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Abstract—Sequential Symbolic Regression (SSR) is a technique
that recursively induces functions over the error of the current
solution, concatenating them in an attempt to reduce the error of
the resulting model. As proof of concept, the method was previ-
ously evaluated in one-dimensional problems and compared with
canonical Genetic Programming (GP) and Geometric Semantic
Genetic Programming (GSGP). In this paper we revisit SSR
exploring the method behaviour in higher dimensional, larger
and more heterogeneous datasets. We discuss the difficulties
arising from the application of the method to more complex
problems, e.g., overfitting, along with suggestions to overcome
them. An experimental analysis was conducted comparing SSR
to GP and GSGP, showing SSR solutions are smaller than those
generated by the GSGP with similar performance and more
accurate than those generated by the canonical GP.

I. INTRODUCTION

The divide and conquer strategy is a successful computa-

tional paradigm that allows difficult problems to be solved

by dividing them into smaller and more feasible problems.

The area of machine learning employs this paradigm into a

variety of algorithms, including decision trees [1] and rule

learning [2]. These learning algorithms decompose a problem

into subproblems, find solutions to these subproblems and use

them to generate the solution for the original problem. A

similar strategy is used by many rule induction algorithms,

where a sequential covering strategy is used to transform the

problem of finding a list of classification rules into a sequence

of smaller problems of finding a single rule. After a rule is

created, the training cases classified by the rule are removed

from the training set, reducing the size of the dataset for the

next iteration of the procedure.

Since the introduction of Genetic Programming (GP) [3],

researchers have been interested in exploring the regularities

and modularity of its search space [4]. One of the main

motivations to identify these regularities is to decompose the

problem at hand into more tractable subproblems, similarly to

what the sequential covering and divide and conquer strategies

do. One of the first attempts in GP to explore these regularities

is the use of Automatic Defined Functions (ADFs) [3], [4].

ADFs provide a mechanism by which the evolutionary process

can evolve reusable components—the ADFs—along with the

main tree, and these components can be added to the tree as if

they belong to the primitive set of functions used to initially

generate the trees.

Other approach to deal with this problem was proposed by

[5], which presented the Sequential Covering Genetic Pro-

gramming (SCGP), a strategy based on the sequential covering

to decompose a boolean problem into smaller subproblems.

Each subproblem is then solved by a traditional GP and the

individual solutions are combined using a geometric semantic

crossover [6]. The geometric semantic crossover and mutation

operators [6] are search operators that act on the syntax of

the individuals producing an expected semantic outcome. The

SCGP uses a property of the geometric semantic crossover for

the boolean domain: individuals are combined using a boolean

mask, which acts as a selector to inform when a particular

individual solution should be used. While this strategy is

successful for boolean domains, there is not a straightforward

way to adapt it to the real domain, since the operation of the

geometric semantic crossover is different.

The Sequential Symbolic Regression (SSR) [7] introduces a

different strategy to employ the geometric semantic crossover

in order to incrementally solve symbolic regression problems.

The method starts with an empty solution that is iteratively

constructed by combining new functions through a geometric

semantic crossover operator. These functions are induced

from the error relative to the difference between the solution

found so far and the expected output. SSR employs a GP to

search for function approximations and the geometric semantic

crossover operator [6] to find the expected semantics of the

complementary functions and combine them. The method was

tested in eight polynomial functions, as a proof of concept, and

presented a significant improvement in terms of the size of the

solutions in relation to the original GSGP.

This paper extends SSR by investigating important aspects

unanalysed in the original work. When applied to more

complex datasets, SSR manifests overfitting and anomalous

functioning. We discuss the origin of these undesired be-

haviours and present simple solutions in order to reduce them.

This paper also presents an experimental analysis in higher

dimensional and larger datasets and the impact on the resulting

solution of increasing the number of SSR iterations.

The remainder of this paper is organized as follows. Section

II reviews previous works that combines regression models

induced from the model’s error in an attempt to improve the

final solution. Section III revisits the SSR method and proposes

extensions to cope with problems arising from its application



to more complex datasets, including numeric overflow due

to concatenation of expressions and overfitting. Section IV

presents the experimental analysis in twenty different datasets

followed by conclusions and research directions in Section V.

