
Kent Academic Repository
Full text document (pdf)

Copyright & reuse

Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all

content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions

for further reuse of content should be sought from the publisher, author or other copyright holder.

Versions of research

The version in the Kent Academic Repository may differ from the final published version.

Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the

published version of record.

Enquiries

For any further enquiries regarding the licence status of this document, please contact:

researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down

information provided at http://kar.kent.ac.uk/contact.html

Citation for published version

Arief, Budi and Iliasov, Alexei and Romanovsky, Alexander (2007) Rigorous Development of
Ambient Campus Applications that can Recover from Errors. In: Workshop on Methods, Models
and Tools for Fault-Tolerance (MeMoT 2007), at the International Conference on Integrated Formal
Methods 2007 (IFM 2007), 3 July 2007.

DOI

Link to record in KAR

http://kar.kent.ac.uk/58721/

Document Version

Author's Accepted Manuscript

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kent Academic Repository

https://core.ac.uk/display/74208630?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Rigorous Development of Ambient Campus

Applications that can Recover from Errors

Budi Arief, Alexei Iliasov, and Alexander Romanovsky

School of Computing Science, University of Newcastle upon Tyne,
Newcastle upon Tyne NE1 7RU, England.

{L.B.Arief, Alexei.Iliasov, Alexander.Romanovsky}@newcastle.ac.uk

Abstract. In this paper, we discuss a new method for developing fault-
tolerant ambient applications. It supports stepwise rigorous development
producing a well structured design and resulting in disciplined integra-
tion of error recovery measures into the resulting implementation.

1 Introduction

Ambient campus is a loosely defined term to describe ambient intelligence (AmI)1

systems in an educational (university campus) setting. As such, ambient cam-
pus applications are tailored to support activities typically found in the campus
domain, including – among others, delivering lectures, organising meetings, and
promoting collaborations among researches and students.

This paper presents our work in the development of the ambient campus
case study within the RODIN project [1]. This EU-funded project, led by the
School of Computing Science of Newcastle University, has an objective to create
a methodology and supporting open tool platform for the cost-effective rigor-
ous development of dependable complex software systems and services. In the
RODIN project, the ambient campus case study acts as one of the research
drivers, where we are investigating how to use formal methods combined with
advanced fault-tolerance techniques in developing highly dependable AmI ap-
plications. In particular, we are developing modelling and design templates for
fault-tolerant, adaptable and reconfigurable software. This case study consists
of several working ambient applications (referred to as scenarios) for supporting
various educational and research activities.

Software developed for AmI applications need to operate in an unstable envi-
ronment susceptible to various errors and unexpected changes (such as network
disconnection and re-connection) as well as delivering context-aware services.
These applications tend to rely on the mobile agent paradigm, which supports
system-structuring using decentralised and distributed entities (agents) working
together in order to achieve their individual aims. Multi-agent applications pose

1 Ambient intelligence is a concept developed by the Information Society Technologies
Advisory Group (ISTAG) to the European Commission’s DG Information Society
and the Media, where humans are surrounded by unobtrusive computing and net-
working technology to assist them in their activities.

many challenges due to their openness, the inherent autonomy of their compo-
nents (i.e. the agents), the asynchrony and anonymity of the agent communica-
tion, and the specific types of faults they need to be resilient to. To address these
issues, we developed a framework called Cama (Context-Aware Mobile Agents)
[2], which encourages disciplined development of open fault-tolerant mobile agent
applications by supporting a set of abstractions ensuring exception handling, sys-
tem structuring and openness. These abstractions are backed by an effective and
easy-to-use middleware allowing high system scalability and guaranteeing agent
compatibility. More details on Cama and its abstractions can be found in [2–4].
The rest of this paper outlines our case study scenarios (Section 2), discusses
important fault-tolerance issues in AmI systems (Section 3), and describes our
design approach (Section 4).

2 Case Study Scenarios

We have so far implemented two scenarios for our ambient campus case study
using the Cama framework as the core component of the applications. The first
scenario (ambient lecture) deals with the activities carried out by the teacher and
the students during a lecture – such as questions and answers, and group work
among the students – through various mobile devices (PDAs and smartphones).
The second scenario (presentation assistant) covers the activities involved in
giving or attending a presentation/seminar. The presenter uses a PDA to control
the slides during their presentation and they may receive ’quiet’ questions on
the topic displayed on the slide from the audience. Each member of the audience
will have the current slide displayed on their PDA, which also provides a feature
to type in a question relevant to that slide.

We are now working on a more challenging scenario which involves greater
agent mobility as well as location specific services. Agents may move physically
among multiple locations (rooms), and depending on the location, different ser-
vices will be provided.

