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Abstract

We show how the two-dimensional Dirac oscillator model can describe some properties of

electrons in graphene. This model explains the origin of the left-handed chirality observed for

charge carriers in monolayer and bilayer graphene. The relativistic dispersion relation observed

for monolayer graphene is obtained directly from the energy spectrum, while the parabolic

dispersion relation observed for the case of bilayer graphene is obtained in the non-relativistic

limit. Additionally, if an external magnetic field is applied, the unusual Landau-level spectrum for

monolayer graphene is obtained, but for bilayer graphene the model predicts the existence of a mag-

netic field-dependent gap. Finally, this model also leads to the existence of a chiral phase transition.
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The three-dimensional system defined by the Dirac equation in the presence of a linear

vector potential of the form: imωβ~α · ~r, where m is the fermion mass, ω an oscillator

frequency, ~r the vector distance of the fermion from the origin of the potential, and ~α and

β are the four Dirac matrices, has been called the Dirac oscillator [1] because it behaves

in the non-relativistic limit as an harmonic oscillator with a strong spin-orbit coupling [2].

Different physics and mathematical aspects of this system have been widely studied in one,

two and three dimensions [3]-[24]. Additionally, this system has been used in quantum

optics to study properties of the (Anti)-Jaynes-Cummings model [25]-[31]. After more than

20 years of theoretical activity focussed in the characterization of the Dirac oscillator, just

recently a first experimental realization of this system was developed [32]. However, until

now the Dirac oscillator does not describe a known physical system [32].

On the other hand, the study of the electronic properties for monolayer and bilayer

graphene has been of huge interest in recent years (see, for instance,[33–35] and references

therein). It has been observed that electric charge carriers of monolayer graphene behave like

massless relativistic fermions that obey a linear dispersion relation [33, 34], while the electric

charge carriers for the case of bilayer graphene behave like massive non-relativistic fermions

that obey a quadratic dispersion relation [34, 35]. For both systems, the explanation of

the origin of these dispersion relations comes from the traditional tight-binding approach.

However, the tight-binding Hamiltonians for electrons considering that electrons can hope

to both nearest- and next-nearest-neighbor are different for both systems [33–35], thus this

approach leads to different explanations of the origin of the distinct dispersion relations are

of the two systems. In addition to the different behaviour of the energy spectra, it is difficult

to understand how the massive electric charge carriers have a defined left-handed chirality

for the case of bilayer graphene.

The main goal of this letter is to show for the first time that the Dirac oscillator can

describe a naturally occurring physical system. Specifically, this work shows that the (2+1)-

dimensional Dirac oscillator can be used to describe the dynamics of the charge carriers

in graphene, and hence its electronic properties. To do this, we propose a model in which

the electromagnetic interaction of the medium over charge carriers of graphene is described

by means of a linear vector potential in the Dirac equation. Solution of the model shows

that the same formalism can describe the linear relativistic dispersion relation for massless

charge carriers of monolayer graphene and the parabolic dispersion relation for massive
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charge carriers of bilayer graphene. The linear term that appears in the Dirac oscillator

model leads directly to the left-handed chirality observed in the charge carriers for both

monolayer and bilayer graphene. We also show that if an external and uniform magnetic

field is present in the system, the model describes the unusual Landau levels observed for

the case of monolayer graphene, while for bilayer graphene it predicts the existence of a

magnetic field-dependent gap. Finally, we show that this model predicts that changing the

strength of the magnetic field must lead to the existence of a chiral quantum phase transition

for the system.

We propose a Dirac oscillator in (2+1) dimensions for which the linear potential has the

form: ieBIσz~σ · ~r/4, where ~r = (x, y), αx = σx, αy = σy, β = σz, e is the electrical charge of

electron and BI is an internal uniform effective magnetic field which is perpendicular to the

plane ( ~BI = BI êz) and is assumed to originate in an effective form from the motion of the

charge carriers relative to the planar hexagonal arrangement of carbon atoms. The model

is based on the premise that the dynamics of charge carriers in graphene can be effectively

described via this two-dimensional Dirac oscillator

i~
∂

∂t
| ψ >=

[

vf

2
∑

i=1

σj

(

pj − i
eBI

4
σzrj

)

+ σzmv
2
f

]

| ψ >, (1)

where vf is the Fermi speed of the charge carriers, m is the effective mass, pj are the

components of the linear momentum, rj are the spatial coordinates in the (x, y) plane

with respect to the origin of the potential, σj are the non-diagonal Pauli matrices, σz is

the diagonal Pauli matrix. The assumption about the origin of BI can be understood in

analogous way to the internal magnetic field that determines the spin-orbit coupling of the

hydrogen atom, which arises from the relative motion of the electron relative to the proton.

