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Abstract

Building open distributed systems is an even more chal-

lenging task than building distributed systems, as their com-

ponents are loosely synchronised, can move, become dis-

connected, and their behaviour may depend on the chang-

ing context. The approach we are putting forward relies

on using a combination of formal methods applied for rig-

orous development of the critical parts of the system and

a set of design abstractions proposed specifically for the

open context-aware applications and supported by a special

middleware. Our middleware provides system structuring

through the concepts of roles, agents, locations and scopes,

making it easier for application developers to achieve fault

tolerance. We demonstrate our approach using a case study,

in which we show the whole process of developing an am-

bient campus application – an example of open distributed

systems – including its formal specification, refinement, and

implementation.

1 Introduction

Building advanced methods and mechanisms for devel-

oping ambient systems and applications is a very active area

of research as these systems are now used in various critical

domains, such as health, transport, emergency and produc-

tion. Many of these systems will rely on the mobile agent

paradigm, which supports structuring systems using decen-

tralised and distributed entities cooperating to achieve their

individual aims. These systems have a number of char-

acteristics complicating their development and making it

difficult for the developers to meet stringent requirements.

Firstly, a vast majority of emerging ambient systems and

applications have mobile elements, such as code, devices,

data, services and users. Secondly, such systems need to be

context-aware, so that the system activities can be directly

influenced by the information representing their changing

environment (due to the component mobility or to changing

characteristics of the physical world in which the systems

are executed). Thirdly, these systems are open, in a sense

that components can appear and disappear (e.g., become

disconnected). Therefore, developers of such systems need

certain abstractions and middleware for supporting compo-

nent mobility, context-awareness, and system openness. In

addition to these, due to the large number of components

and the decentralised nature of these systems, the develop-

ers need to ensure system flexibility and scalability.

This paper shows how we applied formal modelling

methods and tools, formal decomposition patterns, along

with the modelling abstractions during a systematic and rig-

orous development of ambient applications in the university

campus domain. In this scenario, we assume that each class-

room is a location with wireless support, in which a lecture

can be given. Our aim is to develop a system supporting

a number of functionalities to be conducted by the teacher

and the students during a lecture. The teacher software is

run on a desktop computer available in the classroom, while

the student software is run on PDAs (each student is given

a PDA).

In our previous work, we introduced the Context-Aware

Mobile Agents (CAMA) system [2], which provides fault

tolerance in mobile agent applications through agent struc-

turing. This is achieved by using the concepts of roles and

scopes, explicit and consistent exception handling at the

level of scopes, and a specialised distributed middleware

for detecting disconnections and raising exceptions at the

scope level. The design of this system and its middleware

implementation has been strongly influenced by LINDA [6],

which defines a set of language-independent coordination

primitives that can be used for autonomous and asyn-



chronous communication and coordination between several

independent pieces of software.

A number of other Linda-based mobile coordination sys-

tems have been developed recently; these include Klaim [3],

TuCSoN [11] and Lime [12]. Lime is one of the most de-

veloped, supported and widely-used examples of such envi-

ronments. Lime employs a distributed tuple space, in which

each agent has its own persistent tuple space that physically

or logically moves with it. Lime middleware – implemented

in Java – hides all the details and complexities of the dis-

tributed tuple space control and allows agents to treat it as

normal tuple space using conventional Linda operations.

The rest of this paper is organised as follows: Section

2 introduces our CAMA middleware; Section 3 discusses

how we applied formal approach in combination with the

CAMA middleware for developing an open distributed sys-

tem application (an ambient campus application); and Sec-

tion 4 concludes our paper.

2 Context-Aware Mobile Agents (CAMA)

CAMA is both a framework and a middleware support-

ing the development and deployment of agent-based appli-

cations. As a framework, CAMA encourages disciplined

development of fault-tolerant mobile agent applications by

supporting a set of abstractions ensuring system structuring,

exception handling and openness. We have implemented

this framework as a middleware that can be used for sup-

porting effective and highly scalable mobile applications,

while guaranteeing agent compatibility and dependability.

