
Kent Academic Repository
Full text document (pdf)

Copyright & reuse

Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all

content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions

for further reuse of content should be sought from the publisher, author or other copyright holder.

Versions of research

The version in the Kent Academic Repository may differ from the final published version.

Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the

published version of record.

Enquiries

For any further enquiries regarding the licence status of this document, please contact:

researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down

information provided at http://kar.kent.ac.uk/contact.html

Citation for published version

Arief, Budi and Iliasov, Alexei and Romanovsky, Alexander (2006) On using the CAMA framework
for developing open mobile fault tolerant agent systems. In: 2006 International Workshop on
Software Engineering for Large-Scale Multi-Agent Systems, SELMAS '06, Co-located with the
28th International Conference on SoftwareEngineering, ICSE 2006, 20-28 May 2006, Shanghai.

DOI

http://doi.org/10.1145/1138063.1138070

Link to record in KAR

http://kar.kent.ac.uk/58696/

Document Version

Author's Accepted Manuscript

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kent Academic Repository

https://core.ac.uk/display/74208605?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

On Using the CAMA Framework for Developing Open
Mobile Fault Tolerant Agent Systems

Budi Arief, Alexei Iliasov and Alexander Romanovsky
School of Computing Science

University of Newcastle upon Tyne
Newcastle upon Tyne NE1 7RU, England

{L.B.Arief, Alexei.Iliasov, Alexander.Romanovsky}@newcastle.ac.uk

ABSTRACT

The paper introduces the Cama (Context-Aware M obile
Agents) framework intended for developing large-scale mo-
bile applications using the agent paradigm. Cama provides
a powerful set of abstractions, a supporting middleware and
an adaptation layer allowing developers to address the main
characteristics of the mobile applications: openness, asyn-
chronous and anonymous communication, fault tolerance,
device mobility. It ensures recursive system structuring us-
ing location, scope, agent and role abstractions. Cama

supports system fault tolerance through exception handling
and structured agent coordination. The applicability of the
framework is demonstrated using an ambient lecture sce-
nario – the first part of an ongoing work on a series of am-
bient campus applications.

1. INTRODUCTION
Although the mobile agent paradigm supports structuring

systems using decentralised and distributed entities coop-
erating to achieve their individual aims and promotes sys-
tem openness, flexibility and scalability, the existing frame-
works for development of such systems do not provide ad-
equate means for achieving fault tolerance. The main dif-
ficulties here are caused by agent mobility, autonomy and
asynchronous communication, system openness and dynam-
icity, which create new challenges for ensuring system fault
tolerance.

In this work, we are focusing on coordination mobile en-
vironments, which have become very popular in develop-
ing mobile agent applications. These environments rely on
the Linda approach to coordination of distributed processes.
Linda [6] provides a set of language-independent coordina-
tion primitives that can be used for communication-between
and coordination-of several independent pieces of software.
Linda is now becoming the core component of many mo-
bile software systems because it fits in nicely with the main
characteristics of mobile systems. Linda coordination primi-
tives support effective inter-process coordination by allowing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM XXXXXXXXX/XX/XX ...$5.00.

processes to put tuples in a tuple space shared by these pro-
cesses, get tuples out if they match the requested types, and
test for them. A tuple is a vector of typed data values, some
of which can be empty, in which case they match any value
of a given type. Certain operations, like get (or in) and test
(or inp), can be blocking.

One of the most developed and widely-used examples of
Linda-based mobile coordination environments is Lime [12].
It supports both physical mobility, such as a device with
a running application travelling along with its user across
network boundaries, and logical mobility, when a software
application changes its platform and resumes execution in
a new one. To do that, Lime employs a distributed tuple
space. Each agent has its own persistent tuple space that
physically or logically moves with it. When an agent is in a
location where there are other agents or where there is a net-
work connectivity to other Lime hosts, a new shared tuple
space can be created, thus allowing agents to communicate.
If connection is lost or some agents leave, parts of the shared
tuple space became inaccessible. Lime middleware – imple-
mented in Java – hides all the details and complexities of the
distributed tuple space control and allows agents to treat it
as normal tuple space using conventional Linda operations.

