
Complexity Reduction: Local Activity Ranking By
Resource Entropy For QoS-aware Cloud Scheduling

Huankai Chen
Future Computing Group

School of Computing
University of Kent

Canterbury, UK
Email: HC269@kent.ac.uk

Frank Z Wang
Professor of Future Computing

School of Computing
University of Kent

Canterbury, UK
Email: F.Z.WANG@kent.ac.uk

Leon O. Chua
Depart. of Electrical Engineering and

Computer Science
University of California

Berkeley, USA

Abstract—The principle of local activity originated from elec-
tronic circuits, but can easily translate into other non-electrical
homogeneous/heterogeneous media. Cloud resource is an example
of a locally-active device, which is the origin of complexity
in cloud scheduling system. However, most of the researchers
implicitly assume the cloud resource to be locally passive when
constructing new scheduling strategies. As a result, their research
solutions perform poorly in the complex cloud environment. In
this paper, we first study several complexity factors caused by
the locally-active cloud resource. And then we extended the
”Local Activity Principle” concept with a quantitative measure-
ment based on Entropy Theory. Furthermore, we classify the
scheduling system into ”Order” or ”Chaos” state with simulating
complexity in the cloud. Finally, we propose a new approach to
controlling the chaos based on resource’s Local Activity Ranking
for QoS-aware cloud scheduling and implement such idea in
Spark. Experiments demonstrate that our approach outperforms
the native Spark Fair Scheduler with server cost reduced by 23%,
average response time improved by 15% - 20% and standard
deviation of response time minimized by 30% - 45%.

Keywords—Local Activity Principle, Entropy Theory, Cloud
Scheduling, Quality of Service, Complex System, Order and
Chaos

I. INTRODUCTION

”Local Activity Principle” was originally used for study
the complex system in physics, chemistry, biology and brain
research, which is capable of explaining the emergence of
complex pattern in a homogeneous medium [1]. However,
the application of local activity principle in complex cloud
scheduling system is limited. In cloud computing, complexity
limited the system’s ability to better satisfy the QoS re-
quirements of applications, such as cost budget, average task
runtime and reliability [4]. As the origin of complexity, the
locally-active resource, is assumed to be locally passive in
most of the research solutions. Such improper assumption may
lead the scheduling solution to be less robust in the real world
complex cloud environment.

Scheduling is an NP-complete problem, the complexity
of which increase substantially in heterogeneous cloud en-
vironment [6]. Cloud application that disposes of scheduler,
which automatically and efficiently find the most appropriate
resources to execute a group of tasks, must cope with world’s
natural tendency to disorder. In the cloud application, jobs

are scheduled on a set of cloud resources that are locally
active, which performance is supposed to change dynamically
during runtime [2]. Such performance diversion may cause by
hardware/software failures, resources CPU overload, resource
over- or under-provisioning, or application misbehaviours. We
want resource local activity yield coherent global schedule
system order. However, widespread experience warns us that
optimizing systems that exhibit both local activity and global
order are not easy. The experience that anything that can go
wrong will go wrong and at the worst possible moment is sum-
marized informally as Murphys Law [5]. Scheduling systems
are not immune to Murphy. As the degree of cloud resource
activity increase, the level of complexity in scheduling system
increase, which may lead the system falls into the chaotic
state. At chaotic state, the scheduling system performance is
degraded and become harder to be predicted, and the QoS
requirements of application become harder to be satisfied as
well.

At the root of the ubiquity of disordering tendencies is
the Second Law of Thermodynamics [3], Energy sponta-
neously tends to flow only from being concentrated in one
place to becoming diffused or dispersed and spread out. In
cloud scheduling system, adding resources to a system may
overcome the Second Law spontaneous tendency and lead
to increasing the systems order. However, this way does not
work well all the time, especially when the cloud resources
are locally active, which is the origin of complexity [1]. The
scheduling system becomes more complex as more resources
need to manage. In such case, the way to decide the number
of resources allocated to the application initially and finding
a suitable set of resources for the jobs during runtime become
a critical problem in cloud scheduling. To solve the above
problem, we need to know:

• The state of cloud scheduling system, ”Order”,”Edge of
Chaos” or ”Chaos”, when meeting the different level of
complexity with the number of allocated resource.

