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A Generic Framework for Building Dispersion
Operators in the Semantic Space

Luiz Otavio V. B. Oliveira, Fernando E. B. Otero, Gisele L. Pappa

Abstract This chapter proposes a generic framework to build geometric dispersion

(GD) operators for Geometric Semantic Genetic Programming in the context of

symbolic regression, followed by two concrete instantiations of the framework: a

multiplicative geometric dispersion operator and an additive geometric dispersion

operator. These operators move individuals in the semantic space in order to balance

the population around the target output in each dimension, with the objective of

expanding the convex hull defined by the population to include the desired output

vector. An experimental analysis was conducted in a testbed composed of sixteen

datasets showing that dispersion operators can improve GSGP search and that the

multiplicative version of the operator is overall better than the additive version.

Key words: geometric semantic genetic programming, dispersion operators, diver-

sity

1 Introduction

The role of the crossover operator in tree-based genetic programming has been a dis-

cussion point for a long time [2], as many researchers believed the lack of context

associated with the tree nodes makes crossover to resemble a macro mutation. In se-

mantic genetic programming algorithms, in particular their geometric counterparts,

this is mitigated by making syntactic modifications more semantically-aware—i.e.,

focusing on how syntactic modifications reflect on the semantics of the individuals.
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This chapter deals with the problem of symbolic regression, where the seman-

tics of an individual is defined as a point in a n-dimensional space, called semantic

space, and n is the number of examples in the training set. In geometric seman-

tic genetic programming (GSGP), the geometric semantic crossover and mutation

operators [13] guarantee that the semantic fitness landscape explored by the GP is

conic, which has a positive impact in the search process. The problem is then how

long GSGP might take to find the optimum.

The challenge of finding the optimal solution or not is then dependent on other

components of GSGP. For example, as the GSGP crossover operator produces off-

spring by performing a convex combination of its parents, the set of candidate indi-

viduals generated during evolution is delimited by the convex hull1 of the semantics

of the current population [16]. Hence, if the target output is not within the convex

hull, the algorithm will never be able to find it using crossover alone. The mutation

operator deals with this problem by expanding the convex hull. However, GGSP

might take a prohibitive amount of time to get to the relevant regions of the search

space depending on the distribution of the individuals in the initial generation.

In this context, [15] presented a heuristic operator to move individuals through

the semantic space in order to, hopefully, include the target output inside the con-

vex hull defined by the current population. The operator, called geometric disper-

sion (GD), applies multiplicative constants to the individuals aiming to balance the

proportion of the population on the left and right side of the target output in each

dimension of the semantic space.

In this same direction, this chapter proposes a generic framework for geometric

dispersion operators allowing different mathematical operations to redistribute the

population. The operation used to add the constant to the individual has direct im-

pact on the way it is moved through the space. Thus, other operations, besides the

multiplication used in the original GD, allow the resulting individual to reach other

regions of the semantic space with different effects on the search. The framework is

used to build a geometric dispersion operator based on the addition operation and

evaluates the impact of the new operator on the evolution. We performed an experi-

mental analysis in a test bed composed of sixteen datasets. We compared the results

obtained by GSGP with the multiplicative and the additive versions of the geometric

dispersion, tested separately, and with the GSGP without the dispersion operators.

Results indicate dispersion operators have a positive impact on the search, improv-

ing the root mean square error in relation to the GSGP without this operator.

The remaining of this chapter is organised as follows. Section 2 provides an

overview to GSGP for symbolic regression problems and the crossover limitation

regarding the population’s convex hull. Section 3 reviews previous works involv-

ing the convex hull described by the population in GSGP and Section 4 presents a

framework for GD operators along with two particular implementations. Section 5

presents the experimental analysis in sixteen different datasets followed by conclu-

sions and research directions in Section 6.

1 The convex hull of a set of points is given by the set of all possible convex combinations of these

points [18].
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2 Background

Most of genetic programming algorithms employ traditional genetic operators that

perform syntactic modification on individuals in order to change their behaviour—

the behaviour of an individual is referred to as its semantics. One particular draw-

back of traditional genetic operators is that there is no guarantee that syntactic mod-

ifications will lead to different behaviour. Therefore, they represent an indirect way

of changing the semantics of an individual. Geometric semantic genetic program-

ming (GSGP) [13], on the other hand, employ semantic genetic operators to intro-

duce syntactic modification on individuals that guarantee to change their semantics.

