
Kent Academic Repository
Full text document (pdf)

Copyright & reuse

Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all

content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions

for further reuse of content should be sought from the publisher, author or other copyright holder.

Versions of research

The version in the Kent Academic Repository may differ from the final published version.

Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the

published version of record.

Enquiries

For any further enquiries regarding the licence status of this document, please contact:

researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down

information provided at http://kar.kent.ac.uk/contact.html

Citation for published version

Christakis, Maria and Sagonas, Konstantinos (2011) Detection of Asynchronous Message Passing
Errors Using Static Analysis. In: Practical Aspects of Declarative Languages. Lecture Notes
in Computer Science. pp. 5-18. ISBN 978-3-642-18377-5.

DOI

http://doi.org/10.1007/978-3-642-18378-2_3

Link to record in KAR

http://kar.kent.ac.uk/58950/

Document Version

Author's Accepted Manuscript

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kent Academic Repository

https://core.ac.uk/display/74208824?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Detection of Asynchronous Message Passing

Errors Using Static Analysis

Maria Christakis1 and Konstantinos Sagonas1,2

1 School of Electrical and Computer Engineering,
National Technical University of Athens, Greece

2 Department of Information Technology, Uppsala University, Sweden
{mchrista,kostis}@softlab.ntua.gr

Abstract. Concurrent programming is hard and prone to subtle errors.
In this paper we present a static analysis that is able to detect some
commonly occurring kinds of message passing errors in languages with
dynamic process creation and communication based on asynchronous
message passing. Our analysis is completely automatic, fast, and strikes
a proper balance between soundness and completeness: it is effective in
detecting errors and avoids false alarms by computing a close approx-
imation of the interprocess communication topology of programs. We
have integrated our analysis in dialyzer, a widely used tool for detecting
software defects in Erlang programs, and demonstrate its effectiveness
on libraries and applications of considerable size. Despite the fact that
these applications have been developed over a long period of time and are
reasonably well-tested, our analysis has managed to detect a significant
number of previously unknown message passing errors in their code.

1 Introduction

Concurrent execution of programs is more or less a necessity these days. To
cater for this need, most programming languages come with built-in support
for creating processes or threads. Depending on the concurrency model of the
language, interprocess communication takes place through synchronized shared
structures (as in C/Pthreads, Java and Haskell), synchronous message passing
on typed channels (as in Concurrent ML), or asynchronous message passing (as
in Erlang). Even though certain problems associated with concurrent execution
of programs are completely avoided in some of these models, each of them comes
with its own set of gotchas and possibilities for programming errors. Indepen-
dently of the concurrency model which is employed by the language, concurrent
programming is fundamentally more difficult than its sequential counterpart.

Tools that detect software errors early in the development cycle can help in
making concurrent programming more robust and easier for programmers. In
particular, tools based on static analysis seem promising as they are completely
automatic and in principle scale better than, for example, those based on model
checking. Unfortunately, designing and implementing an effective static analysis
for a concurrent language which has not been designed with analysis in mind is a

R. Rocha and J. Launchbury (Eds.): PADL 2011, LNCS 6539, pp. 5–18, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

6 M. Christakis and K. Sagonas

challenging task. For example, in a language based on processes communicating
using asynchronous message passing such as Erlang, it is possible to create an
unbounded number of processes, send any term as a message, communicate with
processes located on any machine, local or remote, selectively retrieve messages
from a process’ mailbox using pattern matching, monitor other processes and
register to receive their messages when they die, etc. On top of all that, the lan-
guage is dynamically typed and higher-order, which makes the task of computing
precise type and control-flow information very difficult, if not impossible.

In the context of such a real-world language, we aim to statically detect er-
rors that arise from the use of asynchronous message passing. To do so, we have
designed an effective analysis that determines the interprocess communication
topology of Erlang programs, discovers which occurrences of the sending prim-
itives match which occurrences of the receiving primitives, and emits warnings
accordingly. Besides tailoring the analysis to the characteristics of the language,
the main challenges for our work have been to develop an analysis that: 1) is
completely automatic and requires no guidance from its user; 2) strikes a proper
balance between soundness and completeness in order to be: 3) fast and scalable.
As we will soon see, we have achieved these goals.

The contributions of our work are as follows:

– we document some of the most important kinds of errors associated with
concurrency via asynchronous message passing;

– we present an effective and scalable analysis that detects these errors, and
– we demonstrate the effectiveness of our analysis on a set of widely used and

reasonably well-tested libraries and open source applications by reporting a
number of previously unknown message passing errors in their code bases.