Exception handling [3] is widely accepted to be the most
general approach to ensuring fault tolerance of complex ap-
plications facing a broad range of faults. It provides a so-
phisticated set of features for developing effective fault tol-
erance using handlers specially tailored for the specific ex-
ception and system state in which the error is detected. It
ensures nested system structuring and separates normal sys-
tem behaviour from the abnormal one. Our analysis [10]
shows that the existing Linda-based mobile environments
do not provide sufficient support for development of fault
tolerant mobile agent systems. The real challenge here is
to develop general mechanisms that smoothly combine Lin-
da-based mobility with exception handling. The two key
features of mobile agents are asynchronous communication
and agent anonymity. This is what makes mobile agents
such a flexible and powerful software development paradigm.
However, traditional fault tolerance and exception handling
schemes are not directly applicable in such environments.

In this paper, we discuss a novel framework for disciplined
development of open fault tolerant mobile agent systems and
show how it is being applied in developing an ambient cam-
pus application. This framework offers a set of powerful ab-
stractions to help developers by supporting exception han-
dling, system structuring and openness. These abstractions
are supported by an effective and easy-to-use middleware

1

which ensures high system scalability and agent compati-
bility. The plan of the paper is as follows. In the next
section we introduce our Cama framework in detail by de-
scribing the main abstractions offered to system developers,
a novel exception handling mechanism and our current work
on Cama implementation. This is followed by a section dis-
cussing our experience in applying Cama in the development
an ambient lecture scenario as a part of our ongoing work on
ambient campus applications. The last section of the paper
outlines our plans for the future work.

2. CONTEXTAWAREMOBILE AGENTS
We have developed a framework called Cama (Context-

Aware Mobile Agents), which encourages disciplined devel-
opment of open fault tolerant mobile agent applications by
supporting a set of abstractions ensuring exception han-
dling, system structuring and openness. These abstractions
are backed by an effective and easy-to-use middleware al-
lowing high system scalability and guaranteeing agent com-
patibility.

2.1 Cama Abstractions
Any Cama system consists of a set of locations. A location

is a container for scopes. A scope provides a coordination
space within which compatible agents can interact using the
scoping mechanism described below. Agents are the active
entities of the system. An agent is a piece of software that
conforms to some formal specification. Each agent is exe-
cuted on a platform; several agents may reside on a single
platform. A platform provides an execution environment for
agents as well as an interface to the location middleware.
Figure 1 shows how these abstractions are linked.

Scope

Platform

Agent

Keys:

Location

Figure 1: Location, scopes, platforms and agents in

Cama

An agent is built using one or more roles. A role is a
specification of one specific functionality of an agent. A
composition of all agent roles forms its specification.

Location can be associated with a particular physical lo-
cation (such as lecture theatre, warehouse or meeting room)
and can have certain restrictions on the types of supported
scopes. Location is the core part of the system as it provides
means of communication and coordination among agents.
We assume that each location has a unique name. This
roughly corresponds to the IP address of the host in a net-
work (which are usually unique) on which it resides. A lo-
cation must keep track of the agents present and their prop-
erties in order to be able to automatically create new scopes

and restrict access to the existing ones. Locations may pro-
vide additional services that can vary from one instance to
another. These are made available to agents within what
appears to be a normal scope where some of the roles are
implemented by the location system software. As with all
the scopes, agents are required to implement specific roles in
order to connect to a location-provided scope. Few examples
of such services include printing on a local printer, access-
ing the internet, making a backup to a location storage, and
migrating to another location.

Agent context represents the circumstances in which an
agent find itself [14]. Generally speaking, a context includes
all information from an agent environment which is relevant
to its activity. The context of an agent in Cama consists of
the following parts: the state connections to the engaged lo-
cations; the names, types and states of all the visible scopes
in the engaged locations; and the state of scopes in which
the agent is currently participating, including the tuples con-
tained in these scopes. A set of all locations defines global
structuring of the agent context. This context changes when
an agent migrates from one location to another.

Agents represent the basic structuring unit in Cama ap-
plications. To deal with various functionalities that any in-
dividual agent provides, Cama introduces agent role as a
finer unit of code structuring. A role is a structuring unit
of an agent, and being an important part of the scoping
mechanism, it allows dynamic composition of multi-agent
applications, as well as being used to ensure agent interop-
erability and isolation.

Scope structures the activity of several agents in a specific
location by dynamically encapsulating roles of these agents.
Scope also provides an isolation of several communicating
agents thus structuring the communication space.

A set of agents playing different roles can dynamically in-
stantiate a multi-agent application. A simple example is a
client-server model where a distributed application is con-
structed when agents playing two roles meet and collabo-
rate. An agent can have several roles and use them in dif-
ferent scopes. A server agent can provide the same service
in many similar scopes. In addition it can also implement a
client role and act as a client in some other scopes.

