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Development and Evaluation of a Clinically Robust Measurement System for 
Visuo-Spatial Neglect: Assessment and Conclusions 
 
Richard Guest 
University of Kent 
 
Introduction and research context 
 
Visual-spatial neglect (VSN) has long been recognised as a major factor in delaying post-stroke 
rehabilitation. Accurate detection of the condition is therefore critical in selecting an appropriate 
rehabilitation methodology. A common method for the diagnosis and severity of VSN is to assess the 
outcome of a series of hand drawn tasks. Previous work [1] by the author has explored the diagnostic 
ability of analysing both the outcome and the constructional elements of task performance using a 
computer-based drawing capture system, concentrating mainly on cancellation (target location and 
marking) based tasks. Using this system, patient task responses were made using a cordless pen on a 
sheet of paper overlaid on a conventional graphics tablet. The tablet captured the position of the pen 
(along with other information such as pressure and tilt) which was stored in a time-stamped file for later 
processing. From this file it is possible to extract features detailing the outcome of the drawing (static 
features such as image size) alongside constructional properties (dynamic features such as completion 
time and pen velocity) [2]. 
  

The work conducted for this study had four aims: i) to build upon existing work by exploring the 
diagnostic significance of geometric drawing tasks through the development and implementation of 
novel feature extraction algorithms, ii) to develop a clinical capture tool and demonstrator, iii) to further 
explore the relationship and diagnostic capability of these new features alongside previously extracted 
test performance metrics within a number of clinical and demographic groupings and iv) conduct a 
clinical trial on a small test population to establish the performance of the developed robust capture tool 
and extracted features. These aims, which have been successfully met through the work undertaken in 
the study, will be reviewed in the following sections. 
 

Aim 1 - Drawing Task Performance Feature Classification and Diagnosis 
 

Alongside other pen-based tasks, our previous work had captured responses from six drawing tests – four 
figure copying (FC) shapes (a square, a five pointed star, a cube and a cross – the models shown in Figure 
1) and two drawing from memory (DFM) tasks where the subject was asked to draw a shape (a square 
and a cube) on a blank piece of paper without prompting. In the previous trial [3], only a basic analysis 
had been performed on these responses (analysing features such as the number of sides or corners within 
a drawing, the position within the shape that the person started the drawing [16]). The work conducted 
within this study aimed to further the analysis of the diagnostic properties of these drawing tasks by 
answering two main questions in relation to drawing performance. Firstly, by defining and extracting a 
series of generic features, identify which shape response produces the best diagnostic indicator of VSN 
and secondly to question the necessity of administering all six drawing tasks, determining whether a 
comparable performance (or even improvement) can be obtained through using a smaller test battery, 
thereby reducing the fatigue in patient performance. Given the inherent difficulty in distinguishing VSN 
subjects from stroke patients without VSN [4] (VSN has many levels of severity which results in mild 
cases often exhibiting similar diagnostic results as non-VSN patients – this issue is specifically addressed 
by Aim 3) the investigation does not aim for a 0% error rate but merely to provide a consistent assessment 
tool with the highest achievable classification accuracy to be available in a clinician’s diagnosis battery. 
 
 

                        

Figure 1: Shape copying models. 
 

 28 VSN subjects (identified using standard clinical assessments) were included in the experiementation. 
55 stroke subjects without VSN were used as a stroke control group. A series of 12 generic performance 
features (4 static, 8 dynamic) were defined and extracted from each drawing response. These are outlined 
in Table 1. The experiment aimed to assess the ability of a series of trainable automatic classifiers to 
diagnose a subject based upon the feature results. The leave-one-out error-estimation technique [5] was 



employed to estimate classifier error rates due to its suitability where only a relatively small sample size 
is available and because the method is an almost unbiased estimator of the true error rate of a particular 
classifier. 
  
 

 
Feature Name 

 

Feature 
Type Comments 

Starting Point Dynamic 
Drawing is divided into quadrants. The starting point signifies in 

which quadrant the drawing was started. 

Number of Strokes Dynamic 
The number of individual line strokes drawn during drawing 

execution. 
Task Execution  

Time 
Dynamic Time taken to complete the each drawing task. 

Maximum and Mean 
Pressure 

Dynamic Pen pressure was recorded by the tablet at 255 discrete levels 

Average Pen 
Velocity 

Dynamic Average pen speed 

Average Pen 
Acceleration 

Dynamic Average change in pen speed 

Pen Contact Ratio Dynamic 
Ratio of the time when pen is off the tablet to the time when pen is 

on the tablet, 
Overall Distance 

Travelled 
Static Distance travelled by the pen in executing the drawing. 