It is well known that for the case of monolayer graphene in a perpendicular magnetic field

[33], the Hamiltonian Hml = vf [τσx(px − ieBIσzx/4) + σy(py − ieBIσzy/4)] describes the

single-particle states around one of the two equivalent corners of the first Brillouin zone.

τ = ±1 determines which corner of the Brillouin zone is considered [36]. This fact means

that we are considering in Eq. (1) the corner defined by τ = 1.

For the case of monolayer graphene, the charge carriers are considered massless (m = 0)

and the mass term in Eq. (1) does not exist. The spinor | ψ > is written as | ψ >= (| ψ1 >, |
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ψ2 >)
T . Substituting this spinor in Eq. (1), we obtain the following two coupled equations

(E −mv2f ) | ψ1 > = vf

[

(px + i
~ω2

v2f
x)− i(py + i

~ω2

v2f
y)

]

| ψ2 >, (2)

(E +mv2f ) | ψ2 > = vf

[

(px − i
~ω2

v2f
x) + i(py − i

~ω2

v2f
y)

]

| ψ1 >, (3)

where ω2 = v2f/(4l
2
B), with l

2
B = ~/(eBI). The quantity lB represents a new length scale in

the problem associated to the quantity eBI that appears in the linear potential. In order to

find the solutions of Eqs. (2) and (3), we introduce the right-handed chiral annihilation and

creation operators given by ar =
1√
2
(ax − iay), a

†
r =

1√
2
(a†x + ia†y) and the left-handed chiral

annihilation and creation operators given by al =
1√
2
(ax+ iay), a

†
l =

1√
2
(a†x− ia†y), where ax,

ay, a
†
x and a†y are the usual annihilation and creation operators of the harmonic oscillator

defined respectively as aj = 1√
2

(

1

∆
rj + i∆

~
pj
)

and a†j = 1√
2

(

1

∆
rj − i∆

~
pj
)

, with ∆ = vf/ω

representing the ground-state oscillator width. Because the orbital angular momentum Lz

is written in terms of the chiral annihilation and creation operators as Lz = ~(a†rar − a†lal),

then a†r and a
†
l are interpreted as the operators that create a right or left quantum of angular

momentum, respectively [25]. After expressing rj and pj in terms of operators aj and a†j,

the Eqs. (2) and (3) lead to

| ψ1 > = i
2~ω

E −mv2f
a†l | ψ2 >, (4)

| ψ2 > = −i
2~ω

E +mv2f
al | ψ1 >, (5)

where only the left-handed chiral operators are present [25]. If we substitute Eqs. (4) and

(5) in (1), the Hamiltonian describing the dynamics of charge carriers in graphene can be

written as

H1 = ~(glσ
+a†l + g∗l σ

−al) +mv2fσz , (6)

with σ+ and σ− representing the spin raising and lowering operators and gl = i2ω =

ivf
√

eBI/~. The two-dimensional Hamiltonian H1 describes a massive charge carrier of

left-handed chirality.

From Eqs. (4) and (5), it is possible to write the associated Klein-Gordon equations and

then to obtain the energy spectrum for charge carriers of left-handed chirality

Enl
= ±

√

~2k2v2f

(

nl +
1

2
∓

1

2

)

+m2v4f , (7)
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with nl = 0, 1, 2, . . . and k2 = eBI/~. For the case in which the effective mass of charge

carriers vanishes (m = 0), the energy spectrum (7) is written as

Enl
= ±~kvf

√

nl +
1

2
∓

1

2
, (8)

which corresponds to the relativistic dispersion relation depending linearly on the momentum

~k and which is consistent with the well known result for charge carriers in monolayer

graphene [33, 34]. On the other hand, for the case where the effective mass of the charge

carriers is non-zero (m 6= 0), the non-relativistic limit of (7) yields

Enr
nl

= ±

√

~2k2v2f

(

nl +
1

2
∓

1

2

)

+m2v4f −mv2f . (9)