Supporting system openness is one of the top design ob-
jectives of Cama. Openness is understood here as the ability
to create distributed applications composed of agents devel-
oped independently. To this end Cama provide powerful
abstractions that help to dynamically compose applications
from individual agents, an agent isolation mechanism and
service discovery based on the scoping mechanism.

Scoping mechanism

The Cama agents can cooperate only when they partici-
pating in the same scopes. This abstraction is supported
by a special construct of coordination space called scope.
Scoping is a means to structure agent activity by arranging
agents into groups according to their intentions. Scoping
also allows agent communication to be configured to meet to
the requirements of the individual groups. Reconfigurations
happen automatically, thus allowing agents (and their de-
velopers) to focus solely on collaboration with other agents
participating in the same scope. There are several benefits
of agent system structuring using scopes:

• scopes provide higher-level abstractions of communi-
cation structuring;

2

• they reduce the risk of creating ad hoc structures that
maybe incorrect, malfunctioning or cyclic;

• this structuring enforces strong relationship among a-
gents supporting interoperability and exception han-
dling;

• scopes support simple semantics thus facilitating for-
mal development;

• scopes become units of fault tolerant system ensuring
error confinement and supporting error recovery at
the scope level.

A scope is a dynamic data container that provides an iso-
lated coordination space for compatible agents. This is done
by restricting visibility of tuples contained in the scope only
to these agents. we say that a set of agents is compatible if
there is a composition of their roles that forms an instance
of an abstract scope model.

Agents can issue a request to create a scope, and when all
the preconditions are satisfied, a scope is atomically instan-
tiated by the hosting location. The scope creation request
includes a scope identifier (a string) and a scope requirement
structure. The request returns the name of a newly created
scope. The agent creating the scope can use it to join the
scope, to make it public (visible to other agents), to leave it
and to remove it.

Scope has a number of attributes divided into two cate-
gories: scope requirements and scope state. Scope require-
ments essentially define the type of a scope, or, in other
words, the kind of activities supported by it. Scope require-
ments are derived from a formal model of a scope activity
and, together with agent roles, form an instance of the ab-
stract scope model. State attributes characterise a unique
scope instance. In addition to these attributes, scope con-
tains data represented as tuples in the coordination space.
Along with these data, there may be subscopes which define
nested activities that may happen inside of the scope.

Nested scopes are used to structure large multi-agent ap-
plications into smaller parts which do not require participa-
tion of all agents. Such structuring has a number of ben-
efits. It isolates agents into groups, thus enhancing secu-
rity. It also links coordination space structuring with ac-
tivity structuring, which supports localised error recovery
and scalability. There is no hard rule when to use nested
scopes. However, for reasons stated above, any application
incorporating different modes of communication or different
types of activities should use subscopes. Online shop is an
example of such application. A seller publicly communicate
with buyers while the latter are looking around for some
products. However, payment must be a private activity in-
volving only the seller and the buyer. In addition to obvious
security benefits, a dedicated payment subscope helps to de-
termine which agents must be involved into recovery should
a failure happen during payment.

Restrictions on roles dictate the roles that are available in
the scope, and how many agents are allowed for any given
role. The latter is defined by two numbers: the minimum
number of agents required for a given role and the maxi-
mum number of agents allowed for a given role. A scope-
state tracks the number of currently-taken roles and deter-
mines whether the scope is ready for agent collaboration or
whether more agents are allowed to join.

The existing scoping mechanisms (e.g. [15, 11]) are not
explicitly developed to support data and behaviour encap-
sulation or isolation crucial for error confining and recovery.

None of them is directly applicable for dealing with mobile
agents interacting using coordination spaces (see our anal-
ysis in [10]). Also, these schemes do not support the set of
abstractions which we have identified as crucial for Cama.

Basic Operations in Cama

In Cama, all the communication within a location happens
through a single shared tuple space. This leads to asym-
metrical design of the middleware where the tuple space
operations are implemented in a location middleware while
agents only carry a lightweight adaptation layer. On top of
the coordination primitives derived from Linda, the Cama

middleware provides the following operations:

• engage(id) - issues a new location-wide name that is
unique and unforgeable for agent id. This name is
used as agent identifier in all other role operations.