Image Height, Width 
and Area 

Static Measure of Image Height, Width and Area 

 
Table 1: Drawing features 

 

As an initial investigation of the classification ability of the extracted features, a single vector of 72 
features across all drawing tasks (12 per task) was used individually to train a series of standard classifiers 
- Fisher linear discriminant, nearest mean (nmc), k-nearest neighbour (knnc), linear classifier using 
Karhunen-Loeve expansion on the joint data (kljlc) and a decision tree (treec). Using the leave-one-out 
estimation system the Fisher classifier provided the best classification rate (responses correctly classified 
as being drawn by a VSN or stroke control subject) of 60.0%, providing a benchmark against which 
improvement in other experiments could be compared.  
 

A second experiment concentrated on analysis of individual drawing tasks, assessing the discriminatory 
strength of each shape. At this stage it was possible to analyse the most compact representation of the 
feature space for each task, eliminating the redundant features that fail to significantly contribute to the 
classification of the responses without degrading the discrimination power. Reducing the number of 
irrelevant/redundant features reduces the running time of a learning algorithm and, in many cases, 
improves learning. A forward feature selection (FSS) algorithm was applied to each individual drawing 
task feature set in a stepwise manner, from a target set of 1 feature up to all 12 features. At each step, the 
selected features were used to classify the two groups of subjects. Again, the one nearest neighbour leave-
one-out classification performance measure was used as the evaluation methodology. The Star FC task 
has the highest classification rate obtained by any of the classifiers (74.1% using 5 features). The Cube 
DFM task has the second highest recognition rate of 72% (using 6 features). It can be noted that all these 
“best” recognition rates are higher than those obtained from using the entire test battery. Dynamic 
features, representing the drawing strategy, dominated these sub-sets with the number of strokes and the 
pen contact ratio being retained for all but one of the drawing tasks, indicating the important and novel 
contribution they make to the diagnostic task. It also indicates that some “traditional” static features are 
redundant with respect to diagnostic accuracy. Ranking the discriminatory power of individual tasks the 
Star FC, Cube DFM and Cross FC show the highest classification ability. 
 

A third experiment addressed the problem of assessment efficiency and patient fatigue by investigating 
the optimum number of drawing tasks to be included in the test battery to give the best diagnosis 
performance. Based on a hierarchical combination of the selected features from each task, this experiment 
serves to determine if it is necessary to include all drawing tasks to obtain comparable (or improved) 
classification results. The selected features detailed in Table 1 for each shape were combined in a 
hierarchical manner, starting with the shape which exhibited the most discriminatory power. The features 
from the shape with the second most discriminatory power were then added, followed by the third most 
powerful and so on, until the selected features from all the shapes were added together. At each stage, 
classification was carried out using the five classifiers. It was found that the Fisher classifier obtained the 
best recognition rate of 78.3% (the best result across all 3 experiments) when using selected features 
from a combination of the best 3 tasks, the Star FC, the Cube DFM and the Cross FC; a total of 17 
features.  
 



The experiments have shown that it possible to reduce classification error rate by examining a subset of 
features and tasks rather than the entire test battery. We have introduced algorithmic objectivity into the 
assessment of the shapes and have demonstrated that the novel dynamic time-based and constructional 
features are important diagnostic indicators. The diagnostic information obtained from the investigation 
can be used alongside other forms of assessment in forming a final diagnosis. A more detailed account 
of this work can be found in [6]. 
 

Sequence Extraction 
 

Our previous work assessing the constructional strategy of cancellation tasks [7] indicated the importance 
of this diagnostic indicator. One of the major investigations of this work package was to automatically 
analyse the constructional sequence of shapes by segmenting and ordering the drawing into components 
(sides of shapes) and attempting to classify the resulting sequence. The aim of the investigation was to 
demonstrate that the execution strategy - the sequence in which drawing strokes are made - can be 
effectively used as a diagnostic indictor of VSN in stroke patients. For classification purposes we 
implemented a recogniser using Hidden Markov Models (HMM) [8]. HMMs are statistical models of 
sequential data that have been used successfully in image processing and computer vision, speech 
recognition and modelling of biological sequences among other applications [9, 10]. The HMM is a 
natural way of recognising a pattern which can be represented as a sequence of discrete observation 
symbols. The sample sequences extracted from the tasks represent successive pen strokes, which should 
have a sequential relationship likely to be captured by left-to-right HMM model employed in this study.  
 