For this limit, it is valid to write mvf ≫ ~k and then the energy spectrum for charge carriers

can be written as

E+
nl
=

~
2k2

2m

(

nl +
1

2
∓

1

2

)

, (10)

which corresponds to the non-relativistic dispersion relation depending parabolically on the

momentum, which is observed for charge carriers in bilayer graphene [37]. We note that,

within the same theoretical formalism, we have been able to obtain the very well known

dispersion relations of charge carriers in monolayer and bilayer graphene, that are usually

obtained starting from the standard nearest-neighbour approximation using two different

tight-binding Hamiltonians [33–35]. Because the linear term of the Dirac oscillator leads

directly to a description of a fermion with an intrinsic left-handed chirality, which is only

present in the two-dimensional Dirac oscillator [25], the charge carriers of graphene describe

by Eq. (1) are left-handed. In this sense, the Dirac oscillator described by equation (1)

can explain the left-handed chirality observe for massless and massive charge carriers in

graphene.

Next we consider the effect of an external uniform magnetic field on the system. The

dynamics of the charge carriers of graphene are then described by

i~
∂

∂t
| ψ >=

[

vf

2
∑

i=1

σj

(

pj − i
eBI

4
σzrj − eAj

)

+ σzmv
2
f

]

| ψ >, (11)

where we are considering the corner of the first Brillouin zone defined by τ = 1 [36]. We

observe that for the case of a vanishing magnetic field (Aj = 0) in Eq. (11), then the Eq. (1)

5



is recovered. In order to understand the physics described by Eq. (11), we assume initially

that the linear potential in vanishes. This fact means we are considering an charge carriers

with mass in presence of an external magnetic field. i.e.

i~
∂

∂t
| ψ >=

[

vf

2
∑

i=1

σj (pj − eAj) + σzmv
2
f

]

| ψ > . (12)

Substituting the spinor | ψ >= (| ψ1 >, | ψ2 >)
T in Eq. (12), yields following two coupling

equations:

(E −mv2f ) | ψ1 > = vf [(px − eAx)− i(py − eAy)] | ψ2 >, (13)

(E +mv2f ) | ψ2 > = vf [(px − eAx) + i(py − eAy)] | ψ1 >, (14)

The external magnetic field, which is perpendicular to the plane, is written as ~B = −Bêz.

The vector potential ~A then has the form ~A = (Ax, Ay, Az) =
B
2
(y,−x, 0). With this vector

potential, Eqs. (13) and (14) become

(E −mv2f ) | ψ1 > = vf [(px − i
~ω̃2

v2f
x)− i(py − i

~ω̃2

v2f
y)] | ψ2 >, (15)

(E +mv2f ) | ψ1 > = vf [(px + i
~ω̃2

v2f
x) + i(py + i

~ω̃2

v2f
y)] | ψ2 >, (16)

where ω̃2 = ω2
c/2, with the cyclotron frequency ωc defined by ω2

c = eBv2f/~. To solve Eqs.

(15) and (16), we again introduce the right- and left-handed chiral annihilation and creation

operators [26]. Then we write rj and pj in terms of operators ãj and ã
†
j , from Eqs. (15) and

(16) we obtain

| ψ1 > = −i
2~ω̃

E −mv2f
ãr | ψ2 >, (17)

| ψ2 > = i
2~ω̃

E +mv2f
ã†r | ψ1 > . (18)

In contrast to Eqs. (4) and (5), where only the left-handed chiral operators appear, here

in Eqs. (17) and (18) only the right-handed chiral operators are present[26]. Substituting

Eqs. (17) and (18) into Eq. (12), it is possible to write the Hamiltonian of this system in

the following form

H2 = −~(g̃rσ
+ãr + g̃∗rσ

−ã†r) +mv2fσz , (19)
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with g̃r = 2iω̃ = ivf
√

2eB/~. The Hamiltonian H2 describes a massive electron of right-

handed chirality. From Eqs. (17) and (18), we obtain the energy spectrum given by

Enr
= ±

√

2eB~v2f

(

nr +
1

2
±

1

2

)

+m2v4f , (20)

with nr = 0, 1, 2, . . .. For the case of massless charge carriers the energy spectrum (20) is

written as

Enr
= ±

√

2eB~v2f

(

nr +
1

2
±

1

2

)

, (21)

which corresponds to the well-known unusual Landau-level spectrum of monolayer graphene