In this chapter, we focus on GSGP applied to symbolic regression problems.

Symbolic regression problems can be seen as a supervised learning procedure:

given a finite set of input-output pairs representing the fitness cases, defined as

T = {(xi,yi)}
n
i=1—where (xi,yi) ∈ R

d ×R (i = 1,2, . . . ,n)—symbolic regression

consists in inducing a model p : Rd → R that maps inputs to outputs, such that

∀(xi,yi) ∈ T : p(xi) = yi.

Let I = [x1,x2, . . . ,xn] and O = [y1,y2, . . . ,yn] be the input and the output vec-

tors2, respectively, associated to the fitness cases. The semantics of a program

p represented by an individual evolved by GSGP, denoted as s(p), is the vec-

tor of outputs it produces when applied to the set of inputs I, i.e., s(p) = p(I) =
[p(x1), p(x2), . . . , p(xn)]. This notation is extended to the semantics of a population

of programs P = {p1, p2, . . . , pk}, i.e., s(P) = {s(p1),s(p2), . . . ,s(pk)}. The seman-

tics of any program can be represented as a point in a n-dimensional space S, referred

to as the semantic space, where n is the number of fitness cases. Note that the desired

output vector O can also be represented in the semantic space.

GSGP employs semantic geometric operators to evolve the individuals in a pop-

ulation. Let P′ be the solution set comprising all the possible candidate solutions

to a problem in the real domain, the geometric semantic crossover and mutation

operators are defined as follows:

Definition 1. Given two parent programs p1, p2 ∈P′, the geometric semantic crossover

for the space of real functions GSX : P′×P′→ P′ returns the real function

p3 = r · p1 +(1− r) · p2 , (1)

where r is a random real constant in [0,1] (for fitness function based on Euclidean

distance) or a random real function with codomain [0,1] (for fitness function based

on Manhattan distance).

Definition 2. Given a parent program p ∈ P′, the geometric semantic mutation for

the space of real functions GSM : P′×R
+→ P′ with mutation step ε returns the real

function

2 Note that when xi ∈ R
d with d > 1 the vector I becomes a matrix with dimensions d× n. We

allow an abuse of notation by representing the matrix as a vector with dimension n, where each

element corresponds to a vector of dimension d.
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p′ = p+ ε · (r1− r2) , (2)

where r1 and r2 are random real functions.

An interesting characteristic of GSGP is that the fitness of an individual p is

the distance of its output vector s(p) to the desired output vector O. Therefore, the

fitness landscape induced by semantic genetic operators is unimodal by construc-

tion [13]. Despite the unimodal fitness landscape, the stochastic nature of these

operators—as a result of using random real functions and constants—has been

shown to be a more suitable way to explore the space in terms of generalisation,

when compared to modifications of these operators where decisions are based on

fitness cases error [1, 6, 10]. The area defined by the set of individuals (points in the

semantic space) define the convex hull of the population:

Definition 3. The convex hull of a set H of points in R
n, denoted as C(H), is the set

of all convex combinations of points in H [18].

Let P be a population of individuals, we adopt the notation C(s(P)) to denote

the convex hull of the set composed by the semantics of the individuals of P, i.e.,

s(P). Since GSX is, by definition, a geometric crossover operator [13], we have the

following theorem regarding the convex hull of the population:

Theorem 1. Let Pg be the population at generation g. For a GSGP, where the GSX

operator is the only search operator available, we have C(s(Pg+1)) ⊆ C(s(Pg)) ⊆
. . .⊆C(s(P1))⊆C(s(P0)).

Theorem 1 is a particular case of the Theorem 3 defined and proved by [12], and

it has an important implication regarding the GSX operator. Given a population P

and a semantic vector q in S, the offspring resulting from the application of GSX to

any pair of individuals in P can reach q if and only if q ∈ C(s(P)). Consequently,

if GSGP has no other search operators (only GSX), a semantic vector q is reach-

able only if q ∈ C(s(P0))—i.e., if q is located inside the convex hull of the initial

population.