II. RELATED WORK

The work presented in this paper is related to ensemble

learning, in particular to gradient boosting [8]. Ensembles are

methods that generate several weak models that are combined

to generate stronger classification or regression models [9].

The main principle behind gradient boosting is to learn new

models with highest correlation to the negative gradient of the

loss (error) function associated to the final ensemble output.

Given a training set T = {(xi,yi)}n
i=1 defined by an unknown

function f ∗(x), the method approximates f ∗(x) by

f (x) =
M

∑
m=0

βmh(x;am) , (1)

where h(x;am) is the base (weak) learner—usually a simple

parameterized function characterized by a parameter vector

am—and βm is the corresponding coefficient. The method

starts with an initial approximation, induced directly from T ,

and incrementally expands the model. The function h(x;am)
is fitted by adjusting the parameter am using least-squares and

the optimal value of βm is determined by a line search.

When the loss function adopted is the quadratic error,

the optimization process is similar to search by a model

that approximates the residuals of the previous model found,

similar to the idea presented in SSR.

However, even before the theoretical foundation given by

gradient boosting, Lee [10] proposed a form of recursively

adjust a symbolic regression function within the context

of time series forecasting by Genetic Recursive Regression

(GRR). GRR assumes real world time series are composed by

a deterministic ( fD) and a stochastic component ( fS), such as

f = fD + fS . (2)

A traditional GP expresses the deterministic part while the

time series’ residual, fS = f − fD, is again expanded into two

parts.

GRR assigns numerical coefficients to each function in-

duced during the process and calculates them by the least

squares method with respect to the training dataset. Panya-

worayan and Wuetschner [11] presented a similar approach

to GRR, also applied to time series forecasting. However, a

genetic algorithm is used to adjust the values of the numerical

coefficients instead of the least squares method.

A more recent method, named Multiple Regression GP

(MRGP) [12], also assigns coefficients to the elements of the

resulting function, which are optimized by regression. The

method consists in a GP with selection strategy based on Non-

dominated Sorting Genetic Algorithm II (NSGA-II) [13] with

two minimization objectives, the model subtree complexity

measure and the multiple regression error.

III. SEQUENTIAL SYMBOLIC REGRESSION

This section introduces Sequential Symbolic Regression

(SSR), a method that sequentially builds a solution for sym-

bolic regression problems by means of GP.

Given a training set T = {(xi,yi)}n
i=1—where (xi,yi)∈Rd×

R (i = 1,2, ...,n) — a symbolic regression problem can be

defined as finding a function f : Rd → R that minimizes an

error metric in T .

The majority of the error metrics adopted for symbolic

regression, such as the Mean Squared Error (MSE), the Mean

Absolute Error (MAE), the Root Mean Squared Error (RMSE)

or the coefficient of determination (R2) use the sum of the

absolute or squared residuals—the difference between the

current output and the function output—to compute their

respective values. These metrics share a common property:

the error quantified by the metric decreases when the absolute

residuals are minimized. A residual e( f ,T ) corresponds to the

deviation of the fitted function f from the observed outputs in

T . For each pair (xi,yi) in T , the residual is defined as

ei( f ,T ) = yi− ŷi = yi− f (xi) . (3)

The optimal solution to a regression problem is a function

f ∗ that perfectly fits the input data, i.e. where ei( f ∗,T ) =
yi− f ∗(xi) = 0 for i = 1,2, ...,n. However, often the regression

model is just an approximation of f ∗, not reaching a zero

error or a predefined minimum error. Whenever the symbolic

regression finds a suboptimal function f (i.e. ei( f ,T ) 6= 0 for

at least one observation i), the model can still be improved by

adding a term that approximates the residuals.

SSR takes advantage of this property and employs the

geometric semantic crossover operator [6] to subsequently

combine suboptimal functions and approximations to their

residuals. The main idea behind the geometric semantic

crossover is to create a convex combination of two solutions

to the problem being tackled. We use this operator to combine

an initial approximation function f evolved over T with a new

function fnew, generated over the residuals of f in T .