The next section overviews the Erlang language and the defect detection tool
which is the implementation platform for our work. Sect. 3 describes commonly
occurring kinds of message passing errors in Erlang programs, followed by Sect. 4
which presents in detail the analysis we use to detect them. The effectiveness
and performance of our analysis is evaluated in Sect. 5 and the paper ends with
a review of related work (Sect. 6) and some final remarks.

2 Erlang and Dialyzer

Erlang [1] is a strict, dynamically typed functional programming language with
support for concurrency, communication, distribution, fault-tolerance, on-the-fly
code reloading, automatic memory management and support for multiple plat-
forms. Erlang’s primary application area has been in large-scale embedded con-
trol systems developed by the telecom industry. The main implementation of
the language, the Erlang/OTP (Open Telecom Platform) system from Ericsson,
has been open source since 1998 and has been used quite successfully both by
Ericsson and by other companies around the world to develop software for large
commercial applications. Nowadays, applications written in the language are
significant, both in number and in code size, making Erlang one of the most
industrially relevant declarative languages.

Static Detection of Asynchronous Message Passing Errors 7

Erlang’s main strength is that it has been built from the ground up to support
concurrency. Its concurrency model differs from most other programming lan-
guages out there as it is not based on shared memory but on asynchronous mes-
sage passing between extremely light-weight processes (lighter than OS threads).
Erlang comes with a spawn family of primitives to create new processes, and
with ! (send) and receive primitives for interprocess communication via mes-
sage passing. Any data can be sent as a message and processes may be located
on any machine. Each process has a mailbox, essentially a message queue, where
each message sent to the process will arrive. Message selection from the mailbox
occurs through pattern matching. To support robust systems, a process can reg-
ister to receive a message if another one terminates. Erlang provides mechanisms
for allowing a process to timeout while waiting for messages, a try/catch-style
exception mechanism for error handling, and ways to organize processes in su-
pervision hierarchies to restart or take over the duties of dead or unresponsive
processes when things go wrong.

Since 2007, the Erlang/OTP distribution includes a static analysis tool, called
dialyzer [2,3], for finding software defects (such as type errors, exception-raising
code, code which has become unreachable due to some logical error, etc.) in sin-
gle Erlang modules or entire applications. Nowadays, dialyzer is used extensively
in the Erlang programming community and is often integrated in the build en-
vironment of many applications. The tool is totally automatic, easy to use and
supports various modes of operation: command-line vs. GUI, starting the anal-
ysis from source vs. byte code, focussing on some kind of defects only, etc. In
sequential programs notable characteristics of dialyzer’s core analysis are that
it is sound for defect detection (i.e., it produces no false alarms), fast and scal-
able. Its core analyses that detect defects are supported by various components
for creating and manipulating function call graphs for a higher-order language,
control-flow analyses, efficient representations of sets of values, data structures
optimized for computing fixpoints, etc. Since November 2009, dialyzer’s analysis
has been enhanced with a component that automatically detects data races in
Erlang programs [4]. Before we describe how we extended dialyzer’s analyses to
also detect message passing errors, let us first see how concurrency with asyn-
chronous message passing works and the kinds of related defects that may exist
in Erlang programs.

3 Message Passing in Erlang

As described in Sect. 2, Erlang’s concurrency primitives spawn, ! (send) and
receive allow a process to spawn new processes and communicate with others
through asynchronous message passing. Let’s see these primitives in detail:

Spawn. The spawn primitive creates a process and returns a process identifier
(pid) for addressing the newly spawned process. The new process executes
the code of the function denoted in the arguments of the spawn. In the
example program shown in Fig. 1, a process is spawned that will execute the
code of the function closure Fun.

8 M. Christakis and K. Sagonas

-export([hello_world/0]).

hello_world() ->

Fun = fun() -> world(self()) end,
Pid = spawn(Fun),
register(world, Pid),

world ! hello.

world(Parent) ->
receive

hello -> Parent ! hi

end.

Fig. 1. Simple example program

Send. The expression Pid ! Msg sends the message Msg, that may refer to any
valid Erlang term, to the process with pid Pid in a non-blocking operation.
Besides addressing a process by using its pid, there is also a mechanism,
called the process registry, which acts as a node-local name server, for reg-
istering a process under a certain name so that messages can be sent to
the process using that name. Names of processes are currently restricted to
atoms. In our example program, the spawned process is registered under the
name world which is then used to send the message hello to the process.

