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Abstract 

The aetiopathogenesis of cardiovascular diseases (CVD) is multifactorial.  Adverse blood 

pressure (BP) is a major independent risk factor for epidemic CVD affecting about 40% of the 

adult population worldwide and resulting in significant morbidity and mortality.  Metabolic 

phenotyping of biological fluids has proven its application in characterising low molecule 

weight metabolites providing novel insights into gene-environmental-gut microbiome 

interaction in relations to a disease state.  In this review, we synthesise key results from the 

International Study of Macro/Micronutrients and Blood Pressure (INTERMAP) Study, a cross-

sectional epidemiological study of 4,680 men and women aged 40-59 years from Japan, the 

PĞŽƉůĞ͛Ɛ RĞƉƵďůŝĐ ŽĨ CŚŝŶĂ͕ the United Kingdom, and the United States.  We describe the 

advancements we have made on: 1) analytical techniques for high throughput metabolic 

phenotyping; 2) statistical analyses for biomarker identification; 3) discovery of unique food-

specific biomarkers; and 4) application of metabolome-wide association (MWA) studies to 

gain a better understanding into the molecular mechanisms of cross cultural and regional BP 

differences.   
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Introduction  

Adverse blood pressure (BP) (prehypertension and hypertension) is a major 

independent risk factor for epidemic cardiovascular diseases (CVD), affecting about 40% of 

the adult population worldwide.1-4  Its causation is multifactorial encompassing both 

environmental -- diet, other aspects of lifestyle -- and genetic factors.  Public health policies 

aiming to improve the prevention of high BP and/or maintain optimal BP level typically involve 

efforts to tackle known modifiable risk factors such as reduction of high salt intake, 

moderation of alcohol intake, maintenance of normal weight and increased physical activity.  

While large-scale genome-wide association studies (GWAS) have identified common variants, 

novel loci and pathways associated with BP,5-9 the genetic contribution to BP variation in the 

population is modest.5, 7, 8  Despite the effectiveness of non-pharmacological approaches to 

BP control, many people with high BP are reliant on antihypertensive drugs or BP remains 

untreated or poorly controlled.10, 11 

The INTERnational study of MAcro/micronutrients and blood Pressure (INTERMAP) is 

a cross-sectional epidemiological study of 4,680 men and women aged 40-59 years from 

Japan, the People's Republic of China, the United Kingdom, and the United States 

(www.clinicaltrials.gov NCT00005271).12  The main aim of the INTERMAP Study is to 

investigate the aetiology of adverse BP with emphasis on studying diet-BP associations (Figure 

1).12, 13  Participants were selected randomly from population lists, stratified by age/sex.  Each 

participant attended four visits, visits 1 and 2 on consecutive days, visits 3 and 4 on 

consecutive days on average 3 weeks later.  At each of the four visits, BP was measured twice 

with a random zero sphygmomanometer and dietary data were collected by a trained 

certified interviewer with use of the in-depth multi-pass 24-h recall method.14  Height and 

weight were measured twice on the first and third visits. On the first visit, questionnaire data 

were obtained on demographic, medical history, medication intake, and other possible 

confounders.  Each participant provided two 24-h urine collections, start and end timed at 

the research centre.  The two timed 24-hour urine collections per person on each of the 4,680 

INTERMAP participants are a pivotal feature of study design that enabled the introduction of 

metabolome-wide association (MWA) study (see later section).  The study received 

institutional ethics committee approval for each site; all participants gave written informed 

consent. 

http://www.clinicaltrials.gov/
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In the past decade, the INTERMAP Study, has added new knowledge to the limited 

data previously available on the effects of nutritional factors on BP.15  These advances include 

the inverse relationship between BP and intakes of vegetable protein,16 glutamic acid,17 total 

and insoluble fibre,18 raw and cooked vegetables,19 total polyunsaturated fatty acids (PFA) 

and linoleic acid,20 oleic acid from vegetable sources,21 total omega-3 fatty acids and linolenic 

acid,22 phosphorus (P), calcium (Ca) and magnesium (Mg),23 non-heme iron (Fe) and total Fe,24 

and starch25; and the direct associations of sugars (fructose, glucose and sucrose),26 

cholesterol,27 glycine and alanine,28 raw fruits,29 and oleic acid from animal sources.21  The 

INTERMAP Study showed that diet-induced metabolic acidosis was positively associated with 

BP (not significant after controlling for body mass index, BMI);30 whereas a cohort of over 

