
Kent Academic Repository
Full text document (pdf)

Copyright & reuse

Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all

content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions

for further reuse of content should be sought from the publisher, author or other copyright holder.

Versions of research

The version in the Kent Academic Repository may differ from the final published version.

Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the

published version of record.

Enquiries

For any further enquiries regarding the licence status of this document, please contact:

researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down

information provided at http://kar.kent.ac.uk/contact.html

Citation for published version

Chitil, Olaf (2008) Heat — An Interactive Development Environment for Learning & Teaching
Haskell. In: Implementation and Application of Functional Programs, IFL 2008, 10-12 Sept
2008, Hatfield, UK.

DOI

Link to record in KAR

http://kar.kent.ac.uk/58704/

Document Version

Updated Version

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kent Academic Repository

https://core.ac.uk/display/74208613?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Heat — An Interactive Development

Environment for Learning & Teaching Haskell

Olaf Chitil

University of Kent, UK

Abstract. Using a separate editor and interpreter provides many dis-
tracting obstacles for inexperienced students learning a programming
language. Professional interactive development environments, however,
confuse these students with their excessive features. Hence this paper
presents Heat, an interactive development environment specially designed
for novice students learning the functional programming language Haskell.
Based on teaching experience, Heat provides a small number of features
and is easy to use. Heat proves that a small portable interactive devel-
opment environment can be implemented on top of but independent of
a particular Haskell interpreter. Heat with Hugs has been used in teach-
ing functional programming at the University of Kent for the past three
years.

1 Introduction

Universities teach functional programming in Haskell using a Haskell interpreter:
Hugs1 or GHCi (Glasgow Haskell compiler interactive) 2 or Helium [8]. All these
interpreters are command-line based systems where the user loads a Haskell
program from a file into the interpreter; if the program is statically correct (no
compilation errors), the user can enter expressions that are then evaluated by
the interpreter. So a student has to use both an editor and the interpreter. After
modifying the program the student has to save the file, switch to the interpreter
and load the file into the interpreter before they get any static error messages
or can enter expressions for evaluation. Especially students at the beginning
of their studies (at Kent we teach functional programming in the second term
of the first year) make many mistakes and hence have to repeat the edit–save–
switch–load cycle numerous times. Furthermore, in classes at Kent I noticed that
students often forgot to either save in the editor or reload the program into the
interpreter, so that compiler error messages or the results of evaluation related
to an older version of the program, causing substantial confusion to students.
Finally, today’s students are used to graphical user interfaces, using the mouse
and standard key shortcuts for editing — including expressions for the interpreter
—, and consider command-line based tools as old-fashioned.

1 http://www.haskell.org/hugs/
2 http://www.haskell.org/ghc/

The answer to this list of problems is to use an integrated development envi-
ronment (IDE) such as Eclipse3 or Visual Studio4 that integrate editor, compiler
and program execution plus many further features within a single graphical user
interface. Such IDEs are used by many professional software developers and ad-
ditionally, at Kent, students will already have used BlueJ [9], an IDE for learning
and teaching Java programming.

However, we do not teach functional programming using a professional IDE
with a plugin for the Haskell language. First of all most plugins are still at an
early development stage, installing the IDE with the plugin on their own com-
puters is often too complicated for many students and many IDEs such as Visual
Studio [1] do not support all major platforms used by our students (Windows,
OS X, Linux variants). Most importantly, these IDEs provide numerous features
that students who just learn the main concepts of functional programming do
not need, that confuse them and make basic tasks unnecessarily complicate (e.g.
such IDEs have a concept of workspace or project).

Therefore we developed Heat, the Haskell Educational Advancement Tool,
an IDE for teaching & learning Haskell meeting the following requirements:

1. integrates editor and interpreter console within a single user interface;
2. provides a graphical user interface similar to professional IDEs;
3. is simple; provides only features that support students who are beginning to

learn functional programming;
4. is reliable and fool-proof;
5. runs on all major platforms used by our students and staff (Windows, OS

X, Linux, Solaris);
6. is easy to install;
7. has small source code and is easy to maintain.

Heat’s features include syntax-highlighting, explanations of compiler error
messages, code navigation via a summary tree pane, change of font size for
lecture presentations and automatic testing.