Figure 1 illustrates this situation for a two-dimensional semantic space. Without

loss of generality let O = [0,0] be the desired output vector defined by the training

cases. Now consider two different populations Pa and Pb, where the individuals from

Pa are concentrated in the upper-right side of O and, consequently, C(s(Pa)) cannot

reach the origin O. On the other hand, the set s(Pb) is distributed around the desired

output such that O∈C(s(Pb)). In the first scenario, GSGP needs a mutation operator

to expand the convex hull to reach O. In the second scenario, the desired vector O

can be reached using a crossover operator alone, as it is already inside the convex

hull, or it can be calculated analytically3 with no need to use GSGP.

3 The coefficients of convex combinations can be found by means of Gaussian elimination [9].
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(a) Pa: population concentrated into a single

quadrant

(b) Pb: population encompasses solutions in

all quadrants

Fig. 1 Example of different distributions of a population in a two-dimensional semantic space.

The desired output O is located in the origin of the space and the shaded area corresponds to the

convex hull under the Manhattan distance.

3 Related Work

Previous work on GSGP have proposed different approaches to take advantage of

the properties of the geometric semantic space to improve search. However, to the

best of our knowledge, so far only two have investigated ways to increase the area

covered by the population convex hull—in particular focusing on the coverage of

the initial population, as discussed in this section.

Regarding operators that take advantage of the conic shape of the geometric se-

mantic space, Ruberto et al. [19] explore the geometry of the semantic space through

the concept of error vector. An error vector is represented by a point in the n-

dimensional space, called error space, given by the translation te(p) = s(p)−O.

This notion is used to introduce the concept of optimally aligned individuals in the

error space, i.e., given a number of dimensions µ = 1,2, ...,n, where n is the size of

the training set, µ individuals are optimally aligned in the error space if they belong

to the same µ-dimensional hyperplane intersecting the origin of the error space. The

authors show that if µ individuals are optimally aligned, we can analytically obtain

an equation to express the target output vector O. In this context, they present GP-

based methods to find optimally aligned individuals in two and three dimensions,

called ESAGP-1 (Error Space Alignment GP) and ESAGP-2, respectively. Experi-

mental results suggest that searching for optimally aligned individuals (in two and

three dimensions) is easier than directly searching for a globally optimal solution.

Castelli et al. [8], in contrast, extend ESAGP-1 to what they called Pair Opti-

mization GP (POGP). Unlike the original method—which represents individuals as

simple expressions, and computes the fitness by the angle between the error vector

of an individual and a particular point called attractor—POGP represents individuals

as pairs of expressions and calculates the fitness as the angle between the error vec-

tors of these two expressions. POGP experimental results indicate that the method

deserves attention in future studies.
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Concerning methods that consider the area covered by the convex hull, Pawlak

[16] proposed the Competent Initialization (CI) method, which aims to increase the

convex hull of the initial population. The algorithm adopts a generalized version of

the Semantically Driven Initialization (SDI) method [3], initially proposed for non-

geometric spaces, to generate individuals semantically distinct. SDI randomly picks

a node from the function set to combine individuals already in the population. If the

resulting program has semantics different from other individuals of the population, it

is accepted; otherwise, the method makes a new attempt of generating an individual.

The process continues until a semantically distinct individual is created, following

a trial-and-error strategy. CI, on the other hand, accepts the semantically distinct

individual only if it is not in the current convex hull. The main drawback of both SDI

and CI methods is the possible waste of resources, since individuals are randomly

created, evaluated and discarded when they are semantically similar to an existing

individual of the population or when it is already in the population’s convex hull.

The Semantic Geometric Initialization (SGI) [17], on the other hand, generates

a set S of semantics, such that the desired output is guaranteed to belong to the

convex hull of S. These semantics are generated by adding or subtracting an offset

to O in different combinations of the semantic space dimensions. Then, for each

semantics si ∈ S, the method generates an individual whose semantics is equal to

si. The synthesis of these individuals is domain dependent and authors presented

methods to generate individuals for symbolic regression domain—by polynomial

interpolation—and for boolean domain—by a boolean formula. The experimental

analysis indicates that SGI can achieve training error significantly smaller than the

ramped half-and-half method in symbolic regression and boolean problems. How-

ever, the test error achieved by SGI is significantly higher than the error achieved

by ramped half-and-half [11], which indicates that SGI is very susceptible to over-

fitting.

