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Transfer  RNA in Decoding and the W obble Hypothesis  

Mick  F Tuit e  and Tobias von der Haar , Kent  Fungal Group, School of Biosciences, 
University of Kent ,  Canterbury, Kent  CT2 7NJ, UK  

Translat ion of the genet ic code stored in m essenger RNA requires significant ly fewer 
t ransfer RNAs (35-45)  than there are codons (61, am ino acid specifying) . This is 
achieved through an increased flexibilit y in the allowable base-pair interact ions between 
the m essenger RNA and t ransfer RNA involving the third posit ion of the codon and the 
first  posit ion of the corresponding ant icodon. The rules governing this RNA: RNA 
interact ion were originally sum m arized in Crick's ‘wobble hypothesis’. Covalent  
m odificat ion of the first  base of an ant icodon of a t ransfer RNA can profoundly affect  the 
degree of flexibilit y in it s base pair ing potent ial by either extending or rest r ict ing such 
interact ions. Recent  studies suggest  that  the rate at  which a codon is processed by the 
r ibosom e is influenced by whether or not  decoding of that  codon is via wobble base 
interact ions. Yet  in spite of this flexibilit y and different  rates of processing, decoding by 
t ransfer RNAs is achieved with considerable accuracy. 

Keyw ords: wobble hypothesis;  tRNA;  ant icodon;  codon;  m RNA decoding;  codon 
recognit ion, base m odificat ion  

Key Concepts:  

• The genet ic code is decoded via t ransient  interact ions between m essenger RNA 

(m RNA)  and a series of ‘adaptor ’ RNA m olecules called t ransfer RNAs ( tRNAs) .  

• The m RNA–tRNA interact ion occurs on the r ibosom e via the com plem entary base 

pairing between the three-base ant icodon of the tRNA and the three-base codon 

in the m RNA.  

• A greater degree of flexibilit y of allowable base-pair interact ions between m RNA 

and tRNA allows m ost  organism s to have far fewer tRNA species than there are 

codons.  

• Specific non-Watson–Crick base-pair interact ions occur between the third base of 

a codon and the first  base of the ant icodon of a tRNA during decoding, so called 

wobble.  
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• Wobble-base pair ing enables the decoding of two or m ore codons by the sam e 

tRNA.  

• Certain m odified bases e.g. inosine ( I )  can extend or rest r ict  the degree of 

flexibilit y in the range of m RNA: tRNA interact ions.  

• Codons that  are decoded by wobble base interact ions are processed at  a slower 

rate in the r ibosom e.  

• Certain ant ibiot ics e.g. st reptom ycin can prom ote m isreading at  the wobble third 

posit ion of a codon.  

• The genet ic code assignm ents are not  universally conserved part icularly in 

organellar genes e.g. m itochondrial genes.  

 

I nt roduct ion  

The genet ic inform at ion stored in a newly synthesized m essenger RNA (m RNA)  m olecule 

is decoded both efficient ly and accurately via t ransient  interact ions between the m RNA 

and a series of ‘adaptor’ RNA m olecules, the t ransfer RNAs ( tRNAs) . I n an ordered series 

of decoding steps, am ino acids covalent ly linked to the tRNAs are brought  to the 

r ibosom e and assem bled into the m RNA-directed polypept ide chain. The order in which 

the am ino acids are delivered to the r ibosom e by the tRNAs is directed by the order of 

the codons in the t ranslated region of the m RNA. The m RNA is t ranslated one codon at  a 

t im e during the ensuing elongat ion cycle with the incom ing aminoacylated tRNA (aa-

tRNA)  being delivered to the r ibosom e by a protein elongat ion factor (EF-Tu in bacteria, 

eEF1A in eukaryotes) .  

