-

View metadata, citation and similar papers at core.ac.uk brought to you byf’f CORE

provided by Kent Academic Repository

Kent Academic Repository
Full text document (pdf)

Citation for published version

Arief, Budi and Speirs, Neil (1999) Automatic Generation of Distributed System Simulations
from UML. In: 13th European Simulation Multiconference (ESM'99), 1-4 June, 1999, Warsaw,
Poland.

DOl

Link torecord in KAR
http://kar.kent.ac.uk/58809/

Document Version

Author's Accepted Manuscript

Copyright & reuse

Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all
content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions
for further reuse of content should be sought from the publisher, author or other copyright holder.

Versions of research

The version in the Kent Academic Repository may differ from the final published version.

Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the
published version of record.

Enquiries
For any further enquiries regarding the licence status of this document, please contact:
researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down
information provided at http://kar.kent.ac.uk/contact.html

KAR e

Kent Academic Repository

https://core.ac.uk/display/74208703?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

AUTOMATIC GENERATION OF DISTRIBUTED SYSTEM SIMULATIONS
FROM UML

L.B. Arief and N.A. Speirs
Department of Computing Science
University of Newcastle upon Tyne

Newcastle upon Tyne NE1 7RU
England
E-mail: {L.B.Arief, Neil.Speirs}@ncl.ac.uk

KEYWORDS 1. INTRODUCTION

Model Design, Discrete Simulation, Program Generators,

Process-Oriented, UML Extension. The advancement of computer technology demands new
systems to be built. New requirements are discovered

ABSTRACT and new, more efficient methods are available. There

exist some difficulties though: as the requirements are
Nowadays, an object-oriented approach is commonlynormally presented in a plain language, they often
used for building computer systems. The benefits of thecontain many ambiguities, which in turn may lead to a
object-oriented method, such as scalability, stability andmismatch between the completed system and the system
reusability, make this method suitable for building proposed by the customer.
complex systems, including those in the distributed This is why it is important to carry out the design
system area. A distributed system application usuallyprocess before the commencement of the system’s
needs to satisfy quite stringent requirements such asmplementation. The aim of the design process is to
reliability, availability, security, etc. and the cost of transfer the system’s requirements into a standard
building such an application will be quite high. It is notation that can be understood by both the customer and
therefore desirable to be able to predict the performanceéhe system developer. UML is one of the design methods
of the proposed system before the construction begins. Ithat can be used for this purpose and more explanation
order to do this, it is important to evaluate the about UML can be seen in Section 2.1.
requirements of the new system and translate them into a Since complex systems are usually expensive to
specification (design). The design process helps thémplement, it is often better to predict or estimate the
system developers to understand the requirements bett@erformance they would deliver beforehand. This is
as well as to avoid misconceptions about the systemwhere system modeling and simulation is needed. And
From the specification, a simulation program can be builtbearing in mind that those systems would likely be built
to mimic the execution of the proposed system. Theusing an object-oriented programming language, such as
simulation run provides some data about the states of th€++ (Stroustrup 1997), it is sensible to do the simulation
system and from these data, the performance of thén an object-oriented manner as well. By using an object
system can be predicted and analysed. oriented simulation package, it would be easier to
transfer the simulation program into the actual system,
UML (Unified Modeling Language) is one example of since they would employ the similar concepts. This is
the object-oriented design methods that has been widelgne of the ideas behind the development of the C++SIM
used for specifying system requirements. There are alspackage (Little and McCue 1993; Arjuna 1994) and
some object-oriented simulation languages/packagegonsequently, the work presented here will use C++SIM
available, for example, SIMULA or C++SIM package, for building simulation programs.
but it is often difficult to transform the system’s Building a simulation program is not a trivial task.
requirements into a simulation program without soundThe complexity of the proposed system often makes it
knowledge of some simulation techniques. On top ofdifficult to know where to start and quite often people
that, a new simulation program needs to be built eachneed to build a new simulation from scratch. The system
time for different systems, which can be quite tedious.developer also needs to know about some simulation
The currently available UML tools do not provide a techniques, which is not always the case. These
feature to generate simulation programs automaticallydifficulties can be solved by firstly identifying the
from UML specifications. In this paper, we describe a common components of the simulation and their
tool for constructing simulation programs in a generic characteristics. Then, some interactions among those
way, based on a simple specification (preferably in acomponents can be defined to provide a way to mimic
UML notation) by identifying the simulation components the behaviour of the proposed system. Based on the
and their structure. components and their interactions, it would be possible
to construct a language/syntax which can be parsed to
create simulation programs in the desired simulation
language or environment, which is C++SIM in this case.