Receive. Messages are received with the receive construct. Each process has
its own input queue for messages it receives. Any new messages are placed at
the end of the queue. When a process executes a receive, the first message
in the queue is matched against the patterns of the receive in sequential
order. If the message matches some pattern, it is removed from the queue and
the actions corresponding to the matching pattern are executed. However, if
it does not match, the message is kept in the queue and the next message is
tried instead. If this matches any pattern, it is removed from the queue while
keeping the previous and any other message in the queue. In case the end of
the queue is reached and no messages have been matched, the process blocks
(i.e., stops execution) and waits to be rescheduled to repeat this procedure.

Misuse of these concurrency and communication primitives may lead to the
following kinds of message passing errors in Erlang programs:

Receive with no messages (RN). A receive statement in the code exe-
cuted by some process whose mailbox will be empty. This defect could reveal
the occurrence of possible deadlocks in the patterns of interprocess commu-
nication — processes mutually waiting for messages from other processes.

Receive of the wrong kind (RW). A receive statement in the code of some
process whose mailbox will contain messages of different kinds than the ones
expected by the receive. Currently, such a defect can have devastating
effects on a running system, overflowing the mailbox of some process and
bringing the node down. To avoid being bitten by this, many Erlang pro-
grams adopt a defensive programming style and include a catch-all clause
in receives whose only purpose is to consume any unwanted messages.

Static Detection of Asynchronous Message Passing Errors 9

This practice is not ideal because it might hide real communication prob-
lems. Additionally, it makes this kind of message passing errors hard to
find.

Receive with unnecessary patterns (RU). A receivewith clauses contain-
ing patterns that will never match messages sent to the process executing
that code. This problem may be harmless (i.e., just some unreachable code
in the receive) or, in conjunction with the existence of a catch-all pattern
which consumes all messages as the last clause of the statement, may hide
a serious functionality error.

Send nowhere received (SR). A send operation to a process whose code
does not contain any (matching) receives. This defect can also result in
the overflow of some mailbox and bring a node down.

Being able to statically detect such types of concurrency defects is crucial in
safety-critical systems such as those developed in the telecommunications sector.

4 The Analysis

In a higher-order language with unlimited dynamic process creation, the kinds
of message passing errors we described in the previous section are not simple to
detect. In order to detect which message emissions match which receptions, it is
necessary to determine the communication topology of processes, which will then
be used as a basis for detecting these errors. We have designed and implemented
such an analysis and describe it in this section.

Conceptually, our analysis has three distinct phases: an initial phase that
scans the code to collect information needed by the subsequent phases, a phase
where a communication graph is constructed, and a phase where message pass-
ing errors are detected. For efficiency reasons, the actual implementation blurs
the lines separating these phases and employs some optimizations. False alarms
are avoided by taking language characteristics and messages generated by the
runtime system into account. Let’s see all these in detail.

4.1 Collecting Information

We have integrated our analysis in dialyzer because many of the components that
it relies upon were already available or could be easily extended to provide the
information that the analysis needs. The analysis starts with the user specifying
a set of directories/files to be analyzed. Rather than operating directly on Erlang
source, all of dialyzer’s passes operate at the level of Core Erlang [5], the language
used internally by the Erlang compiler. Core Erlang significantly eases the anal-
ysis of Erlang programs by removing syntactic sugar and by introducing a let

construct which makes the binding occurrence and scope of all variables explicit.
As the source code is translated to Core Erlang, dialyzer constructs the control-

flow graph (CFG) of each function and function closure and then uses the escape
analysis of Carlsson et al. [6] to determine values, in particular closures, that
escape their defining function. For example, for the code of Fig. 1 the escape

10 M. Christakis and K. Sagonas

Fig. 2. Call graph of example program

analysis will determine that function hello world defines a function closure that
escapes from this function as it is passed as argument to a spawn. Given this
information, dialyzer also constructs the inter-modular call graph of all functions
and closures, so that subsequent analyses can use this information to speed
up their fixpoint computations. For the example in the same figure, the call
graph will contain three nodes for functions whose definitions appear in the
code (functions hello world, world, and the closure) and an edge from the
node of the function closure to that of world, as shown in Fig. 2.

