β, γ and δ are arbitrary parameters. We are concerned with the
generic case when γδ 6= 0, so we set γ = 1 and δ = −1, without loss of generality (by
rescaling w and z if necessary), and so consider

d2w

dz2
=

1

w

(

dw

dz

)2

− 1

z

dw

dz
+

αw2 + β

z
+ w3 − 1

w
. (1.2)

The six Painlevé equations (PI–PVI), were discovered by Painlevé, Gambier and their
colleagues whilst studying second order ordinary differential equations of the form

d2w

dz2
= F

(

z, w,
dw

dz

)

, (1.3)

∗School of Mathematics, Statistics and Actuarial Science, University of Kent, Canterbury, CT2 7NF, UK.
Email: P.A.Clarkson@kent.ac.uk

†Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung, Taiwan 804, R.O.C.
Email: law@math.nsysu.edu.tw

‡Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung, Taiwan 804, R.O.C.
AMS Subject Classification (2010) : 34A55, 34B24, 47A75.
Keywords: Umemura polynomials, third Painlevé equation, recurrence relation
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where F is rational in dw/dz and w and analytic in z. The Painlevé equations can be
thought of as nonlinear analogues of the classical special functions. Indeed Iwasaki, Kimura,
Shimomura and Yoshida [35] characterize the six Painlevé equations as “the most important
nonlinear ordinary differential equations” and state that “many specialists believe that during
the twenty-first century the Painlevé functions will become new members of the community
of special functions”. Subsequently this has happened as the Painlevé equations are a chapter
in the NIST Digital Library of Mathematical Functions [60, §32].

The general solutions of the Painlevé equations are transcendental in the sense that they
cannot be expressed in terms of known elementary functions and so require the introduction
of a new transcendental function to describe their solution. However, it is well known
that PII–PVI possess rational solutions and solutions expressed in terms of the classical
special functions — Airy, Bessel, parabolic cylinder, Kummer and hypergeometric functions,
respectively — for special values of the parameters, see, e.g. [15, 23, 33] and the references
therein. These hierarchies are usually generated from “seed solutions” using the associated
Bäcklund transformations and frequently can be expressed in the form of determinants.

Vorob’ev [73] and Yablonskii [75] expressed the rational solutions of PII

d2w

dz2
= 2w3 + zw + α, (1.4)

with α an arbitrary constant, in terms of special polynomials, now known as the Yablonskii–
Vorob’ev polynomials, which are defined through the recurrence relation (a second-order,
bilinear differential-difference equation)

Qn+1Qn−1 = zQ2
n − 4

[

Qn
d2Qn

dz2
−
(

dQn

dz

)2
]

, (1.5)

with Q0(z) = 1 and Q1(z) = z. It is clear from the recurrence relation (1.5) that the Qn are
rational functions, though it is not obvious that they are polynomials since one is dividing
by Qn−1 at every iteration. In fact it is somewhat remarkable that the Qn are polynomials.
Taneda [68], see also [26], used an algebraic method to prove that the functions Qn defined
by (1.5) are indeed polynomials. Clarkson and Mansfield [20] investigated the locations of
the roots of the Yablonskii–Vorob’ev polynomials in the complex plane and showed that
these roots have a very regular, approximately triangular structure; the term “approximate”
is used since the patterns are not exact triangles as the roots lie on arcs rather than straight
lines. An earlier study of the distribution of the roots of the Yablonskii–Vorob’ev polynomials
is given in [41]; see also [35, p. 255, 339]. Recently Bertola and Bothner [3] and Buckingham
and Miller [8, 9] have studied the Yablonskii–Vorob’ev polynomials Qn(z) in the limit as
n → ∞ and shown that the roots lie in a “triangular region” with elliptic sides which meet
with interior angle 2

5
π, suggesting a limit to a solution of PI. Indeed Buckingham & Miller

[8, 9] show that in the limit as n → ∞, the rational solution of PII tends to the tritronquée
solution of PI.

Okamoto [57] obtained special polynomials, analogous to the Yablonskii–Vorob’ev poly-
nomials, which are associated with some of the rational solutions of PIV. Noumi and Ya-
mada [54] generalized Okamoto’s results and expressed all rational solutions of PIV in terms
of special polynomials, now known as the generalized Hermite polynomials and generalized
Okamoto polynomials. The structure of the roots of these polynomials is studied in [12],
where it is shown that the roots of the generalized Hermite polynomials have an approx-
imate rectangular structure and the roots of the generalized Okamoto polynomials have a
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combination of approximate rectangular and triangular structures. As for PII, “approxi-
mate” is used since the patterns are not exact triangles and rectangles as the roots lie on
arcs rather than straight lines.