• disengage(a) - makes issued name a invalid.
• create(a, n, R)@s (n 6∈ l.s) - agent a creates a new

subscope within scope s called n with given scope re-
quirements R at location l. The created scope be-
comes a private scope of agent a.

• delete(a, n)@l.s (n ∈ l.s ∧ a is owner of l.s.n) -
agent a deletes a subscope called n contained in scope
s. This operation always succeeds if the requesting
agent is the owner of the scope. If the scope is not in
the pending state then all the scope participants shall
receive CamaExceptionNotInScope exception notify-
ing the scope’s closure. This procedure is executed re-
cursively for all the subscopes contained in the scope.

• join(a, n, r)@s (n ∈ l.s∧r ∈ n∧n is pending or ex-
panding) - adds agent a into scope n contained in l.s

with role r. This operation succeeds if scope l.s.n

exists and agent a is allowed to take the specified role
in the scope. This operation may cause the scope to
change state.

• leave(a, n, r)@s (a is in l.s.n with role(s) r) - re-
moves agent a with roles r from scope l.s.n. The call-
ing agent must be already participating in the scope.
This operation may also change the state of the scope.

• put(a, n)@s - agent a advertises scope n contained
in scope s, thus making it a public scope. A public
scope is visible and accessible by other agents.

• get(a, r)@s: enquires the names of the scopes con-
tained in scope l.s and supporting role(s) r.

An agent always starts its execution by looking for avail-
able locations nearby. Once it engages a location it can join
a scope or create a new one. An agent needs to know the
name of the scope it intends to join. It can be the name of
an existing scope or the name of a new scope created by this
agent. When joining a scope, an agent specifies its role in
the scope. In the current implementation of the middleware,
an agent can choose a role in a scope from one of the roles
it implements. The join operation returns a handle for a
scope, which can be used by an agent to collaborate with
other agents through Linda coordination primitives. To cre-
ate a scope, an agent must specify the name of the scope
and the scope requirements, which define the possible roles
within the scope and their restrictions.

Physical and Logical Mobility

Physical mobility allows devices carrying the agent code to
move between locations. Logical mobility allows agent code
and state to be moved from one location to another.

3

Physical mobility in Cama is implemented using connec-
tivity of the devices to the locations. When such a connec-
tivity is established, the agent running on the device receives
special event notifying it about discovery of the new loca-
tion. Cama allows any agent to access the list of active
locations it is connected to at any time. An agent receives a
predefined disconnection exception when the connectivity is
lost. To support this functionality, the location middleware
periodically sends hard beats messages in the proximity.

The Cama middleware does not support logical mobility
as the first class concept since the Cama architecture does
not allow locations to see each other. Nevertheless, agent
migration can be provided through the standard inter-agent
communication. Data can be moved between locations in
Cama by agents working at both locations at the same time,
or by an agent physically migrating between two locations
or by using some other capability supporting data transfer
between locations. In particular, we have implemented a
simple proof-of-concept support ensuring weak code mobil-
ity. In this implementation, a dedicated agent provides a
service of data transfer between locations using internet or
LAN networking. Using this service, any agent can transfer
itself or another agent to another location.

2.2 Fault Tolerance
The Cama framework supports application-level fault tol-

erance by providing a set of abstractions and a supporting
middleware that allow developers to design effective error
detection and recovery mechanisms. The main means for
implementing fault tolerance in Cama is a novel exception
handling mechanism which associates scopes with the ex-
ception contexts. Scope nesting provides recursive system
structuring and error confinement. In addition to this, the
Cama middleware supports a number of predefined excep-
tions (e.g. the connection and disconnection ones, violation
of the scope constraints, etc.).

In developing exception handling support for Cama, we
relied on our previous work reported in [10], in which we
proposed and evaluated a novel exception handling scheme
developed for coordination-based agent applications. The
main novelty of the Cama mechanism is that it explicitly
links nested scopes with the exception contexts.

Exception handling in Cama allows fast and effective ap-
plication recovery by supporting flexible choice of the han-
dling scope and of the exception propagation policy. The
mechanism of the exception propagation is complimentary
to the application-level exception handling. All the recov-
ery actions are implemented by application-specific handlers
attached to agents. The ultimate task of the propagation
mechanism is to transfer exceptions between agents in a re-
liable and secure way. However, the freedom of agent be-
haviour in agent-based systems does not allow any guaran-
tees of reliable exception propagation to be given in a general
case. In particular, the situations can be clearly identified
when exceptions may be lost or not delivered within a pre-
dictable time period. This is the case for Cama as well.
To alleviate this, for example, in a mobile agent application
requiring cooperative exception handling involving several
agents, agents behaviour must be constrained in some way
to prevent any unexpected migrations or disconnections. In
our ongoing work we are developing techniques supporting
formal analysis of exception handling behaviour of the multi
agent systems.