Besides control-flow, the analysis also needs data-flow information and more
specifically it needs information on whether variables can possibly refer to the
same data item or not. This information is computed and explicitly maintained
by the sharing/alias analysis component in dialyzer’s race analysis [4]. In addi-
tion, our analysis exploits the fact that dialyzer computes type information at a
very fine-grained level. For example, different atoms a1, . . . , an are represented as
different singleton types in the type domain and their union a1| . . . |an is mapped
to the supertype atom() only when the size of the union exceeds a relatively high
limit [7]. We will see how this information is used by the message analysis in
Sect. 4.2 and 4.3.

4.2 Constructing the Communication Graph

The second phase of the analysis determines the interprocess communication
topology in the form of a graph.

Each vertex of the graph represents an escaping function whose code may be
run by a separate process at runtime. This information is computed by a pre-
processing step during the construction of the call and control-flow graphs. The
code of any function that is either a root node in the call graph or an argument
to a spawn is assumed to be executed by a separate process. For our example
program, the communication graph will contain two nodes, one for function
hello world and one for the closure.

Every edge of the communication graph is directed and corresponds to a
communication channel between two processes. Naturally, its direction of com-
munication is from the source to the target process, meaning that messages are
sent in that direction. Each edge is annotated with the type information of the
messages that are sent through the channel.

In order to determine the graph edges, we need to inspect every possible
execution path of the program for messages that are passed between processes.

Static Detection of Asynchronous Message Passing Errors 11

Fig. 3. Communication graph of example program

To this end, we start by traversing the CFGs of the functions corresponding to
the vertices in the communication graph using depth-first search. The depth-first
search starts by identifying program points containing a call to a pid-yielding
primitive (i.e., the self primitive, that returns the pid of the calling process, and
the spawn family of primitives), and then tries to find program points “deeper”
in the graph containing send operations to the process with this pid. In case
the search encounters either a call to or a spawn of some other statically known
function, the traversal continues by examining its CFG, otherwise it is ignored.
Built-ins for registering a pid under a certain name require special attention
since the registered name may then be used to send a message to the process.
A pre-processing step associates names with their registered pids so that the
analysis can use this information to replace all name occurrences. Finally, if the
traversal finds a send operation to some pid, the analysis takes variable sharing
into account to determine whether this pid refers to the same process as the
pid yielded by the primitive that initially triggered the depth-first search. If this
is the case, an edge is added to the communication graph emanating from the
vertex of the process whose CFG is traversed and incident on the vertex of the
process identified by the pid, otherwise nothing is done. An annotation is added
to the new edge indicating the type information of the message. If such an edge
already exists in the graph, then the analysis simply updates its annotation to
also include the type information of the new message. In the end, this traversal
creates the complete set of edges in the communication graph.

For the code of Fig. 1, the communication graph will have two edges, one from
vertex hello world to the closure and one from the closure to hello world. The
annotations for these edges will be hello and hi, respectively. The communica-
tion graph for the example program is illustrated in Fig. 3.

4.3 Detecting Message Passing Errors

At this stage of the analysis, the CFG of each function that corresponds to a
vertex in the communication graph is traversed anew to detect any message
passing errors.

Each vertex in the communication graph has an in-degree that is either equal
to or greater than zero. A vertex with in-degree equal to zero indicates that no
messages are sent to the process it represents. Hence, the traversal of the CFG
emits a warning for each receive construct it encounters. A vertex with in-
degree greater than zero indicates that messages are sent to the process and the
analysis determines whether these messages will be received. In case the process
does not expect any messages (i.e., there are no receives in the CFG), a warning
is emitted for each sent message. In case the process expects to receive messages,

12 M. Christakis and K. Sagonas

the analysis takes into account the type information of the messages and the
receive patterns in order to decide whether they match. A message S matches
a receive pattern R if the infimum (i.e., the greatest lower bound) of their type
information is a non-empty subtype of R. Note that S is the annotation of the
edge in the communication graph, while R is found in the CFG. As an example
consider a sent tuple message with type S :: {gazonk, integer()} and a receive

pattern with type R :: {atom(), 42}. The analysis computes the infimum of these
types, {gazonk, 42}, which is a subtype of R in this case. Actually, this message
will only be received if the second element of the tuple is 42, but the analysis,
aiming at being sound for defect detection, will flag this as an error only if it can
statically determine that the second element of the message is a term other than
the integer 42. In short, at the end of the CFG traversal, warnings are emitted
for receive patterns or entire constructs that do not match any messages and
for messages that do not match any receive patterns.