Two experiments were conducted using data from the square and cross models. In the first experiment, 
sequences were automatically extracted using a devised algorithm which were then utilised in the training 
and testing of the HMMs. In the second experiment, drawing sequences were obtained manually using a 
playback routine which reproduced the drawings dynamically utilising the timing data captured during 
the drawing task. These manually obtained sequences were presented to the HMM. Comparing the results 
from the two experiments allows an observation as to the robustness of the generalisation ability of the 
HMM given that some of the sequences in the first experiment may not be correctly detected. It also 
enables the accuracy of the automated sequence extraction method to be measured.  
 

Extracting the sequence from the drawing data was achieved by assessing the list of stored pen 
coordinates. Figure 2 shows a flowchart of the method used to automatically extract side sequences from 
shape drawing response files.  
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Figure 2: Sequence extraction 

 

Table 2 shows the performance of the automatic sequence analysis routine in terms of correctly 
recongised sequences verified against manual analysis. It can be seen that the square task produced the 
most accurate analysis results. Incorrect sequence detection was due to a number of factors. In some 
cases all the straight lines would be successfully extracted, but the sequence would be distorted by the 
subject returning within the drawing sequence to repeat a line they had drawn earlier. Some cases would 
result in two parallel lines being drawn whilst the subject attempts to re-emphasize a particular line. In 
the case of the cross, besides these distortions, the subject might not have followed the anticipated model 
line sequences.  
 

In the diagnosis of patients, an overall recognition rate of 69% was obtained using the sequences 
extracted from the cross drawing task with the square tasks at 62% and 60% for the DFM and FC task 
respectively. As would be expected, the recognition rates are higher for manually extracted ‘correct’ 
sequences, however the small differences (72%, 64% and 60% respectively) between the two 
experiment’s results shows both the minimal trade-off between accuracy and speed in using the 
automated stroke recognition system and the generalisation ability of the HMM classifier. 
 

Work is continuing to apply the automatic extraction techniques to the star and cube drawing models. 
More information on this study is to appear in [12]. 
 

Multiple classification 
 
As a final investigation into drawing feature analysis, a multi-classification architecture [11] was 
established to utilise the diverse nature of the information provided by the different static/dynamic 



features and sequential information in an attempt to further improve diagnostic ability. In order to 
increase the number of “decision makers” in the multiple classifier strategy, feature sets obtained from 
an individual shape were divided into two sets based on a performance-ranking. Features were ranked in 
order of performance using a Euclidean distance based nearest neighbour strategy. In order to generate 
balanced groups with no dominating feature, the two groups were formed by extracting alternate features 
in the ranking order, i.e. Group 1 comprised of features with ranking 1,3,5,7,11 and Group 2 features 
ranking 2,4,6,8,10,12. The HMM sequential analysis on the shape under consideration was included as 
a third classifier. Figure 3 shows this configuration where features extracted from a single drawing are 
divided into the three groupings. 

 

Group Drawing Task 
Sequence 

Successful Extraction 
Rate (%) 

VSN 
Square (DFM) 82.4 
Square (FC) 82.4 
Cross (FC) 56.6 

Stroke Control 
Square (DFM) 92.7 
Square (FC) 83.7 
Cross (FC) 71.2 

 
Table 2: Automatic sequence recognition rates. 
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Figure 3: Multiple classification scheme 

Initially each group was used separately to reach a VSN/Non-VSN classification decision. The decisions 
from the three classifiers were then used in a majority combination scheme to reach an overall final 
decision.  

The results show that that we get improvements for the two FC tasks, with a recognition rate of 69.5% 
(using a Fisher classifier) for the square and 78.1% (using a kljl classifier) for the cross, thereby 
demonstrating the effectiveness of the multi-classifier system in producing the most accurate diagnostic 
results across experiments. 

The development of automated analysis procedures has shown that important diagnostic information can 
be obtained from shape drawing tasks. Most importantly we have shown that novel dynamic features can 
also add to the diagnostic outcome of the task. 
 

Aim 2 - Development of a clinical capture tool/demonstrator software 
 

To facilitate the clinical trial, a windows based capture tool was developed (Figure 4). The software runs 
under Windows XP/2K and interfaces with an attached graphics tablet using the WinTab protocol. Figure 
4 shows the capture of a cube drawing task. As the test subjects draws on a piece of paper placed on the 
tablet, the drawing is recreated on the screen, the thickness of the drawn line reflecting the applied 
pressure. Special consideration was given to user interface aspects of this design as it would be solely 
operated by hospital staff, abstracting the use away from the patient and therefore removing any anxieties 
over the use of technology. The capture routine features simple to use controls (accept or reject the current 
drawing) and a progress bar for test battery capture. Data is automatically stored in an individual directory 
for each test subject ID. Figure 4 shows also shows the developed shape feature extraction demonstrator. 
Again designed with clinical use in mind, the program enables the display and playback of captured files 
in real-time, extraction of features and classification. 
 