This section provides a brief introduction to CAMA – a

more detailed description can be found in [2].

2.1 CAMA Abstractions

The three basic concepts which CAMA offers for system

structuring are agent, platform and location. Agents repre-

sent the basic structuring unit in CAMA applications and

they are the active entities of a CAMA system. Each agent

is executed on a platform; several agents may reside on a

single platform. A platform provides an execution environ-

ment for agents, as well as an interface to the middleware.

A platform is typically run on a PDA, a smartphone, or a

laptop. A location is the core part of any CAMA system as

it acts as the middleware that provides a means for commu-

nication and coordination among agents which are situated

within the range of the location middleware (connections

are typically conducted over wireless networks, with wire-

less hotspots providing access to the location middleware).

A location is also a container for scopes. A scope struc-

tures the activity of agents in a specific location and pro-

vides an isolation of several communicating agents, thus

structuring the communication space. Scopes are dynami-

cally created when the entry conditions defined in the scope

specification are met. Agents can cooperate only when they

are participating in the same scope. Nested scopes are used

to structure large multi-agent applications into smaller parts

which do not require the participation of all agents. Such

structuring has a number of benefits. It isolates agents into

groups, thus enhancing security. Scope structuring is also

crucial for developing fault tolerant applications as it links

the coordination-space structuring with activity structuring,

which supports error confinement, localised error recovery

and scalability.

To deal with various functionalities that any individual

agent provides, CAMA introduces agent role as a finer unit

of code structuring. Each agent has one or more roles asso-

ciated to it. A role is a specification of one particular func-

tionality of an agent. A composition of all agent roles forms

its specification. An agent participates in a scope by assum-

ing one of the roles available for that scope. The scope def-

initions include specifications of the roles from which the

scope is composed. The role specifications determine the

roles available in the scope, and the number of agents al-

lowed to take part under any given role in that scope. In

other words, a role is a structuring unit of an agent, and it is

an important part of the scoping mechanism. It allows a dy-

namic composition of multi-agent applications and ensures

agent interoperability by enforcing the developers of roles

and agents to conform to the role specifications.

2.2 CAMA Middleware

CAMA middleware is composed of two major compo-

nents: the location middleware (which provides the coordi-

nation service) and the adaptation layer for Java language1

called jcama. The location middleware is implemented in

C language, which allows us to achieve the best possible

performance of the coordination space and to effectively

implement numerous features, such as the scoping mech-

anism. The location middleware implementation is quite

compact – it consists of approximately 7500 lines of C code

and should run on most Unix platforms. We have so far

tested it on Linux FC2 and Solaris 10. The jcama adapta-

tion layer defines several classes for representing – among

others – the abstract notions of location, scope and coor-

dination primitives. It also provides an interface through

which mobile agents or applications can be developed eas-

ily. The current implementation of jcama is fairly small in

size (around 40Kb) and it can be used with both standard

Java and J2ME. The full implementation of the location

middleware and the jcama adaptation layer are available

at SourceForge [7].

1We use Java for developing the applications for PDAs.



2.3 Design for Fault Tolerance

The CAMA framework supports application-level fault

tolerance by providing a set of abstractions and a supporting

middleware that allow developers to design effective error

detection and recovery mechanisms. The main means for

implementing fault tolerance in CAMA is a novel exception

handling mechanism which associates scopes with the ex-

ception contexts. Scope nesting provides recursive system

structuring and error confinement, as information cannot be

passed outside such scopes. In effect, the execution of a

scope is atomic from an outside observer’s point of view.

Error recovery in CAMA systems is application-specific

by nature and is to be implemented by the role develop-

ers. Error recovery is typically conducted at the level of

individual scopes with an aim to recover the activity of this

scope, although it is possible to attach handlers to individ-

ual roles (we usually do not use this feature as it breaks the

abstraction levels). CAMA allows the developers to define

cooperative recovery involving some or all roles of a scope

when an error is detected in this scope. After detecting an

error, any role can initiate application-specific recovery at

the scope level.