Requirement number 7 is important in view of the large number of existing
half-finished IDEs for Haskell. It implies that Heat does not implement any
features of a Haskell interpreter but runs loosely coupled on top of an existing
Haskell interpreter, currently Hugs. Heat runs Hugs as a separate process and
communicates with it only via textual in- and output. Thus a standard Hugs
package can be installed and Heat is independent of specific releases of Hugs.

The requirements for a graphical user interface, portability across platforms
and easy installation together lead to the decision to implement Heat in Java.
The distribution is a single jar file that the student only needs to click on.

Heat 1.1 has been used annually since the academic year 2005/6 in teaching
the module functional programming in the second term of the first year at the
University of Kent. The current version is 3.0. Heat is freely available from

http://www.cs.kent.ac.uk/projects/heat/

3 http://www.eclipse.org/
4 http://msdn.microsoft.com/en-us/vstudio/default.aspx

Fig. 1. Screenshot of the Heat window

This paper describes the main features of Heat. The design of Heat has been
informed by experience in teaching Haskell and feedback received from students
using Heat.

2 Design

Like professional IDEs the user interface of Heat consists of a single window
divided into several panes. Thus the user can always see all panes and easily
switch activity between these panes. Figure 1 shows the Heat window. The top
centre pane is the editor. The bottom right pane is the interpreter console.
The (here hidden) top right pane displays help texts. The left pane provides a
summary tree and quick navigation to all definitions.

Our students only write programs consisting of a single module, which may
use libraries, including specially provided modules. Therefore Heat has no con-
cept of multi-module projects, meeting our requirement of simplicity. Opening
a new file replaces the current contents of the editor (after asking whether it
should be saved).

The editor provides all standard editing operations, highlighting of match-
ing brackets and syntax-highlighting for Haskell programs. The same syntax-
highlighting is used in all example code on lecture slides.

In the top right corner the window displays Heat’s current status:

– A blue question mark indicates that the current program has not yet been
compiled, it may contain errors.

– A red cross indicates that program compilation produced an error message.
– A green tick indicates that the program compiled successfully and the user

may enter expressions for evaluation in the console window.

Only in the last case the user is able to enter expressions for evaluation in
the console. Otherwise the console can only be read.

Compilation happens at the press of a button. If compilation gives an error
message, the line stated in the error message is shown and highlighted in the
editor. If Heat is in novice mode, also an explanation of the error message based
on Simon Thompson’s list of Hugs error messages5 is displayed.

Evaluation of expressions works in the console exactly like in a stand-alone
interpreter. Highlighting of the prompt and of error messages in different colours
improves readability. Any computation can be interrupted by pressing a button.

The summary tree pane provides a list of all type synonyms, algebraic data
types, functions and constants, and test properties (see Section 3) of the pro-
gram. Selecting any of these makes the editor show and highlight the respective
definition. Hovering with the mouse pointer over a type synonym or algebraic
data type displays a tool-tip containing the definition, hovering over a func-
tion or constant displays the respective type. Such overview and navigation is
useful not because our students would write large modules, but because they
are often given medium-sized incomplete modules which they have to complete.
Incomplete definitions are given in the form

chessboard = undefined

so that even incomplete modules can be compiled and parts can be tested, en-
couraging an incremental development style.

The few option settings offered by Heat include changing the font size in all
window pane components. It is essential to change to a large font size when using
Heat in lectures to develop programs interactively together with the students.

3 Checking Properties

Inspired by the book How to Design Programs [4] we teach students to define
functions by following the steps of a design recipe:

1. Purpose in comment
-- Yield square of the input

2. Type declaration (name the function, decide on types of input and output
data)

square :: Float -> Float

3. Example properties (list examples to characterise input-output relationship)
prop_square1 = square 2.0 == 4.0

prop_square2 = square 0.0 == 0.0

prop_square3 = square (-4.0) == 16.0

5 http://www.cs.kent.ac.uk/people/staff/sjt/craft2e/errors.html

4. The actual definition body
square x = x*x

5. Test (check that definition meets example properties)

Properties are Boolean constants whose identifiers have the prefix prop .
Most of them apply the function to constants and compare with constant ex-
pected results. For some types, such as pictures, no suitable constants are avail-
able and then other properties are considered:

prop_rotate180 = rotate180 (rotate180 horse) == horse

All properties are still Boolean unit tests, but they are a basis for introducing
more general QuickCheck [3] properties later. Already the simple Boolean tests
as above lead to interesting discussions. A simple database using lists of tuples
is used to practise list processing. Here the lists actually represent (unordered)
bags and hence using a simple comparison with (==) quickly proves to be in-
appropriate, because different implementations yield result lists with different
orderings of elements.