There are three basic operations available to the Cama

agents for catching and raising inter-agent exceptions. These
functionalities are complementary and orthogonal to the
application-level mechanism used for programming internal
agent behaviour.

The raise operation propagates an exception to an agent
or a scope. There are two variants of this operation:

• raise(m, e) - raises exception e as a reaction to mes-
sage m. The message is used to trace the producer and
to deliver an exception to it. The operation fails if the
destination agent has already left the scope in which
the message was produced.

• raise(s, e) - raises exception e in all participants of
scope s.

The crucial requirement for the propagation mechanism is to
preserve all the essential properties of agent systems such as
anonymity, dynamicity and openness. The exception propa-
gation mechanism does not violate the concept of anonymity
since we prevent disclosure of agent names at any stage of
the propagation process. Note that the raise operation
does not deal with names or addresses of agents. Moreover,
we guarantee that our propagation method cannot be used
to learn the names of other agents.

Two other operations, check and wait are used to explic-
itly poll and wait for inter-agent exceptions.

• check - raises exception E(e) if there are any pend-
ing exceptions for the calling agent. E(e) is a local
envelop for the inter-agent exception e.

• wait - waits until any inter-agent exception appears
for the agent and raises it in the same way as the
previous operation.

Systematic use of exception handling should allow devel-
opers to design mobile agent applications that can tolerate
a broad range of faults, including: disconnections, agent
mismatches, malicious or unanticipated agent activity, vio-
lations of system properties, potentially harmful changes in
the system environment, and reduced amount of resource
available.

Unfortunately, there has not been much work carried out
in this area. Paper [16] introduces a guardian model in
which each agent has a dedicated guardian responsible for
handling all agent exception. This model is general enough
to be applied in many types of mobile systems but it does
not directly address the specific characteristics of the coor-
dination paradigm. Another relevant work is on exception
handling in concurrent object-oriented language Oz [17]. In
this system, exceptions can be propagated between the mo-
bile callee and caller objects. The approach proposed is not
applicable to the coordination- based mobile systems. More-
over, the main intention behind this work is not to support
the development of open dynamic agent applications.

2.3 Cama Implementation
In the current version of the Cama system, the location

middleware is implemented in C (we call it cCama). This
allows us to achieve the best possible performance of the
coordination space and to effectively implement numerous
extension, such as the scoping mechanism. The location
middleware implementation is quite compact - it consists
of approximately 6000 lines of C code and should run on
most Unix platforms. We have so far tested it on Linux
FC2 and Solaris 10. The full implementation of the location
middleware is available at SourceForge [8].

4

In order to use the location middleware mentioned above,
we have developed a Cama adaptation layer in Java1 called

jCama. This adaptation layer defines several classes for rep-
resenting – among others – the abstract notions of Location,
Scope and Linda coordination primitives. jCama provides
an interface through which mobile agents or applications can
be developed easily.

cCAMA

CAMA Middleware

Platform

Agent

Adaptation Layer (jCAMA)

Keys:

N e t w o r k

Figure 2: Cama architecture

A diagrammatic representation of the Cama-based system
architecture can be seen in Figure 2. Each platform carries
a copy of jCama. Agents residing on a platform uses the
features provided by jCama to connect over the wireless
network to the cCama location middleware.

It is possible to construct other adaptation layers for dif-
ferent platforms and languages. For now, the jCama Java
adaptation layer outlined above permits agent development
for PocketPC-based PDAs. It has a very small footprint
(˜60Kb) and can be used with both standard Java and
J2ME. In the future we plan to develop adaptation layers
for other languages such as Python and Visual Basic, as well
as versions compatible for smartphone devices.

3. AMBIENT LECTURE APPLICATION
This case study provides a demonstration on how the

Cama framework can be used in developing open, dynamic
and pervasive systems involving people carrying hand held
devices (e.g. PDAs) to help them in their daily activities.

3.1 Introduction
We focus on the activities performed by students and

teachers during a lecture (the ambient lecture scenario) and
consider a set of requirements that define this scenario. This
set will be extended to cover more general ambient cam-
pus scenarios (i.e. location-aware activities that can be per-
formed on campus) such as interactive/smart map, events
announcer, library application and students organiser.