A rich set of predefined exceptions provided by CAMA

is useful for writing applications which react to abnormal

situations detected by the CAMA middleware (Fig. 1).

There are two types of abnormal situations: the ones which

are propagated to all scope roles which are subscribed to

them (including connection-disconnection exceptions, such

as CamaExceptionDisconnection) and the local ex-

ceptions propagated to an individual role when it tries to

execute an illegal action (e.g., violation of the scope con-

straints exceptions, such as CamaExceptionClosed).

Events Exceptions

NewScope CamaExceptionClosed

Destroy CamaExceptionInvalidReqs

Join CamaExceptionNoRights

Leave CamaExceptionInvalidRole

Disconnection CamaExceptionDisconnection

Figure 1. Some system events and prede-

fined exceptions

A number of predefined middleware events allow an

agent to track contextual changes, most importantly,

changes in the set of visible agents and scopes. This is es-

sential for initiating both cooperative and localised recov-

ery. For example, after discovering a disconnection of an-

other agent, an agent may initiate local recovery actions that

put it into a state from which it can continue without the dis-

connected agent.

It is our ongoing work to make the approach initially pre-

sented in [8] more suitable to developing fault tolerant open

multi-agent applications. Compared with the work outlined

in [8], our current framework imposes less restrictions on

the agents during exception handling, in particular, an agent

does not have to be involved in exception handling at all,

if this does not suit its aims. This makes exception han-

dling not only anonymous and asynchronous, but also vol-

untary, making it very different from the classical atomic

action schemes (such as that proposed in [4]).

Many researchers realise now that fault tolerance is be-

coming a software engineering concern which needs to be

addressed at various development steps. Finding the right

balance between using early and late development step tech-

niques is a difficult issue. In this paper, we show how formal

models and implementation level techniques can be used in

combination. Formal modelling and verification of applica-

tions typically help in eliminating a number of errors that

otherwise would have to be addressed at the implementa-

tion stage. As part of our work, we investigate (i) how error

detection and recovery can be integrated into formal devel-

opment, (ii) how formal models can be used by extracting

from them information about undesirable behaviour to in-

corporate error detection and recovery actions in the im-

plementation, and (iii) how recovery can be introduced at

the level of agent construction. When fault tolerance is in-

tegrated into formal models, it becomes an integral part of

the system, so that fault tolerance properties are verified and

satisfied during system development. In order to use formal

models for incorporating fault tolerance into system imple-

mentation, we need to define the undesirable behaviour as

an action or a set of actions which break the model invari-

ant or one of the post-conditions. This helps a developer

to include, at the implementation step, an additional code

for recovering from the undesirable behaviour. The formal

approach we are using defines a set of roles which are inter-

operable by construction. During system implementation,

agents are constructed as configurations of several roles.

This approach clearly requires agent-level error detection

and recovery to be introduced during system implementa-

tion.

2.4 Agent Construction

A typical CAMA agent is composed of a number of sim-

ple building blocks. The overall structure of a CAMA agent

is shown in Fig. 2. The discovery part is responsible for

finding a location and connecting to it. Once an agent is

connected to a location, it decides which application scopes

to join or to create. An agent can have physical mobility

(due to the physical movement of the hosting device) and

logical mobility (when it changes its hosting platform). Any

non-trivial agent has a monitor which oversees its context,

which changes during both physical and logical mobility.

The agent actions responsible for migration are put into a



separate part. There are also the implementations of agent

roles and the units for coordinating the roles.

Discovery Scoping Migration

CAMA middleware

... ..
.

..
.