Although not taking advantage of the geometric properties of the search space,

Castelli et al. [7] proposed a semantic-based algorithm that keeps a distribution of

different semantics during the evolution to drive GP to search in areas of the se-

mantic space where previous good solutions were found. The method outperformed

standard GP and bacterial GP [4] in the test bed adopted. However, the individuals

generated presented statistically bigger sizes than the individuals generated by the

other two GP variants.

4 Geometric Dispersion Operators

In this section we present a generic geometric dispersion (GD) framework along

with two implementations, the multiplicative geometric dispersion (MGD) [15] and

the additive geometric dispersion (AGD) operators.
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4.1 A Framework for Geometric Dispersion Operators

This section presents a general framework for geometric dispersion (GD)4 operators

aiming to redistribute the population around the desired output vector O in the se-

mantic space. These operators move a given individual to the region of the semantic

space around O with the lowest concentration of individuals in order to, hopefully,

modify the convex hull of the population to contain the desired output.

GD operators adopt a greedy strategy to redistribute the population around O

by examining each dimension of S separately. For each dimension of the semantic

space, GD computes the proportion of individuals whose semantics is greater than

and less than O for that dimension. The method uses this information to move the

individuals through the semantic space—by means of mathematical operations ap-

plied to the individual’s program—in order to balance each one of the dimensions

of S.

When we know the region of the semantic space around O where we want to

have individuals shifted to, different methods can be used to move individual p. GD

operators do that by applying a constant m to p through a mathematical operation⊕,

in the form m⊕ p. The movement performed by the GD operator depends directly

of the chosen operation for ⊕. Thus, the value of m must be chosen such that the

displacement of p benefits the largest number of dimensions.

The process of finding this value is equivalent to find m that solves the inequality

system:



















m⊕ s(p)[1]≶1 O[1]

m⊕ s(p)[2]≶2 O[2]

...

m⊕ s(p)[k]≶k O[k]

(3)

where ‘≶’ is a inequality operator (‘<’ or ‘>’) chosen according to the asymmetry

of the population.

Let GT (greater than) and LT (less than) be n-element arrays, where the i-th ele-

ment corresponds to the number of individuals pk in the current population P where

s(pk)[i] > O[i] and s(pk)[i] < O[i], respectively. If GT [i] > LT [i], the population is

unbalanced with more individuals in the right side of the desired output vector in

the i-th dimension of the semantic space, and the individual should be moved to the

left side of O—the symbol ‘≶i’ is replaced by ‘<’. Otherwise, if GT [i]< LT [i], the

imbalance occurs in the opposite side, i.e., the population is concentrated on the left

side of O in the dimension i and the individual should be moved to the opposite

side of O—the symbol ‘≶i’ is replaced by ‘>’. Note that when GT [i] = LT [i], no

inequalities are added to the system. Therefore the number of inequalities in Eq. 3

is less or equal to the number of dimensions, i.e., k ≤ n.

4 [15] presents the first geometric dispersion operator. However, this operator is a particular case of

the framework presented in this paper. Hence, hereafter their operator is referred as multiplicative

geometric dispersion (MGD) operator in contrast to the GD framework.
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Algorithm 1 GD procedure to build the system of inequalities

Require: Individual program (p), desired output (O), population distribution (GT,LT )

1: B←{}
2: for i← 1 to |s(p)| do ⊲ Calculate the bounds

3: if GT [i] 6= LT [i] then

4: if GT [i]> LT [i] then

5: inqSign← ‘lessThan’ ⊲ ‘≶i’ is replaced by ‘<’

6: else

7: inqSign← ‘greaterThan’ ⊲ ‘≶i’ is replaced by ‘>’

8: end if

9: Isolate m in the left side of the inequality ⊲ m ≶i O[i]⊖ s(p)[i]
10: bound← right side value ⊲ bound← O[i]⊖ s(p)[i]
11: if inqSign = ‘lessThan’ then

12: Add bound to B as upper bound

13: else

14: Add bound to B as lower bound

15: end if

16: end if

17: end for

18: return B

However, due to the large number of inequalities in the system, usually it does

not admit feasible solutions. Thus, instead of finding a value for m that satisfies all

inequalities, the operator finds one that maximizes the number of satisfied inequali-

ties. [15] present algorithms to both construct the system of inequalities and find the

value of m that satisfies the largest number of inequalities when the mathematical

operation adopted is the multiplication, i.e., ⊕ is × (times). We generalise these al-

gorithms and present a framework, called geometric dispersion (GD), which moves

individuals through the semantic space in order to distribute the population around

O.