Loops in the communication graph indicate that messages are sent and re-
ceived by the same process and require special treatment. If no messages sent
by other processes match a receive pattern or construct, then messages sent
to the process by itself at program points “higher” in the CFG should match,
otherwise a warning is emitted.

Note that the traversal that searches for receives, unlike the traversal that
searches for send operations described in the previous section, ignores any spawns
of statically known functions since spawned processes cannot receive messages
in place of the process being analyzed, although they may send messages to it.

For the example program, the analysis inspects the CFG of the hello world

vertex, which has in-degree one, and finds that there is no receive in the code
executed by the process. Consequently, it emits a warning with the filename and
line number of the send operation of the hi message reporting that this message
will be nowhere received.

4.4 Some Optimizations

Although we have described the second and third phases of the analysis as being
distinct, our implementation blurs this distinction, thereby avoiding redundant
searches and speeding up the analysis. In addition, we also employ the following
optimizations:

Control-flow graph minimization. The CFGs that dialyzer constructs by default
contain the complete Core Erlang code of functions. This makes sense as most
of its analyses, including the type and sharing analyses, need this information.
However, note that the path traversal procedure of Sect. 4.2 and 4.3 requires
only part of this information. For example, in the program illustrated on the left
box of Fig. 4, the io:format call is irrelevant both for determining the complete
set of edges in the communication graph and for detecting any message passing
errors. Our analysis takes advantage of this by a pre-processing step that removes
all this code from the CFGs and by recursively removing CFGs of leaf functions
that do not contain any concurrency primitives either directly or indirectly.

Static Detection of Asynchronous Message Passing Errors 13

Avoiding repeated traversals. After the CFGs are minimized as described above,
the depth-first traversal starts from some vertex in the communication graph.
The traversal of all paths from this vertex often encounters a split in the CFG
(e.g., a point where a case statement begins) which is followed by a CFG join
(the point where the case statement ends). All the straight-line code which lies
between the join point and the next split, including any straight-line code in
the CFGs of functions called there, does not need to be repeatedly traversed if
it is found to contain no concurrency primitives during the traversal of its first
depth-first search path. This optimization effectively prunes common sub-paths
by condensing them to a single program point.

Avoiding redundant traversals. Another optimization is to collect, during the
construction of the CFGs of functions, a set of program points containing send
operations and another set of program points containing receive constructs.
The first set is used in the construction of the communication graph to determine
whether the CFG of a statically known function that is either called or spawned
needs to be inspected. If no program point in the set is reachable from the
function directly or indirectly (i.e., via some call or spawn), then the CFG is
not traversed. The elements of the second set act like pointers and replace the
vertices of the communication graph in the error detection phase of the analysis,
thereby avoiding unnecessary traversals of the control flow graphs.

4.5 False Alarms and Their Avoidance

The analysis we have described so far may produce false alarms in case the avail-
able static information is too limited to construct the exact interprocess com-
munication graph. To this effect, we employ techniques for completely avoiding
false alarms, thus making the analysis sound for defect detection.

A factor that could limit the precision of our analysis is lack of precise knowl-
edge about the behaviour of built-in functions (BIFs). For example, Erlang/OTP
comes with BIFs, implemented in C, that create messages inside the VM and
send them to processes in a non-transparent way. The left box of Fig. 4 shows
a function from the code of the ibrowse application (file ibrowse test.erl).
On this code, a näıve implementation of the analysis would warn that the
{‘DOWN’, ...} pattern of the receive statement is unused because no such mes-
sages are ever constructed in the entire application, let alone in this module
(whose code is only partly shown in the figure). However, such messages are
created by the spawn monitor BIF inside the VM and are placed in the message
queue of the monitoring process when the spawned process dies. We have taken
special care to provide our analysis with precise information about such BIFs and
their behaviour. This information is fairly complete at this point so we entirely
avoid this kind of false alarms. For similar reasons, the analysis can either have a
priori knowledge about the behaviour of heavily used Erlang/OTP libraries, or
pre-compute this information so as to avoid having to re-analyze these libraries
in each run.