61,000 persons reported a positive association of metabolic acid load (such as serum 

bicarbonate, urine acidity) and cardiovascular mortality.31  While the INTERMAP Study 

reported a small non-significant inverse relationship between urinary Mg and BP32;  the World 

Health Organization-coordinated Cardiovascular Diseases and Alimentary Comparison 

(CARDIAC) Study showed urinary Mg to creatinine ratio was inversely associated with CVD 

risk factors such as BMI and BP.33  Although important advances have been made by the 

INTERMAP Study in improving understanding of the aetiology of high BP, together with other 

research into the physiology of BP regulation such as the control of kidney fluid and salt 

balance via the renin-angiotensin-aldosterone system,34-36 sympathetic nervous system 

activity,37, 38 and the role of structure and function of blood vessels,39 gaps still remain in our 

knowledge of the causes and mechanisms of adverse BP levels.  New approaches are needed 

to enhance understanding of the multifactorial aetiopathogenesis of BP. 

High resolution proton nuclear magnetic resonance (NMR) spectroscopy have been 

successfully applied for the investigation of drug metabolism and toxicology as well as disease 

development within a biological system, using biological fluids such as urine, plasma/serum 

as well as bile, cerebrospinal fluids and dialysates.40, 41  Recent studies have shown the 

importance of the gut-microbiome in the aetiology of a number of chronic diseases such as 

atherosclerosis, diabetes and the metabolic syndrome, obesity as well as raised BP.42-47 

Metabolic phenotyping of biological fluids using spectroscopic methods enables the 

investigation of gene-environmental-gut microbiome interactions on disease risk and is 

therefore an attractive approach for gaining new insights into BP mechanisms and its 
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associated pathways.45, 48-50  The INTERMAP Study has capitalised on the evolving 

technologies in metabolic phenotyping to enhance its rich nutrient and anthropometric data 

by incorporating this top down system approach to investigate the association of BP and 

urinary markers that are linked to environmental exposures including diets and 

xenometabolomes.48-52  This review demonstrates the key progress made by the INTERMAP 

Study and the introduction of the metabolome-wide association (MWA) study on diet and 

BP.13  However, readers may wish to refer to other recent reviews on the principles of 

metabolic phenotyping.53-55  

Analytical method development 

Metabolic phenotyping involves the application of high-throughput advanced 

spectroscopic methods, such as proton nuclear magnetic resonance (1H NMR) spectroscopy 

and mass spectroscopy (MS), to biological samples. In INTERMAP comprehensive metabolic 

phenotyping by 1H NMR spectroscopy of the two 24-h urine samples from each participant 

(N=4,630) has been performed.13  The repeatability, accuracy and stability of the 1H NMR 

spectral profiles were evaluated and overall analytical reproducibility of the 1H NMR was 

found to be >98%.56  In INTERMAP, boric acid (borate, a preservative known to bind covalently 

to vicinal diols and some amino acids) was added to the urine collection jars in the field to 

prevent bacterial overgrowth.  The effect of the boric acid on the 1H NMR urinary spectra was 

also assessed.37, 38  It was shown that the overall changes in the urinary 1H NMR spectral 

profile caused by borate addition were negligible compared with the physiological and 

metabolic differences between individuals.57  These studies have led to recommendations for 

improved sample preparation and handling of urine samples, as well as processing methods 

for large-scale epidemiologic research.58 

In addition to metabolic phenotyping via 1H NMR spectroscopy, we obtained extensive 

data on 20 urinary amino acids using conventional cation-exchange chromatography followed 

by post-column derivatisation (Biochrom 20 and Biochrom 30).  These data provide a unique 

population based dataset on urinary amino acid excretion levels in different populations. We 

then applied gas chromatography mass spectrometry (GCʹMS) and liquid chromatographyʹ

tandem mass spectrometry (LCʹMS/MS) for high throughput urinary amino acid analysis and 

compared their sample preparation, run-time, number of analytes amenable to 



6 

 

quantification, cost, limit of quantification (LOQ), reproducibility and validity with 

conventional amino acid analysis.59  The amount of urine needed for GS-MS and LC-MS/MS 

were 40-50 µL, much less than the 200 µL required for the amino acid analyser.  Moreover, 

the run-time for the amino acid analyser was approximately 5 to 6 times longer than that of 

GC-MS and LC-MS/MS.  The Pearson correlation coefficients of amino acids measured by GC-

MS and the amino acid analyser ranged from 0.80 (tryptophan) to 0.98 (glycine); correlation 

coefficients comparing LC-MS/MS with the amino acids analyser ranged from 0.56 (arginine) 

to 0.95 (lysine).  Our findings showed that GCʹMS offered higher reproducibility and 

completely automated sample pre-treatment compared with LCʹMS/MS and conventional 

amino acid analysis, which on the other hand covered more amino acids and related amines. 