Alg. 1 presents the high-level pseudocode of the SSR proce-

dure. The method starts with an empty solution tree S, which

is incrementally constructed over the iterations and returned

as the final regression model. At the beginning of iteration

k, the desired outputs are normalized (line 6), as detailed in

Section III-B. This procedure returns the normalized output set

Ty′ = {y′i}n
i=1 and the mean and standard deviation calculated

during the process.

The original inputs and the normalized outputs define the

training set T ′ = {(xi,y
′
i)}n

i=1, used by a standard GP to induce

a function f (line 7). Following the GP execution, function

isLastIteration checks whether the maximum number of iter-

ations maxIter is reached or if the function f corresponds to

the optimal solution, i.e., has RMSE equals to zero. When any

of the previous mentioned situations occur, f is added to the

solution tree S and the sequential procedure stops, returning S.

Otherwise, f is added to the solution tree S using the geometric

semantic crossover, and the outputs are updated to consider the



Algorithm 1: Sequential Symbolic Regression procedure

Input: training points (T ), maxIter, GP parameters

1 Tx← (x1,x2, ...,xn), for xi ∈ R
d ; // Inputs

2 Ty← (y1,y2, ...,yn), for yi ∈ R ; // Outputs

3 S← /0 ; // Initially empty solution

4 k← 1 ;

5 Loop

6 (Ty′ , ȳ,sy)← normalize(Ty) ; // Normalization

7 f ← runGP(Tx,Ty′);
8 if isLastIteration( f ,k) = TRUE then

9 if k = 1 then // First scenario

10 S← ȳ+ sy · f ;

11 else // Second scenario

12 fnew← ȳ+ sy · f ;

13 return S

14 r← random();

15 if k = 1 then // Third scenario

16 S← ȳ+ sy · [r · f +(1− r) · fnew];
17 else // Fourth scenario

18 fnew← ȳ+ sy · [r · f +(1− r) · fnew];

19 Ty← adjustOutputs( f ,r,Ty′);
20 k← k+1;

residuals of the current solution (procedure adjustOutputs),

which will be considered as the desired outputs in the next

SSR (and consequently, next GP) iteration. The next sections

detail all components of SSR.

A. Adding functions to the current solution

At each iteration k of SSR, the method adds the function

found by GP— f —to the overall solution S. The way f is

added to S varies depending whether the current iteration is

or is not the first or the last iteration, generating four scenarios:

SSR is in the last iteration and (1) k = 1 or (2) k 6= 1, SSR

is not in the last iteration and (3) k = 1 or (4) k 6= 1. These

scenarios are depicted in Figure 1.

Alg. 1 presents these four scenarios. The first scenario

occurs when SSR finds the optimal solution in the first iteration

or when maxIter = 1. In this case (line 10), the method

returns the equivalent to the output of a canonical GP with

the normalization/denormalization stage presented in Section

III-B. The second scenario takes place in the last iteration of

the method—i.e., when the maximum number of iterations is

reached or the optimal solution is found—when there was at

least one other iteration (line 12). In this circumstance, the

incomplete function generated in the previous iteration has its

pointer fnew pointing to the generated function f , resulting in

a fully functional solution S, returned to the user.

The other two scenarios employ the geometric semantic

crossover operator to append function f to S. The main idea

behind this operator is to create a convex combination of two

solutions, guaranteeing that the fitness of the new solution

generated (in our case, RMSE) will never be worse than

the worst of its parents. However, instead of applying the

∅

(a) SSR is in the last iteration and k = 1.

*

*

(b) SSR is in the last iteration and k 6= 1.

∅

+

* *

(c) SSR is not in the last iteration and k = 1.

*

+

**

*

(d) SSR is not in the last iteration and k 6= 1.

Fig. 1. AddFunction scenarios. The box u(ȳ,sy) indicates the denormalization
process regarding f , r′ represents the value of r defined in the previous
iteration and nodes in red denote what is modified in the iteration. Scenarios
(b) and (d) present only the rightmost subtree of S (symbolized by a dashed
line).

geometric semantic crossover to two parents, SSR applies it

to one known parent— f —and to a pointer to be fulfilled with

the second parent— fnew—in the next iteration, as presented

by:

r · f +(1− r) · fnew , (4)

where r is random constant in [0,1).