The init ial decoding step, i.e. the binding of the aa- tRNA to the m RNA, takes place at  the 

r ibosom al acceptor (A)  site. Following t ransfer of the growing polypept ide chain to the 

aa- tRNA bound at  the A site, the newly form ed pept idyl- tRNA is then m oved to a second 

ribosom al site ( the pept idyl or P site)  via a t ranslocat ion-m ediated step using a second 

protein elongat ion factor (EF-G in bacteria, eEF2 in eukaryotes)  and requiring guanosine 

t r iphosphate (GTP)  hydrolysis (Voorhees and Ram akrishnan, 2013) . Movem ent  from  the 

r ibosom al A site to the P site does not  involve dissociat ion of the tRNA from  its cognate 

codon on the m RNA. Following t ransfer of the pept idyl m oiety to the next  aa- tRNA to be 

delivered to the r ibosom al A site, the now deacylated tRNA at  the P site passes through 

a third site within the r ibosom e ( the exit  or E site)  prior t o final dissociat ion of the 

deacylated tRNA from  the r ibosom e. Although the deacylated tRNA does rem ain in 

contact  with the m RNA in the E site, it  does so either t ransient ly or possibly with reduced 

stabilit y com pared with the A and P site tRNA–m RNA interact ions. 
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The specificit y of the m RNA–tRNA interact ion at  the r ibosom al A site is essent ially driven 

via the com plem entary base pair ing between the three-base ant icodon of the tRNA and 

the cognate three-base codon in the m RNA (Figure 1) .  Such specificit y, while depending 

to som e extent  on standard ‘Watson–Crick’ base pair ing rules ( i.e. U: A or G: C) , shows a 

m uch greater degree of flexibilit y of allowable base-pair interact ions than is seen 

between the com plem entary st rands of,  for exam ple, the double-st randed DNA 

m olecule. The outcom e of this flexibilit y is that  an organism  does not  have to encode a 

unique tRNA species for each of the 61 am ino acid-specifying (sense)  codons, with m ost  

organism s having between 35 and 45 different  tRNA species. For exam ple, the yeast  

Saccharom yces cerevisiae encodes 42 different  tRNAs.  

 

Figure  1 . m RNA – tRNA interact ions involve  base pair ing betw een the ant icodon 
of the t ransfer  RNA ( tRNA)  and the m essenger  RNA ( m RNA)  codon .  (a)  Standard 
depict ion of the two dim ensional ‘clover- leaf’ st ructure of a tRNA m olecule. (b)  An Arg-
insert ing tRNA with a UCU ant icodon can t ranslate both the AGA codon by standard 
base-pair interact ions at  all three posit ions, and the AGG codon by a non-Watson and 
Crick pair ing in the third ‘wobble’ posit ion of the codon.  

The tRNA m olecule, which is a single RNA chain of usually no m ore than 90 nucleot ides 

in length, folds into a three-dim ensional L-shaped st ructure containing a significant  level 

of secondary and tert iary int ram olecular interact ions between bases through hydrogen 

bonding. The largest  unpaired region of the m olecule is the loop that  contains the 

ant icodon sequence (Figure 2) .  The three bases of the ant icodon all point  approxim ately 

in the sam e direct ion with their conform at ions being determ ined prim arily through 

hydrophobic stacking interact ions between the bases. Based on a standard num bering 

http://onlinelibrary.wiley.com/doi/10.1038/npg.els.0001497/full#a0001497-fig-0001
http://onlinelibrary.wiley.com/doi/10.1038/npg.els.0001497/full#a0001497-fig-0002
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system used for all tRNA molecules, the anticodon bases are numbered 5t-N34,  N35,  N36-

3t. The base immediately 5t of the anticodon (N33)  is invariably a U and the tRNA chain 

form s the so-called ‘U turn’ between N33 and N34,  thereby present ing the three ant icodon 

bases in such a way as to facilitate hydrogen bonding with the cognate codon during 

m RNA decoding at  the r ibosom al A site. The lack of tert iary hydrogen bonding linking the 

ant icodon loop to the rem ainder of the tRNA m olecule m ay allow the ant icodon region to 

take up one or m ore alternat ive orientat ions during protein synthesis.  

 

 

 

 

 

 

 

 

 

Figure  2 . The t hree dim ens iona l st ructure  of a t ransfer  RNA ( tRNA)  m olecule .  
tRNA m olecules take up an L-shaped st ructure due to a variety of int ram olecular base 
interact ions. The ant icodon is present  in a large unpaired region of the m olecule with the 
three bases of the ant icodon all point ing approxim ately in the sam e direct ion. The ‘U 
turn’ base (U33)  im m ediately adjacent  to the ant icodon is indicated. 