GD is independent of the arithmetic operation adopted in the inequalities. The

only requirements are that the operation is binary and allows inverse. Let ⊕ and ⊖
be a binary operation and its inverse, respectively. The variable m can be isolated in

the left side of the system of inequalities of Eq. 3 as showed in Eq. 4, such that the

operator can find the value that satisfies the largest number of inequalities.



















m ≶1 O[1]⊖ s(p)[1]

m ≶2 O[2]⊖ s(p)[2]

...

m ≶k O[k]⊖ s(p)[k]

(4)

Algorithm 1 introduces the procedure to define the system of inequalities. Given

the arrays GT and LT , it checks each dimension i for an unbalanced distribution, i.e.,

where GT [i] 6= LT [i]. When these values differ, the method adds a new inequality to

the system, represented by a bound value that should be satisfied.
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The sign ‘≶’ of the inequalities is defined according to the distribution of the

population in the verified dimension (lines 4-8). If GT [i] > LT [i], then ‘≶i’ is re-

placed by ‘<’. Otherwise, if GT [i]< LT [i], it is replaced by ‘>’.

The next step of the method is to isolate m in the left side of the inequality and

store the value of the right side in bound (lines 9-10). There are a few considerations

in this step, according to the arithmetic operation used in the inequalities. E.g., if

GD uses multiplication (⊕ is ×), as presented by [15], the method must check for

division by zero and negative value on the left side of the inequality. When a division

by zero is found, the algorithm ignores the inequality. When the left side is negative,

both sides of the inequality are multiplied by −1, inverting the inequality sign.

The sign of the inequalities is used to define the type of bound (lines 11-15). If

the sign is ‘<’, the value of m should be smaller than bound (it is an upper bound).

Otherwise, m should be greater than bound (it is a lower bound). The bounds and

their types are used to compute the value of m in Algorithm 2.

Algorithm 2 follows the method presented in [15]. It first sorts B by value in as-

cending order. The auxiliary variables maxSatisfied, index and cSatisfied store the

number of inequalities satisfied by the best bound for m found so far, its index and

the number of inequalities satisfied by the bound examined in the current iteration,

respectively. The method starts by considering the interval before the first bound,

i.e., (−∞,B[1].value). If a value from this interval is picked for m, all the upper

bounds are satisfied, i.e., maxSatisfied = nub (line 2). It then iterates over B count-

ing the number of upper and lower bounds satisfied by each interval until (B[i],∞)
(lines 5-16). If the examined value corresponds to an upper bound, we decrement

the cSatisfied counter, since the interval in the right side of the bound does not sat-

isfy it. On the other hand, if the examined value corresponds to a lower bound, the

right side interval satisfies the bound and cSatisfied is incremented.

After finding the best interval for m, the procedure assigns an actual value for

m (lines 17-30). If the best interval corresponds to (−∞,B[1]) or to (B[|B|],∞), m

takes the output of getLeftExtreme and getRightExtreme, respectively. Otherwise,

the method selects a random value in the interval (B[index],B[index+1]).
Algorithms 3 and 4 present the procedures getRightExtreme and getLeftExtreme,

respectively. The control variable shiftOne indicates if the methods should use the

same strategy adopt by [15], i.e., shift values in the extreme of the interval by one.

Otherwise, the algorithms shift the values by a random value proportional to the

closest interval defined in B.

The value of m returned by Algorithm 2 is then used to move individual p in

the semantic space. GD is applied during the evolution at every generation, right

before other genetic semantic operators (crossover and mutation). The probability

of applying a GD operator—individual-wise—pgd, as proposed by [15], is given

by:

pgdg = pgd0 · exp

(

−α ·g

gmax

)

, (5)
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Algorithm 2 Finds m

Require: Set of bounds for m (B), shift control variable (shiftOne)