• The degree of local activity for allocated resources during
runtime, which has a direct impact on the system’s
complexity level.

In this paper, following the short introduction on the ”Local

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kent Academic Repository

https://core.ac.uk/display/74208716?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Activity Principle” [1] and the application of Entropy as the
quantitative measure of the degree of cloud resource local
activity, we use Damage Spreading Method [9] as a tool to
analysis the simulation results provided by ComplexCloudSim
in Section III. We will then describe the experiment that runs
on the real world cloud analysis engine which implements our
proposal idea as a plug-in scheduler and evaluates the results in
Section IV. Section V contains some conclusion and possible
future research direction.

II. LOCALLY-ACTIVE RESOURCE : ORIGIN OF
COMPLEXITY IN CLOUD SCHEDULING

The principle of local activity originated from electronic
circuits, but can easily translate into other non-electrical
homogeneous/heterogeneous media [1]. In cloud computing,
the cloud resource is an example of a locally-active device,
whereby a ”small” (estimated runtime of allocated task) input
signal can convert into a ”large” (Actual processing time
to finish the assigned task) output signal at the expense of
an energy supply (cost of resource), as shown in Figure
1. By definition, a resource is locally passive if it is not
locally active, in the sense that a resource with fixed cost is
guaranteed to provide a never changed performance during
runtime. However, in the real world cloud, the resources are
seldom in the passive mode, they always exhibit the different
degree of local activity. For example, on average, a physical
resource is less active than a virtual resource with the same
configuration and the degree of activity for the same resource
varies during runtime.

A. Complexity Caused By Locally-Active Cloud Resource

As the origin of complexity, the local activity resource has
a direct impact on the complexity level of cloud scheduling
system. In electronic circuits with homogeneous media, the
locally active cells will put the system to be on the ”Edge
of Chaos” [12] state in some parameter regions, which have
a chance to turn into a complete Chaotic state. In cloud
environment,such complexity effects causing by locally ac-
tive resource will appears more frequently. When the cloud
scheduling system is under chaotic state, its performance is
degraded and become harder to predict and it fails to better
fulfil the QoS requirements of the application. However, in the
literature, most of the researchers ignore the impacts of local
activity of resource on cloud scheduling system and assume
the resources to be locally passive when constructing new
scheduler. So their research solution always fail to provide
better QoS when running on real world cloud environment.

The scheduling problem in cloud computing is not new at
all; as a matter of fact it is one of the most studied problems in
the optimization community [13] [14]. However, in the cloud
the complexity causing by locally active resources that makes
the problem more challenge. Some of the complexity factors
related to the resource are the following:

• Heterogeneity : Cloud systems act as large virtual su-
percomputer, yet the computational resources could be
very disparate, ranging from laptops, desktops, clusters,

Fig. 1. Locally-Active Resource Vs. Locally-Passive Resource

supercomputers and even small devices of limited compu-
tational resources like the smart phone. Current Cloud in-
frastructures are not yet much versatile but heterogeneity
is among most important features to take into account in
any cloud system. With the development of virtualization
technology, a single physical host can run multiple virtual
machines (Vms) simultaneously. Nevertheless, the virtu-
alization also brings about new challenges to the resource
scheduling in clouds since multiple VMs can share the
hardware resources (e.g. CPU, memory, I/O, network,
etc.) of a physical machine. In such situation, it is difficult
to accurately measure the actual performance of rented
VMs. For example, in Amazon EC2, the provisioning
of resources to virtual machines is based on computing
units instead of fixed performance measures. Different
host machines provide a different amount of computing
power per provisioned compute unit, effectuating in het-
erogeneity among VM performance [15]. That means, in
real world, the cloud could never be homogeneous, it
should always be heterogeneous.

• Dynamicity : The dynamic changes of resource perfor-
mance at runtime is another important factor of com-
plexity inherent to cloud computing [16]. In the real
world scenario, such dynamicity of resource performance
may be caused by hardware/software failures, resource
CPU overload, resource over- or under-provisioning, or
application misbehaviours. The cloud resource is also
affected by the amount of running jobs that assigned
to it and exhibited local activity, which is the origin
of complexity. Furthermore, sharing common underlying
hardware infrastructure with other VMs will bring the
resource dynamicity up to a more complex level.