Umemura [71] derived special polynomials with certain rational and algebraic solutions
of PIII, PV and PVI which have similar properties to the Yablonskii–Vorob’ev polynomials
and the Okamoto polynomials. Recently there have been further studies of the special
polynomials associated with rational solutions of PII [3, 8, 9, 26, 37, 39, 42, 68], rational
and algebraic solutions of PIII [1, 11, 38, 51, 52, 59, 56, 72], rational solutions of PIV [14,
22, 26, 54, 40, 55], rational and algebraic solutions of PV [13, 49, 53, 58, 74], algebraic
solutions of PVI [43, 48, 67, 69]; a comprehensive review is given in [16]. Several of these
papers are concerned with the combinatorial structure and determinant representation of
the polynomials, often related to the Hamiltonian structure and affine Weyl symmetries of
the Painlevé equations. Additionally the coefficients of these special polynomials have some
interesting, indeed somewhat mysterious, combinatorial properties [70, 71].

Further these special polynomials associated with rational solutions of the Painlevé equa-
tions arise in several applications:

• the Yablonskii–Vorob’ev polynomials arise in the transition behaviour for the semi-
classical sine-Gordon equation [7] and in moving boundary problems [65, 66];

• the Umemura polynomials associated with rational solutions of PIII and PV arise as
multivortex solutions of the complex sine-Gordon equation [2, 4, 5, 61];

• the generalized Hermite polynomials associated with rational solutions of PIV arise as
multiple integrals in random matrix theory [6, 24], in the description of vortex dynamics
with quadrupole background flow [18], and as coefficients of recurrence relations for
semi-classical orthogonal polynomials [10, 19];

• the generalized Okamoto polynomials associated with rational solutions of PIV gen-
erate previously unknown rational-oscillatory solutions of the de-focusing nonlinear
Schrödinger equation [17];

• these special polynomials associated with rational solutions of Painlevé equations are
examples of exceptional orthogonal polynomials [27, 28, 29, 30, 31, 32, 45, 46, 47], for
which there is much current interest.

We emphasize that the fact that the nonlinear recurrence relation (1.5) generates polyno-
mials also follows from the τ -function theory associated with the theory of Painlevé equations.
The τ -functions are in general entire functions. It can be shown that for PII with α = m,
the associated τ -function is

τm(z) = Qm(z) exp

(

− z3

24

)

,

Consequently the rational function Qm(z) has to be a polynomial. Taneda [68] and Fukutani,
Okamoto and Umemura [26] independently gave a direct algebraic proof, which is one of the
first studies of nonlinear recurrence relations for polynomials. In particular, Taneda [68]
defined a Hirota-like operator

ℓ(f) = f
d2f

dz2
−
(

df

dz

)2

,
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and showed that if f(z) is a polynomial in z, and g = zf 2−4 ℓ(f), then f divides 2z g2−4 ℓ(g).
Hence if f(z) = Qm−1(z), then g(z) = Qm(z)Qm−2(z) and

2z g2 − 4 ℓ(g) = Q2
mQm−3Qm−1 +Q2

m−2(zQ
2
m − 4 ℓ(Qm)),

so that Qm divides zQ2
m−4 ℓ(Qm), implying that Qm+1 is a polynomial. This is based on the

assumption that each Qm has simple zeros (implying that Qm and Qm−1 have no common
zeros), which in turn can be proved using another identity derived from PII,

dQm+1

dz
Qm−1 −Qm+1

dQm−1

dz
= (2m+ 1)Q2

m, (1.6)

which is proved in [26, 68] (see also [42]).
Now for PIII (1.2), the recurrence relation becomes

Sn+1Sn−1 = −z

[

Sn
d2Sn

dz2
−

(

dSn

dz

)2
]

− Sn
dSn

dz
+ (z + µ)S2

n, (1.7)

where µ is a complex parameter. Here there is one more term Sn
dSn

dz
, and z in the main

term implies that the root z = 0 of Sn, if exists, will accumulate. We continue to employ
Taneda’s trick, by defining another Hirota-like operator

Lz(f) = f
d2f

dz2
−
(

df

dz

)2

− f

z

df

dz
.

Also we need another identity. We find that it is suitable to use the fourth order differential
equation in Sn (4.6) found in [11]. This higher order equation in fact comes from the σ-
equation equivalent to PIII

(

z
d2σ

dz2
− dσ

dz

)2

+ 4

(

dσ

dz

)2(

z
dσ

dz
− 2σ

)

+ 4zλ1
dσ

dz
− z2

(

z
dσ

dz
− 2σ + 2λ0

)

= 0, (1.8)

with λ0 =
1
8
(α2 + (β − 2)2) and λ1 = −1

4
α(β − 2); or equivalently

z2
d3σ

dz3
− z

d2σ

dz2
+ 6z

(

dσ

dz

)2

− 8σ
dσ

dz
+

dσ

dz
− 1

2
z3 − 2zλ1 = 0, (1.9)

which is obtained by differentiating (1.8). The higher order equation

z2

[

Sn
d4Sn

dz4
− 4

dSn

dz

d3Sn

dz3
+ 3

(

d2Sn

dz2

)2
]

+ 2z

(

Sn
d3Sn

dz3
− dSn

dz

d2Sn

dz2

)

− 4z(z + µ)

[

Sn
d2Sn

dz2
−

(

dSn

dz

)2
]

− 2Sn
d2Sn

dz2
+ 4µSn

dSn

dz
= 2n(n+ 1)S2

n,

which is derived from (1.9), is also instrumental in the analysis of the case when z = 0 is a
root of Sn (see §4 below).