Heat supports properties by automatically checking all properties on the
press of a single button. Properties are listed separately in the summary tree. Dif-
ferent icons indicate whether a property was not yet checked, evaluated to True

or evaluated to False or a runtime error. Especially to handle non-termination,
property checking can be interrupted.

4 Graphics via PDF

We use a version of Simon Thompson’s small library for composing pictures,
which starts with the picture of a single horse’s head. The compositional pic-
ture combinators are good for teaching the construction of expressions, writing
compositional and reusable definitions, decomposing problem descriptions and
writing non-structurally recursive function definitions. Furthermore, while most
example programs used in teaching Haskell produce textual output, this library
produces pictures. However, the original library produces only ASCII art

.......##...

.....##..#..

...##.....#.

..#.......#.

..#...#...#.

..#...###.#.

.#....#..##.

..#...#.....

...#...#....

....#..#....

.....#.#....

......##....

Fig. 2. A PDF picture made with the Picture library

that fails to impress students. Creating graphical pictures in Haskell is highly
desirable, but existing graphics libraries do not meet our requirements of being
reliable, easy to install and platform independent. Because Heat is implemented
in Java it could give such graphic support, but connecting Java and Haskell is
not easy.

Instead I developed a Haskell library that produces a picture as a PDF-file.
Every platform has a PDF viewing tool which can even be started automatically
from the Haskell library. Figure 2 shows a simple picture created with the library.
Because the library can still also produce an ASCII picture, it was easy to define
equality on pictures, which is essential for defining test properties for functions
working on pictures as shown in the preceding section.

The new PDF Picture library is independent of Heat but also works well
together with it.

5 Implementation Notes

Instead of implementing jet another editor we aimed for reusing an existing
editor package for Java. Few such components seem to be available. We chose
to use the jEdit syntax package6, a stand-alone syntax highlighting text editor
JavaBean. It provides syntax highlighting via a user-definable class that imple-
ments lexical analysis of tokens. Many students mix up types with other Haskell
expressions, especially type constructors with data constructors. Hence it would
be desirable to distinguish types from other expressions through highlighting in
different colours. However, as in other editors where syntax highlighting is de-
fined by regular expressions, this cannot be achieved easily and hence has not
been implemented in Heat.

Heat starts Hugs as a separate process and communicates with it only via
the textual input and output stream. This weak interface makes the implemen-
tation of a console surprisingly hard and explains why there does not exist any
reusable console package for Java. The console provides full editing facilities for
the command (usually an expression) sent to the Haskell interpreter. However,
when a Haskell program runs interactively, the console must pass all key input
unchanged to the Haskell program. The console must be able to distinguish these
two states and it does so by recognising the prompt in Hugs’ output. To recognise
the prompt reliably, Heat changes Hugs’ prompt to include unprintable charac-
ters that it can easily recognise. All other syntax-highlighting in the console is
based on simple syntactic cues in Hugs’ output. A Java thread is needed to copy
the output of Hugs character by character as it is produced into the console pane,
because the user needs to see also a partial result of evaluation, for example the
initial part of an infinite list. The Process class of Java provides no method for
sending an interrupt signal to the Hugs process. So to interrupt evaluation Heat
actually stops the Hugs process and restarts a new one, omitting the start-up
banner.

To collect information about definitions for the overview pane a simple parser
regularly traverses the editor contents. Unfortunately Hugs’ own symbol tables
that can be accessed with the :browse and :info cannot be used, mainly because
it exists only after compiling a statically correct Haskell program. In contrast,
the simple Heat parser identifies definitions at the hand of a few keywords such
as data and = and also assumes that all top-level definitions start in the first
column.