There are several other projects aiming to integrate soft-
ware systems – including mobile applications – into edu-
cation or campus domain. The ActiveCampus project [7]
aims to provide location-based services such as Map service

1We use Java for developing the applications for PDAs.

(showing outdoor and indoor map of the user’s vicinity along
with activities happening there) and Buddies service (show-
ing colleagues and their locations, as well as sending mes-
sages to them). The ActiveCampus system is implemented
as a web server using PHP and MySQL. ActiveClass [13] is
a client-server application for encouraging in-class participa-
tion using PDAs allowing students to ask questions regard-
ing the lecture in anonymous manner, hence overcoming the
problem of shyness among many students.

Gay et. al. carried out an experiment investigating the
effects of wireless computing in classroom environment [5].
Students were given laptop computers with wireless or wired
connection to the internet, allowing them to use any exist-
ing tools and services such as web browsers, word processors,
instant messaging software – as well as any additional soft-
ware they wish to install. The results suggest that the intro-
duction of wireless computing in learning environments can
potentially affect the development, maintenance and trans-
formation of learning communities, but not every teaching
activity or learning community can or should successfully
integrate mobile computing applications.

Classtalk [4] is a classroom communication system that
allows teacher to present questions for small group work,
collect the answers and display the histograms showing how
the class answered those questions. Up to four students can
be in one group, sharing one input device (a palmtop), which
is wired to the central computer controlled by the teacher.

Similar to Classtalk, our system allows students to be
grouped together in order to carry out some task given by
the teacher. The novelty of our approach lies in the commu-
nication channel (wireless instead of wired connection) as
well as in using the framework for supporting scoping and
fault tolerance (the mechanisms described in Section 2).

3.2 Traceable Requirements
We started work on the scenario by producing a require-

ments document [2], which consists of an explanatory text,
diagrams, and requirements definitions. The requirements
definitions are arranged using a specially-developed taxon-
omy which allows us to structure them according to various
views on system behaviour, including: environment (EN),
agent states (ST), service requirements and restrictions (SV),
security (SE) and fault tolerance (FT). Each requirement is
given a number within the group, for example:

EN 1: The scenario is composed of users,

locations and ambient computing environment (ACE)

ST 1: The agents’ top-level states are lecture,

free, migrating, outside and emergency

SV 12: Teacher distributes lecture material

FT 14: Migration activity must tolerate

wireless disconnection and loss of ACE support

At the high level, the system consists of users (people
participating in the scenario, i.e. teachers and students),
locations (rooms with wireless connectivity) and ambient
computing environment (ACE). ACE is composed of wireless
hotspots, software agents and computing platforms (desktop
computers or PDAs) on which the agents are run.

The interactions among users are done through agents.
Each location provides a Cama location middleware through
which agents exchange information. Agents connect to the
location middleware using the wireless hotspot available in
each room.

5

Each teacher and student has an agent associated with
him/her and assisting his/her participation in the lecture.
During a lecture, teachers and students can be engaged in
the following activities: lecture initiation, material dissem-
ination, organisation of students into groups, individual or
group student work, and questions and answers session.

3.3 Design
The ambient lecture system is being designed to meet the

requirements in [2]. In this design, each classroom is a loca-
tion with a wireless support, in which a lecture is conducted.
An agent can take one of the two roles: teacher or student.
The teacher agent runs on a desktop computer available in
the classroom, while student agents are executed on PDAs
(each student is given a PDA).

We use scoping mechanism described in Section 2.1 to
structure the system. The teacher agent creates the outer
scope constituting the lecture which student agents join. A
lecture starts when there is one teacher agent and a prede-
fined number of student agents joining this scope.

To support better system structuring, data and behaviour
encapsulation, as well as fault tolerance, all major activities
during the lecture are conducted within subscopes (nested
scopes). The group work is one of the activities performed as
a nested scope. Teacher – through his/her agent – arranges
students into groups, so that only students belonging to the
same group can communicate with each other through their
agent. Each group is then given a task to solve (could be the
same task for all groups). Students within the same group
work together on the solution and present their answer at
the end of the group work stage.