In §2 we describe rational solutions of equation (1.2). In §§3 and 4 we extend Taneda’s
algebraic proof for equation (1.5) to equation (2.3) and in §5 we discuss our results.
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2 Rational solutions of PIII

The location of rational solutions of equation (1.2), which is PIII with γ = 1 and δ = −1,
are given in the following theorem.

Theorem 2.1. Equation (1.2) has a rational solution if and only if α± β = 4n, n ∈ Z.

Proof. See Gromak, Laine and Shimomura [33, p. 174]; also [51, 52].

Umemura [71] derived special polynomials associated with rational solutions of PIII (1.2),
which are defined in Theorem 2.2, and states that these polynomials are the analogues of
the Yablonskii–Vorob’ev polynomials associated with rational solutions of PII [73, 75] and
the Okamoto polynomials associated with rational solutions of PIV [57].

Theorem 2.2. Suppose that Tn(z;µ) satisfies the recurrence relation

zTn+1Tn−1 = −z

[

Tn
d2Tn

dz2
−

(

dTn

dz

)2
]

− Tn
dTn

dz
+ (z + µ)T 2

n , (2.1)

with T−1(z;µ) = 1 and T0(z;µ) = 1. Then

wn(z;µ) ≡ w(z;αn, βn) =
Tn(z;µ − 1) Tn−1(z;µ)

Tn(z;µ) Tn−1(z;µ − 1)
≡ 1 +

d

dz
ln

Tn(z;µ− 1)

zn Tn(z;µ)
, (2.2)

satisfies PIII (1.2), with αn = 2n+ 2µ− 1 and βn = 2n− 2µ+ 1.

Proof. See Umemura [71]; also [11, 38].

The “polynomials” Tn(z;µ) are rather unsatisfactory since they are actually polynomials
in ξ = 1/z rather than polynomials in z, which would be more natural. However it is
straightforward to determine a recurrence relation which generates functions Sn(z;µ) which
are polynomials in z. These are given in the following theorem which generalizes the work
of Kajiwara and Masuda [38].

Theorem 2.3. Suppose that Sn(z;µ) satisfies the recurrence relation

Sn+1Sn−1 = −z

[

Sn
d2Sn

dz2
−

(

dSn

dz

)2
]

− Sn
dSn

dz
+ (z + µ)S2

n, (2.3)

with S−1(z;µ) = S0(z;µ) = 1. Then

wn = w(z;αn, βn) =
Sn(z;µ − 1)Sn−1(z;µ)

Sn(z;µ)Sn−1(z;µ− 1)
≡ 1 +

d

dz
ln

Sn−1(z;µ− 1)

Sn(z;µ)
, (2.4)

satisfies PIII (1.2) with αn = 2n+ 2µ− 1 and βn = 2n− 2µ+ 1.

Proof. See Clarkson [11] and Kajiwara [36].

Remarks 2.4.

1. The polynomials Sn(z;µ) and Tn(z;µ), defined by (2.3) and (2.1), respectively, are
related through Sn(z;µ) = zn(n+1)/2Tn(z;µ). The polynomials Sn(z;µ) also have the
symmetry property Sn(z;µ) = Sn(−z;−µ).
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2. The rational solutions of PIII (1.2) lie on the lines α + ǫβ = 4n, with ǫ = ±1, in the
α-β plane. Further, letting w(z) = u(ζ)/

√
ζ , with ζ = 1

4
z2, in PIII (1.2) yields

d2u

dζ2
=

1

u

(

du

dζ

)2

− 1

ζ

du

dζ
+

αu2

2ζ2
+

β

2ζ
+

u3

ζ2
− 1

u
, (2.5)

which is known as PIII′ (cf. Okamoto [59]) and is frequently used to determine properties
of solutions of PIII. However (2.5) has algebraic solutions rather than rational solutions
[51, 52].

3. For any n ∈ N ∪ {0}, if αn = 2n + 2µ − 1 and βn = 2n − 2µ + 1, with µ ∈ C, then
αn + βn = 4n.

Kajiwara and Masuda [38] derived representations of rational solutions for PIII (1.2) in
the form of determinants, which are described in the following theorem.

Theorem 2.5. Let pk(z;µ) be the polynomial defined by

∞
∑

j=0

pj(z;µ)λ
j = (1 + λ)µ exp (zλ) , (2.6)

with pj(z;µ) = 0 for j < 0, and τn(z), for n ≥ 1, be the n× n determinant

τn(z;µ) = W (p1(z;µ), p3(z;µ), . . . , p2n−1(z;µ)) , (2.7)

where W(φ1, φ2, . . . , φn) is the Wronskian. Then

wn = w(z;αn, βn, 1,−1) = 1 +
d

dz
ln

τn−1(z;µ− 1)

τn(z;µ)
, (2.8)

for n ≥ 1, satisfies PIII (1.2) with αn = 2n+ 2µ− 1 and βn = 2n− 2µ+ 1.