Notice that the third and fourth scenarios occur only when

the optimal solution is not found, i.e., when the procedure

isLastIteration returns FALSE. Thus, the method can search

in the next iteration by a function to be pointed by fnew, such

that the zero error is achieved. The difference between the

third scenario (line 16) and the fourth (line 18) is that the

former takes place in the first iteration, when S is empty—S is

replaced by the output of the geometric semantic crossover—

and the latter occurs in the subsequent iterations—S is already

defined and the current pointer fnew starts to point to the output

of the geometric semantic crossover operator.

When S is modified by the third or fourth scenarios, SSR has

to compute a new output set used to search for the function

placed in fnew. The method adjustOutputs replaces f (xi) in



Eq. 3 by Eq. 4, equals the error ei( f ,T ) to zero and isolates

the pointer fnew in the left-hand side, leading to:

y
(new)
i =

yi− r · f (xi)

1− r
, (5)

where y
(new)
i is the output expected from the function placed

in fnew and yi is in the output set used to find the function f

by the runGP procedure.

B. Normalization and Denormalization Procedures

The normalization and denormalization processes are not

present in the early SSR version [7]. They were introduced to

avoid computations leading to anomalous behaviour, caused

by approximations and double overflow. Let y
(0)
i be the i-th

original desired output defined by the training set. We can

generate any desired output for the k-th iteration of SSR as:

y
(k)
i =

y
(0)
i − r1 f1(xi)−

k

∑
j=2

[

r j f j(xi)
j−1

∏
m=1

(1− rm)

]

k

∏
j=1

(1− r j)

, (6)

for k ≥ 2. Let R = {r1,r2, . . . ,rk} be equally distributed in

intervals defined in
[

m
10
,

m+1
10

)

for m = 0,1, . . . ,9 (given the

random values of rm are uniformly distributed, this is a

viable proposition). We can calculate an upper bound for the

denominator of (6) as

k

∏
j=1

(1− r j)≤
10

∏
m=1

( m

10

)
k

10
. (7)

When k is sufficiently big this limit potentially leads to double

overflow, e.g., for k = 1000, this upper bound is approximately

9.47 ·10−345. This is equivalent to multiplying the numerator

by a number as big as 1.06 ·10344. Even the single-precision

64-bit IEEE 754 floating point standard (used in Java and C++

double primitives) cannot handle such a big number, causing

an overflow error. The normalization prevents this kind of

problem by changing the function output range.

The new values of outputs are normalized as

y′i =
yi− ȳ

sy

, (8)

where y′i is the normalized value, and ȳ and sy are the mean

and standard deviation of Ty, respectively.

In order to obtain values in the original range, the function

f learned from the normalized data needs to be denormalized

through ȳ+ sy · f (xi)—see lines 10, 12, 16 and 18 in Alg. 1.

C. Mitigating Overfitting

Genetic Programming and other machine learning tech-

niques are usually trained by maximizing their performance

(fitness in evolutionary algorithm context) in some training

data. However, the performance of a learned model is mea-

sured in relation to unseen data and not to the training set.

Overfitting occurs when the model performs well on the

training data but very poorly on unseen instances.

We adopted two adjustments to reduce overfitting in SSR.

The first is related to the use of protected operators in the GP

function set. As presented by Keijzer [14], protected operators

may induce asymptotes in regions of the input space not

covered by the training set. When the GP induced function

is applied to unseen data, it may generate arbitrarily high

or low values inside these regions. In particular, when we

iteratively induce functions over the residuals, as SSR does,

the odds of this behaviour is even higher. The solution found

to overcome this pitfall was to change the protected operators

(only protected division in our case) by a similar operator with

no discontinuity called analytic quotient (AQ), defined as

AQ(a,b) =
a√

1+b2
, (9)

given the positive results presented in [15].