• Uncertainty : The vast majority of the research efforts in
scheduling assumes complete information about the state
of cloud resource. However, in the cloud computing, the
ready time and the computing capacity of a resource are
subject to considerable uncertainty during provisioning
[17]. We argue that such uncertainty is the main hassle



Fig. 2. Complexity Reduction & Chaos Control: Resource Entropy Based Local Activity Ranking

of cloud computing bringing additional challenges to
predict the execution time of tasks, which is a crucial
point for many scheduling algorithms. Resource states in
cloud environment can change dramatically. Most of the
time, it is impossible to get exact knowledge about the
resource. It is hard to estimate runtime of tasks accurately,
improve prediction by historical data, prediction correc-
tion, prediction fallback, etc. The inaccurate execution
prediction leaves the associated scheduling performance
under considerable uncertainty.

B. Emergence Of Complex Patterns In Cloud Scheduling:
Order, Edge Of Chaos And Chaos

The principle of local activity is the cause of symmetry
breaking in homogeneous media, which offers a rigorous and
effective tool to identify the states (See Figure 2) of scheduling
system and also fine tuning such states into a relatively small
subset called the edge of chaos where the emergence of
complex phenomena is most likely [1].

The increment of activity on local resource will lead to the
increment of global scheduling system’s complexity, which
means the system will have a higher chance to fall into
chaos. Thus, we propose the following solution to reduce the
complexity and control the chaos, as shown in Figure 2:

”Avoid allocate tasks to the resources with high degree
of local activity or allocate tasks to the set of resources
with similar degree of local activity when making scheduling
decision.”

However, it brings up another challenging problem:
”How to provide a quantitative measurement of resource

local activity during runtime in an efficient and reliable way?”
Therefore, to solve the problem, we introduce Entropy as

the quantitative measurement to compare the degree of Local
Activity among cloud resources. The aim of Local Activity
measurement is to be able to obtain a numerical scale to
compare the activity degree on different resources. In practical,
the degree of local activity is difficult to obtain directly
on runtime. However, we can judge how active a resource
is through the study of its performance history in respect
of CPU Utilization. General speaking, if the resource CPU
Utilization history exhibit unstable oscillation (disorder), it

is under relatively high activity and vice verses. Therefore,
Entropy, as the measurement of the degree of disorder in a
system, is used to provided a quantitative measurement of the
local activity degree associated with the cloud resources.

The concept of entropy is originally known as the second
law of thermodynamics, which has been adapted in other fields
of study, including information theory, production planning,
resource management, computer modelling and simulation.
Shannon describes the entropy as a measure of information
or uncertainty on random variables, which take different
probabilities among the states into account [19]. The average
uncertainty associated with an outcome is represented by
discrete random variable X on a finite set X = x1, ..., xn
with probability distribution function p(xi) being in state i,
(i = 1, ..., n). The Shannon’s information entropy H(X) of
X is defined as

H(X) = −
n∑

i=1

p(xi)log2p(xi) (1)

This paper focused on calculating the entropy value based
on the resource CPU utilization history, which represents how
efficiently the resource uses the CPU throughout the jobs
executions. This is highly relevant for making scheduling
decision as it is directly related to the resource’s performance
during runtime. The resource entropy is calculated according
to the algorithms 1.

Algorithm 1 Calculate Resource Entropy
1: Require: CUV ← CPU Utilization Vector of resource
2: procedure CACULATEENTROPY(CUV )
3: 4cuV ← Vector for changes of CPU Utilization
4: Mean(4cu)← Average Changes of CPU Utilization
5:
6: if 4cu ≥Mean(4cu) then
7: Statea ← Above average state
8: else Stateb ← Below average state
9:

10: Pa ← Probability of 4cu in Statea
11: Pb ← Probability of 4cu in Stateb
12: Entropy H(4cu) = −(Pa ∗ log2Pa + Pb ∗ log2Pb)



The Entropy measurement above represents the following
relationship with the degree of resource local activity:

• Entropy is a non-negative quantity: H(4cu) ≥ 0, since
0 ≤ Pa, Pb ≤ 1. The degree of resource local activity is
proportion to the resource entropy value.