Accessing Hugs only via its textual command interface limits the features of
Heat. Hence the Glasgow Haskell compiler provides an application programming
interface (API) for developing new user interfaces on top of it. However, more
features are non-essential (compare for the next section) and using such an in-
terface would have made it hard to meet our requirements of easy installation,
support of all platforms and easy maintenance.

Implementing all compositional picture combinators of the Haskell Picture
library in terms of the incremental graphics model of PDF proved to be hard. The

6 http://sourceforge.net/projects/jedit-syntax/

Picture library includes a combinator that inverts the colours of a given picture.
There is no such operation in PDF where every graphical output paints on top
of the existing picture. To keep the library simple it does not handle interaction
of the invert operation and the superimpose operation of two pictures correctly;
this limitation does not affect any examples and exercises used in the course.

6 Evaluation

We have used Heat 1.1 in the functional programming module in the second
term of the first year at the University of Kent. In the first term students had
learned basic Java programming using the BlueJ IDE. We demonstrated and
used Heat in the lectures and advised them to use it in classes.

Most students used Heat in classes and on their own laptop or computer at
home. Some students, mostly more experienced ones, preferred to use WinHugs
or Hugs in a normal console together with their favourite editor. Student feed-
back on Heat at the end of the term was mixed. Many students recognised its
usefulness in principle but complained about bugs.

Most complaints were about one bug: occasionally compiling a correct Haskell
program produced the Hugs error message

Syntax error in input (unexpected ‘;’)

To remove this wrong error message the user has to delete the offending lines
and retype them. The Hugs error message is caused by spurious \r characters in
the code, that are invisible in the editor pane (only \n and \n\r are line breaks).
Apparently the spurious \r is occasionally caused by copy and paste operations
in the editor. They do not occur on the Solaris platform used by teaching staff
and seem to occur most frequently on Vista. Hence originally I didn’t consider
this bug as serious. Because we could not reliably reproduce it and is located
within the reused editor component, I finally resolved it by removing any \r

characters when saving the editor contents to a file for passing to Hugs.
Other reported bugs included the lack of shortcut keys for commands such

as saving and undo; not supporting OS X specific shortcut keys; not supporting
automatic indentation. Many bug reports demonstrated the inexperience of the
students by being too vague to be comprehensible.

When Heat is started for the first time after installation, it asks for the
full path of the Haskell interpreter Hugs. Despite clear instructions, a number
of students mistakenly entered the full path of Heat itself. Then Heat starts
another Heat process, which reading its settings starts another Heat, The
student has an early exposure to unbounded recursion that is hard to stop in
practise. Therefore it proved useful for later versions of Heat to explicitly test
that the given path is not that of Heat itself.

In conclusion experience and student feedback show that reliability is a cen-
tral requirement for a teaching tool and a single annoying bug can turn many
students against the tool. The expectation that a graphical user interface pro-
vides all common standard operations is also important. In contrast a lack of

features seems to be unproblematic. I never received any complaint that Heat
1.1 could not interrupt a non-terminating computation of Hugs; the user had
to abort Heat. Furthermore, even awkward functionality is surprisingly widely
accepted. Heat 1.1 did not have a fully functional console, but only an output
pane with input provided awkwardly via a separate input box. Few students
complained and asked for a proper console.

7 Why choose Hugs?

The Glasgow Haskell compiler (GHC) is used by most serious Haskell program-
mers because of its large set of libraries, generation of fast code and language
extensions. For teaching novices, however, we prefer to use Hugs. Although the
error messages of GHC are more detailed and often clearer than those of Hugs,
the latter are more suitable for novices. Hugs stops compiling after the first com-
pile time error, whereas GHC often shocks the novice with a long sequence of
error messages. Error messages of GHC contain language extensions unknown to
novices, such as explicit forall quantification of type variables. Error messages
use substantial indentation so that they take far more space than Hugs’ error
messages, which makes them particularly unsuitable for lecture presentations
and slides. If there is an error in an input expression, the error location given by
Hugs is rather confusing. Finally, on many platforms GHC is still much harder
to install than Hugs.