 

Codon Assignm ents  

Pioneering genet ic and biochem ical experim ents in the 1960s revealed the nature of the 

t r iplet -based genet ic code and assigned ident it ies to each of the 61 sense codons 

(Nirenberg, 2014) . These studies also confirm ed that  the rem aining three codons ( the 

nonsense codons UAA, UAG and UGA)  are not  t ranslated by tRNAs, but  rather act  as 

polypept ide chain term inat ion signals at  the end of the t ranslat ional reading fram e. With 

only two except ions (Met  and Trp)  each of the 20 am ino acids is specified by at  least  two 

different  codons with three am ino acids (Arg, Ser and Leu)  having six different  codons. 
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This degeneracy in the genet ic code is usually confined to the third base of the codon;  

for  exam ple, the four m em bers of the codon fam ily CCN (where N is any of the four 

bases U, A, C, G)  all encode the am ino acid Pro. There can, however, also be degeneracy 

within the first  two bases as for the six-m em bered codon fam ilies of Arg, Ser and Leu;  

for  exam ple, Ser is encoded by the six codons CUN and UUA/ G. For am ino acids specified 

by two codons (e.g. Cys, Glu)  the degenerate third base can either be a pyrim idine, U or 

C (e.g. Cys:  UGU/ C)  or a purine, A or G (e.g. Glu:  GAA/ G) . There is, therefore, an 

elem ent  of order in the m ake-up of the genet ic code that  has m ost  likely evolved to 

ensure that  the potent ial deleterious effects of m utat ions and/ or m ist ranslat ion of sense 

codons by near cognate tRNAs is m inim ized.  

The genet ic code assignm ents are not  universally conserved (Osawa et  al.,  1992) . I n 

part icular, genet ic code variat ions in organellar genes – especially those of m itochondria 

– have now been described in m ost  organism s except  plants. Most  st r iking is the use of 

nonsense codons as sense codons and vice versa;  for exam ple, in hum an m itochondrial 

genes, the nonsense codon UGA is decoded as a Trp codon while AGA and AGG act  as 

chain term inat ion codons. Genet ic code variat ions in cytoplasm ic m RNAs are m uch rarer 

with only two well- characterized exam ples:  the decoding of the UGA codon as 

selenocysteine in several different  m RNAs in a range of species (see below) , and the 

decoding of the Leu codon CUG as a Ser codon in all m RNAs of som e m em bers of the 

fungal genus Candida.  I n m ost  cases, the decoding of these genet ic code variants 

involves a tRNA species with novel st ructural features. One further aberrat ion in m RNA 

decoding can be found in certain bacterial species with ext rem ely high or low G+ C base 

content  in their genom es where certain codons and/ or their corresponding tRNAs have 

disappeared from  the organism 's genom e. For exam ple, in Mycoplasm a capricolum  

neither the CGG (Arg)  codon nor the tRNAArg needed for it s t ranslat ion have yet  been 

found (Andachi et  al.,  1989) . 

 

Th e ‘W obble  Hypothesis’  

The early realizat ion that  there were m any fewer tRNA species than there were codons, 

together with in vit ro biochem ical experim ents showing that  purified tRNA species could 

recognize two, som et im es three different  – but  related – codons led Francis Crick, in 

1966, to form ulate the ‘Wobble Hypothesis’ (Crick, 1966) .  I n his hypothesis, Crick put  

forward the not ion that  specific non-Watson–Crick base-pair interact ions could take place 

between the third base of a codon and the first  base (N34)  of the ant icodon of a tRNA 

during m RNA decoding. Only standard G: C and U: A pairings were, however, allowable at  

http://onlinelibrary.wiley.com/doi/10.1038/npg.els.0001497/full#a0001497-bib-0007
http://onlinelibrary.wiley.com/doi/10.1038/npg.els.0001497/full#a0001497-bib-0001
http://onlinelibrary.wiley.com/doi/10.1038/npg.els.0001497/full#a0001497-bib-0002
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the posit ions involving the N35 and N36 posit ions of the ant icodon (Figure 1) . Lagerkvist  

1978 further suggested that  where N35 and N36 of the ant icodon were G or C and form ed 

Watson and Crick pairs with the codon, the N34 base would not  be required to form  a 

stable base pair at  the third posit ion because the tRNA would be held in place by the two 

G: C pairs. However, where N35 and N36 are U or A, then base pair ing involving the N34 

base would becom e necessary because of the weaker nature of the two U: A pairs. This 

so-called ‘two-out -of- three’ hypothesis (Lagerkvist , 1978)  is probably an 

oversim plificat ion of the m RNA–tRNA interact ion and a num ber of except ions have been 

described.  