• Entropy achieves its maximum value (H(4cu) =
log2(2) = 1) when both Statea and Stateb occur with
the same probability (Pa = Pb = 1/2), so the resource
performance is being in most uncertain and unpredictable
region, which means the degree of resource local activity
is maximum.

• Entropy attains its minimum value H(4cu) = 0 when
only one state occurs with probability 1 (Pa = 1 or
Pb = 1), so the resource performance is known with
complete certainty, then the degree of resource local
activity is minimum.

III. ORDER AND CHAOS IN COMPLEX SCHEDULING
SYSTEM

In this section, we first use ComplexCloudSim, which is
an extension to popular CloudSim tool-kit with providing
the capacity to model the complexity factors (Heterogeneity,
Dynamicity and Uncertainty), to simulate the impacts of
complexity causing by locally-active resources on the cloud
scheduling system. In the simulation, we use a Montage work-
flow come with CloudSim, which consists of 1000 jobs with
groups of random number sub tasks. For the initial simulation
configuration, we set the number of VMs Numbervm = 5
and the degree of resource complexity Degreecomplexity = 0.
The workload will run with MinMin algorithm, which is a
simple and efficient algorithm that produces a better schedule
that minimizes the total completion time of jobs than other
algorithms in the literature [13], on the initial configuration
100 times to generate baseline performance. As what we have
expected, the workflow runtime was determined in all the
100 simulation runs with zero variance without consider the
complexity, which is shown in Table I.

TABLE I
BASELINE SIMULATION RESULT WITH INITIAL CONFIGURATION :

Numbervm = 5,Degreecomplexity = 0

Algorithm Average Runtime Variance Standard Deviation

MinMin 2864 Minutes 0 0

And then, we run the simulation with the same number
of VMs Numbervm = 5 but different degree of complexity
Degreecomplexity ∈ [0.1, 0.2, 0.3, 0.4, 0.5]. The results of the
experiment outlined above are displayed in Figure 3 and 4.
Over the course of the entire experiments, the average runtime
of the Montage workflow between 3,220 and 3,424 minutes
have been observed in Figure 3, which means around 13%
- 23% runtime degradation compared with the performance
baseline. Clearly, the complexity factors have a considerable
impact on QoS of cloud scheduling system.

We also find that the average runtime degradation does not
change as much as the increase of the degree of complexity.

However, the growth of standard deviation for workflow
runtime is proportional to the increase of the degree of
complexity with range from 20% to 120%, as shown on Figure
4. Apparently, the increase of standard deviation leads to less
reliable scheduling performance. Thus, the cloud scheduling
QoS is depended on the degree of complexity.

Fig. 3. Complexity Simulation: Average Workflow Runtime
(MinMin,Numbervm = 5)

Fig. 4. Complexity Simulation: Standard Deviation of Workflow Runtime
(MinMin,Numbervm = 5)

Finally, we introduce Damage Spreading Analysis (DSA)
[8], which is a tool originally developed to study biologically
motivated complex systems, and it appears in the literature on
various research areas including complex network models as
a way to observe the complex behaviour of the systems. DSA
investigates the evolution of slightly different configuration
of variables in a complex system, which are subjected to
the same number sequence. Knowledge of whether or not a
small perturbation (”damage” to the conditions) added to the



variables spreads or stays at the same level (even disappears)
can help us to investigate the robustness of the system over
disturbance.

”Initial damage” here is defined as a slight change in the
degree of resource complexity Ccomplexity and the number
of VMs Cvm to run the same workload. We add small
change Ccomplexity = 0.1 and Cvm = 1 to simulation step
by step, which will be executed 100 times with the same
workload. Then we investigate the changes are spread or not on
two important QoS requirements in the scheduling processes
(Changes of Average and Standard Deviation of workflow
runtime) after that.