Proof. See Kajiwara and Masuda [38].

Remarks 2.6.

1. We note that pk(z;µ) = L
(µ−k)
k (−z), where L

(m)
k (ζ) is the associated Laguerre polyno-

mial, cf. [60, §18].

2. The relationship between the polynomial Sn(z, µ) and the Wronskian τn(z;µ) is

Sn(z, µ) = cnτn(z;µ), cn =
n
∏

j=1

(2j + 1)n−j.

3. In the special case when µ = 1, then

Sn(z, 1) = zn(n−1)/2θn(z),

where θn(z) is the Bessel polynomial (sometimes known as the reverse Bessel polyno-
mial, cf. [34]) given by

θn(z) =

√

2

π
zn+1/2ezKn+1/2(z) ≡

n!

(−2)n
L(−2n−1)
n (2x),

with Kν(z) the modified Bessel function, which recently arose in the description of
point vortex equilibria [62].
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S1(z;µ) = z + µ,

S2(z;µ) = ξ3 − µ,

S3(z;µ) = ξ6 − 5µξ3 + 9µξ − 5µ2,

S4(z;µ) = ξ10 − 15µξ7 + 63µξ5 − 225µξ3 + 315µ2ξ2 − 175µ3ξ + 36µ2,

S5(z;µ) = ξ15 − 35µξ12 + 252µξ10 + 175µ2ξ9 − 2025µξ8 + 945µ2ξ7

− 1225µ(µ2 − 9)ξ6 − 26082µ2ξ5 + 33075µ3ξ4 − 350µ2(35µ2 + 36)ξ3

+ 11340µ3ξ2 − 225µ2(49µ2 − 36)ξ + 7µ3(875µ2 − 828).

Table 2.1: The first few Umemura polynomials Sn(z;µ), with ξ = z + µ.

Dis(S2(z;µ)) = −33µ2,

Dis(S3(z;µ)) = 31255µ6(µ2 − 1)2,

Dis(S4(z;µ)) = 32752077µ14(µ2 − 1)6(µ2 − 4)2,

Dis(S5(z;µ)) = 366545728µ26(µ2 − 1)14(µ2 − 4)6(µ2 − 9)2,

Dis(S6(z;µ)) = −31475807631111µ44(µ2 − 1)26(µ2 − 4)14(µ2 − 9)6(µ2 − 16)2.

Table 2.2: The discriminants of the Umemura polynomials Sn(z;µ).

The recurrence relation (2.3) is nonlinear, so in general, there is no guarantee that the
rational function Sn+1 thus derived is indeed a polynomial (since one is dividing by Sn−1), as
was the case for the recurrence relation (1.5). However, the Painlevé theory guarantees that
this is the case through an analysis of the τ -function. A few of these Umemura polynomials
Sn(z;µ), with µ an arbitrary complex parameter, are given in Table 2.1.

Plots of the roots of the polynomials Sn(z;µ) for various µ are given in [11]. Initially
for µ sufficiently large and negative, the 1

2
n(n+ 1) roots form an approximate triangle with

n roots on each side. Then as µ increases, the roots in turn coalesce and eventually for µ
sufficiently large and positive they form another approximate triangle, similar to the original
triangle, though with its orientation reversed. It is straightforward to determine when the
roots of Sn(z;µ) coalesce using discriminants of polynomials. Suppose that

f(z) = zm + am−1z
m−1 + . . .+ a1z + a0,

is a monic polynomial of degree m with roots α1, α2, . . . , αm, so f(z) =
∏m

j=1(z − αj). Then
the discriminant of f(z) is

Dis(f) =
∏

1≤j<k≤m

(αj − αk)
2.

Hence the polynomial f has a multiple root when Dis(f) = 0.
The discriminants of the first few Umemura polynomials Sn(z;µ) are given in Table

2.2. Thus S2(z;µ) has multiple roots when µ = 0, S3(z;µ) has multiple roots when µ =
0,±1, S4(z;µ) has multiple roots when µ = 0,±1,±2, S5(z;µ) has multiple roots when
µ = 0,±1,±2,±3, and S6(z;µ) has multiple roots when µ = 0,±1,±2,±3,±4. Further the
multiple roots occur at z = 0. This leads to the following theorem.
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Theorem 2.7. The discriminant of the polynomial Sn(z;µ) is given by

|Dis(Sn)| =
n
∏

j=1

(2j + 1)(2j+1)(n−j)2
n
∏

k=−n

(µ− k)cn−|k| ,

where cn = 1
6
n3+ 1

4
n2− 1

6
n− 1

8
[1− (−1)n] and Dis(Sn) < 0 if and only n = 2 mod 4. Further

the polynomial Sn(z;µ) has multiple roots at z = 0 when µ = 0,±1,±2, . . . ,±(n− 2).

Proof. See Amdeberhan [1].

Using the Hamiltonian formalism for PIII, it is shown in [11] that the polynomials Sn(z;µ)
satisfy an fourth order bilinear equation and a sixth order, hexa-linear (homogeneous of
degree six) difference equation.