 

Codon– Ant icodon I nteract ions  

 The abilit y to m atch two codons to a single ant icodon, which is at  the heart  of wobble-

decoding, requires a degree of flexibilit y in the nucleot ides at  the so-called ‘wobble 

posit ion’. Since bases in the r ibosom al A-site are spat ially const rained by the st ructure of 

the r ibosom e, this flexibilit y relies prim arily on an abilit y of the N34 base of the 

ant icodon to change it s locat ion relat ive to the third codon base. The fact  that  the N34 

base of the tRNA is located in the tert iary st ructure of the tRNA at  the end of the five-

base stack containing the ant icodon just  before the U turn of the ant icodon loop (see 

Figure 2)  m eans that  there is less const raint  placed on it s m ovem ent  com pared with the 

N35/ N36 bases. I n addit ion, the N36 base – the 3t base of the anticodon – is usually 

adjacent  to a m odified (and therefore bulky)  purine base which m ay fur ther reduce the 

flexibilit y of pair ing involving N36 and perhaps even the N35 base.  

The discovery that  a num ber of tRNAs able to recognize three different  codons have the 

m odified base inosine ( I )  at  posit ion N34 rather t han one of the four standard bases, 

allowed for a further developm ent  of the concept  of third base wobbling. Crick thus 

derived a set  of rules that  could account  for the degeneracy of the genet ic code and the 

m ult icodon recognit ion propert ies of m any tRNAs (Table 1) . Cent ral to this hypothesis 

was the abilit y of G34 to pair with either U or C (with the 2-amino group of the G 

prevent ing the form at ion of a G: A base pair) , and U34 t o pair with either A or G (Figure 

3) .  

 
 
 
 
 
 

http://onlinelibrary.wiley.com/doi/10.1038/npg.els.0001497/full#a0001497-fig-0001
http://onlinelibrary.wiley.com/doi/10.1038/npg.els.0001497/full#a0001497-bib-0004
http://onlinelibrary.wiley.com/doi/10.1038/npg.els.0001497/full#a0001497-fig-0002
http://onlinelibrary.wiley.com/doi/10.1038/npg.els.0001497/full#a0001497-tbl-0001
http://onlinelibrary.wiley.com/doi/10.1038/npg.els.0001497/full#a0001497-fig-0003
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Figure  3 . W obble  base - pa ir  interact ions that  occur  
betw een the  f irst  base of  the  ant icodon ( le ft )  and the  
third base of the codon ( r ight ) .  

 

 

 

 

 

 

 

 

 

I nosine, which is generated post - t ranscript ionally by deam inat ion of A, can pair with any 

one of the three bases A, C or U (Figure 3) . Such an expanded base-pairing behaviour 

can be explained by the absence of the 2-am ino group. Thus, according to the wobble 

hypothesis, only tRNAs with an I 34 base in their ant icodon can pair with three different  

codons, while no single tRNA species should be able to pair with all four m em bers of a 

codon fam ily. I nterest ingly, the base-pair ing propert ies of I  are m ore close to those of G 

than the base from  which it  is derived ( i.e. A) .   

The base pair ings perm it ted by the wobble rules are those that  give r ibose–ribose 

distances that  are close to those of standard Watson and Crick base pairs. For this 

reason, purine–purine and pyrim idine–pyrim idine pairs are not  allowed. 

 

 

http://onlinelibrary.wiley.com/doi/10.1038/npg.els.0001497/full#a0001497-fig-0003
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Modif ied bases and codon recognit ion  

Although the basic concept  of the form at ion of wobble pairs as proposed by Crick 

rem ains valid, there are now num erous exam ples of tRNAs whose codon- recognit ion 

propert ies do not  conform  with the original rules. The single m ost  im portant  reason for a 

need to revise the original wobble rules has been the realizat ion that  I  is not  the only 

m odified base that  can be found at  the N34 wobble base posit ion of tRNAs. At  this 

posit ion, such m odified bases can have base-pairing propert ies that  are different  from  

the bases from  which they are chem ically derived, usually rest r ict ing rather than 

expanding the base-pair ing possibilit ies. While m uch of the pioneering work on codon 

assignm ent  was undertaken in the bacterium  Escherichia coli,  the m odified base I  – 

which featured in Crick's original wobble rules – is only found in one bacterial tRNA 

species, a tRNAArg (Curran, 1995) . However, I  is present  in a relat ively large num ber of 

different  eukaryot ic tRNAs, part icularly those that  recognize m em bers of a four-codon 

fam ily.  