At the beginning of any lecture, all agents (teacher and
students alike) are placed in the main scope. The teacher
agent keeps a list of all students joining the lecture, and
through the application’s graphical user interface (GUI),
the teacher can select which students to be placed within
each group. Each group is given a unique name and the
groups are mutually exclusive, i.e. a student cannot belong
to more than one group. The teacher agent creates a sub-
scope for each group and issues a StartGroup tuple to the
student agents involved so that they automatically join the
subscope they are assigned to. This is achieved by executing
the Cama JoinScope operation that uses the group name as
a parameter. This structuring guarantees that while within
a group, a student can only send messages to other students
belonging to the same group, but he/she will also receive
any message sent in the main lecture scope. To achieve this,
the Cama middleware creates a separate thread for each role
inside a subscope.

Once a group is created, it is represented as a button (con-
taining the names of the students assigned to this group) on
the teacher agent’s GUI. Clicking this button ungroups the
students and issues a EndGroup tuple to the relevant student
agents, making them invoke the LeaveScope command.

Following the fault tolerance requirements, the agents han-
dle a number of potentially erroneous conditions. Some of
them are detected by the agents themselves, others are de-
tected by the middleware which raises predefined exceptions
declared in the signatures of the Cama operations. One ex-
ample of these exceptions is the CamaExceptionNoRights

exception, indicating that the agent concerned has no right
to be in a particular scope, hence it cannot send or receive
messages from the tuple space.

try {
// Connect to the location middleware
Connection connection = new Connection("Teacher",
server, portNo);

Scope lambda = connection.lambda();

// Create a lecture scope that allows 1 Teacher
// agent and up to 10 Student agents.
ScopeDescr sd = new ScopeDescr(2, "lectureScope").
add(new RoleRest("Teacher", 1,1)).
add(new RoleRest("Student", 0,10));

workScope = lambda.CreateScope("lectureScope", sd);

// Join the scope and make the scope public
workScope = workScope.JoinScope("Teacher");
workScope.PutScope();

}
catch(CamaExceptionInvalidReqs e) { ... }
catch(CamaExceptionNoRoles e) { ... }
...

Figure 3: Sample code: scope creation by Teacher

agent

3.4 Implementation
We developed an application for the group work activ-

ity described in section 3.3. There are two sets of agent
software: Teacher and Student. Commands and data are
passed as tuples through the tuple space provided by the
location middleware.

Each agent runs at least two threads of execution: one
thread handles the GUI and provides a means for sending
tuples to the tuple space; another thread polls tuples from
the tuple space and interprets the command contained in
them. More threads are created when subscoping is used, so
that an agent can also poll tuples from within the subscopes.

Figure 3 shows a snippet of the code for the Teacher

agent, demonstrating how the lecture scope is initiated. A-
gents can join as a Teacher or a Student. In this example,
only one Teacher agent is allowed, along with up to ten
Student agents. An exception will be raised if this restric-
tion is violated.

Figure 4 shows an example interaction among agents in
the ambient lecture scenario. There is one Teacher agent,
shown on the top of Figure 4. There are three Student

agents: ”Alice” (shown on the bottom left, this agent is run
from a desktop computer), ”Bob” (bottom right, run from a
PDA) and ”Tom” (not shown). At some stage, the Teacher

agent places ”Alice” and ”Tom” into a group. While they
are in this group, all messages they send can only be seen
by other agents in the same group (group messages are in-
dicated by a (g) in front of them). Teacher can end the
group by clicking on the button representing the group (in
this case, the ”Alice-Bob” button). When this happens,
all students in that group leave the group subscope and the
subscope thread of execution terminates, but they all remain
connected to the lecture main scope.

4. FUTURE WORK
Our long-term goal is to support formal development of

fault tolerant mobile agent systems. To achieve this goal
we are developing a number of formal notations and models
defining the Cama abstractions and the Cama middleware
(some initial results are reported in [9]). We are now work-

6

Figure 4: Screen capture of ambient lecture agents

ing on a top-down design methodology that insures that
these systems are correct-by-construction. To ensure the
application security, we will use an appropriate encryption
mechanism that allows messages to be securely sent between
PDAs and the location server. Our other plan is to imple-
ment the Cama location middleware for PDAs to support
applications in which locations are physically mobile. In
our future work on Cama for smartphone devices, we will
address the facts that smartphones have capabilities that
are different from PDAs. For example, smartphones utilise
other means for connectivity (such as bluetooth and gprs),
which might imply the need to adapt the communication
support provided by Cama.

5. ACKNOWLEDGEMENTS
This work is supported by the IST RODIN Project [1]. A.

Iliasov is partially supported by the ORS award (UK).