The syntax can be modeled to follow the UML notation
(in a textual form), which enables automatic generatior
of the simulation program from UML-like specification.

The simulation components, their interactions and th
syntax used for the simulation specification will be
described further in Section 2.3 and Section 2.4, while
the feasibility of creating a parser for this syntax is
discussed in Section 3. Section 4 contains a descriptio
of related work that has been done in this area and futu
work to be done.

2. FROM DESIGN TO SIMULATION

Class Association
| ClassA o ClassA \
Class Name
attribute: Type = initialValue| Multiplicities
operation(arg list): return type _-l exactly one
many (zero or more)
Generalisation 0.1
n Supertype —- -Class optional (zero or one)
e A numerically specified
| subtype1 | | subtype2 | | Class k> aggregation
Figure 1. The Class Diagram notations

The work involved here includes the use of UML for

specifying the system’s requirements, the construction of

simulation programs using C++SIM package, the
analysis of the commonly used simulation components

and the invention of a syntax/language (using the

simulation components) that can be used to automate the

construction of from UML

specifications.

C++SIM programs

21. UML

UML (Unified Modeling Language) is a language for :
specifying, visualising, constructing and documenting the
artifacts of software systems (Fowler and Scott 1997). It

uses graphical notations to

illustrate a system

specification, and since the specification is usually very
complex, there are several diagrams available to provide

different views of the proposed system:
e Class diagrams

A class diagram represents the static structure of a
system which includes the static elements (objects or
classes) of the system and the static relationships

between them. A&lassrepresents a set of objects with
similar structures dttribute9 and behaviour

(operations). Two or more classes can have a
relationship between them and the relationship can

be:
— anassociation

An association indicates the role a class plays in
the relationship. On top of that, there are some

additional notations available for the association,
such as theamultiplicities (which indicates how
many instances a class can have in
association)aggregation(to show that one class
is a collection of several instances of the other
class), composition(one class is a part of the
other class) andependencyto indicate that one
class depends on the other).

— ageneralisation
This captures the notion dfiheritance it shows

the

Use Case diagrams

It is often important to investigate the relationships

between a system and its users. A use case diagram

describes the functional requirements of a system and

the interaction between theectors (which can be a

human user or another computer system), the system

modeled and thaise-case- a set of sequences of

actions performed by the system that yield an

observable result of value to a particular actor

(Eriksson and Penker 1998).

Interaction diagrams

They show the pattern of interactions between objects

in a system. An interaction consists of messages that

are exchanged among objects in order to achieve the

desired result of an operation. There are two types of

interaction diagrams:

— Sequence diagramshow the interactions in a
time sequence.

— Collaboration diagramsshow the interaction in
term of links between the objects.

State diagrams

Every object has a state which can change if

something (an event) happens to it. The state diagram

describes the states that an object can get into and the

interactions that are involved to change the state.

Activity diagrams

These diagrams represent the activities that are

triggered at the completion of an operation. An

activity diagram is a variant of a state diagram but it

emphasises on the actions, i.e. the activities that are

performed to change the object states and the results

of those activities.

Component diagrams

The structures of the implementations and the source

codes are described in these diagrams. They show the

software components and their dependencies to each

other.