3 Application of Taneda’s method

In this section, we use the algebraic method due to Taneda [68] to prove that the rational
functions Sn satisfying (2.3) are indeed polynomials, assuming all the functions Sn’s have
simple zeros.

We define an operator Lz as follows

Lz(f) = f
d2f

dz2
−
(

df

dz

)2

+
f

z

df

dz
. (3.1)

Lemma 3.1. Let f(z) and g(z) be arbitrary polynomials. Then

(a) Lz(kf) = k2 Lz(f), with k a constant;

(b) Lz(f g) = f 2Lz(g) + g2Lz(f);

(c) If h = −zLz(f) + k(z + µ)f 2, with k and µ constants, then

f | zLz(h)− 2k(z + µ)h2, (3.2)

where the symbol | means that the right hand side is divisible by the left hand side.

Proof.

(a) This follows directly from the definition.

(b) We observe that

Lz(fg) = fg
d2

dz2
(fg)−

[

d

dz
(fg)

]2

+
fg

z

d

dz
(fg)

= f 2

[

g
d2g

dz2
−

(

dg

dz

)2

+
g

z

dg

dz

]

+ g2

[

f
d2f

dz2
−
(

df

dz

)2

+
f

z

df

dz

]

= f 2Lz(g) + g2Lz(f),

so the result is valid.
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(c) Finally, by definition

h = −z

[

f
d2f

dz2
−

(

df

dz

)2

+
f

z

df

dz

]

+ k(z + µ)f 2

= z

(

df

dz

)2

+ f × (a polynomial)

dh

dz
= −2f

d2f

dz2
− z

(

f
d3f

dz3
− df

dz

d2f

dz2

)

+ kf 2 + 2k(z + µ)f
df

dz

= z
df

dz

d2f

dz2
+ f × (a polynomial)

d2h

dz2
= −df

dz

d2f

dz2
− 3f

d3f

dz3
− z

[

f
d4f

dz4
−

(

d2f

dz2

)2
]

+ 4kf
df

dz
+ 2k(z + µ)

[

f
d2f

dz2
+

(

df

dz

)2
]

= −df

dz

d2f

dz2
+ z

(

d2f

dz2

)2

+ 2k(z + µ)

(

df

dz

)2

+ f × (a polynomial).

Then we can see

Lz(h) = h
d2h

dz2
−

(

dh

dz

)2

+
h

z

dh

dz

= 2z(z + µ)

(

df

dz

)4

− f
df

dz

(

d2f

dz2

)2

+
2k(z + µ)f

z

(

df

dz

)3

+ f × (a polynomial)

= 2z(z + µ)

(

df

dz

)4

+
2kµf

z

(

df

dz

)3

+ f × (a polynomial).

Since zLz(h)− 2k(z + µ)h2 = f × (a polynomial), then

f | zLz(h)− 2k(z + µ)h2, (3.3)

as required.

Theorem 3.2. Suppose {Sn} is a sequence of rational functions with simple nonzero roots,
satisfying (2.3). For all N ∈ N ∪ {0}, if z = 0 is not a root of any Sn(z) for 0 ≤ n ≤ N ,
then:

(a) SN+1(z) is a polynomial of degree 1
2
(N + 1)(N + 2);

(b) SN+1(z) and SN(z) do not have a common root.

Proof. We shall prove these using induction. We have S−1(z) = S0(z) = 1, then S1(z) = z+µ
and S2(z) = (z + µ)3 − µ. Clearly, (a) and (b) hold for n = 0, 1, 2, when µ 6= 0,±1. We
assume that (a) and (b) hold for n = N − 2, N − 1, N , with N ≥ 2. Then we will prove that
the statements also hold for n = N + 1.

We let f be SN−1. Then n = N −1 and h = SNSN−2 in Lemma 3.1. Then (3.3) becomes

SN−1 | zLz(SNSN−2)− 2k(z + µ)(SNSN−2)
2. (3.4)
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Hence
[

Lz(SNSN−2)−
2(z + µ)

z
(SNSN−2)

2

]

(−z)

= −z
[

S2
N−2Lz(SN) + S2

NLz(SN−2)
]

+ 2(z + µ)(SNSN−2)
2

= S2
N−2[−zLz(SN) + (z + µ)S2

N ] + S2
N [−zLz(SN−2) + (z + µ)S2

N−2]

= S2
N−2[−zLz(SN) + (z + µ)S2

N ] + S2
NSN−1SN−3.

Then by (3.3) and (b) with n = N − 1, we have

SN−1 | − zLz(SN ) + (z + µ)S2
N = −z

[

SN
d2SN

dz2
−

(

dSN

dz

)2
]

− SN
dSN

dz
+ (z + µ)S2

N

So, according to (2.3), SN+1 is a polynomial by induction.
To prove (b), we use a proof by contradiction. If SN and SN−1 have the same root z0 6= 0,

then by (2.3), z0 is also a root of

SN
d2Sn

dz2
−

(

dSN

dz

)2

,

and hence
dSN

dz
. This implies z0 is at least a double root of SN , which contradicts our

assumption about SN .