Role 1

Role k

Role coordination logic

Figure 2. Agent subcomponents

The essence of agent systems is the ability to form multi-

agent applications where agents can interact with each

other. We use the role concept to structure agent so that

it can cooperate with other agents as cooperation can oc-

cur only among roles. A role also provides a link between

the formal development using the B method (see Section

3.1) and agent implementation. The B models of roles are

used to implement roles. The same B model can be used to

produce several role implementations as the developer has

to resolve non-determinism in a model by making specific

implementation decisions. A role model is a set of opera-

tions updating variables. Some of these operations can be

invoked externally while the others are activated only within

a role model. The difference in the style of operation in-

vocation leads to the important classification of operations

into role reactions and role actions. Reactions and actions

are implemented in different ways, although within the B

formalism we do not have to distinguish them.

3 Group Work in Developing C Programs

This section shows how we use the B method in com-

bination with the CAMA system for developing robust and

dependable ambient applications. To demonstrate this, we

pick the ambient campus lecture scenario described in [14].

We do realise the limitations of formal methods, in par-

ticular, in the complexity of conducting this work and in the

limitations of the existing tools. This is why we have cho-

sen to develop formally only one specific part of the system.

This part supports the most complex functionality of the ap-

plication, that is the group work using a shared editor. This

application allows several students – by using a mobile de-

vice such as a PDA or a smartphone – to collaboratively

work on a C program, editing it in turn while keeping the

consistency of the content. After all of them have made their

corrections and agreed on the text, this file can be shown to

the teacher, pretty printed, or sent to the compiler (which is

located on a separate computer). To support shared editing,

we have chosen an implementation that uses the token ring

MACHINE AM

SETS TYPES

VARIABLES v

INVARIANT I

INITIALISATION INIT

EVENTS

E1 = . . .

. . .

EN = . . .

END

Figure 3. Abstract B machine

mechanism. This solution seems to be the most appropriate

and effective considering the small number of students in

each group (typically between four and six students).

3.1 Formal Development

A formal specification is a mathematical model of the

required behaviour of a (part of a) system. In this paper,

we use an extension of B [1], called EventB [10], which

enables modelling of distributed, parallel, and reactive sys-

tems. In B, a specification is represented by a collection of

modules called Abstract Machines. An abstract machine en-

capsulates a local state (local variables) of the machine and

provides operations (events) on the state. A simple abstract

machine can be seen in Fig. 3.

A machine is uniquely identified by its name AM. The

state variables of the machine, v, are declared in the VARI-

ABLES clause and initialised in INIT as defined in the INI-

TIALISATION clause. The variables types are given in the

INVARIANT clause. The invariant also defines the prop-

erties of the system that should be preserved during system

execution.

The B method supports the top-down development

paradigm. In the development process, the abstract speci-

fication is transformed into a system implementation via a

number of correctness-preserving steps called refinements.

Refinements allow us to gradually incorporate concrete im-

plementation details, while at the same time preserving the

previously stated properties of the system. The correctness

of each refinement step is validated by proofs. As a result,

we get an executable system that is correct by construction.

The tools support available for B – for example, Ate-

lier B [5] – provides some assistance to the entire devel-

opment process. Atelier B has facilities for automatic ver-

ification and code generation, as well as documentation,

project management and prototyping. All formal develop-

ments presented in this paper have been completely verified

using Atelier B.

One of the main goals of this paper is to demonstrate

how formal modelling and tools can be applied for rigorous



MACHINE coaccess

SETS AGENT

VARIABLES

owner, agents, done

INVARIANT

owner ⊆ AGENT ∧ agents ⊆ AGENT ∧ done ∈ BOOL ∧
owner ⊆ agents ∧ card(owner) ≤ 1 ∧
(done = FALSE ⇒ card(owner) = 0) ∧
(done = TRUE ⇒ card(agents) > 1)

INITIALISATION...

EVENTS

AddAgents = ...

ChangeOwnership =
ANY aa WHERE aa : agents ∧ aa �= {owner} ∧
card(owner) > 0 ∧ done = TRUE

THEN owner := {aa} END;
AssignLeader = ...