UML has some benefits which make it a popular

the relationship between a more general elemenhoice for a design tool:

(the supertypg and a more specific element (the
subtypé. The subtype inherits the properties of its

supertype and it may have some additional (more*

specific) information.

The notations for the class diagram can be seen in

Figure 1.

It is an industry standard, so its notation will be
understood by many people.

The notations employed by the UML are reasonably
simple yet they are powerful enough for complex
specifications.

UML does not support automatic generation of a

simulation from its specifications. Hence it is desired to

provide a tool to build simulation programs based on a
UML specification. But first, we need to have a look at a

simulation language or environment that can be used to
accommodate the simulation itself.

2.2. C++SIM Package

C++SIM provides a discrete-event, process-based
simulation facilities similar to SIMULA’s (Pooley 1987)
simulation class and libraries. It is written in standard
C++ and since C++ compilers typically generate code
which runs faster than similar SIMULA code, C++SIM
would produce more efficient simulation codes.

The C++SIM environment usexsctive objectsas the
units of simulation. An active object is an object which
has an independent thread of control associated with it,
and it is used to convey the notion of ‘activity’ to the
processes involved in the simulation. Active objects are
created usingthreads (lightweight processes) and in
C++SIM, they are used for:

1. Simulation Scheduler
Simulation processes (see later) are managed by a
schedulerand are placed on scheduler queuéthe
event list). Figure 2 shows how a tree structure is
used to organise the scheduler queue. Each node

represents a process and the nodes at the same level

of the tree have the same simulation time. Here, the
processes are executed inpseudo-parallelmode,

i.e. only one process is activated at any instance of
real time, but the simulation clock is only advanced
when all processes have been executed for the current
instance of simulation time.

Head of Simulation Queue
time t1

time t2 ® *—o ®

time t3

time t4

Figure 2: Simulation Queue

Inactive process are placed into the scheduler
queue and when the currently active process yields
control to the scheduler (either because it has finished
or been placed back onto the scheduler queue), the
scheduler removes the process at the head of the
gueue and activates it (Figure 3). When there is no
process left in the scheduler queue, the simulation
will terminate. Please note that every simulationst
start one scheduler before the simulation can begin.

2. Simulation Processes
C++SIM supports the process-oriented approach
to simulation, i.e. each simulation entity can be

Scheduler Queue

simulation

| process 1

‘ Scheduler
[active
process

Figure 3: Scheduler-Process Interaction

simulation

simulation
process 2 process 3

considered as a separate process. These entities are

represented bgrocess objectghey are C++ objects

which have an independent thread of control
associated with them when they are created.

Each process has a state and at any point during
the simulation, a process canly be inone of the
following states:

active the process has been removed from the

head of the scheduler queue and its actions are

currently being executed.

¢ suspendedit is on the scheduler queue and is
scheduled to be active at a specified simulation
time.

e passive it has been removed from the scheduler
queue and if it is not brought back to the queue by
another process, it will not execute anymore.
terminated it is not on the scheduler queue and
will not take any further part in the simulation.

C++SIM uses the object-oriented approach for

developing the process objects by allowing classes to

inherit the process functionality from a base class
called Process. This class provides all required
operations for the simulation system to control all of
the processes in the simulation. The most important
operations are:

e Activat e: activates a process. This is invoked
by the currently active process which passes the
control to the activated process.

« Passivate: removes the currently active
process from the scheduler queue. Another
process has to put this process back into the queue
if it needs to be scheduled again in the future.

e idl e: returnstrue or false to indicate whether a
process is actually on the scheduler queue or not.

¢ Hol d: reschedules the currently active process to
be active a fixed units of time later.

e Cancel : removes a process from the simulation
gueue or suspends it indefinitely if it is currently
active.

 CurrentTi ne: returns the current simulation
time which is useful for controlling action relative
to a given time period.

Other operations and further explanation on the ones

above are available in (Arjuna 1994).