4 Further analysis on Sn(0, µ)

Theorem 4.1. Let φn = Sn(0, µ), and

φ′
n :=

∂Sn

∂z
(0, µ), φ′′

n :=
∂2Sn

∂z2
(0, µ),

etc. Then for all n ≥ 3,

φn+1 =
φnφn−1

φn−2

(

2µ2 − 2n2 + 2n− 1− φnφn−3

φn−1φn−2

)

; (4.1)

φ′
n+1 = −φnφn+2

φn+1
+ µφn+1. (4.2)

Proof. Differentiating (2.3) with respect to z gives

dSn+1

dz
=

1

Sn−1

{

S2
n + 2(z + µ)Sn

dSn

dz
− 2Sn

d2Sn

dz2

+ z

(

dSn

dz

d2Sn

dz2
− Sn

d3Sn

dz3

)

− Sn+1
dSn−1

dz

}

. (4.3)

Substitute z = 0 into (2.3) and (4.3). We obtain

φn+1 =
φn

φn−1
(µφn − φ′

n) , (4.4)
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and

φ′
n+1 =

φn

φn−1

(

φn + 2µφ′
n − 2φ′′

n −
φ′
n−1φn+1

φn

)

. (4.5)

Now (4.4) implies that (4.2) is valid. Furthermore, in [11, p. 9519],

z2

[

Sn
d4Sn

dz4
− 4

dSn

dz

d3Sn

dz3
+ 3

(

d2Sn

dz2

)2
]

+ 2z

(

Sn
d3Sn

dz3
− dSn

dz

d2Sn

dz2

)

− 4z(z + µ)

[

Sn
d2Sn

dz2
−

(

dSn

dz

)2
]

− 2Sn
d2Sn

dz2
+ 4µSn

dSn

dz
= 2n(n+ 1)S2

n. (4.6)

This implies, as φn is not identically zero, that

2µφ′
n − φ′′

n = n(n + 1)φn. (4.7)

Hence by (4.2),

φ′′
n = 2µφ′

n − n(n+ 1)φn = [2µ2 − n(n+ 1)]φn −
2µφn−1φn+1

φn
.

Now substitute this equation and (4.2) into (4.5) to obtain, after simplification,

−φnφn+2

φn+1
=

φ2
n

φn−1
(2n2 + 2n+ 3− 2µ2) +

φn+1φnφn−2

φ2
n−1

.

Therefore we have

φn+2 =
φnφn+1

φn−1

(

2µ2 − 2n2 − 2n− 3− φn+1φn−2

φnφn−1

)

.

Thus (4.1) is also valid.

Corollary 4.2.

(a) For all n ∈ N,

φn(µ) = µγn

0 (µ2 − 1)γ
n

1 (µ2 − 4)γ
n

2 . . .
[

µ2 − (n− 1)2
]γn

n−1 ,

where for 0 ≤ j < k,

γn
2j = ⌈n

2
⌉ − j = k − j if n = 2k or 2k − 1;

γn
2j+1 = ⌊n

2
⌋ − j = k − j if n = 2k or 2k + 1.

(b) φ′
n(µ) = φn−1(µ)g(µ), where g(µ) is a polynomial of degree n or n − 2 according as n

is even or odd.

Proof. If n = 2k is even, then by induction hypothesis,

φ2k = µk(µ2 − 1)k(µ2 − 4)k−1(µ2 − 9)k−1 . . .
[

µ2 − (2k − 2)2
] [

µ2 − (2k − 1)2
]

.

= µk(µ2 − 1)k
k−1
∏

j=1

[

µ2 − (2j)2
]k−j [

µ2 − (2j + 1)2
]k−j

.
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while φn−1 and φn−2 have similar expressions. Thus

φnφn−1

φn−2

= µk+1(µ2 − 1)k(µ2 − 4)k(µ2 − 9)k−1 . . .

. . .
[

µ2 − (2k − 2)2
]2 [

µ2 − (2k − 1)2
]

.

Hence it follows from Theorem 4.1 that

φn+2 = µk+1(µ2 − 1)k(µ2 − 4)k(µ2 − 9)k−1 . . .

. . .
[

µ2 − (2k − 2)2
]2 [

µ2 − (2k − 1)2
] [

µ2 − (2k)2
]

.

The situation is similar for odd n.
We also consider odd n’s and even n’s in part (b). When n = 2k, we note that

φ2k = φ2k−1

k
∏

j=1

[

µ2 − (2j − 1)2
]

.

Hence by Theorem 4.1,

φ′
2k = µφ2k−1

{

k
∏

j=1

[

µ2 − (2j − 1)2
]

−
k−1
∏

j=1

[

µ2 − (2j)2
]

}

.

When n = 2k + 1, then

φ2k+1 = φ2k

k
∏

j=0

[

µ2 − (2j)2
]

,

and

φ′
2k+1 = φ2k

{

k
∏

j=0

[

µ2 − (2j)2
]

−
k
∏

j=0

[

µ2 − (2j + 1)2
]

}

.