Aim 3 - Study of previously collected data 
 

Our previous study [1] had collected drawing, bisection (location of midpoint within a single line) and 
cancellation task data from 108 test subjects (including age matched controls). Our existing 
investigations had only considered the performance of features against an independent clinical measure, 



grouping test subjects as either VSN or non-VSN according to the output of the Rivermead BIT [13]. 
VSN has long been recognised as being a condition with varying levels of debilitation therefore a single 
performance feature extracted from our system should ideally be able to recognise a range of VSN 
severity levels [4]. This investigation also aimed to establish the relationship between feature outcome 
and other factors such as stroke locations, age, gender, stroke type. In assessing the results, any inter-
group significance indicates an ability of the feature to distinguish between finer levels of VSN. The 
outcome of this study will ultimately be of interest to clinicians and neurophysiologists as it presents new 
information about constructional aspects of test performance 
 

      
 

Figure 4: Capture software and drawing replay and feature analysis program 
 
 

The results from the trial showed that there was no effect due to age, stroke location, gender, month of 
stroke and number of days post stroke the test was performed. Significant features emerged however 
when regrouping subjects by grades of VSN performance: Dividing the VSN population into two groups 
(severe and mild) according to their BIT score produced a range of significant differences within the 
cancellations tasks, in particular the number of cancellations to the left of the page and, using the dynamic 
data, intercancellation and movement times within this side of the overlay. Interesting, there are two main 
features extracted from drawing tasks that are sensitive to levels of VSN, these being the number of 
individual pen strokes made and the overall pen distance travelled. The square FC and cube DFM tasks 
seem the most sensitive to this. Dividing the VSN group into 4 subgroups (severe, semi-severe, semi-
mild and mild VSN) based on the BIT score quartiles there are very few features that are able to detect 
between these groups due to the sample size. The features that are able to detect significance between 
groupings are the cancellation task – in particular the total number of cancellations made and the drawing 
time within the bottom right quadrant. 
 

Utilising the stroke type and location record for each subject enabled us to investigate the effect of these 
data on test performance. As an initial investigation we divided the population according to their stroke 
type (Infarct, Haemorrhage, Atrophy or Ischemia). Our findings indicate that the bisection and 
cancellation seems the best to distinguish between Infarct and Haemorrhage – both using static and 
dynamic features. The drawing tasks show other significant group differences by stroke type and location 
again using both static and dynamic data. 
 
We also explored the interrater reliability of clinician responses showing good reliability in some aspects, 
but significant subjectivity in other areas of assessment [15] 
 

Aim 4 - Clinical Trial 
 
A clinical trial was conducted in order to evaluate both the usability functionality of the developed 
clinical software and the accuracy in diagnosis using the devised methods described in Aim 1. The trial 
was carried out over a period of seven months collecting drawing data from 22 subjects. Of these subjects, 
6 were age-matched controls (i.e. no medical history). The other subjects were stroke patients in the 
Stroke Unit at Kent and Canterbury Hospital. Full Local Ethics Committee approval was granted for this 
trial. 
 

Stroke patients were first administered the Rivermead BIT to provide an independent assessment on their 
stroke condition. Out of the 16 stroke patients, 2 of them exhibited VSN symptoms – one severe and one 
mild VSN patient. The collected shape drawing data for each patient was classified using methods 
described above. The results showed that the two VSN patients from the study period were correctly 
classified. Out of the 14 stroke control cases, 3 were incorrectly classified as VSN patients. Analysing 



these misclassified cases it was found that these were all test subjects with BIT scores close to the 
VSN/non-VSN cut-off indicating the difficulty in automated diagnosis. 
 

More information on this study is to appear in [14]. A larger scale clinical trial is planned to further test 
the diagnostic ability of the system. The devised software performed well under the six months of clinical 
use with only minor modifications to the user interface. 
 
Research Impact and Benefits to Society 
 

The research conducted in this project has been of international standing in the areas of hand-drawing 
and classification research – our publications to date resulting from this work verify this. We have applied 
novel multi-classifier and sequence analysis methodologies to the diagnosis of VSN and have devised a 
solid platform for future experimentation and research. Dissemination within the medical community 
will provide information on the diagnosis and symptoms of VSN. 
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