Helium [8] is a Haskell interpreter specially designed for teaching. It pro-
vides sophisticated error messages with detailed explanations and suggestions
for correction. However, Helium does not implement full Haskell 98, lacks some
documentation and has the chicken-and-egg problem of not being widely used.

So for teaching we at the University of Kent prefer using Hugs. However Heat
should still support both GHCi and Helium in the future. This extension should
be simple, as discussed in Section 9.

8 Related Work

Heat was mostly inspired by BlueJ [9] and DrScheme [5]. BlueJ supports the
objects first approach of teaching Java by making objects visible as icons whose
methods can be executed interactively using the mouse and dialogue boxes. This
support for objects is not applicable for a functional programming language but
the interpreter console is a simple fitting replacement. Dr Scheme integrates
an editor and an interpreter console similar to Heat plus many further features.
Most advanced features of BlueJ and Dr Scheme rely on these IDEs being closely
linked with the language compiler and runtime system, unlike Heat.

Vital [7] is inspiration for a novel and different IDE for functional program-
ming languages that could support learning and teaching. Unfortunately its con-
cept requires a tight integration of user interface and interpreter; Vital imple-
ments its own untyped subset of Haskell.

WinHugs comes with the Hugs distribution and is Hugs with a graphical
user interface. It provided some inspiration for Heat but it does not integrate an
editor and it only runs on Windows. WinHugs is integrated into the source code
of Hugs; it is not a separate program running Hugs as a separate process.

Many functional programmers use emacs, vim or similar advanced editors
with special extension modes that provide the interpreter console within an
editor window. Most of these modes still do not provide the close integration of
editor and interpreter provided by Heat, the editors provide confusing excessive
features, and the graphical user interface does not meet the expectations of the
students. Therefore the Heat user interface looks like a substantially simplified
variant of professional IDEs such as Eclipse and Visual Studio.

Yi [2] an editor written in Haskell and extensible in Haskell does not provide
an IDE for Haskell and is not targeted at supporting programming novices.

Many projects have aimed for developing a special IDE for Haskell imple-
mented in Haskell: IDE, Haste and most recently Leksah7. Because of high am-
bitions and a single developer these projects have not yet delivered.

9 Future Work

Novice programmers do not write large multi-module programs, but they use
libraries. Hence students would profit from the inclusion of library documen-
tation within Heat. Heat could either provide access to library documentation
generated with Haddock, the Javadoc-like Haskell documentation tool, or sim-
ply provide specially written documentation in the help pane. The former has
the advantage that libraries can easily be added, the latter is more suitable for
providing documentation at the right level for novices. The Haskell prelude is
big and unstructured and many parts are incomprehensible for novices.

Many compile errors are due to students misspelling identifiers. Often they
fail to see the spelling mistake and therefore waste substantial time for removing
such errors. Heat should help students with preventing such errors. Modern
IDEs even help further by providing auto-completion of identifiers. However,
correct auto-completion requires knowing which identifiers are in scope at a
given point of the program and thus requires parsing of incomplete and probably
incorrect programs. Developing such a parser fails our requirement of a simple
implementation using the given interpreter. An intermediate solution providing
limited spell-checking may be possible. Heat 2.0 included a prototype version.

Heat 3.0 can only check Boolean properties automatically. To support all
QuickCheck [3] properties Heat would need to recognise when full QuickCheck
is used and process the result of testing appropriately.

Heat 2.0 provided simple support for debugging Haskell programs by observ-
ing functions using Hood’s observe combinator [6] that is built into Hugs. How-
ever, this built-in observe combinator often produces wrong output in current
versions of Hugs and hence Hugs needs to be corrected first. The Hood library

7 http://leksah.org/

is less suitable for Heat, because it requires instances of the class Observable

to be defined for all types used in observations.
An orthogonal direction for future work is making Heat work with other

Haskell interpreters than Hugs, especially GHCi and Helium [8]. The textual
interfaces of both these interpreters are similar to Hugs. Because all Hugs-specific
code is within a single class that handles the interaction between Heat and
the Haskell interpreter, it will be easy to support other Haskell interpreters.
Additionally, an XML file with simple explanations of the error messages would
be needed for a new Haskell interpreter; this feature may be superfluous for
Helium. However, to ensure that a Heat user can choose between several Haskell
interpreters some further extensions of the options and allowing several Haskell
interpreter interaction classes will be needed.