Remark 4.3. Part (a) of Theorem 4.2 above means that z = 0 is a root of Sn if and only
if µ = 0,±1,±2, . . . ,±(n− 1). In particular, the first few φn(µ)’s are

φ1(µ) = µ,

φ2(µ) = µ(µ2 − 1),

φ3(µ) = µ2(µ2 − 1)(µ2 − 4),

φ4(µ) = µ2(µ2 − 1)2(µ2 − 4)(µ2 − 9),

φ5(µ) = µ3(µ2 − 1)2(µ2 − 4)2(µ2 − 9)(µ2 − 16).

Theorem 4.4. Fix n ∈ N. If µ = ±n, then for the recurrence relation (2.3) and starting
polynomials S−1 = S0 = 1, we have:

(a) all the zeros of rational functions Sk are simple, when k = 0, 1, . . . , n;

(b) each Sk is a monic polynomial in z of degree 1
2
k(k + 1), for k = 0, 1, . . . , n.
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Proof. We shall make use of the identity (4.6) again. Suppose z0 6= 0 is a root of Sn. Then
from (4.6),

3

[

d2Sn

dz2
(z0)

]2

=
dSn

dz
(z0)

[

4
d3Sn

dz3
(z0) + 2

d2Sn

dz2
(z0) + 4(z0 + µ)

dSn

dz
(z0)

]

.

Hence if z0 is a root of
dSn

dz
, then it also has to be a root of

d2Sn

dz2
. That is, if z0 is not a

simple root of Sn, then its order ≥ 3. Let k be the order of the root z0. Analyzing on the
identity (4.6), the term

Sn
d3Sn

dz3
− 4

dSn

dz

d3Sn

dz3
+ 3

(

d2Sn

dz2

)2

,

has the zero z0 with order 2k − 4, while the other terms has order greater than or equal to

2k+3. Therefore let Sn(z) = (z− z0)
kg(z), where g(z) is a polynomial and

dg

dz
(z0) 6= 0. The

there exists a polynomial h(z) such that

Sn
d4Sn

dz4
− 4

dSn

dz

d3Sn

dz3
+ 3

(

d2Sn

dz2

)2

= (z − z0)
2k−4

[

(z − z0)h(z) + 6k(k − 1)g2(z)
]

.

But it must have z0 as a root, which gives a contradiction. We see that every z0 is at most
a simple root.

Theorem 4.5. Let µ ∈ Z \{0}. Suppose that Sn(z) = zσg(z), where g(z) =
∑k

j=0 ajz
j, with

a0 6= 0. Then

(a) a1 = µa0; and

(b) if σ = 1
2
(n− |µ|)(n− |µ|+ 1), then

a2 =
1
2

(

µ2 − |µ|
2m+ 1

)

a0.

Proof. We use the auxilliary identity (4.6) for the proof. First

dSn

dz
= zσ

dg

dz
+ σzσ−1g, (4.8a)

and

d2Sn

dz2
= zσ

d2g

dz2
+ 2σzσ−1dg

dz
+ σ(σ − 1)zσ−2g, (4.8b)

d3Sn

dz3
= zσ

d3g

dz3
+ 3σzσ−1d

2g

dz2
+ 3σ(σ − 1)zσ−2 dg

dz
+ σ(σ − 1)(σ − 2)zσ−3g, (4.8c)

d4Sn

dz4
= zσ

d4g

dz4
+ 4σzσ−1d

3g

dz3
+ 6σ(σ − 1)zσ−2 d

2g

dz2
+ 4σ(σ − 1)(σ − 2)zσ−3 dg

dz
+ σ(σ − 1)(σ − 2)(σ − 3)zσ−4g. (4.8d)
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Express (4.6) as

2n(n+ 1)S2
n + 4z2

[

Sn
d2Sn

dz2
−
(

dSn

dz

)2
]

= z2

[

Sn
d4Sn

dz4
− 4

dSn

dz

d3Sn

dz3
+ 3

(

d2Sn

dz2

)2
]

+ 2z

(

Sn
d3Sn

dz3
− dSn

dz

d2Sn

dz2

)

− 4µz

[

Sn
d2Sn

dz2
−
(

dSn

dz

)2
]

− 2Sn
d2Sn

dz2
+ 4µSn

dSn

dz
. (4.9)

Then we substitute (4.8) into (4.9) and obtain, after simplification,

[2n(n + 1)− 4σ]z2σg2 + . . .

= −8σz2σ−1g
dg

dz
+ 8µσz2σ−1g2 − (8σ + 2)z2σg

d2g

dz2
+ 8σz2σ

(

dg

dz

)2

+ 4µz2σg
dg

dz
+ . . .

Comparing coefficients of z2σ−1 in the resulting polynomials, we obtain

8σa0a1 − 8µσa20 = 0.

This implies part (a). Next we compare coefficients of z2σ to get

[2n(n + 1)− 4σ]a20 = −8σ(a21 + 2a0a2) + (16σ + 4)σa0a1 − (16σ + 4)a0a2 + 8σa21.

Since a1 = µa0, we have

(32σ + 4)a0a2 = [µ2(16σ + 4)− 2n(n+ 1) + 4σ]a20,

so that

a2 =
µ2(16σ + 4)− 2n(n + 1) + 4σ

32σ + 4
a0.