Daverage(i, j) =

Raverage(i+ Cvm, j)−Raverage(i, j) (2)

Dstd(i, j) = Rstd(i, j + Ccomplexity) − Rstd(i, j) (3)

To evaluate the spread of the damages, we define damage
Daverage (Difference of average workflow runtime Raverage)
and Dstd (Difference of workflow runtime Standard De-
viation Rstd) between two simulations results, which are
calculated as shown in Formula 2 and 3, where i ∈
[5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15] refers to number of VMs
and j ∈ [0.1, 0.2, 0.3, 0.4, 0.5] refers to degree of complexity.

The results of Daverage and Dstd are shown in Figure 5
and 6 respectively.

As we can see from Figure 5, for number of VMs i < 10,
the changes of Daverage for different degrees of complexity is
relatively small, in this region, the damage is not spread and
initial damage stays small.

Fig. 5. Damage Spreading Evaluation: Daverage

From Figure 6, for number of VMs i < 9, the changes of
Dstd for different degrees of complexity highly unstable, but
the situation become relatively better as the number of VMs
is increase when i > 9.

Then,we analysis the relation between number of increased
VMs i and spreading damage using the standard deviation

Fig. 6. Damage Spreading Evaluation: : Dstd

of Daverage and Dstd. We define standard deviation of
Daverage(i) as σaverage(i), and standard deviation of Dstd(i)
as σstd(i). And calculate the mean value Mean(σaverage) and
Mean(σstd) of all σaverage and σstd, as shown on Table II
and III.

TABLE II
RELATION BETWEEN NUMBER OF VMS AND Daverage

Daverage(i)

Degree of Complexity Mean(σaverage)=23

(i) VMs 0.1 0.2 0.3 0.4 0.5 σaverage(i)

5 456 489 481 514 469 22

6 320 322 344 363 377 25

7 258 271 237 282 248 18

8 193 174 196 178 231 23

9 148 168 180 169 171 12

10 124 117 122 149 94 19

11 198 101 108 64 135 50

12 -1 96 98 104 86 44

13 80 81 65 83 86 8

14 69 68 67 83 71 7

Now, we classify the system state loosely using such
mean value. We understand the state that σaverage(i) ≤
Mean(σaverage) or σstd ≤ Mean(σstd) as ”Order” state.
In this state, the correlation of initial damage and spread-
ing damage is maintained, the increase of number of VMs
will result in steady improvement of QoS, which means the
scheduling system is running relatively robust against the
changes of the degree of complexity. We also understand that
σaverage(i) > Mean(σaverage) or σstd > Mean(σstd) as
”Chaos” state, as highlighted in red colour in Table II and
III . In this state, small disturbance may spread throughout
the scheduling system and the performance is easily changed
totally against the degree of complexity, which means the
increased of number of VMs is hard to grantee better QoS
improvement.



TABLE III
RELATION BETWEEN NUMBER OF VMS AND Dstd

Dstd(i)

Degree of Complexity Mean(σstd)=24

(i) VMs 0.1 0.2 0.3 0.4 0.5 σstd(i)

5 58 69 94 73 80 49

6 48 37 79 63 61 38

7 42 43 39 71 48 31

8 78 23 60 34 40 30

9 46 9 41 44 32 21

10 32 23 39 20 34 18

11 42 25 31 24 26 18

12 41 26 26 28 24 17

13 19 32 15 26 22 13

14 0 37 15 24 20 11

14 21 18 22 11 22 11

The understanding of whether the scheduling system is
under ”Order” state or ”Chaos” state provide us an important
guideline for making the decision to achieve more robust
scheduling. For example, from simulation result, we may run
the similar workload with over 9 VMs while avoiding choosing
11,12 VMs to satisfy the QoS requirement of application in
real world.

IV. SPARK IMPLEMENTATION AND EVALUATION :
SCHEDULING JOBS BY ENTROPY GUIDED RESOURCE

LOCAL ACTIVITY RANKING

Through the study from Section III, we understand the
impact of complexity on the performance of cloud scheduling
and how it lead to the violation of application’s QoS require-
ments. We try to choose the suitable initial number of VMs
to achieve more robust scheduling by understanding whether
the system is under ”Order” state or ”Chaos” state. Generally
speaking, complexity reduction is a way to improve QoS in
cloud scheduling [18]. Although we can use simulation and try
to reduce the complexity, however, there is limitation in this
way since the simulation only models part of the complexity
in the real world. In the real world cloud environment, there
are complexity form of other media such as dynamic &
unpredictable workload and heterogeneous links among the
resources, which are hard to control or even uncontrollable
during runtime. Relatively speaking, the cloud resources form
of cloud is easier to control, as we can know its average
performance from history by monitoring its CPU utilization.
Learning from the concept of ”taking human being as the
essential to improve the quality of project management”, we
know the resource is the essential part to achieve better
scheduling in the complex cloud. Thus, in this section, we
will focus on resource-oriented complexity reduction.