Another limiting factor is dialyzer’s sharing/alias analysis component. Since
the computation of variables referring to the same data is static, it may not

14 M. Christakis and K. Sagonas

unit_tests(Opts) ->

Opts1 = Options ++ [{connect_timeout, 5000}],
{Pid, Ref} = spawn_monitor(?MODULE, ut1, [self(), Opts1]),

receive
{done, Pid} -> ok;
{‘DOWN’, Ref, _, _, Info} ->

io:format("Crashed: ~p~n", [Info])
after 60000 ->

...
end.

ut1(Parent, Opts) ->
lists:foreach(...),

Parent ! {done, self()}. % the only send operation

-export([start/0]).

start() ->

Pid = spawn(fun pong/0),
ping(Pid).

ping(Pid) ->
Pid ! {self(), ping},

receive pong -> pang end.

pong() ->

receive
{Pid, ping} -> Pid ! pong

end.

Fig. 4. Programs susceptible to false alarms

always be possible to find the complete sets of these variables. The right box of
Fig. 4 shows a made up example of Erlang code for which the first implementa-
tions of our analysis incorrectly warned that the receive statement in the ping

function would block. This false alarm was emitted because the sharing/alias
analysis is unable to statically determine whether the {self(), ping} message
will actually be received by the pong process. The analysis was therefore unable
to conclude that the Pid variable in the received message is the pid of the start
process. This was also the case when the analysis lost track of terms because
data was stored in data structures (usually records, lists or ETS tables) and
then retrieved from them. Again, we have taken special care to avoid these false
alarms by acknowledging that the sharing/alias component has lost the data
item — specifically the pid — assigned to a variable and thereby suppressing
any warnings that would be emitted as a result of this inaccuracy.

Clearly, the optimization ideas and the techniques to avoid false alarms have
a heavy impact on the effectiveness, performance and precision of our method.
Let us therefore evaluate it on a suite of large, widely used Erlang applications.

5 Experimental Evaluation

The analysis we described in the previous section has been fully implemented
and incorporated in the development version of dialyzer. We have paid special
attention to integrate it smoothly with the existing analyses, reuse as much of
the underlying infrastructure as possible, and fine-tune the analysis so that it
incurs relatively little additional overhead to dialyzer’s default mode of use. The
core of the message analysis is about 2,000 lines of Erlang code and the user can
turn it on either via a GUI button or a command-line option.

We have measured the effectiveness and performance of the analysis by ap-
plying it on a corpus of Erlang code bases of significant size; in total more than
a million lines of code.1 As these code bases have been developed and tested
over a long period of time, it is perhaps not surprising that our analysis did not

1 The source of Erlang/OTP distribution alone is about 800k lines of code.

Static Detection of Asynchronous Message Passing Errors 15

Table 1. Applications for which the analysis detected message passing errors

Application libraries from the Erlang/OTP R14A distribution

inets A set of Internet clients and servers
observer Tools for tracing and investigating distributed systems

Open source Erlang applications

disco A map/reduce framework for distributed computing
dynomite A Dynamo clone
effigy A mocking library for testing
eldap An LDAP API
enet A network stack
erlang js A driver for SpiderMonkey (the Mozilla JavaScript engine)
etap A TAP (Test Anything Protocol) client library
iserve An HTTP server
log roller A distributed logging system
natter An XMPP client
pgsql A PostgreSQL driver
stoplight A mutex server based on the SIGMA algorithm
ubf Universal binary format

find errors in most of them. Still, there are Erlang/OTP libraries and applica-
tions for which the analysis has detected concurrency errors in their code. The
rest of this section focusses on these code bases. A short description of them
appears in Table 1; most are heavily used and reasonably well-tested. For open
source applications, we used the code from their public repositories at the end
of October 2010.

The left part of Table 2 shows the lines of code (LOC) for each application
and the number of message passing problems identified by the analysis. These
are shown categorized as in Sect. 3: namely, as related to a receive that will
block either because no messages are sent to the process (RN) or because the
messages sent there are of the wrong kind (RW), as related to a receive with
unnecessary patterns (RU), or related to a send operation to a process without
a receive (SR). The right part of the table shows the elapsed wall clock time
(in seconds), and memory requirements (in MB) for running dialyzer without
and with the analysis component that detects message passing errors in these
programs.2 The evaluation was conducted on a machine with an Intel Core2
Quad CPU @ 2.66GHz with 3GB of RAM, running Linux. (But currently the
analysis utilizes only one core.)