1: nub← number of ‘ub’s in B

2: maxSatisfied← cSatisfied← nub

3: index← 0

4: Sort B by value in ascending order

5: for i← 1 to |B| do ⊲ Find the best interval for m

6: bound← B[i]
7: if bound is a lower bound then

8: cSatisfied← cSatisfied+1

9: if cSatisfied > maxSatisfied then

10: maxSatisfied← cSatisfied

11: index← i

12: end if

13: else

14: cSatisfied← cSatisfied−1

15: end if

16: end for

17: if index = 0 then ⊲ Calculate m

18: if B is empty then ⊲ No need to move p

19: m← 1

20: else

21: m← getLeftExtreme(B,shifOne)
22: end if

23: else

24: if index = |B| then

25: m← getRightExtreme(B,shifOne)
26: else

27: δ ← B[index+1].value−B[index].value

28: m← B[index].value+δ · rnd() ⊲ rnd() returns a random value in (0,1)
29: end if

30: end if

31: return m

where pgd0 is the base probability, α is the decay rate, g is current generation in-

dex and gmax is total number of generations. Equation 5 ensures the probability of

applying the operator decays exponentially with the generations.

4.2 Multiplicative Geometric Dispersion

The geometric dispersion operator proposed in [15], here called multiplicative ge-

ometric dispersion (MGD), is an implementation of the GD framework where the

constant m is multiplied by the semantics of the individual p. MGD manipulates

inequality systems as given by Eq. 3—in the form m · s(p)[i] ≶i O[i]—and isolates

m in the left side as presented by Eq. 4—in the form m ≶i O[i]/s(p)[i]—, where ⊕
and ⊖ are replaced by × and ÷, respectively. The multiplicative operation applied
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MGD

A
G
D

(a) AGD and MGD lines in the semantic

space.

4

4

3

5

MGD

A
G
D

(b) Distribution of individuals around O re-

garding dimension1 (blue) and dimension2

(red). The numbers indicate the frequency of

individuals on each side of O for each dimen-

sion.

Fig. 2 Lines described by the AGD and MGD operators applied to an individual p.

to the individual p is geometrically equivalent to moving it through the line crossing

both s(p) and the origin of S.

As discussed above, when isolating m in the i-th dimension, MGD must consider

two special cases. First, if s(p)[i] = 0, isolating m implies in division by zero and the

operator ignores the inequality. Second, if s(p)[i] < 0, the inequality is multiplied

by −1 and the inequality sign is inverted. For instance, let m · (−2) > 4 be one of

the inequalities. Thus, as s(p)[i] =−2 < 0, the inequality is multiplied by−1 before

isolating m in the left side, leading to m ·2 <−4.

4.3 Additive Geometric Dispersion

Besides the MGD, we present a geometric dispersion operator based on addition.

The additive GD (AGD) moves a given individual p through the line L = {s(p)+ t :

t ∈R}, with L⊂ S, in order to redistribute the population around O. The inequalities

used by AGD are in the form m+ s(p)[i]≶ O[i], which result in m ≶ O[i]− s(p)[i],
where i is the dimension analysed.

The use of different mathematical operations within the GD operators allows

them to explore different regions of S. Figure 2 presents an example in a two-

dimensional semantic space. In order to keep dimension1 balanced and balance

dimension2, it is necessary to move p to the upper-left side of O. However, in this

example, only AGD can reach this region of the space.
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Algorithm 3 getRightExtreme procedure

Require: Set of bounds for m (B), control vari-

able shiftOne

1: if shifOne=TRUE or |B|< 2 then

2: return B[|B|]+1

3: else

4: δ ← B[|B|].value−B[|B|−1].value

5: return B[|B|]+δ · rnd()
6: end if

Algorithm 4 getLeftExtreme procedure

Require: Set of bounds for m (B), control vari-

able shiftOne

1: if shifOne=TRUE or |B|< 2 then

2: return B[1]−1

3: else

4: δ ← B[2].value−B[1].value

5: return B[1]−δ · rnd()
6: end if

5 Experimental Analysis

This section presents an empirical analysis of the effect of different versions of the

GD operator within GSGP. We compare the results obtained by GSGP with AGD

(referred to as GSGP+A), GSGP with MGD [15] (referred to as GSGP+M) and

GSGP without dispersion operators [5] in a test bed of sixteen symbolic regression

datasets comprising both real-world and synthetic problems, as presented in Table

1. The test bed along with parameters adopted in the algorithms are the same from

our previous work [15].