I n Crick's original set  of rules the assum pt ion was m ade that  – with the except ion of I  – 

the N34 base was either A, G, C or U. With well over 12000 tRNA m olecules sequenced to 

date (Jühling et  al. 2009) , m ost  st r ikingly, we now know that  U34 is only present  in 

tRNAs from  m itochondria, chloroplasts and Mycoplasm a species. Furtherm ore such U34-

containing tRNAs are able to recognize all four m em bers of a codon fam ily, i.e. U34 is 

able to form  a base pair with each of the four bases at  the third ‘wobble’ posit ion of the 

codon, although recognit ion of C by U34 is at  m uch lower efficiency than with the other 

three non-m odified bases. Yet  this is not  the only except ion. Unm odified A34 has been 

found in only two tRNA species;  a tRNAArg in yeast  m itochondria and a tRNAThr in various 

Mycoplasm a species and such tRNAs can recognize all four m em bers of a codon fam ily 

(Sibler et  al.,  1986) .  

I n cont rast  to the situat ion with A34/ U34,  nonm odified G34 and C34 are found in m any 

different  tRNA species in all groups of organism s although m odified form s of both bases 

do occur in tRNAs. For exam ple, queuosine (Q)  or a Q derivat ive is found at  N34 of tRNAs 

that  decode NAY (Y =  either C or U)  codons in bacteria and m ost  eukaryotes apart  from  

yeast, and 2t-o-m ethylcyt idine (Cm )  is found at  posit ion N34 in m ost  prokaryot ic and 

eukaryot ic tRNATrp and UUG-decoding tRNALeu species. Cm  is also present  in som e 

eukaryot ic elongator tRNAMet.  

 

 

http://onlinelibrary.wiley.com/doi/10.1038/npg.els.0001497/full#a0001497-bib-0009
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Rest r icted w obble   

The presence of m odified bases in a tRNA m olecule at  the N34 posit ion (and to a lesser 

extent  N37 adjacent  to t he ant icodon)  can have profound effects on the codon-

recognit ion propert ies of the tRNA. In part icular, m odificat ions of U34 can reduce the 

potent ial for non-Watson and Crick base pairs at  the wobble posit ion, so-called 

‘rest r icted wobble’. 

There are a num ber of well- characterized exam ples where a m odificat ion to U34 in the 

ant icodon of tRNA rest r icts the codon- recognit ion propert ies of that  tRNA. For exam ple, 

m odificat ion of the U34 to a 5t-m ethyl-2- thiouridine derivat ive, as is the case in tRNAs 

decoding Gln, Lys and Glu codons in m any if not  all prokaryot ic and eukaryot ic species, 

rest r icts codon recognit ion to codons ending in A. This rest r ict ion prevents 

m isrecognit ion of m em bers of the respect ive codon fam ilies ending in U or C. I n a two-

codon fam ily (such as those for Gln, Lys and Glu)  such decoding would result  in 

m ist ranslat ion, e.g. a tRNAGlu reading an Asp codon. The m odificat ion of U34 leads to 

increased conform at ional r igidity of the wobble base and this in turn prevents, or  

significant ly reduces, non-Watson and Crick base-pair interact ions that  usually require 

conform at ional flexibility.  

C34 m odificat ions are m uch less frequent ly found in tRNAs than U34 m odificat ions and do 

not  appear to have as profound effect  on the codon- recognit ion propert ies of a tRNA. 

However, one except ion to this is the L34 ( lysidine)  m odified base, a C m odificat ion found 

only in a m inor tRNAI le in bacteria and plant  m itochondria. The presence of L34 at  the 

wobble base posit ion in the ant icodon dram at ically alters the base-pair ing propert ies of 

the base;  it  recognizes A instead of G, a rare exam ple of a com plete switch in base-

pairing specificit y. I n the absence of this m odificat ion, the tRNA with C34 would decode 

the AUG (Met )  codon and would be acylated with Met . Thus, this single base m odificat ion 

also prevents (m is)acylat ion of the tRNAI le with Met  (Muram atsu et  al. ,  1988) . 