 We also applied ultra performance liquid chromatography triple quadruple tandem 

mass spectrometry (UPLC-TQ-MS/MS) for simultaneous detection (both positive and negative 

electrospray ionization modes) and quantification of three gut microbial co-metabolites, 

phenylacetylglutamine (PAG), 4-cresyl sulphate and hippurate in the urinary specimens from 

2,000 INTERMAP US participants.60  This targeted high-throughput UPLC-TQ-MS/MS method 

was developed specifically to measure these gut microbial co-metabolites, which may be 

implicated in obesity61 and other chronic diseases such as cardiovascular and kidney 

disease.62, 63  Following the US Food and Drug Administration (FDA) guidelines, the imprecision 

(CV: coefficient of variation) and inaccuracy (recovery) of the method were assessed using 

replicates of quality control (QC) urine samples at different concentration levels.  The CV and 

recovery were found to be within acceptable limits of FDA guidelines.  The study 

demonstrated the applicability of metabolic phenotyping by UPLC-TQ-MS/MS in a large scale 

epidemiological study. 

Statistical method development 

Metabolomic data pose special challenges to statistical analysis, including high 

dimensionality, strong co-linearity, non-linear and highly complex spectral profiles, and 

presence of structured and unstructured noise (due to within- and between-individual 

variability).64-68  Spectroscopic data are first pre-processed, including spectral alignment and 

normalisation of the full-resolution spectral data.  Multiple statistical strategies are then 

applied, including use of both unsupervised and supervised multivariate data analysis 
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techniques to extract information from the data.69  Principal component analysis (PCA) is 

routinely used to identify main sources of variation in the data, and detect outlying values 

with the goal of providing the most compact representation of the data.64, 67-69  Hierarchical 

cluster analysis (HCA) is another method widely used in exploratory data analysis to provide 

an overview of the data by grouping phenotypes according to their similarity, without 

assuming any prior knowledge of the data.64, 68, 69  Other techniques include partial least 

squares (PLS), orthogonal partial least squares (O-PLS), and orthogonal partial least squares 

discriminant analysis (OPLS-DA) 70-72 aiming to extract discriminatory metabolic signals  from 

the datasets are often applied after the initial exploratory analysis; whilst statistical 

spectroscopy methods, accommodating complex spectral data structure and correlations, 

such as statistical total correlation spectroscopy (STOCSY), 73, 74 iterative-STOCSY (I-STOCSY),75 

cluster analysis statistical spectroscopy (CLASSY),76 and subset optimization by reference 

matching (STORM),77 are used to aid the biomarker identification process.  Statistical 

Heteroscpectroscopy (SHY) is a statistical strategy for the analysis of multiple spectroscopic 

datasets e.g. 1H NMR and UPLC-MS on the same samples.  This method has enable the 

characterisation of drug metabolites (xenometabolome) in epidemiology study.78  Other 

recent statistical spectroscopic methods include statistical homogeneous cluster 

spectroscopy (SHOCSY)79 and automatic spectroscopic data categorisation by clustering 

analysis (ASCLAN).80  These methods aim to remove the influence of irrelevant interferences 

within the dataset to enhance the biomarkers selection process,79 and to reliably differentiate 

potential discriminatory markers from non-discriminatory markers in a biological dataset,80  

respectively.  Figure 2 shows the steps of statistical analysis of INTERMAP NMR metabolic 

phenotyping data.13, 81, 82 

In MWA studies, hundreds to thousands of biomarkers are assayed leading to data 

that are highly multivariate and co-linear.  In order to detect statistically significant 

relationships between molecular variables and phenotype, we defined the metabolome-wide 

significance level (MWSL), a threshold required to control the family wise error rate (FWER) 

through a permutation approach.83  Using the spectra of the INTERMAP Chinese participants 

(N=836) as the reference population, we investigated the influence of spectral resolution and 

the number of variables in the NMR spectra, and examined population heterogeneity by 

repeating the analysis in the INTERMAP US population samples (N=2,164).  Results showed 
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that MWSL of 2 × 10-5 and 4 × 10-6 for a FWER of 0.05 and 0.01 could be used as a benchmark 

for NMR based MWA studies of human urine. For the subsequent INTERMAP MWA studies, 

MWSL of 4.0x10-6 is used to identify significant metabolic features, as a conservative estimate 

taking account of the high degree of co-linearity in urinary NMR spectral data.81, 82 A similar 

approach may be used for MS based MWA studies. 