Now let m = n− |µ| and σ = 1
2
m(m+ 1),

2n(n+ 1) = 2[µ2 + (2m+ 1)|µ|+m(m+ 1)],

while
8σ + 1 = (2m+ 1)2.

Therefore part (b) is valid.

Theorem 4.6. Let µ ∈ Z. Then for all n > |µ|:

(a) z = 0 is a root of order 1
2
(n− |µ|)(n− |µ|+ 1) for Sn;

(b) Sn is a monic polynomial of degree 1
2
n(n+ 1);

(c) all other roots of Sn are simple.
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Proof. Part (c) follows from the proof of Theorem 4.4. For parts (a) and (b), the case when
µ = 0 is simple. For then, Sn(z) = zσn . In general, let µ ∈ Z \ {0}. Let k = |µ|, by
Corollary 4.2, z = 0 is a root of Sk+1. Let Sk+1 = zg1,µ(z). By (4.3) and (4.7),

dSk+1

dz
(0; k) =

φk(k) [φk(k) + 2µφ′
k(k)− φ′′

k(k)]

φk−1(k)
=

φ2
k(k)

φk−1(k)
(k2 + k + 1) 6= 0.

Thus z is a simple root of Sk+1. So Sk+1 = zg1,µ(z) where g1,µ =
∑

a1,µj xj is a degree σk+1−1
polynomial with nonzero roots.

Let n = k + 1. By (2.3),

SkSk+2 = z3

[

(

dg1,µ
dz

)2

− g1,µ
d2g1,µ

dz2
+ g21,µ

]

+ z2
(

µg21,µ − g1,µ
dg1,µ
dz

)

.

For the right hand side, the coefficient of z3 is given by

a1,µ0

(

a1,µ0 + 2µa1,µ1 − 4a1,µ2

)

=
(

a1,µ0

)2
(1 + 2

3
µ) 6= 0,

by Lemma 4.5. Hence Sk+2 = z3g2,µ(z) where g2,µ had nonzero constant term. Use induction
on m = n− |µ| > 1. Let

Sn−1 = zσm−1gm−1,µ, Sn = zσmgm,µ,

where gm−1,µ and gm,µ are polynomials of degrees σm−1 and σm respectively with nonzero
roots. Then by (2.3),

zσm−1gm−1,µSm−1 = z2σm

(

µg2m,µ − gm,µ
dgm,µ

dz

)

+ z2σm+1

[

(

dgm,µ

dz

)2

− gm,µ
d2gm,µ

dz2
+ g2m,µ

]

.

Let am,µ
j be the coefficients of gm,µ. By Lemma 4.5, am,µ

1 = µam,µ
0 . So we may write

Sn+1 = zσm+1gm+1,µ, where

am+1,µ
0 am−1,µ

0 = 2µam,µ
0 am,µ

1 − 4amµ
0 am,µ

2 + (am,µ
0 )2

= am,µ
0 (2µam,µ

1 + am,µ
0 − 4am,µ

2 )

= (am,µ
0 )2

(

1 +
2|µ|

2m+ 1

)

.

So am+1,µ
0 is nonzero, and the rational function gm+1,µ does not have z = 0 as a root.
Next we want to show that gm+1,µ is a polynomial. From the proof of Theorem 4.4 and

Theorem 3.2(b), we know that all nonzero roots of Sn and Sn−1 are simple and not common.
Furthermore, we still have

Sn−1 |S2
n−2

[

−zLz(Sn) + (z + µ)S2
n

]

,

where

∆ := −zLz(Sn) + (z + µ)S2
n = z

[

(

dSn

dz

)2

− Sn
d2Sn

dz2

]

− Sn
dSn

dz
+ (z + µ)S2

n.

We conclude that gm−1,µ divides ∆, which means that gm+1,µ is also a polynomial. Conse-
quently parts (a) and (b) follow by induction.
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5 Conclusions

We have given a direct algebraic proof that the nonlinear recurrence relation (2.3) generates
polynomials Sn, rather than rational functions without direct resort to the τ -function theory
of Painlevé equations. However we critically needed a higher order equation derived from
the corresponding σ-equation, which seems to be inevitable in the nonlinear scenario. We
believe that the method can be developed to apply to the fifth Painlevé equation (PV) as
well, though we shall not pursue this further here.
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critical behaviour, Nonlinearity, 28 (2015) 1539–1596.
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tion [F. Màrcellan and W. Van Assche, Editors] Lect. Notes Math., vol. 1883, Springer-Verlag,
Berlin (2006) pp. 331–411.

[16] P.A. Clarkson, Special polynomials associated with rational solutions of the Painlevé equations
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of Painlevé V equation, Nagoya Math. J., 168 (2002) 1–25.

[50] M. Mazzocco, Rational solutions of the Painlevé VI equation, J. Phys. A, 34 (2001) 2281–2294.
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[70] H. Umemura, Painlevé equations and classical functions, Sugaku Expositions, 11 (1998) 77–
100.
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