The second adjustment is related to the training sample

strategy adopted by the GP. Instead of using the entire training

set T at each GP generation, we adopt our own variation

of the Random Sample Technique (RST) [16] that randomly

partitions the training set into k equal size disjoint subsets,

T1,T2, . . . ,Tk, alternating among them at each s generations.

Only the last generation of the GP uses the whole training set

T to select the best individual, which is the individual that

will be added to the solution tree S.

IV. EXPERIMENTAL RESULTS

In this section we present an experimental analysis of

SSR in a diversified collection of real-world and synthetic

datasets. The results are compared with a canonical GP [3], the

Geometric Semantic GP (GSGP) [17] and a modified version

of GRR [10] for symbolic regression.

In contrast with the original GRR, developed for forecasting

real world chaotic time series [10], the version adopted here

was adapted for symbolic regression, and renamed Genetic

Recursive Symbolic Regression (GRSR). GRSR does not

use the parallel architecture with multiple populations or the

derived terminal set from [10], and adopts the RMSE as fitness

measure.

The main differences of the GRSR regarding SSR are: (i)

the resulting solution combines the functions found by GP

into a linear model; (ii) there is no need for normalization,

once the function coefficients are adjusted by ordinary least

squares; and (iii) its fitness function is based on the RMSE

of S in relation to the original training set, while SSR uses

the RMSE of the last generated function in relation to the

normalized data.

The experimental test bed is composed of datasets selected

from the UCI machine learning repository [18], GP bench-

marks [19] and a previous work involving GSGP [20], as

presented in the Table II. The categorical attributes from

the Computer Hardware and the Forest Fires datasets were

removed for compatibility purpose.

We defined different strategies for the experiments accord-

ing to the nature and source of the datasets. For real datasets,

we randomly partitioned the data into five disjoint sets of the



TABLE I
PARAMETERS USED BY EACH ALGORITHM DURING THE EXPERIMENTS.

Parameter SSR / GRSR GSGP GP

Crossover probability 0.9 0.5 0.9
Mutation Probability 0.1 0.5 0.1
Tournament Size 7 10 7
Population Size 1000 1000 1000
Number of generations 200 2000 2000
Number of iterations 10 - -

same size and executed the methods ten times with a 5-fold

cross-validations (10×5-CV). For the synthetic ones, we used

two different strategies according to the way the dataset was

defined in its original work: experiments with datasets keijzer-

6 and keijzer-7 were deterministically sampled fifty times with

the same data folds (50×D), while the other datasets were

resampled five times and the experiments were repeated ten

times for each sampling (10×5-ND). Training and test sets

were sampled with the same strategy. The only exception

was the Vladislavleva-1 dataset, where the training set was

sampled following the 10×5-ND strategy and the test set was

deterministic sampled once, following the original experiment

[19]. At the end, all methods were executed 50 times.

In order to make a fair comparison with the baselines,

we included the RST method presented in Section III-C in

all methods, with s = 10 and k = 5. However, preliminary

experiments showed that this strategy was prejudicial to GP

and GSGP, and hence they do not adopt it. All methods use

function set including three arithmetic operators (+,−,×) and

AQ as an alternative to the arithmetic division, and terminal

set including the variables of the problem and constant values

randomly picked from [−1,1]. The grow method [3] was

adopted to generate the random functions inside the geometric

semantic crossover and mutation operators—within GSGP—

and the ramped half-and-half method [3] was used to generate

the initial population of all methods, both with maximum

individual depth equals to six. Table I presents the parameters

specific for each algorithm. All parameters were defined

according to the results obtained in preliminary experiments.

SSR, GRSR, GSGP and GP configurations respect a budget of

2 million evaluations. Note that the number of generations of

SSR and GRSR is smaller because both run for 10 iterations.

Table II presents the median and IQR (Interquartile Range)

of the test RMSE and resulting function size, according to

the 50 executions of each method. In order to analyse the

statistical difference of the results, two comparisons were

performed. First, pairwise comparisons among the methods

were done using a t-test. The results are indicated by the

symbols N(H), meaning the method in the cell is statistically

better (worse) than SSR with 95% confidence. Then, we

adopted the less conservative variant of the Friedman test

proposed by Iman and Davenport [21], here called adjusted

Friedman test. We performed one adjusted Friedman test under

the null hypothesis that the performances of the methods—

measured by their median test RMSE—are equal; and one

under the null hypothesis that the median sizes of the resulting

expressions (functions) generated by the methods are equal.