A. Spark Entropy Scheduler : New Approach To Better Satisfy
QoS In Complex Cloud

Spark [20] is part of the Apache Software Foundation and
claims speedups up to 100x faster than Hadoop MapReduce in-

memory, or 10x faster on disk. The ability to bring response
time of distributed data analysis into sub-second range has
enabled powerful new application development - Cloud Anal-
ysis as a Service (CAaaS). In such case, user-facing services
will be able to run sophisticated parallel computation, such
as language translation, voice reorganization, highly search
personalizations and context recommendation, on a per-query
basis. However, when meeting with high concurrent of service
query, the Spark performance become less reliable. Spark’s
performance is closely tied to its job scheduler. Most of
the time, we need to deploy more resources to handling the
increased service query, which will cause the increment of
complexity in the scheduling system. Although the current
scheduler in Spark works well in homogeneous environment
with low query request, but it failed to better fulfil the QoS
requirement of CAaaS as the cloud become more complex.
If the scheduling strategy cannot provide an optimal way to
guarantee the QoS, it will be difficult to popularize the service.

The current scheduler in Spark implicitly assumes that all
the resource are homogeneous and local passive and randomly
allocate resources to jobs. Without considering the local ac-
tivity in cloud resource, such schedulers perform poorly when
meeting the increasing complexity of the cloud.

In our proposed Entropy Scheduler, instead of randomly
pick up resources, we first calculate the local activity ranking
of all offered resources (Algorithm 2), and then schedule tasks
inside a job according to the ranking. Tasks are scheduled
with similar ranking resource so as to improve overall QoS
satisfaction and reliability of scheduling performance.

Algorithm 2 Calculate Resource Local Activity Ranking
1: Require: Rcu ← Current Resource CPU Utilization
2: Require: Re ← Resource Entropy
3: Require: Ncpu ← Number of Available CPU cores
4: Require: Scpu ← CPU Core Clock Speed
5: procedure CACULATERANKING(Rcu, Re, Ncpu, Scpu)
6: RANKresource ← Resource Local Activity Ranking
7: RANKresource = Ncpu ∗Scpu ∗ (1−Rcu) ∗ (1−Re)

B. Experiments And Evaluation

In order to verify our propose Entropy Scheduler, we
conduct experiments on a private cloud with 3 heterogeneous
physical resource. The resource specifications and Spark con-
figuration are shown on Table IV. A simple Spark application
has been deployed on the server with the ability to accept user
query to calculate π with a predefined number of CPU cores
concurrently. We use Apache Bench to load testing the Spark
application under different schedulers (Our Entropy Scheduler
and Spark Fair Scheduler [21]). The load testing will spawn a
number of threads which continuously execute the same query.
Each thread remains loaded and continues processing queries
until all threads have finished, and the query response time
of all requests from every thread will use for performance
comparison.



TABLE IV
EXPERIMENTAL PLATFORM:RESOURCE SPECIFICATION

Specification Node 1 Node 2 Node 3
Spark Role Master&Worker Worker Worker

CPU Xeon 3Ghz x 2 Xeon 2.8Ghz x 2 Xeon 1.8Ghz
Cores 8 8 4
RAM 16GB 12GB 12GB

1) Experiment 1: Performance under Different Concurrent
Level of HTTP Request Workload: This experiment is used to
verify the query response time and degree of satisfying of QoS
requirement with Entropy Scheduler and Fair Scheduler under
different concurrent level of request workload. The results are
shown as follows in Figure 7, Figure 8 and Figure 9.

Fig. 7. Experiment 1: Response time statistics result

Figure 7 show that Entropy Scheduler has better perfor-
mance and a higher degree of satisfying of QoS requirement,
which result in improvement of the overall server throughput
as well (Figure 8).