In this scenario – we call it student induction assistant scenario – we have
new students visiting the university campus for the first time. They need to
register to various university departments and services, which are spread on
many locations on campus, but they do not want to spend too much time looking
for offices and standing in queues. They much prefer spending their time getting
to know other students and socialising. So they delegate the registration process
to their personalised software agent, which then visits virtual offices of various
university departments and institutions, obtains the necessary information for
the registration, and makes decisions based on the student’s preferences. The
agent also records pieces of information collected during this process so that the
students can have all the details about their registration.

Unfortunately, not all the registration stages can be handled automatically.
Certain steps require personal involvement of the student, for example, signing
paperwork in the financial department and manually handling the registration
in some of the departments which do not provide fully-featured agent able to

handle the registration automatically. To help the students to go through the rest
of registration process, their software agent creates an optimal plan for visiting
different university departments and even arranges appointments when needed.

Walking around on the university campus, these new students pass through
ambients – special locations providing context-sensitive services (see Figure 1).
An ambient has sensors detecting the presence of a student and a means of
communicating to the student. An ambient gets additional information about
students nearby by talking to their software agent. Ambients help students to
navigate within the campus, provide information on campus events and activi-
ties, and assist them with the registration process. The ambients infrastructure
can also be used to guide students to safety in case of emergency, such as fire.

Fig. 1. Student induction assistant scenario: the dots represent free roaming student
agents; the cylinders are static infrastructure agents (equipped with detection sensors);
and the ovals represent ambients – areas where roaming agents can get connection and
location-specific services.

3 Challenges in Developing Fault-Tolerance Ambient

Intelligence Systems

Developing fault-tolerant ambient intelligence systems is not a trivial task. There
are many challenging factors to consider; some of the most important ones are:

– Decentralisation and homogeneity
Multi-agent systems are composed of a number of independent computing
nodes. However, while traditional distributed systems are orchestrated – ex-
plicitly, by a dedicated entity, or implicitly, through an implemented al-
gorithm – in order to solve a common task, agents in an ambient system
decide independently to collaborate in order to achieve their individual goals.
In other words, ambient systems do not have inherent hierarchical organisa-
tion. Typically, individual agents are not linked by any relations and they
may not have the same privileges, rights or capabilities.

– Weak Communication Mechanisms
Agent systems commonly employ communication mechanisms which provide

very weak, if any, delivery and ordering guarantees. This is important from
the implementation point of view as agent systems are often deployed on
wearable computing platforms with limited processing power, and they tend
to use unreliable wireless networks for communication means. This makes
it difficult to distinguish between a crash of an agent, a delay in a mes-
sage delivery and other similar problems caused by network delay. Thus, a
recovery mechanism should not attempt to make a distinction between net-
work failures and agent crashes unless there is a support for this from the
communication mechanism.

– Autonomy
During its lifetime, an agent usually communicates with a large number of
other agents, which are developed in a decentralised manner by independent
developers. This is very different from the situation in classical distributed
system where all the system components are part of a closed system and thus
fully trusted. Each agent participating in a multi-agent application tries to
achieve its own goal. This may lead to a situation where some agents may
have conflicting goals. From recovery viewpoint, this means that no single
agent should be given an unfair advantage. Any scenarios where an agent
controls or prescribes a recovery process to another agent must be avoided.

– Anonymity
Most agent systems employ anonymous communication where agents do not
have to disclose their names or identity to other agents. This has a number
of benefits: agents do not have to learn the names of other agents prior to
communication; there is no need to create fresh names nor to ensure naming
consistency in the presence of migration; and it is easy to implement group
communication. Anonymity is also an important security feature - no one can
sense an agent’s presence until it produces a message or an event. It is also
harder to tell which messages are produced by which agent. For a recovery
mechanism, anonymity means that we are not able to explicitly address
agents which must be involved in the recovery. It may even be impossible
to discover the number of agents that must be involved. Even though it is
straightforward to implement an exchange for agents names, its impact on
agent security and the cost of maintaining consistency usually outweigh the
benefits of having named-agents.

– Message Context
In sequential systems, recovery actions are attached to certain regions, ob-
jects or classes which define a context for a recovery procedure. There is no
obvious counterpart for these structuring units in asynchronously commu-
nicating agents. Agent produces messages in a certain order, each being a
result of some calculations. When the data sent along with a message cause
an exception in an agent, the agent may want to notify the original message
producer, for example, by sending an exception. When an exception arrives
at the message producer (which is believed to be the source of the problem),
it is possible that the agent has proceeded with other calculations and the
context in which the message was produced is already destroyed. In addition,
an agent can disappear due to migration or termination.