Modified bases are also present  in som e tRNAs at  the posit ions within the ant icodon loop 

of a tRNA but  are not  part  of the ant icodon sequence. I n part icular, certain m odificat ion 

of N37 – the base located immediately 3t of the anticodon – m ay influence codon 

recognit ion by stabilizing the relat ively weak U: A base pairs that  occur outside the 

wobble posit ion, for  exam ple, where the codon is UNN. 

As a consequence of the recognit ion of the im portance of m odified bases in altering the 

codon- recognit ion propert ies of a tRNA during m RNA decoding, the set  of wobble rules 

originally developed by Crick 1966 has now been m odified and expanded (Table 1) . I n 

http://onlinelibrary.wiley.com/doi/10.1038/npg.els.0001497/full#a0001497-bib-0006
http://onlinelibrary.wiley.com/doi/10.1038/npg.els.0001497/full#a0001497-bib-0002
http://onlinelibrary.wiley.com/doi/10.1038/npg.els.0001497/full#a0001497-tbl-0001
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m ost  cases studied, the influence of the m odificat ion of the N34 base alters the 

conform at ional propert ies of the wobble base, t hus highlight ing the im portance of base 

flexibilit y in the wobble posit ion during m RNA decoding. 

Although the ‘expanded wobble rules’ account  for alm ost  all known tRNA decoding 

behaviour it  is likely that  except ions will st ill be found. Any tRNA m odificat ion that  

influences the overall tert iary st ructure of the ant icodon loop m ay influence the base-

pairing propert ies at  posit ion N34.  There is no reason why such changes could not  occur 

outside the ant icodon arm  of the tRNA given the extensive tert iary int ram olecular 

interact ions that  occur in tRNAs. 

Diffe rent ia l processing of  w obble - decoded codons by the r ibosom e  

While wobble-base pair ing enables the decoding of two or m ore codons by the sam e 

tRNA, the processing of these codons in the r ibosom e is not  ident ical. The differences in 

kinet ics of this step has been studied in detail for a sm all num ber of codon: tRNA 

com binat ions, including for  tRNAAla
CGU (Kothe and Rodnina 2007) . The r ibosom e 

processes the decoding of ACG, the Watson-Crick pair ing codon for this tRNA, with faster 

forward rate constants t han decoding of GCC, the wobble-pair ing codon for  the sam e 

tRNA. Moreover, while the Watson-Crick paired codon leads to successful pept idyl 

t ransfer with a high probabilit y, the wobble-base paired codon leads to tRNA release 

rather than pept idyl t ransfer with a probabilit y of about  50% , based on the rate 

constants m easured in vit ro.  Because of the frequent  erroneous release of the correct  

tRNA on wobble-decoded codons, sam pling of t he tRNA pool requires m ore t im e on 

average and wobble-decoded codons are therefore usually decoded m ore slowly than 

Watson-Crick decoded ones. These findings were confirm ed in vivo by analysing 

r ibosom al footprint ing data, and dem onst rat ing that  footprints are detected m ore 

frequent ly on wobble-decoded codons than on Watson-Crick decoded ones. The slower 

processing of wobble-decoded codons likely explains the observat ion that  in m ost  

organism s Watson-Crick-decoded codons are preferred over wobble-decoded ones in 

term s of codon usage. 

The different ial processing the two t ypes of codon connect  wobble-base pair ing to 

t ranslat ional cont rol of gene expression and to biological pathways. For exam ple, 

changes in the m ethylat ion state of the wobble base of tRNALeu
CAA are linked to an 

upregulat ion of one of t he two genes encoding the r ibosom al protein RPL22, with a 

higher content  of TTG leucine codons during the oxidat ive st ress response in baker’s 

yeast , and this was required for  an opt im al adaptat ion to the st ress (Chan et  al 2012) . 
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Another study showed that  U34 m odificat ions are required to prevent  the form at ion of 

toxic protein aggregates in yeast  and worm s (Nedialkova and Leidel 2015) .  