As can be seen in the table, the analysis detects a number of message
passing problems, some of which can be detrimental to the functionality and

2 The relatively high memory requirements of the enet application are due to an (au-
tomatically generated?) file containing just two functions of about 10,000 LOC each.
When excluding this file, dialyzer needs 2.0 secs and 74MB in its default mode and
2.4 secs and 75MB with the analysis that detects message passing errors.

16 M. Christakis and K. Sagonas

Table 2. Effectiveness and performance of the message analysis

Errors Time (secs) Space (MB)

Application LOC RN RW RU SR w/o msg w msg w/o msg w msg

inets 29,389 - - 2 - 26.1 60.1 89 119
observer 6,644 - - 1 - 23.6 35.1 78 88

disco 11,846 - - 2 - 17.3 20.8 85 126
dynomite 19,384 1 - - - 7.2 7.9 72 74
effigy 568 1 - - - 0.8 0.9 21 21
eldap 5,148 - - 1 - 9.9 11.5 110 112
enet 23,028 - - 1 - 15.0 15.8 765 766
erlang js 1,720 - - 1 - 11.0 12.2 73 80
etap 665 - - - 1 0.4 0.4 17 19
iserve 788 - - 2 2 1.3 1.4 30 30
log roller 2,539 - 1 - - 3.1 3.5 33 46
natter 1,494 - - 2 - 1.7 1.9 30 32
pgsql 1,253 - - 1 - 1.6 3.0 31 41
stoplight 1,462 1 - - - 1.6 1.6 39 40
ubf 7,052 - - 1 - 18.7 23.7 70 81

robustness of these applications. We have manually examined the source code of
these applications and all these problems are genuine bugs.

Regarding performance, in most cases, the additional time and memory over-
head of the message passing error detection component of the analysis is too
small to care about. The only exception is inets on which the analysis takes
about twice as much time to complete. Still the analysis times are reasonable.
Given that the analysis is totally automatic and smoothly integrated in a defect
detection tool which is widely used by the community, we see very little reason
not to use it regularly when developing Erlang programs.

6 Related Work

Static analysis [8] is a fundamental and well studied technique for discovering
program properties and reasoning about program behaviour, independently of
language. Besides being the basis for most compiler optimizations, in recent years
static analysis has been extensively used to detect software errors in programs,
both sequential and concurrent.

In the context of higher-order functional languages, and starting with the work
of Shivers [9], control-flow analyses aim to approximate which functions may be
applied at runtime as a result of some computation. When concurrency comes
into the picture, processes are dynamically created and functions are passed
between processes and executed by any receiving process, the task becomes more
complicated as a piece of code in the source program may be executed by any
process and the control-flow analysis may need to be infinitary [10].

Static Detection of Asynchronous Message Passing Errors 17

Some researchers have proposed using effect-based type systems to analyze
the communication behaviour of message passing programs; an early such work
is the analysis by Nielson and Nielson for detecting when programs written
in CML have finite topology [11]. There has also been a number of abstract
interpretation based analyses that are closer in spirit to the analysis we employ.
Mercouroff designed and implemented an analysis for CSP programs with a static
structure based on an approximation of the number of messages sent between
processes [12] and Martel and Gengler an analysis that statically determines
an approximation of the communication topology of a CML program [13]. The
abstract interpretation based whole program analysis of Colby uses control paths
to identify threads [14]. Unlike earlier work which collapsed multiple threads
created at the same spawn point to a single approximate thread, control paths
are able to distinguish multiple threads created at the same spawn point and
thus compute a more precise interprocess communication topology of a program.
Still, the precision problem was not completely solved.

A more precise, but also more complex and less scalable, control-flow analy-
sis was proposed by Martel and Gengler [13]. Contrary to what we do, in their
work the accuracy of the analysis is enhanced by building finite automata. More
specifically, the analysis orders the synchronization primitives of any sequential
processes in the system by building an automaton for each process. It then ap-
proximates how the different processes may interact with each other by building
a reduced product automaton from the process automata. As a result, the anal-
ysis eliminates some impossible communication channels, computes the possibly
matching emissions for each reception, and thus the possibly received values. An
interesting future direction for our analysis is to see how we can use some of these
ideas to enhance the precision of our analysis without sacrificing its soundness
for defect detection (i.e., its “no false alarms” property) or its scalability.