– Message Semantics
In a distributed system developed in a centralised manner, semantics of
values passed between system components is fixed at the time of the system
design and implementation. In an open agent system, implementation is
decentralised and thus the message semantics must be defined at the stage
of a multi-agent application design. If an agent is allowed to send exceptions,
the list of exceptions and their semantics must also be defined at the level of
an abstract application model. For a recovery mechanism, this means that
each agent has to deal only with the exception types it can understand,
which usually means having a list of predefined exceptions.

We have to take these issues into account when designing and developing
fault-tolerant AmI systems. In the following section, we outline the design ap-
proach that can be used for constructing ambient campus case study scenarios.

4 Design Approach

In our previous work, we have developed several case study scenarios [5, 6, 4].
In these scenarios, we focused on the implementation aspects and the general
problems of applying formal methods in ambients systems. In our new case study
scenario (student induction assistant scenario – see Section 2), we shift our focus
from implementation to design to validate our formal development approach.

The new scenario will be modelled using Event-B formalism [7]. Our intention
is to have a fairly detailed model which covers issues such as communication,
networking failures, proactive recovery, liveness, termination, and migration.

4.1 Overview

We are using design patterns, refinement patterns, and mobility modelling in
developing the student induction assistant scenario.

Design patterns are described using a natural language and act as guide in
formal development. Typically, design patterns are narrowly focused and can be
applied only within a given problem domain. We have developed a set of design
patterns that are specific for ambient systems [8]. These patterns are inspired
by the architecture of the Cama system and help us to formally design a system
which can be implemented on top of the Cama framework.

Refinement patterns are rules describing a transformation of an abstract
model into a more concrete one. These patterns are specified in an unambiguous
form and can be mechanically applied using a special tool, which is a plugin to
the RODIN Event-B platform [7, 1]. Some refinement patterns can be seen as a
possible implementation of the design patterns. Others are simply useful for the
transformation steps, which we believe are common in this kind of systems.

We are planning to apply the Mobility Plugin [9] for verification of dynamic
properties, such as liveness, termination, and mobility-related properties. Using
this plugin, we are able to extend the Event-B model with process algebraic

description of dynamic behaviour, agent composition and communication sce-
narios. The plugin handles additional proof-obligation using a built-in model
checker. It also includes an animator for visual interactive execution of formal
models.

4.2 Application to the Scenario

To proceed any further, we need to agree on same major design principles, iden-
tify major challenges and outline the strategy for finding the solution.

To better understand the scenario, we apply the agent metaphor. The agent
metaphor is a way to reason about systems (not necessarily information systems)
by decomposing it into agents and agent subsystems. In this paper, we use term
agent to refer to a component with independent thread of control and state and
the term agent system to refer to a system of cooperative agents.

From agent systems’ viewpoint, the scenario is composed of the following
three major parts: physical university campus, virtual university campus and
ambients. In physical university campus, there are students and university em-
ployees. Virtual campus is populated with student agents and university agents.
Ambients typically have a single controlling agent and a number of visiting
agents. These systems are not isolated, they interact in a complex manner and
information can flow from one part into another.

However, since we are building a distributed system, it is important to get an
implementation as a set of independent but cooperative components (agents).
To achieve this, we apply the following design patterns:

agent decomposition During the design, we will gradually introduce more
agents by replacing abstract agents with two or more concrete agents.

super agent It is often hard to make a transition from an abstract agent to a
set of autonomous agents. What before was a simple centralised algorithm
in a set of agents must now be implemented in a distributed manner. To aid
this transition, we use super agent abstraction, which controls some aspects
of the behaviour of the associated agents. Super agent must be gradually
removed during refinement as it is unimplementable.

scoping Our system has three clearly distinguishable parts: physical campus,
virtual campus and ambients. We want to isolate these subsystems as much
as possible. To do this, we use the scoping mechanism, which temporarily
isolates cooperating agents. This is a way to achieve the required system
decomposition. The isolation properties of the scoping mechanism also make
it possible to attempt autonomous recovery of a subsystem.

orthogonal composition As mentioned above, the different parts of our sce-
nario are actually interlinked in a complex manner. To model this connec-
tions, we use the orthogonal composition pattern. In orthogonal composition,
two systems are connected by one or more shared agents. Hence, information
from one system into another can flow only through the agent states. We
will try to constrain this flow as much as possible in order to obtain to a
more robust system.

locations definition To help students and student agents navigate within the
physical campus and the virtual campus, we define location as places asso-
ciated with a particular agent type.

decomposition into roles The end results of system design is a set of agent
roles. To obtain role specifications, we decompose scopes into a set of roles.

4.3 Fault-Tolerance Mechanism

We are going to address the fault-tolerance issues at three levels: architectural,
modelling and implementation.