The p-values reported by both tests are presented in Table

III, and implicate in discarding both null hypothesis with a

confidence level of 95%. Thus, two Finner post-hoc tests [22]

were performed to verify statistical differences among SSR

and the other methods in relation to the RMSE and function

size. The adjusted p-values (APV) resulting from these tests

are presented in the last three columns from Table III. Again,

the symbol N(H) indicates the method in the column is

statistically better (worse) than SSR with 95% confidence.

The results show that there is no evidence of statistical

difference in relation to the SSR and both GSGP and GRSR

performances. Nevertheless, there is evidence that the SSR

performs better than the GP. Analysing the function size, there

is statistical evidence that the GP produces smaller function

approximations than the SSR. Also the SSR solutions sizes

are statistical smaller than those from the GSGP. Overall,

SSR performs better than the GP in terms of test RMSE but

generates bigger solutions; and there is no statistical evidence

that the SSR and GSGP performance are different but there

is strong evidence that SSR induced functions are smaller

than those generated by the GSGP. These results indicate

SSR is a better option than the canonical GP when the main

goal is to obtain more accurate functions and the size of

the solutions is not relevant. Furthermore, SSR is capable of

producing solutions with similar accuracy to those produced

by GSGP, but many orders of magnitude smaller, since the

size of GSGP individuals grows exponentially in relation to

the number of generations. Regarding the GRSR, there is no

statistical evidence that its performance or resulting function

size differ from those obtained by SSR.

V. CONCLUSIONS AND FUTURE WORK

This paper revisited the Sequential Symbolic Regression

and performed a deeper analysis over a more diversified

test bed. We observed that SSR presented issues—including

overfitting—when applied to more complex problems. In this

paper we proposed extensions to mitigate these problems in

order to improve the performance of the method.

Experiments were run in a test bed of twenty datasets, and

results compared to a canonical GP, a Geometric Semantic GP

(GSGP) and a to the Genetic Recursive Symbolic Regression

(GRSR). When RMSE median was used as the performance

metric, the results showed SSR performs statistically sig-

nificantly better than the GP and presents no evidence of

statistical difference to GSGP and GRSR. When comparing the

size of the resulting functions, SSR solutions are statistically

significantly smaller than those generated by the GSGP, but

larger than those produced by the GP. These results indicate

that SSR is a good alternative to GP when the performance is

more important than the size of the functions; and to GSGP,

where the RMSE obtained is similar but SSR generates smaller

solutions, restraining the exponential grown caused by the

indiscriminate use of semantic geometric operators by GSGP.

Potential future developments involve investigating other

methods of combing functions and to dynamically control



TABLE II
MEDIAN AND IQR OF THE RMSE AND RESULTING FUNCTION SIZE FOR EACH ALGORITHM. THE SYMBOL N(H) INDICATES THE METHOD IN THE CELL IS

STATISTICALLY BETTER (WORSE) THAN SSR WITH 95% CONFIDENCE, ACCORDING TO A T-TEST.

Test RMSE Resulting function size

SSR GRSR GSGP GP SSR GRSR GSGP GP

Med. IQR Med. IQR Med. IQR Med. IQR Med. IQR Med. IQR Med. IQR Med. IQR

airfoil∗ 3.06 0.39 4.15H 0.43 15.12H 0.95 9.60H 10.43 641.0 54.0 883.0H 78.5 5.1E135H 2.2E137 99.0N 19.5

bioavailability∗ 31.21 3.38 30.99N 3.98 31.77N 0.89 38.23H 8.81 252.0 49.5 495.0H 64.5 9.6E166H 2.0E170 77.0N 23.5

concrete∗ 7.02 0.62 7.35N 0.54 4.89N 0.26 9.59H 1.60 516.0 75.0 543.0H 42.5 3.6E247H 1.6E250 77.0N 23.0