6. REFERENCES
[1] Rigorous Open Development Environment for

Complex Systems. IST FP6 STREP project,
http://rodin.cs.ncl.ac.uk/ [Last accessed: 1 Feb 2006].

[2] B. Arief, J. Coleman, A. Hall, A. Hilton, A. Iliasov,
I. Johnson, C. Jones, L. Laibinis, S. Leppanen,
I. Oliver, A. Romanovsky, C. Snook, E. Troubitsyna,
and J. Ziegler. Rodin Deliverable D4: Traceable
Requirements Document for Case Studies. Technical
report, Project IST-511599, School of Computing
Science, University of Newcastle, 2005.

[3] F. Cristian. Exception Handling and Fault Tolerance
of Software Faults. In M. Lyu, editor, Software Fault
Tolerance, pages 81–107. Wiley, NY, 1995.

[4] R. J. Dufresne, W. J. Gerace, W. J. Leonard, J. P.
Mestre, and L. Wenk. Classtalk: A Classroom

Communication System for Active Learning. Journal
of Computing in Higher Education, 7:3–47, 1996.

[5] G. Gay, M. Stefanone, M. Grace-Martin, and
H. Hembrooke. The Effects of Wireless Computing in
Collaborative Learning Environments. International
Journal of Human-Computer Interaction,
13(2):257–276, 2001.

[6] D. Gelernter. Generative Communication in Linda.
ACM Transactions on Programming Languages and
Systems, 7(1):80–112, 1985.

[7] W. G. Griswold, P. Shanahan, S. W. Brown, R. Boyer,
M. Ratto, R. B. Shapiro, and T. M. Truong.
ActiveCampus - Experiments in Community-Oriented
Ubiquitous Computing. IEEE Computer,
37(10):73–81, 2004. http://activecampus.ucsd.edu/
[Last accessed: 1 Feb 2006].

[8] A. Iliasov. Implementation of Cama Middleware.
http://sourceforge.net/projects/cama [Last accessed:
1 Feb 2006].

[9] A. Iliasov, L. Laibinis, A. Romanovsky, and
E. Troubitsyna. Towards Formal Development of
Mobile Location-based Systems. Presented at REFT
2005 Workshop on Rigorous Engineering of
Fault-Tolerant Systems, Newcastle Upon Tyne, UK
(http://rodin.cs.ncl.ac.uk/events.htm), June 2005.

[10] A. Iliasov and A. Romanovsky. Exception Handling in
Coordination-based Mobile Environments. In
Proceedings of the 29th Annual International
Computer Software and Applications Conference
(COMPSAC 2005), pages 341–350. IEEE Computer
Society Press, 2005.

[11] I. Merrick and A. Wood. Coordination with Scopes. In
Proceedings of the ACM Symposium on Applied
Computing 2000, pages 210–217, 2000.

[12] G. P. Picco, A. L. Murphy, and G.-C. Roman. Lime:
Linda Meets Mobility. In Proceedings of 21st Int.
Conference on Software Engineering (ICSE’99), pages
368–377, 1999.

[13] M. Ratto, R. B. Shapiro, T. M. Truong, and W. G.
Griswold. The ActiveClass Project: Experiments in
Encouraging Classroom Participation. In Computer
Support for Collaborative Learning 2003, pages
477–486. Kluwer, 2003.

[14] G.-C. Roman, C. Julien, and J. Payton. A Formal
Treatment of Context-Awareness. In M. Wermelinger
and T. Margaria, editors, Fundamental Approaches to
Software Engineering, 7th International Conference,
FASE 2004, part of the Joint European Conferences
on Theory and Practice of Software, ETAPS 2004,
LNCS 2984, pages 12–36. Springer, 2004.

[15] I. Satoh. MobileSpaces: A Framework for Building
Adaptive Distributed Applications using a
Hierarchical Mobile Agent System. In Proceedings of
the ICDCS 2000, pages 161–168, 2000.

[16] A. Tripathi and R. Miller. Exception Handling in
Agent-oriented Systems. In Proceedings of the 21st
IEEE Symposium on Reliable Distributed Systems
(SRDS’02), pages 304–315. ACM Press, 2002.

[17] P. van Roy, S. Haridi, P. Brand, G. Smalka, M. Mehl,
and R. Scheidhauer. Mobile Objects in Distributed
Oz. ACM Transactions on Programming Languages
and Systems, 19(5):804–851, 1997.

7