Any class derived from thBr ocess class must
supply aBody part (member function) within which
its actions must be defined. These actions

characterise the interactions among the processes in It acts as the main thread which initialises the
the simulation and these actions will be executed simulation, obtains the simulation parameters and
when the process to which they belong to is activated. summarises the simulation.

3. Main System Thread In addition to the components above, there are some
This is a special thread which is used to initialise auxiliary components to supplement the simulation
the threads used in the simulation. It is invoked in thesystem:
mai n body of the simulation code and since this 1. OBJECT
thread has the highest priority in the system, it is Itis an instance of a basic type component and during
necessary to suspend it in order to allow other threads a simulation, there will be several, if not many, of
to run. suchoBJECT being created. Through these instances,
the interactions among the simulation components
A more detailed description and some examples of can be achieved.
C++SIM programs can be found in (Little and McCue 2. INPUT
1993) and (Arjuna 1994). From experience, we have The parameters for the simulation are obtained from
observed that there are some basic components needed to the user through thesPuT component which then
construct a simulation program. The next section assigns them to the appropriafRROCESS class
identifies those components which are applicable for (through the constructors).

many simulation programs. 3. RANDOMS
Many aspects of the real system that a simulation
2.3. Components of Simulation program tries to model (passed as simulation

parameters) have properties which correspond to
In general, simulation components can be classified into various distribution functions. C++SIM provides
simulation’sbasic typegwhich represent entities of the several random number generators to accommodate
simulation and are defined as classes in C++SIM) and most of those distributions.
auxiliary componentgwhich are useful for representing 4. STATISTICS
the instances of active objects as well as for specifying ~Statistics collection is an important part of a
simulation parameters and the collection of simulation ~ simulation. It is important to know beforehand what
statistics). The basic types are: are needed to be collected and where/when/how the
1. PROCESS collection should be done. This includes the
A PROCESSstype is used to represent the simulation identification of the simulation statistics variables and
process and different processes can be characterised their types, and some mechanisms for updating their
by assigning different name attributes and values appropriately.
operationsto them. ThePROCES& name is used as
the name of the class constructed in C++SIM to Based on these components, a language can be
represent this process. This class may have membetreated for specifying a simulation in a generic way, as
variables public or private) as its attributes as well as illustrated in Section 2.4.
some member functions for defining its operations.
Since thePROCESStype inherits from thé’r ocess 2.4. SML: A modeling language/syntax for specifying
class (see Section 2.2), it must specify the actions oftsimulation
the Body member function derived from that class in
order to provide interactions with other processes. Aln this section we describe SML (Simulation Modeling
PROCESS class may also have some constructors,Language) which provides a way to specify a simulation
through which the simulation parameters specific for (using the standard components described in Section 2.3)
this process can be passed. The structure used for tig @ notation that is easy to understand. basic
PROCESStype is very similar to the Class Diagram component is declared as a type which must be followed
used in the UML (Figure 1). by a name through which it can be referred. The
2. DATA characteristics of the simulation components can be
DATA is a reduced version of treocEsdype, where specified in theBody part of thePROCESScomponent
it actually acts just as a data storage. It is useful forand are referred to aactions The notation for the
representing certain simulation entities which do notcomponents and the actions of t#RoOCESScomponent
need to be active objects. This type does not inheritare described below:
from thePr ocess class and hence it takes up a lot 1. PROCESEomponent.
less resource®ATA type has a name and attributes ~ The syntax allows the following to be defined:

but it does not have any operation. » constructor: denoted by a hash (‘#') followed by
3. QUEUE the types of parameters passed (separated by a

A gueuing mechanism is a very important concept in comma).

simulation and hence a way of specifying queues (for « member variable: each member variable is

different types of object) must be provided. declared in a separate line which contains the

4. CONTROLLER

simulation’s active objects (i.eOBJEC®) can be
specified as thections of the correspondin@ROCESS
component. There are some actions provided here:

1.

2.
3.