[38–40]. We note that the expression (21) has exactly the same form as the Landau levels

given by expression (1) of the reference [41]. On the other hand, for the case m 6= 0, the

non-relativistic limit of (20) leads to the following result

En−r
nr

= ±

√

2eB~v2f

(

nr +
1

2
±

1

2

)

+m2v4f −mv2f , (22)

which corresponds to the Landau levels for bilayer graphene. This Landau-level spectrum

implies that one of the levels obtained for nr = 0 has a B-dependent gap of the form

∆En−r
0 = −δ +

√

γB + δ2, (23)

where δ = 2mv2f and γ = 8ev2f~. This result has certain analogy with the experimental gap

reported in [42]. The non-relativistic limit of (20) implies that δ2 ≫ γB, thus the Landau

levels can be written as En−r
nr

= eB/~(nr +
1

2
± 1

2
) and the B-dependent gap obtained for

one of the levels associated to nr = 0 is written as ∆En−r
0 = 2eB~/m. We note that the

charge carriers described by Eq. (12) have right-handed chirality.

For the full problem described by Eq. (11), we consider simultaneously the two systems

described by Hamiltonians (6) and (19). The Hamiltonian that describes the dynamics of

charge carriers of graphene in presence of a uniform magnetic field is given by

H = Hl −Hr +mv2fσz, (24)

where the left-handed Hamiltonian Hl is given by

Hl = ~(glσ
+a†l + g∗l σ

−al), (25)
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with gl = ivf
√

eBI/~, and the right-handed Hamiltonian Hr is given by

Hr = ~(g̃rσ
+ãr + g̃∗rσ

−ã†r), (26)

with g̃r = ivf
√

2eB/~.

For the case of a weak external field B ≪ BI , in a first approximation where corrections

of order O(B/BI) are neglected, Eq. (11) leads to the energy spectrum given by (7). On the

other hand, for the case of a strong external magnetic field B ≫ BI , neglecting corrections

of order O(BI/B), the Eq. (11) leads to the energy spectrum of (20). This means that in

the limit B → 0 the charge carriers have left-handed chirality, while for the limit B → ∞

they have right-handed chirality. In other words, changing the strength of the external

magnetic field B must lead to the existence of a chiral quantum phase transition for the

system described by Eq. (11). A complete characterization of this kind of chiral phase

transition, using the two-dimensional Dirac oscillator couplings in the context of (Anti)

Jaynes-Cummings models, is performed in reference [28] and the signatures of a possible

quantum phase transition for the case of a graphene quantum dot model in a magnetic field

has been reported in [43].

Without considering the presence of the external magnetic field, for the case of massless

charge carriers (monolayer graphene), the left-handed hamiltonian is given by (26), while

for the case of massive charge carriers (bilayer graphene), the left-handed hamiltonian is

given by (6). Both these Hamiltonians can be described within a tight-binding model as

shown in [32], for the one-dimensional Dirac oscillator. This fact means that the Dirac

oscillator description, that we have introduced in this work, is consistent with the tight-

binding approximation that traditionally has been used to describe the electronic structure

of graphene [38–40].

The results that we have presented in this letter have shown that the two-dimensional

Dirac oscillator describes consistently some electronic properties of graphene. This is the first

time that the Dirac oscillator describes a very well know physics system. With the present

model, it has been possible to explain that the left-handed chirality of charge carriers in

monolayer and bilayer graphene is originated by the linear potential that appears in the Dirac

oscillator model. This linear potential describes the interactions of the medium over the

charge carriers. We have interpreted the parameter BI that appears in the linear potential as

an internal field acting over the charge carriers, which is assumed to originate in an effective
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form from the motion of the charge carriers relative to the planar hexagonal arrangement

of carbon atoms. This model leads consistently to the very well known dispersion relations

of charge carriers in monolayer and bilayer graphene which traditionally are obtained using

a tight-binding approximation. For the case in which an external and uniform magnetic

field B is presented in a perpedicular form over the layers, the well known Landau level

spectrum for the monolayer graphene is obtained. For the case of bilayer graphene, the

model predicts the existence of a B-dependent gap. Finally, this model also predicts that

changing the strength of B must lead to the existence of a chiral quantum phase transition

for the system.

C. Quimbay thanks the School of Physical Sciences at the University of Kent, Canterbury,

for their hospitality during his visit there.
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