For each real-world dataset, we performed a 5-fold cross-validation with 10 repli-

cations, resulting in 50 executions. For the synthetic datasets (except keijzer-6 and

keijzer-7), we generated five different sets and, for each sample, applied the algo-

rithms 10 times, resulting again in 50 executions. For keijzer-6 and keijzer-7, the

test set is fixed, so we performed 50 executions. The categorical attributes, namely

vendor name and model name from the cpu dataset and month and day from the

forestFires dataset, were removed for compatibility purposes.

All executions used a population of 1,000 individuals evolved for 2,000 gener-

ations with tournament selection of size 10. The same random seed is employed

to initialize the pseudorandom number generator in all methods. The grow method

[11] was adopted to generate the random functions inside the geometric semantic

crossover and mutation operators, and the ramped half-and-half method [11] used

to generate the initial population, both with maximum individual depth equals to 6.

The function set included three binary arithmetic operators (+,−,×) and the an-

alytic quotient (AQ) [14] as an alternative to the arithmetic division. The terminal

set included the variables of the problem and constant values randomly picked from

the interval [−1,1]. GSGP employed the geometric semantic crossover for fitness

function based on Manhattan distance and mutation operators, as presented in [5],

both with probability 0.5.

The base probability (pgd0) and the decay rate (α) values for all the GD vari-

ants are the ones leading to the smaller median training RMSE, as presented in our

previous experiments [15]. The values vary in each dataset, as presented in the last

two columns of Table 1. The two ways of setting the final value of m in the Algo-

rithms 3 and 4, defined by the boolean variable shiftOne, were analysed in different
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configurations. A ‘R’ in the end of the configuration name indicates that shiftOne is

FALSE, i.e., m is calculated as a random value proportional to the interval nearest

to the extreme.

Table 1 and 2 present the median training and test RMSE and respective IQR (In-

terquartile Range), according to 50 executions. Table 3 shows the number of datasets

were the method in the row is statistically better than the method in the column re-

garding the test RMSE, according to Wilcoxon test with 95% confidence level. The

results indicate the search performed by GSGP benefits from the dispersion pro-

vided by the operators, as pointed out by the score of GSGP in relation the GD

configurations. Regarding the use of the shift one algorithm or the random method

to compute the values of m in the extremes, there are no significant differences on

the dispersion operators. Lastly the results indicate that overall the multiplicative

version of the geometric dispersion operator performs better than the additive coun-

terpart.

Table 1 Training RMSE (median and IQR) obtained by the algorithms for each dataset. The last

two columns present the parameters used as input in GD operators.

Dataset
GSGP GSGP+A GSGP+AR GSGP+M GSGP+MR GD param.

Med. IQR Med. IQR Med. IQR Med. IQR Med. IQR α pgd0

airfoil∗ 7.885 0.527 1.873 0.057 1.900 0.052 1.886 0.041 1.890 0.051 5 0.2

bioavailability∗ 9.893 0.652 9.653 0.552 9.706 0.547 9.695 0.690 9.794 0.703 10 0.4

concrete∗ 3.647 0.138 3.659 0.136 3.644 0.150 3.654 0.118 3.634 0.109 10 0.6

cpu∗ 6.126 0.665 6.149 0.977 6.223 1.067 6.151 0.905 6.215 0.790 10 0.4

energyCooling∗ 1.257 0.070 1.282 0.065 1.267 0.057 1.271 0.066 1.255 0.052 10 0.4

energyHeating∗ 0.802 0.113 0.790 0.084 0.789 0.123 0.798 0.083 0.764 0.084 10 0.2

forestfires∗ 30.737 4.626 31.684 4.858 31.247 4.490 30.967 4.201 31.534 4.156 10 0.4

keijzer-5† 0.045 0.003 0.063 0.006 0.062 0.006 0.026 0.008 0.026 0.009 0 0.6

keijzer-6† 0.007 0.005 0.007 0.007 0.007 0.005 0.007 0.006 0.006 0.005 0 0.2

keijzer-7† 0.017 0.010 0.017 0.010 0.016 0.009 0.016 0.009 0.014 0.009 5 0.2

ppb∗ 0.917 0.266 0.930 0.241 0.924 0.274 0.954 0.305 0.937 0.202 5 0.2

towerData∗ 20.436 0.610 20.558 0.704 20.587 0.610 20.405 0.621 20.472 0.404 10 0.2

vladislavleva-1† 0.012 0.002 0.012 0.002 0.012 0.001 0.012 0.002 0.012 0.002 10 0.6

vladislavleva-4† 0.038 0.001 0.038 0.002 0.038 0.002 0.038 0.001 0.038 0.002 10 0.2

wineRed∗ 0.493 0.011 0.494 0.012 0.494 0.010 0.494 0.011 0.495 0.010 10 0.2

wineWhite∗ 0.641 0.003 0.642 0.004 0.642 0.004 0.642 0.003 0.641 0.003 10 0.2
∗ Real-world dataset † Synthetic dataset