 

Accuracy in Decoding  

I n spite of the flexibilit y of the codon–ant icodon interact ion in m RNA decoding, each 

codon is accurately decoded by the correct  aa- tRNA. Nevertheless, there are ways in 

which the accuracy of t his decoding can be subverted, part icularly where nonsense 

codons are involved.  

Mainta ining accuracy of the m RNA – tRNA in teract ion  

m RNA decoding by aa- tRNAs is a rem arkably accurate process with reported sense 

codon m isreading rates of the order of 10−4–10−5 in both prokaryotes and eukaryotes, 

i.e. one incorrect  am ino acid inserted for  every 10 000–100 000 codons t ranslated 

(Parker, 1992) . This degree of accuracy is all the m ore rem arkable given the relat ively 

weak binding affinity between tRNA and it s cognate codon in solut ion and the low level 

of discrim inat ion between m em bers of a four-codon fam ily XXN. The specificit y of m RNA 

decoding at  the A site is cont rolled prim arily by the r ibosom e itself, but  t ranslat ion 

factors m ay also have an influence, part icularly the factor that  delivers the aa- tRNA to 

the A site, nam ely EF-Tu/ eEF1A. Any m ism atched aa- tRNA m ust  be rem oved from  the A 

site before the bound am ino acid part icipates in the next  pept ide bond to be form ed 

during polypept ide chain elongat ion. There is evidence that  such m ism atched aa- tRNAs 

dissociate m ore rapidly from  the r ibosom e by a factor of 5–10 t im es com pared with a 

correct ly m atched aa- tRNA (Thom pson et  al.,  1981) .  

A num ber of ant ibiot ics are able to perturb the accuracy of m RNA decoding at  the A site 

to increase the rates of m ist ranslat ion ( i.e. acceptance of m ism atched tRNAs)  by 1–2 

orders of m agnitude. Part icularly effect ive in this context  are the ant ibiot ics st reptom ycin 

in bacteria and parom om ycin in eukaryot ic cells. St reptom ycin appears to prom ote 

m isreading at  the wobble third posit ion of the codon involving U and C. Such error-

inducing ant ibiot ics m ediate their effects by binding to the r ibosom e either through one 

or m ore specific r ibosom al proteins or r ibosom al RNA. By isolat ing m utants that  are 

resistant  to these ant ibiot ics one is able to ident ify those r ibosom al proteins that  play a 

role in cont rolling the accuracy of m RNA decoding. For exam ple, such studies in 

Escherichia coli have ident ified three proteins in the sm all subunit  of the r ibosom e, 

http://onlinelibrary.wiley.com/doi/10.1038/npg.els.0001497/full#a0001497-bib-0008
http://onlinelibrary.wiley.com/doi/10.1038/npg.els.0001497/full#a0001497-bib-0011
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nam ely S4, S5 and S12, as being im portant  for m aintaining the accuracy of m RNA 

decoding.  

Translat ing nonsense codons as sense codons  

Cells do not  norm ally have tRNAs that  can efficient ly t ranslate one or other of the three 

stop codons. Such stop codons are recognized by a protein release factor (RF)  leading to 

term inat ion of polypept ide chain elongat ion and release of the com pleted polypept ide 

chain from  the r ibosom e. Yet  stop codons are related to a num ber of sense codons by a 

single base;  for  exam ple, UGA, stop, UGG, Trp;  or  UAG, stop, CAG, Gln. I t  is therefore to 

be expected that  tRNAs, able to t ranslate a stop codon, can be generated by single base 

m utat ions in the ant icodon of a new cognate tRNA. For exam ple, the t rpT suppressor 

m utat ion of E. coli arises through a U to C subst itut ion at  N34 in the UGG-decoding 

tRNATrp.  Because of the wobble rules of decoding, however, the m utant  suppressor 

tRNATrp would be expected to be able also to t ranslate the UGG codon and thus this 

m utat ional event  should not  be lethal to the cell. However, since no viable haploid E. coli 

cell carrying the t rpT m utat ion has been described, this would suggest  that  the degree of 

wobble at  the third base posit ion is insufficient  to ensure a significant  level of UGG 

t ranslat ion. A further m utant  nonsense suppressor derivat ive of the sam e UGG-decoding 

tRNATrp,  with a m utat ion outside the ant icodon sequence (G24 to A24)  is also able to 

t ranslate both the UGA and UGG codons, indicat ing that  the tert iary st ructure of a tRNA 

also plays an im portant  role in m aintaining the specificit y of wobble interact ions 

involving the third posit ion of a codon. This m utant  is viable as a haploid. I n addit ion, 

the wild- type UGG-decoding tRNATrp is able to t ranslate UGA codons, albeit  with very low 

efficiency (1–3% )  (Hirsh and Gold, 1971)  com pared with the m utant  tRNAs (Figure 4) . 