Finally Heat could also serve as a framework for simple interactive devel-
opment environments for other functional programming languages. Only a few
classes such as those for syntax highlighting, the parser for the summary tree
and automatic testing are Haskell specific.

10 Conclusions

In this paper I have presented a simple and small but effective graphical inte-
grated development environment that supports inexperienced students in learn-
ing a new programming language. I gave examples of how Heat smoothly in-
tegrates with our teaching. Most of the design decisions and features are inde-
pendent of the programming language that the tool supports and thus can be
transferred. In practise the most important feature of such a teaching tool is
reliability; occasional but hard-to-circumvent faulty behaviour can quickly turn
students into strong opponents of the tool. Java is a good programming language
for building such a graphical, portable and easy-to-install tool, but unexpected
portability problems do exist. Although Heat was planned as a small wrapper
around a Haskell interpreter its development cost far more time and effort than
initially expected. Still, Heat has already supported many students at Kent in
learning Haskell and I hope Heat 3.0 will be used more widely.

History and Acknowledgements

I thank all the developers of Heat. Heat was designed and implemented mostly
by students. Heat 1.0 was created by Dean Ashton, Chris Olive, John Travers
and Louis Whest as their final year project in 2004/5 at the University of Kent.
In particular the first two students are responsible for the good initial design
and architecture of Heat that proved to be a reliable and well-structured ba-
sis for later extensions. A slightly improved Heat 1.1 by me has been used in
teaching since then. In 2006 Jerome J. S. Gedge, Sergei Krot, Stefanos Katsan-
tonis and Danya Nusseir developed Heat 2.0 as their final year project, adding
code navigation, checking properties, debugging using Hugs’ observe function,
auto-completion of identifiers and numerous small but useful improvements. In

summer 2008 Ivan Ivanovski, an IASTE student, improved several features in-
cluding the console and property checking. I improved the code further to obtain
Heat 3.0, the first public release.

References

1. Krasimir Angelov and Simon Marlow. Visual Haskell: a full-featured Haskell de-
velopment environment. In Haskell ’05: Proceedings of the 2005 ACM SIGPLAN

workshop on Haskell, pages 5–16, New York, NY, USA, 2005. ACM.
2. Jean-Philippe Bernardy. Yi: an editor in Haskell for Haskell. In Haskell ’08: Pro-

ceedings of the first ACM SIGPLAN symposium on Haskell, pages 61–62, New York,
NY, USA, 2008. ACM.

3. Koen Claessen and John Hughes. QuickCheck: a lightweight tool for random testing
of Haskell programs. ACM SIGPLAN Notices, 35(9):268–279, 2000.

4. Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, and Shriram Krishna-
murthi. How to Design Programs: An Introduction to Programming and Computing.
The MIT Press, 2001.

5. Robert Bruce Findler, Cormac Flanagan, Matthew Flatt, Shriram Krishnamurthi,
and Matthias Felleisen. DrScheme: a pedagogic programming environment for
Scheme. In In Proc. International Symposium on Programming Languages: Im-

plementations, Logics, and Programs, pages 369–388, 1997.
6. Andy Gill. Debugging Haskell by observing intermediate data structures. Electronic

Notes in Theoretical Computer Science, 41(1), 2001. 2000 ACM SIGPLAN Haskell
Workshop.

7. Keith Hanna. Interactive visual functional programming. In ICFP ’02: Proceedings

of the seventh ACM SIGPLAN international conference on Functional programming,
pages 145–156, 2002.

8. Bastiaan Heeren, Daan Leijen, and Arjan van IJzendoorn. Helium, for learning
haskell. In Haskell ’03: Proceedings of the 2003 ACM SIGPLAN workshop on

Haskell, pages 62–71, New York, NY, USA, 2003. ACM.
9. Michael Kölling, B. Quig, A. Patterson, and J. Rosenberg. The BlueJ system and

its pedagogy. Journal of Computer Science Education, Special issue on Learning

and Teaching Object Technology, 13(4), 2003.