cpu∗ 55.26 30.27 37.84N 24.01 42.74N 4.84 45.89N 37.99 412.0 41.0 410.0N 40.5 1.8E259H 5.5E259 85.0N 16.0

energyCooling∗ 2.38 0.45 2.95H 0.63 1.68N 0.11 3.43H 0.26 554.0 73.5 598.0H 49.0 1.1E241H 1.3E242 80.0N 19.5

energyHeating∗ 1.83 0.66 2.43H 0.53 1.09N 0.14 3.05H 0.56 557.0 87.0 608.0H 73.0 2.6E242H 9.4E243 79.0N 21.0

forestfires∗ 71.23 66.86 68.89N 57.64 84.59N 2.60 37.64N 63.87 374.0 59.0 414.0H 61.0 6.1E219H 5.4E220 82.0N 23.0

keijzer-5† 0.01 0.01 0.01N 0.01 0.06H 0.00 0.03H 0.02 642.0 64.5 632.0N 85.5 1.1E234H 9.8E235 57.0N 17.5

keijzer-6† 0.19 0.19 0.06N 0.07 0.17N 0.21 0.34H 0.24 557.0 66.5 628.0H 69.5 1.1E271H 4.2E271 67.0N 27.0

keijzer-7† 0.03 0.02 0.00N 0.00 0.01N 0.01 0.07H 0.05 587.0 90.5 601.0H 61.5 1.5E265H 2.0E266 71.0N 21.5

korns-1† 8.47 26.28 681.91H 1395.34 89.48H 7.58 0.05N 0.41 595.0 151.0 827.0H 292.0 4.6E275H 3.7E281 71.0N 12.0

korns-2† 807.35 3336.73 2164.20H 2865.46 399.10N 12.08 1000.95N 2959.69 405.0 41.5 457.0H 50.5 2.4E281H 3.0E281 100.0N 16.0

korns-12† 1.01 0.01 4.21N 1.23E11 1.01N 0.00 1.00N 0.00 384.0 42.5 494.0N 382.5 4.9E284H 4.5E286 5.0N 48.0

ppb∗ 29.40 7.51 29.86N 5.43 27.78N 3.11 37.07H 9.11 283.0 97.5 410.0H 57.0 1.8E241H 1.3E242 65.0N 27.5

tower∗ 34.91 3.70 38.77N 4.30 23.16N 0.66 47.73H 6.77 619.0 58.5 621.0N 60.5 2.9E207H 3.0E208 66.0N 20.0

vladislavleva-1† 0.09 0.06 0.08N 0.05 0.03N 0.02 0.17H 0.07 561.0 75.0 578.0N 54.5 8.9E245H 6.2E247 77.0N 17.0

vladislavleva-4† 0.11 0.02 1.23H 3.44E10 0.05N 0.00 0.17H 0.01 626.0 53.5 482.0N 165.0 1.1E239H 1.5E240 59.0N 24.0

wineRed∗ 0.64 0.03 0.64H 0.03 0.63N 0.01 0.67H 0.05 437.0 44.5 496.0H 59.0 1.8E233H 1.7E234 66.0N 16.0

wineWhite∗ 0.73 0.02 0.74N 0.02 0.70N 0.00 0.76H 0.03 540.0 55.0 559.0N 40.0 5.5E231H 2.7E232 67.0N 14.0

yacht∗ 1.88 0.62 1.31N 0.54 2.48H 0.31 4.61H 1.61 595.0 74.5 698.0H 66.0 1.7E220H 3.9E221 85.0N 25.5

∗ Real-world dataset † Synthetic dataset

TABLE III
P-VALUES OBTAINED BY THE STATISTICAL ANALYSIS OF THE

ALGORITHMS’ PERFORMANCE AND RESULTING FUNCTION SIZE.

With Adjusted Finner APV

reference to Friedman p-value GP SGP GRSR

RMSE 0.0088 0.0357 H 0.6059 0.6682
Function size 0.0000 0.0073 N 0.0000 H 0.0864

their impact (weight) on the final solution; apply a regression

method as an initial approximation; and utilise a random

or induced function in replacement to the random constant

present in the geometric semantic crossover operator.
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