Thus, a study of the decoding propert ies of nonsense suppressor tRNAs has provided 

further insights into the flexibilit y of the codon–ant icodon interact ion.  

 

Figure  4 . Translat ion of the UGA codon in 
Escherichia coli by a  Trp - insert ing tRNA. The 
relat ive, approxim ate efficiencies of UGG/ UGA 
decoding by (a)  the wild- type t ransfer RNA ( tRNA) , 
(b)  a nonsense suppressor m utant  of the tRNA in 
which C34 has been replaced by U34;  and (c)  a novel 
suppressor variant  of the tRNA with G24 replaced by 
A24. 

 

 

http://onlinelibrary.wiley.com/doi/10.1038/npg.els.0001497/full#a0001497-bib-0003
http://onlinelibrary.wiley.com/doi/10.1038/npg.els.0001497/full#a0001497-fig-0004
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Accurate m RNA decoding by tRNA involves, in principle, st raight forward RNA–RNA 

interact ions m ediated by base pair ing between codon and ant icodon bases. The flexibilit y 

int roduced into this interact ion by the wobble base, while reducing the num bers of tRNAs 

required by a cell to decode the 61 sense codons, nevertheless does not  subvert  the 

accuracy of decoding. I n fact , such flexibilit y m ay ensure that  m inor m iscodings are not  

det r im ental to the cell and m ay also provide a m eans for the cont inued evolut ion of the 

codon assignm ents as exem plified by the cases of nonsense codons being decoded as 

sense.  

 

 

Glossary   

Am inoacyl - tRNA ( aa - tRNA)   

A t ransfer RNA ( tRNA)  charged with the appropr iate am ino acid which is esterified to the 

3-OH of the 3t- term inal adenosine residue of the tRNA. 

 

Ant icodon  

The t r iplet  of r ibonucleot ides within a t ransfer RNA ( tRNA)  m olecule that  base pair 

direct ly with a codon in the m essenger RNA (m RNA) . 

 

Codon  

A t r iplet  of r ibonucleot ides which code for a single am ino acid. 

 

I soac ceptor  tRNA  

Two or m ore tRNAs that  are charged with the sam e am ino acid. 

 

Nonsense codons  

Codons which do not  specify an am ino acid but , rather, signal the end of the region of a 

m essenger RNA (m RNA)  to be decoded. 

 

Ribosom al profiling  

A m ethod that  ident ifies all m essenger RNA (m RNA)  m olecules that  are being act ively 

t ranslated by r ibosom es in a cell at  a given m om ent  in t im e. 

 

Transfer  RNA ( tRNA)   

A fam ily of sm all nucleic acids that  m ediate the t ranslat ion of a m essenger RNA (m RNA)  

m olecule into the am ino acid sequence of the encoded polypept ide chain. 
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W atson and Cr ick  base pair ing  

Hydrogen bonding between A (adenine)  and T ( thym ine)  or U (uracil)  and G (guanine)  

and C (cytosine) . 

 

W obble  

A nonstandard base-pair interact ion between the third nucleot ide of a codon ( the wobble 

base)  and the first  nucleot ide of the ant icodon. 
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Table  1 . The w obble  rules, t ak ing into account  t he inf luence  of  base  
m odif icat ions at  the  N 3 4  w obble  base  

N 3 4  Old rules  New  rules  

 

U A,G A,G,U, (C)  

e.g. m cm 5U etc –  A, (G)  

e.g. m cm o5U etc –  U,A,G 

G C,U C,U 

A U A,G,U,C 

e.g. I  A,C,U A,C,U 

C G G 

e.g. k2C/ L –  A 

The ‘old rules’ are those originally proposed by Crick 1966. The ‘new rules’ take into 
account  the known effects of base m odificat ions at  posit ion N34 on codon recognit ion. 
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