. RANDOMScomponent.

visibility (*+' to indicate public and ‘-’ to indicate

. . DATA Job QUEUE Queue of Job
private) followed by its type and name. _
. .)) +doubl e arrTi ne CONTROLLER Control | er
* member function: the declaration begins with the} OBJECT a of Arrival
visibility, followed by the return type, function PROCESS Arti val OBJECT q of Queue
name and the function parameters (within a pair ol d Body() RANDOVS
of brackets, separated by commas, if any). wait interArr interArr exponential 5
create j of Job executionTime uniform2 4

The lifetime of a process component is usually record arrTime of j
. u ate total Jobs
throughout the simulation run, i.e. its actions ar¢ enqueue ; to q STATI STI S

activate s

repeated many times. Quite often, though, it i$; doubl e total Ti e +now) ->ar Ti me
int totalJ +1
necessary to create a process that runs only once, for int total Done +1

. Pi SS Server }
example, a process that has many instances (create
+voi d Body()

dynamically) which are independent of each other.

This kind of process is supported by SML and i$ Sequeud j tromaq
denoted by adding a keyword “once” after the \ous o forsl pone
process’s name. yplate totalTime
DATA component. y !

The syntax is the same as the that of RR&CESS] o)]
component but it does not allow any membet Figure 4: An example of a specification written in SML
functions or actions to be declared.
QUEUECcomponent.

It is required to specify what type of object the queue
would contain and this can be done by adding an “of”
keyword followed by a named object type. 6
CONTROLLERCOmMponent.

Since aCONTROLLER is always required and its
functionality remains almost the same, it is only 8.
necessary to provide a name for this component. '
OBJECTCOmponent. 9
An OBJECT is used to represent an instance of anlb.
active object used in the simulation. MaQBJECTS

can be declared by giving a different name to each of
them and specifying which active object
instance of.

INPUT component.

This identifies the parameters and whieROCESS
component's member variable they should be
assigned to.

4. activate activates another process.

5. sleep passivates the currently active process or
another active object (if its name is supplied as a
parameter).

. engqueueplaces an object (either BROCESStype or

DATA type) into the tail of a queue.

dequeueremoves an object at the head of the queue.

check passivates the process from which this action

is invoked if there are no more items in the queue.
update updates the value of a statistics variable.
record sets the value of an object's member variable
to the current time (by default) or to a specified

o value/variable (with extra parameters).

itis an ;9 te produces a number randomly, using a

generate p v, g
particular random variable (as declared in the
RANDOMS component).

12.print: useful for debugging, it allows specified

simulation data to be printed during the simulation.

On top of these, there are some actions useful for

. . . specifying more complicated simulations by adding flow
The simulation parameters that are modeled to certalrg:gmrg fe%ture' P y g

distribution functions are declared as random
variables in this component. The distribution
functions supported are: Uniform, Exponential,

Erlang, HyperExponential and Normal distributions. 2. while: allows a loop to repeat the same action(s) until

_SI_LAﬂSTlcscomponent. id . a certain condition is satisfied.
€ STATISTICS component provides a way to specify Each control action is followed by a block of actions

statistics items (and their types) and how they should enclosed in ‘T and ‘T) which determines the approoriate
be updated. Where or when those items should b(sedin | 1) whi nes ppropri

dated i ified in the definiti f tBed ctions for each condition.
up a.te Is specified in the definition of t y Most of the actions above require some parameters,
function of thePROCESSCOmMponent (as part of the

. ion definiti as can be seen in Figure 4.
interaction definition). The concept outlined in this section can be used as a

foundation for building a parser which interprets the
SML specification and transforms it into C++SIM codes.
One example of such a parser is discussed in the
following section.

1. if: specifies a condition that must be satisfied before
certain actions can be performed. It is complemented
by theelsif andelseactions.