7 Concluding Remarks and Future Work

We have presented a new analysis for identifying some commonly occurring kinds
of concurrency errors that arise from the use of asynchronous message passing
in a higher-order language with unlimited process creation, message queues and
selective message reception based on pattern matching. By computing a close
approximation of the interprocess communication topology of programs and by
effectively matching occurrences of send with receive primitives, our analysis
manages to achieve a good balance between precision and scalability. As shown
in the experimental evaluation section of the paper, the analysis has managed
to detect a significant number of message passing errors in widely used and
reasonably well-tested applications written in Erlang.

The implementation of our analysis is fast and robust; we expect that it will
be included in some upcoming release of Erlang/OTP. Still, there are some engi-
neering issues to address. Among them, the most challenging one is to design and
implement a framework for the explanation of message passing errors, perhaps
by maintaining more information in the analysis and designing a component to

18 M. Christakis and K. Sagonas

visualize the communication topology of an application. But this is a general
problem for static analyses that detect program errors: the more sophisticated
the errors that an analysis detects are, the more difficult it is for programmers
to trust the analysis results and, more importantly, to reason about the program
change that will correct the error. Tools that help them in this task are needed.

References

1. Armstrong, J.: Programming Erlang: Software for a Concurrent World. The Prag-
matic Bookshelf, Raleigh (2007)

2. Lindahl, T., Sagonas, K.: Detecting software defects in telecom applications
through lightweight static analysis: A war story. In: Chin, W.-N. (ed.) APLAS
2004. LNCS, vol. 3302, pp. 91–106. Springer, Heidelberg (2004)

3. Sagonas, K.: Experience from developing the Dialyzer: A static analysis tool detect-
ing defects in Erlang applications. In: Proceedings of the ACM SIGPLAN Work-
shop on the Evaluation of Software Defect Detection Tools (2005)

4. Christakis, M., Sagonas, K.: Static detection of race conditions in Erlang. In: Carro,
M., Peña, R. (eds.) PADL 2010. LNCS, vol. 5937, pp. 119–133. Springer, Heidelberg
(2010)

5. Carlsson, R.: An introduction to Core Erlang. In: Proceedings of the PLI 2001
Workshop on Erlang (2001)

6. Carlsson, R., Sagonas, K., Wilhelmsson, J.: Message analysis for concurrent pro-
grams using message passing. ACM Transactions on Programming Languages and
Systems 28(4), 715–746 (2006)

7. Lindahl, T., Sagonas, K.: Practical type inference based on success typings. In:
Proceedings of the 8th ACM SIGPLAN International Conference on Principles
and Practice of Declarative Programming, pp. 167–178. ACM, New York (2006)

8. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer-
Verlag New York, Inc., Secaucus (1999)

9. Shivers, O.: Control Flow Analysis in Scheme. In: Proceedings of the ACM SIG-
PLAN Conference on Programming Language Design and Implementation, pp.
164–174. ACM, New York (1988)

10. Nielson, F., Nielson, H.R.: Infinitary Control Flow Analysis: a Collecting Seman-
tics for Closure Analysis. In: Proceedings of the 24th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pp. 332–345. ACM, New
York (1997)

11. Nielson, F., Nielson, H.R.: Higher-Order Concurrent Programs with Finite Com-
munication Topology. In: Proceedings of the ACM-SIGPLAN Symposium on Prin-
ciples of Programming Languages, pp. 84–97. ACM, New York (1994)

12. Mercouroff, N.: An Algorithm for Analyzing Communicating Processes. In:
Schmidt, D., Main, M.G., Melton, A.C., Mislove, M.W., Brookes, S.D. (eds.) MFPS
1991. LNCS, vol. 598, pp. 312–325. Springer, Heidelberg (1992)

13. Martel, M., Gengler, M.: Communication Topology Analysis for Concurrent Pro-
grams. In: Havelund, K., Penix, J., Visser, W. (eds.) SPIN 2000. LNCS, vol. 1885,
pp. 265–286. Springer, Heidelberg (2000)

14. Colby, C.: Analyzing the Communication Topology of Concurrent Programs.
In: Proceedings of the ACM SIGPLAN Symposium on Partial Evaluation and
Semantics-Based Program Manipulation, pp. 202–213. ACM, New York (1995)

	Detection of Asynchronous Message Passing Errors Using Static Analysis
	Introduction
	Erlang and Dialyzer
	Message Passing in Erlang
	The Analysis
	Collecting Information
	Constructing the Communication Graph
	Detecting Message Passing Errors
	Some Optimizations
	False Alarms and Their Avoidance

	Experimental Evaluation
	Related Work
	Concluding Remarks and Future Work