Novel biomarker discovery 

Identification of unknown discriminatory metabolite is a key bottleneck in MWA 

study since the human metabolomes is still largely unknown.  Elucidating the chemical 

structure of unknown metabolite is often labour-intensive and requires multiple analyses 

using a series of analytical experiment.  Within the INTERMAP, we have been successful in 

identification of a number of metabolites including metabolites derived from dietary and 

drug intake.84-87   

Ethyl glucoside 

The INTERMAP MWA study has discovered novel metabolite related to the intake of 

alcohol amongst the Chinese and Japanese population samples.  From the 1H NMR urinary 

spectra, a doubleƚ Ăƚ ɷϰ͘ϵϯ ĐŽƌƌĞƐƉŽŶĚŝŶŐ ƚŽ ĞƚŚǇů ŐůƵĐŽƐŝĚĞ ǁĂƐ ŽďƐĞƌǀĞĚ ĂŶĚ ŝƚ ǁĂƐ ĚĞƌŝǀĞĚ 

following the ingestion of rice wine and sake.84  This doublet was not observed amongst the 

western population samples in the INTERMAP Study.   

Proline betaine  

We used metabolic phenotyping by 1H NMR spectroscopy to detect an increased 

excretion of proline betaine, tartaric acid and hippurate after fruit consumption compared 

with baseline diet in a dietary intervention study.85  We then measured concentrations of 

proline betaine in selected fruit and commercially available fruit juices by 1H NMR 

spectroscopy optimized for quantification of this compound.  All citrus fruit tested contained 

proline betaine; concentrations varied from 75 mg/L in orange squash to 1,316 mg/L in orange 

juice from concentrate.  After consumption of 250 ml orange juice we found a singlet peak at 

ɷϯ͘ϭϭ͕ ƌĞƉƌĞƐĞŶƚŝŶŐ ƚŚĞ CH3 moiety of proline betaine.  Most proline betaine excretion 

occurred in the first 14 hours after consumption, peaked at the 2-hr post-intervention urine 

collection and declined to almost baseline level after 24 hours. 
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The 24-h dietary recalls of INTERMAP UK participants were then assessed to validate 

the use of proline betaine excretion as a biomarker of citrus fruit consumption and as a 

surrogate marker of healthier eating patterns.85  Proline betaine excretion differed 

significantly between individuals with no recorded citrus consumption in their 24-h dietary 

recall data and individuals with recorded citrus consumption (P<0.0001).  Those who reported 

citrus consumption and had higher levels of proline betaine excretion also showed a healthier 

nutrient profile with higher intake of vegetable protein, and lower intakes of total fat, trans 

fatty acids, cholesterol and animal protein, lower urinary sodium-potassium (Na/K) ratio, 

lower body mass index (BMI) and lower systolic BP compared with non-citrus consumers.  

These findings provide proof that metabolic phenotyping can discover novel dietary 

biomarkers that can be used to validate dietary assessment in large-scale epidemiologic data. 

Acetaminophen and ibuprofen 

Although the metabolism of commonly used analgesics such as acetaminophen and 

ibuprofen has been widely described40, 41, 88, 89, within the INTERMAP Study, we showed that 

we could detect urinary metabolite signatures related to commonly used analgesics such as 

acetaminophen and ibuprofen,86  enabling the use of metabolic signatures to verify the self-

reported data.87 We applied PCA on 1H NMR spectra of US participants and identified 413 

urine samples containing acetaminophen and its metabolites (acetaminophen users) and 

then applied OPLS-DA analysis on a subset of 70 urine samples from acetaminophen users 

and 70 urine samples from acetaminophen non-users.86  The OPLS-DA loading coefficient plot 

showed that differentiation between acetaminophen users vs. non-users primarily resulted 

from the presence of acetaminophen and its metabolites acetaminophen glucuronide, 

acetaminophen sulfate, and the acetylcysteine conjugate of acetaminophen.  Similarly, a PCA 

model was constructed to identify urine samples of ibuprofen users, and OPLS-DA was 

performed on a subset of urine samples.  The OPLS-DA loading coefficient plot showed that 

participants who had ingested ibuprofen were differentiated from non-users by the presence 

of 2-hydroxy, carboxy, and glucuronide conjugates of ibuprofen in the urinary NMR spectra.   