Fig. 8. Experiment 1: Spark analysis server throughput result

However, increasing workload concurrency pose various
challenges to the scheduling system. The cloud experience per-
formance degradation with increasing workload concurrency.

As seen from Figure 9, although Entropy Scheduler reduce
a significant amount of failed requests compared with Fair
Scheduler, it still has same performance bottlenecks inhibiting
sub-second query response time which motivates future work
of other optimization options.

Fig. 9. Experiment 1: HTTP request failure rate result

2) Experiment 2: Load Testing with 100,000 Query Re-
quests at the Concurrent Level of 10: Table V compare
the various aspects of load testing result by each scheduler.
Our results throughout the Evaluation section show Entropy
Scheduler outperforms native Fair Scheduler in respect of
QoS satisfaction. On average, in this heterogeneous cluster
experiment, Entropy Scheduler is able to shorten the load
testing completion time by 23%, reduce the average response
time by 23% and standard deviation by 35%, and improve the
overall server throughput by 30% compared with native Fair
Scheduler.

TABLE V
EXPERIMENT 2:LOAD TESTING WITH 100,000 QUERY REQUESTS AT THE

CONCURRENT LEVEL OF 10

Load Testing Result Fair Scheduler Entropy Scheduler
Testing Completion Time (Sec.) 951.52 732.15 ( - 23%)

Throughput (Request/Sec.) 10.51 13.66 ( + 30%)
Number of failed request 75 0

Average Response Time (ms) 951 732 ( - 23%)
Standard Deviation 298.9 194.7 ( - 35%)

Figure 10 indicates that 90% of queries are completed
within 1 second under Entropy Scheduler, while only 50%
under Fair Scheduler. Such result shows that Entropy Sched-
uler is more capable of running CAaaS that providing web
service with QoS guarantee.

C. Discussion
Our experiments on 3 resources with 20 cores is small-scale,

but the experimental results provide intuition for developing
new scheduler based on entropy with large-scale of local active
resources. From experiment 1, we have learned the critical
bottleneck in current Spark Jobs Scheduling causing by han-
dling high concurrent queries when the system complexity is



Fig. 10. Complexity Simulation: Standard Deviation of Workflow Runtime
(MinMin,Numbervm = 5)

increase. Compare with native Spark FAIR scheduler, Entropy
Scheduler reduces the query Failure Rate by around 7%. The
results in Experiment 2 show Entropy Scheduler out-perform
FAIR Scheduler for CAaaS in complex cloud environment,
which will be a starting point for future work, where we hope
to run the low-latency query with better QoS guarantee.

V. CONCLUSION AND FUTURE WORK

The complexity is an important issue that affects QoS satis-
faction bringing additional challenges to scheduling problem.
In the present paper, the negative impact of complexity on
deterministic cloud scheduling system was used to motivate
the new scheduler development based on Entropy Theory to
schedule tasks to resources involving local activity in the real
world cloud. With the results in the paper, we provide both a
concrete solution for a class of complex systems, as well as
a number of ideas valuable for conventional engines running
on the cloud.

Based on this, the paper makes the following contributions:

• ”Local Activity Principle” was first applied on cloud
scheduling system in the literature to find the origin of
complexity in cloud computing.

• We extend the concept of ”Local Activity Principle”
by introducing Degree of Local Activity, which can
be quantitatively measured by resource Entropy for the
purpose of complexity reduction and chaos control.

• We study the negative impact of complexity in cloud
scheduling system through simulation, such as perfor-
mance degradation and QoS guarantees violation.

• We confirm the finding of chaotic behaviour on cloud
scheduling system in some complexity region and provide
a way to classify the system state, ”Order” or ”Chaos”.

• A new Entropy Scheduler was developed based on Re-
source Local Activity Ranking to ensure QoS guaran-
teed on the real world cloud analysis engine - Spark.
Experiments show that our proposed Entropy Scheduler
outperform the native Spark Fair Scheduler for better QoS
satisfaction.