The interactions between the instances of the

create declares a new instance of the basic tYPe€3 AN IMPLEMENTATION EXAMPLE
(PROCESSDr DATA component). '

enq terminates the execution of a process. . A tool (parser) written in the Perl scripting language
wait: reschedules the current process to be actlvatquall and Schwartz 1990) is used to transfer the
later after a specified time. specification written in SML into C++SIM program. It is

beyond the scope of this paper to explain this parser in Statistics collection was not a trivial task either,
detail, only the principal concepts will be discussed here.especially on how a particular statistical variable should
The operations can be divided into two parts: be updated. This is due to the fact that some complex
1. Reading the SML specification from a file and calculation might be required to update the values
storing the information into some Perl arrays to be properly.
processed later. Further effort has been made to enable this tool to
2. Generating the header (.h) and implementation (.ccperform an automatic compilation and execution of the
files for the C++SIM program from the data stored in simulation programs generated from the specification.
the array. This involves the creation of the appropriatakefiles
which are needed to compile the generated C++ code (on
Perl has some features which makes it an idealLinux platform), the actual compilation itself and the
language for retrieving data. ltaray data structure is invocation of the resulting simulation program by the
flexible and can be manipulated easily, hence it istool.
suitable for storing information of an arbitrary size. Perl ~ So far, several non trivial simulation programs have
also facilitates the reading and writing from/to files, been generated using this tool, such as the Voltan
which is useful for reading in the specification and (Brasiliero et al. 1996) fault tolerant system and the
writing out the code for that specification. Intelligent Network specification of the British Telecom
We need to design the structures of the arrays use@Arief et al. 1999).
beforehand, which is modeled on the SML component
specifications. There is one array each forHReCESS 4. RELATED AND FUTURE WORK
DATA, QUEUE, OBJECT, INPUT, STATISTICSand RANDOMS
components and these arrays will contain different sets oOther projects, e.g. Rapide (Luckham et al. 1995) and
informatior!. For example, therocEssarray is required DEPEND (Goswami et al. 1997) use similar techniques.
to store the information onall of the PROCESS Rapide provides a set of tools which help in the
components. EachPROCESS component contains a specification, design and testing of software modules and
distinct name (through which the process is identified), aarchitectures; it is composed of five sub-languages. We
list of constructors (if any), a list of member variables are more interested in iBxecutable Languagevhich is
(both public and private) and its member functions used for writing executable modules defined by a set of
(complete with theaction definitions for each function). processes that observe and react to events. DEPEND,
In comparison, theQUEUE array needs to store the meanwhile, is a functional simulation tool which
information on all instances of theUEUE component, provides an integrated design and fault injection
which are just theQUEUE name the type of object this environment for system level dependability analysis.
gueue will contain. Some techniques for reducing the simulation time
Based on these array structures, the informationexplosion are outlined, which are useful for generating
obtained from the SML specification (read from a text accurate simulations in a reasonable time.
file) can be arranged and used properly. This information Note that the work presented here rist a full
needs to be transferred into several C++ classes in ordggrogramming language, as compared to MODSIM |Ii
to build a C++SIM program. Since Perl supports (CACI 1996), for example. Instead, it is a tool that can
subroutines several subroutines can be implemented tobe used to generate simulation programs from
convert the information of different simulation specifications based on the components described in
components (stored in the arrays) into their Section 2.3 and Section 2.4. Theoretically, this syntax
corresponding C++ codes. can be applied for generating simulation program in
There were some difficulties encountered during themany process-oriented simulation environment
development of this simulation tool. We had to bear in (SIMULA, MODSIM lIl, etc.), but a parser must be built
mind that this tool must not contain a too complicatedto perform the transformation. We have provided a
syntax which hinders the prospective users from using itparser/tool for C++SIM environment, as outlined in
in the first place. Section 3. Using this tool, the performance of the system
The most difficult problem was in deciding how the to be built can be analysed, and many scenarios can be
interactions among the simulation processes should bévestigated easily.
administered. This involved the determination of the As a summary, the syntax and tool described in this
actions that can be performed by a process and how thpaper can be used to produce process-oriented simulation
parameters for those actions are to be passed. It waswograms from UML-like specifications. They can be
decided that (for now) the interactions are specified inapplied for any systems which involve queues and
the Body part of eachPROCESScomponent using the servers which can then be easily refined to satisfy more
actions described in Section 2.4. specific simulation requirements. At the moment, the
notation used by SML is not identical to that of UML;
some work is to be done to investigate a way to get the
SML syntax closer to the UML notation.