We then used these metabolic signatures to verify self-reported analgesic use of 

INTERMAP particpants.87 Urinary spectra of UK (Belfast, N=216) and US (Chicago, N=280) 

participants were inspected for the presence or absence of metabolites in spectral regions 

containing acetaminophen and ibuprofen.87  These spectra were used to construct prediction 
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models (sensitivity > 98%) based on self-reported analgesic use; overall rates of concordance 

between questionnaire data and urinary spectra were high for both populations: 83.8% (95% 

confidence interval, CI: 78.9, 88.7) in Belfast and 81.1% (95% CI: 76.5, 85.7) in Chicago.  Overall 

rates of under-detection of acetaminophen and ibuprofen were low (about 1%) and were 

comparable for both Belfast and Chicago.  We then applied these prediction models to 9,260 

urine spectra to evaluate reported analgesic use from self-reported questionnaire.  High-level 

concordance was observed between self-reported analgesic use and 1H NMR-detected 

urinary acetaminophen and/or ibuprofen metabolites for all Western population samples, an 

overall concordance of 70.5% (95% CI: 68.7, 72.2).  Our findings demonstrated the efficacy of 

an objective 1H NMR-based method for validation of self-reported data on analgesic use, 

detecting an underreporting rate of approximately 15% in the INTERMAP Study.  This MWA 

approach has demonstrated the potential of metabolic phenotyping in reducing recall bias 

and other biases in epidemiologic studies for a range of substances, including 

pharmaceuticals, dietary supplements, and foods. 

INTERMAP Metabolome-Wide Association Study 

INTERMAP is the first large-scale human population MWA study on diet and BP, using 

an exploratory analytical approach to investigate metabolic phenotype variation across and 

within 17 population samples in East (China and Japan) and West (UK and US) based on 1H 

NMR spectroscopy.13  Using a hierarchical clustering algorithm, we investigated 

similarity/dissimilarity between populations based on their urinary profiles. East Asian and 

Western populations had well-differentiated metabolic phenotypes (Figure 3). Among the 

East Asian samples, Japan was differentiated from China, and within China, North China was 

differentiated from South despite similar genetic background.  Using O-PLS-DA70, 73 we 

reported significant differences of metabolic profiles among these populations; 

discriminatory metabolites included gut microbial-host co-metabolites (hippurate, PAG and 

methylamines), amino acids (alanine, lysine, taurine), dietary related metabolites (e.g., ethyl 

glucoside, trimethylamine-N-oxide), compounds related to energy metabolism 

(acetylcarnitine), and tricarboxylic acid cycle intermediates (succinate and citrate).  Four 

discriminatory metabolites reflecting diet and gut microbial activities, alanine, formate, 

hippurate and N-methylnicotinate (NMNA), were then quantified from the 1H NMR urinary 

spectral profiles.  We found that alanine was highly correlated with 2-oxoglutarate (metabolic 
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linkage via glutamate-pyruvate transaminase activity) and with formate (pyruvate/Co-A 

metabolism), and hippurate was highly correlated with NMNA (renal transporter/secretion 

mechanisms).  In multiple linear regression models, both formate and hippurate were 

inversely associated with systolic and diastolic BP, and alanine was positively associated with 

BP. 

More detailed analysis was later performed on the Chinese population samples.81  We 

found that urinary metabolites significantly different between northern and southern 

Chinese, reflecting the variations in dietary pattern as well as CVD risk between these two 

populations;  higher in northern than southern Chinese populations included dimethylglycine, 

alanine, lactate, branched-chain amino acids (isoleucine, leucine, valine), N-acetyls of 

glycoprotein fragments (including uromodulin), N-acetyl neuraminic acid, 

pentanoic/heptanoic acid, and methylguanidine; metabolites significantly higher in the south 

included gut microbial-host co-metabolites (hippurate, 4-cresyl sulfate, PAG, 2-

hydroxyisobutyrate), succinate, creatine, scyllo-inositol, proline betaine, and trans-aconitate.  

Compared to the south, northern Chinese had higher BMI, less favourable diet including lower 

Ca, Mg and P intakes, higher 24-h urinary Na excretion, higher urinary Na/K ratio excretion, 

and higher BP (Table 1).90  The significant north-south differences in BP, BMI and diet90-92 are 

reflected in geographic variations in both CVD incidence and mortality rates, with higher rates 

in the north than the south.93-95  The INTERMAP MWA study indicates the likely importance 

of environmental influences (e.g., diet), endogenous metabolism, and mammalian-gut 

microbial co-metabolism, in helping to explain north-south China differences in CVD risk.  