Research on Complexity has just emerged in the area of
cloud scheduling. The understandings of the origin of com-
plexity (Locally-active cloud resource) and impact of complex-
ity (Performance degradation, QoS guarantees violation and
potential Chaotic behaviour) would offer useful information
to find the limitation of current scheduling solutions and
motivate new scheduler development under complex cloud
environment. However, this paper focuses on the resource-
oriented complexity. In the future, complexity raising from
other media (etc. workload, links between resources, outer
environment) are also need to be studied.

REFERENCES

[1] Chua, Leon O. ”Local activity is the origin of complexity.” International
journal of bifurcation and chaos 15.11 (2005): 3435-3456.

[2] Bar-Yam, Yaneer. Dynamics of complex systems. Vol. 213. Reading, MA:
Addison-Wesley, 1997.

[3] Boltzmann, Ludwig. ”The second law of thermodynamics.” Theoretical
physics and philosophical problems. Springer Netherlands, 1974. 13-32.

[4] Plestys, Rimantas, et al. ”The measurement of grid QoS parameters.”
Information Technology Interfaces, 2007. ITI 2007. 29th International
Conference on. IEEE, 2007.

[5] Matthews, Robert AJ. ”The science of Murphy’s law.” PROCEEDINGS-
ROYAL INSTITUTION OF GREAT BRITAIN. Vol. 70. Oxford Univer-
sity Press, 1999.

[6] Zhang, Qi, Lu Cheng, and Raouf Boutaba. ”Cloud computing: state-
of-the-art and research challenges.” Journal of internet services and
applications 1.1 (2010): 7-18.

[7] Chen, Huankai, and Frank Z. Wang. ”Spark on entropy: A reliable &
efficient scheduler for low-latency parallel jobs in heterogeneous cloud.”
Local Computer Networks Conference Workshops (LCN Workshops),
2015 IEEE 40th. IEEE, 2015.

[8] Grassberger, Peter. ”Damage spreading and critical exponents for model
A Ising dynamics.” Physica A: Statistical Mechanics and its Applications
214.4 (1995): 547-559.

[9] Bagnoli, F., R. Rechtman, and S. Ruffo. ”Damage spreading and Lya-
punov exponents in cellular automata.” Physics Letters A 172.1 (1992):
34-38.

[10] Boccaletti, Stefano, et al. ”The control of chaos: theory and applica-
tions.” Physics reports 329.3 (2000): 103-197.

[11] Cambel, Ali Bulent. Applied chaos theory: A paradigm for complexity.
Elsevier, 1992.

[12] Chua, Leon. Memristor, Hodgkin-Huxley, and edge of chaos. Springer
International Publishing, 2014.

[13] Braun, Tracy D., et al. ”A comparison of eleven static heuristics for
mapping a class of independent tasks onto heterogeneous distributed
computing systems.” Journal of Parallel and Distributed computing 61.6
(2001): 810-837.

[14] Bala, Anju, and Inderveer Chana. ”A survey of various workflow
scheduling algorithms in cloud environment.” 2nd National Conference
on Information and Communication Technology (NCICT). 2011.

[15] Iosup, Alexandru, Nezih Yigitbasi, and Dick Epema. ”On the perfor-
mance variability of production cloud services.” Cluster, Cloud and Grid
Computing (CCGrid), 2011 11th IEEE/ACM International Symposium
on. IEEE, 2011.

[16] Schad, Jrg, Jens Dittrich, and Jorge-Arnulfo Quian-Ruiz. ”Runtime
measurements in the cloud: observing, analyzing, and reducing variance.”
Proceedings of the VLDB Endowment 3.1-2 (2010): 460-471.

[17] Herroelen, Willy, and Roel Leus. ”Project scheduling under uncertainty:
Survey and research potentials.” European journal of operational research
165.2 (2005): 289-306.

[18] Tndel, Petter, and Tor A. Johansen. ”Complexity reduction in explicit
linear model predictive control.” Proc. of 15-th IFAC world congress.
2002.

[19] RRNYI, ALFRPED. ”On measures of entropy and information.” (1961).
[20] Zaharia, Matei, et al. ”Spark: Cluster Computing with Working Sets.”

HotCloud 10 (2010): 10-10.
[21] Zaharia, Matei. ”Job scheduling with the fair and capacity schedulers.”

Hadoop Summit 9 (2009).