T There is no need to store much information aboutctherroLLER
component since there is only one controller for each simulation and
its behaviour is similar. A template for tkeNTROLLER component is
therefore provided.

REFERENCES implementation effort on Voltan - a project to built fail-controlled
computing nodes using off the shelf components.

Arief, L.B.; M.C. Little; S.K. Shrivastava; N.A. Speirs and S.M.
Wheater. 1999. “Specifying Distributed System ServiceBT
Technical Journal - Special Iss§épr.).

Arjuna Team. 1994.C++SIM User's Guic. Department of
Computing Science, University of Newcastle upon Tyne (included in
the C++SIM Package, availabletatp://cxxsim.ncl.ac.ul/

Brasiliero, F.V.; P.D. Ezhilchelvan; S.K. Shrivastava; N.A. Speirs and
S. Tao. 1996. “Implementing Fail-Silent Nodes for Distributed

Systems”. IEEE Transactions on Computers, Vol. 45, No. 11 (Nov.):
1226-1238.

CACI Products Company. 199640DSIM lIl: The language for
Object-Oriented Programming (TutorialCACI Products Co. (Dec.).

Douglass, B.P. 199&eal Time UML: Developing Efficient Objects
for Embedded System&ddison-Wesley.

Eriksson, H. and M. Penker. 1998ML Toolkit John Wiley & Sons,
Inc.

Fowler, M. and K. Scott. 199TIML Distilled: Applying the Standard
Object Modeling LanguageAddison-Wesley.

Goswami, K.K.; R. K. lyer and L. Young. 1997. “DEPEND: A
Simulation-Based Environment for System Level Dependability
Analysis”. IEEE Transactions on Computergol. 46, No. 1 (Jan.):
60-74.

Little, M.C. and D.L. McCue. 1993. “Construction and Use of a
Simulation Package in C++", Technical Report 437. Department of
Computing Science, University of Newcastle upon Tyne, England.

(July).

Luckham, D.C.et al 1995. “Specification and Analysis of System
Architecture using Rapide”.I[EEE Transactions on Software
Engineering Vol. 21, No. 4, (Apr.): 336-355.

Mitrani, |. 1982.Simulation Techniques for Discrete Event Systems
Cambridge University Press.

Pooley, R.J. 1987An introduction to Programming in SIMULA.
Blackwell Scientific Publications.

Stroustrup, B. 1997.The C++ Programming LanguageAddison-
Wesley.

Wall, L and R.L. Schwartz. 199®rogramming Perl O'Reilly &
Associates.

BIOGRAPHY

Leonardus B. Arief received his B.Sc. in Computing Science with a 1st
class honours from the University of Newcastle upon Tyne in 1997. He
is currently a Ph.D. student at Newcastle University with a scholarship
from the Department of Computing Science. His research interests
include distributed system, simulation, specification languages, and
automatic code generation from software specification.

Neil Speirs obtained a 1st class Honours degree in Mathematics from
the University of Newcastle upon Tyne in 1980 and a doctorate in
Theoretical Physics from the University of Durham in 1985. For 2
years he worked for Sagesoft Ltd. writing many commercial packages.
For two years he worked for Mari Applied Microelectronics Ltd.,
where he was a project leader on the Esprit Projects Concordia and
Delta-4, both of which were concerned with the design and
implementation of Fault-Tolerant Distributed Computer systems. Since
1987, he has been a lecturer in Computing Science at the University of
Newcastle upon Tyne. His main research interests are in fault-
tolerance, reliability and distributed systems. He was the deputy
project manager on the Esprit Delta-4 project. He has since led the