At the architectural level, we use the agent metaphor to introduce fault-
tolerance properties such as redundancy (spawning an agent copy to survive an
agent crash) and diversity (having the same service provided by independently
implemented agents).

At the modelling level, we apply the assumptions mechanism [10] along with
FT-specific design patterns. The assumptions mechanism helps us to build more
robust agent applications and it has two different styles. In the first one, it is
assumed that certain undesirable events are not going to happen during some
activity. If such an event happens, the whole activity is aborted. In the second
style, through negotiations, agents agree to temporarily restrict their behaviour
and cooperate in a simpler environment. Design patterns help developers to in-
troduce some common fault-tolerance techniques when modelling an agent sys-
tem. These techniques range from abstract system-level patterns to very specific
agent-level patterns dealing with specific faults.

Early on, we have extended the blackboard communication pattern [11] with
nested scopes and exception propagation [12]. These two extensions are essen-
tially the implementation techniques for recovery actions introduced during the
modelling stage. We also rely extensively on reactive agent architecture. This has
two immediate benefits: its implementation style matches the modelling style of
Event-B, and the recovery of multi-threaded agents becomes similar to that of
the asynchronous reactive architecture.

5 Conclusion

This paper provides an outline of the work that we have carried out in developing
fault-tolerant ambient applications. We use design patterns, refinement patterns,
and mobility modelling during the design process. By using these techniques, we
aim to validate the formal development approach that we take in developing
more robust and fault-tolerant ambient applications.

We plan to demonstrate our approach through an ambient campus student
induction assistant scenario. We are currently developing an agent-based system
for this scenario, using the Cama framework and middleware [2] that we have
previously developed as the centre piece of the system. This will be augmented
with sensors for providing location specific services, as well as fault-tolerance
mechanism at the architectural, modelling and implementation levels.

6 Acknowledgements

This work is supported by the IST RODIN Project [1]. A. Iliasov is partially
supported by the ORS award (UK).

References

1. Rodin: Rigorous Open Development Environment for Complex Systems. IST FP6
STREP project, http://rodin.cs.ncl.ac.uk/ (Last accessed: 17 May 2007)

2. Arief, B., Iliasov, A., Romanovsky, A.: On Developing Open Mobile Fault Tolerant
Agent Systems. In Choren, R., et al., eds.: SELMAS 2006, LNCS 4408. Springer-
Verlag (2007) 21–40

3. Iliasov, A.: Implementation of Cama Middleware.
http://sourceforge.net/projects/cama (Last accessed: 17 May 2007)

4. Iliasov, A., Romanovsky, A., Arief, B., Laibinis, L., Troubitsyna, E.: On Rigorous
Design and Implementation of Fault Tolerant Ambient Systems. Technical report,
CS-TR-993, School of Computing Science, Newcastle University (Dec 2006)

5. Arief, B., Coleman, J., Hall, A., Hilton, A., Iliasov, A., Johnson, I., Jones, C.,
Laibinis, L., Leppanen, S., Oliver, I., Romanovsky, A., Snook, C., Troubitsyna,
E., Ziegler, J.: Rodin Deliverable D4: Traceable Requirements Document for Case
Studies. Technical report, Project IST-511599, School of Computing Science, Uni-
versity of Newcastle (2005)

6. Troubitsyna, E., ed.: Rodin Deliverable D8: Initial Report on Case Study Develop-
ment. Project IST-511599, School of Computing Science, University of Newcastle
(2005)

7. Metayer, C., Abrial, J.R., Voisin, L.: Rodin Deliverable 3.2: Event-B Language.
Technical report, Project IST-511599, School of Computing Science, University of
Newcastle (2005)

8. Laibinis, L., Iliasov, A., Troubitsyna, E., Romanovsky, A.: Formal Approach to
Ensuring Interoperability of Mobile Agents. Technical report, CS-TR-989, School
of Computing Science, Newcastle University, UK. October (2006)

9. Butler, M., ed.: Rodin Deliverable D11: Definition of Plug-in Tools. Project IST-
511599, School of Computing Science, University of Newcastle (2005)

10. Iliasov, A., Romanovsky, A.: Choosing Application Structuring and Fault Toler-
ance Using Assumptions, To be presented at DSN 2007 (2007)

11. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-
Oriented Software Architecture: A System Of Patterns. West Sussex, England:
John Wiley & Sons Ltd. (1996)

12. Iliasov, A., Romanovsky, A.: Structured Coordination Spaces for Fault Tolerant
Mobile Agents. In Dony, C., Knudsen, J.L., Romanovsky, A., Tripathi, A., eds.:
LNCS 4119. (2006) 181–199