The INTERMAP Study confirmed that African Americans (AA) had higher systolic and 

diastolic BP compared to non-Hispanic white Americans (NHWA)82 and this BP difference, in 

part, was due to less favourable multiple nutrient intake by AA, with lower intakes of fruits, 

vegetables, and dairy products, and lower intakes of vegetable protein, starch, fibre, K, Ca, 

Mg, P compared with that of whites. In addition, there was greater obesity prevalence among 

black compared with white women. 82 96 1H NMR spectra of the INTERMAP US participants 

showed that urinary metabolites significantly higher in AA than in NHWA included creatinine, 

3-hydroxyisovalerate, N-acetyls of glycoprotein fragments, dimethylglycine, lysine, N-acetyl 

neuraminic acid, leucine, dimethylamine, taurine, and 2-hydroxy-isobutyrate; metabolites 

significantly higher in NHWA included trimethylamine, NMNA, hippurate, and succinate 
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(Figure 4).82  The mean values of urinary hippurate (2.9 mmol/24-h for AA men, vs. 4.1 

mmol/24-h for NHWA men, P<5x10-9) and NMNA (0.24 mmol/24-h for AA men, vs. 0.42 

mmol/24-h for NHWA men, P<3x10-10) were significantly lower in AA compared to NHWA. 

Multiple linear regression was used to examine these AA-NHWA differences in dietary and 

urinary metabolites in relation to BP; multiple foods, nutrients and metabolites accounted for 

part of the higher BP among AA.  

Summary 

Over recent years, major advances have been made in the metabolic phenotyping of 

epidemiological samples. The advancement in the analytical techniques and the development 

of new statistical data analysis tools have enabled the identification of novel metabolic 

phenotypes associated with diet (including Na intake), xenobiotics and BP.  The findings of 

the INTERMAP MWA study may provide insights into molecular pathways underlying complex 

biological processes such as adverse BP levels.  We envisage that future studies will include 

the generation of testable hypotheses based on the findings from the INTERMAP MWA study.  

Moreover, the increasing number of population based cohort studies, which also apply MWA 

approach, will undoubtedly contribute to our understanding on the key mechanism that are 

associated with CVD.  As noted above, metabolomic data with hundreds to thousands of 

biomarkers being assayed, are highly multivariate, co-linear and noisy, with potential for false 

positive findings; it is also always a possibility but unlikely that phenotypes are specific to 

INTERMAP Study populations and not generalizable; replication studies are needed. 

Nonetheless, it is reasonable to state at this juncture that INTERMAP findings to date have 

demonstrated significant independent relationships of several nutrients/foods/eating 

patterns/metabolites to BP, thereby moving the field forward in exciting and unprecedented 

ways. 
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Figure Legend  

Figure 1  INTERMAP metabolome-wide association (MWA) studies.12, 13 

Figure 2  Steps involved in the statistical analysis of INTERMAP NMR metabolic 

phenotyping data.13, 81, 82 

Figure 3  Hierarchical cluster analysis (HCA) on 1H NMR urine spectra, the INTERMAP 

Study.13 The HCA algorithm produces a dendrogram showing the overall 

similarity/dissimilarity between population samples. Similarity index is normalized to 

intercluster distance. Each branch of the dendrogram defines a subcluster; population 

samples within subclusters are more similar to each other than to those in other subclusters. 

The dendrogram shows clustering based on country, and geographical location or gender.  

Figure 4  The median urinary 1H NMR spectrum of African Americans and non-Hispanic 

white Americans.82  Top: median urinary 1H NMR spectrum of INTERMAP U.S. AA and NHWA 

participants, based on the first urine collection (N=1,455). Bottom: Manhattan plot indicating 

the significant spectral variables. Metabolites higher in AA individuals compared to NHWA are 

shown in red; in blue for metabolites higher in NHWA individuals compared to AA. Key: 1, 

Leucine; 2, 3-hydroxyisovalerate; 3, 2-hydroxyisobutyrate; 4, N-acetyls of glycoprotein 

fragments; 5, N-acetyl neuraminic acid; 6, Succinate; 7, Dimethylamine; 8, Trimethylamine; 9, 

Dimethylglycine; 10, Lysine; 11, Creatinine; 12, Hippurate; 13, N-methyl nicotinic acid. 

 

 

 

 

 