6 Conclusion

This chapter presented a general framework to construct geometric dispersion (GD)

operators for GSGP in the context of symbolic regression, followed by two concrete

instantiations: the multiplicative geometric dispersion (GD) operator proposed in

[15] and another derivation based on the addition operator. These operators move

the individuals in order to balance the population around the target output in each

dimension of the semantic space, with the objective of expanding the convex hull

defined by the population to include the desired output vector.
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Table 2 Test RMSE (median and IQR) obtained by the algorithms for each dataset.

Dataset
GSGP GSGP+A GSGP+AR GSGP+M GSGP+MR

Med. IQR Med. IQR Med. IQR Med. IQR Med. IQR

airfoil 8.417 0.757 2.154 0.237 2.131 0.272 2.131 0.243 2.152 0.210

bioavailability 30.736 2.326 31.139 4.170 30.682 4.189 30.860 4.426 30.619 3.773

concrete 5.394 0.642 5.285 0.624 5.244 0.575 5.144 0.635 5.054 0.489

cpu 30.917 15.185 32.804 13.166 32.400 16.182 30.837 14.563 32.027 16.790

energyCooling 1.515 0.147 1.553 0.151 1.489 0.180 1.531 0.159 1.486 0.194

energyHeating 0.956 0.185 0.919 0.157 0.928 0.136 0.971 0.128 0.933 0.169

forestfires 51.632 48.166 52.026 48.626 51.483 50.444 50.227 48.373 50.590 48.762

keijzer-5 0.049 0.005 0.066 0.006 0.065 0.007 0.028 0.009 0.027 0.010

keijzer-6 0.398 0.339 0.275 0.228 0.293 0.203 0.281 0.282 0.250 0.166

keijzer-7 0.018 0.010 0.019 0.010 0.018 0.010 0.017 0.009 0.015 0.008

ppb 28.740 5.290 27.337 5.031 28.139 5.630 28.568 6.170 27.969 5.849

towerData 21.920 1.272 21.979 1.264 21.826 1.263 21.769 1.252 21.871 1.134

vladislavleva-1 0.044 0.030 0.041 0.030 0.046 0.022 0.044 0.030 0.039 0.025

vladislavleva-4 0.052 0.003 0.051 0.003 0.050 0.003 0.051 0.004 0.052 0.002

wineRed 0.620 0.040 0.614 0.041 0.610 0.042 0.615 0.046 0.619 0.049

wineWhite 0.696 0.014 0.695 0.015 0.696 0.014 0.696 0.015 0.696 0.013

Table 3 Number of datasets where the method in the row obtained statistically smaller test RMSE

in relation to the method in the column. Results according to the Wilcoxon test with 95% confi-

dence level.

GSGP GSGP+A GSGP+AR GSGP+M GSGP+MR Total (wins)

GSGP – 1 1 0 0 2

GSGP+A 3 – 1 2 0 6

GSGP+AR 5 1 – 1 4 11

GSGP+M 6 3 5 – 3 17

GSGP+MR 7 4 4 3 – 18

Total (losses) 21 9 11 6 7

Experimental analysis was performed on a test bed composed by sixteen datasets

to compare the effects of GD operators within GSGP: GSGP with additive GD

(GSGP+A), multiplicative GD (GSGP+M) and without GD operators were com-

pared regarding the test RMSE. The results showed that GD operators can improve

the search performance in terms of test RMSE. Also, they showed that GSGP+M

presents advantage over the GSGP+A regarding test RMSE.

Future works include proposing novel dispersion operators following the generic

framework, exploring different algorithms to compute the value of m, analysing

the impact of using different GD operators simultaneously and tuning the control

parameters used by GD operators.
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