END

Figure 4. The abstract machine specifica-

tions for coaccess

development of fault tolerant ambient applications. This de-

velopment approach allows us to ensure essential properties

of multi-agent applications, such as agent interoperability

and fault tolerance by developing systems that satisfy these

properties by the way we construct them. In this section we

present the formal development of the shared editor appli-

cation described above.

In our approach, the application development starts with

a abstract specification of a scope – a mathematical model

of the required behaviour of a multi-agent application. In

the refinement process, we incorporate implementation de-

tails concerning concrete functionality, communication, and

fault tolerance aspects of the involved agents. If a scope de-

scribes the activities of more than one role, at some point

of the development, a scope specification should be decom-

posed into the corresponding specifications of the involved

roles. The resulting specifications can then be developed

and implemented separately.

For the shared editor application, we have identified two

different scopes: a scope for modelling file operations (the

Filesystem scope), and a scope for describing the shared

editing of a single file (the Editing scope). The initial spec-

ifications of these scopes provide the starting points for two

separate formal developments.

The Editing scope basically models mutually exclusive

access to a shared resource. We are going to implement it

as a token ring mechanism. The initial specification of the

scope, called coaccess, is presented in Fig. 4. The specifi-

cation allows new requests from the agents to a shared re-

source to be accepted (in AddAgents); a resource to be given

to one of the agents (in AssignLeader); and a change of re-

source ownership to be made (in ChangeOwnership). The

latter event is possible only when all of the requests have

been received (i.e., done = TRUE) and no agent currently

owns the resource (aa �= {owner}).

3.1.1 Scope Specification and Decomposition into

Roles.

The initial scope specification defines the scope state (pro-

gram variables) and the scope events (operations) that up-

date the state. It abstractly describes the general scope ac-

tivities without specifying which roles are involved in them.

However, at some stage of the specification refinement,

we eliminate the abstract scope variables and introduce the

roles. The scope state is then partitioned by distributing the

program variables among the scope roles such that for each

variable, there is exactly one role responsible for updating

it. Similarly, for the operations, we specify the scope events

in such a way that each event updates the variables of only

one role. As a result, we attribute each scope operation with

a single role. At the same time, a scope operation can read

the variables of other roles. This gives us an abstract way

for modelling the coordination among the scope roles. As a

result of our final refinement step, the scope specification is

decomposed into separate role specifications that can then

be used to implement compatible cooperative agents.

Therefore, the goals of our development process by pro-

gram refinement are two-fold. We introduce the missing

implementation details on specific functionality, communi-

cation, and fault tolerance mechanisms. At the same time,

we decouple the scope state and operations in such a way

that we can attribute each scope variable and event to a spe-

cific role.

Next we explain how we can develop the specifications

of our identified scopes (Filesystem and Editing) into the

corresponding specifications of the involved roles. The de-

velopment process is driven by the application of the so

called refinement patterns.

3.1.2 Refinement Patterns.

In general, there are many possible ways to refine a particu-

lar specification, thus arriving at different implementations.

In order to cope with the overall complexity of such formal

development, we carry out changes in a well-defined way,

applying specific refinement patterns. These patterns fo-

cus on specific transformations that introduce particular fea-

tures (like communication or fault tolerance mechanisms)

into our software models. As their name suggests, the re-

finement patterns also enable the specification to be reused.

In our formal development, we distinguish the following

types of refinement patterns [9]:

• patterns for role decomposition (decoupling), allowing

us to modify the data and operations in such a way that

they become distributed among the involved roles;

• patterns for introducing communication between roles;

• patterns for introducing fault tolerance mechanisms.



REFINEMENT faremote

REFINES fileacess

VARIABLES

〈 variables of file server 〉
rfiles, outbuffer, req cmd, req id, ...

...

EVENTS

〈 events of file server 〉
NewFile = ...

AddBlock = ...

ReplaceBlock = ...

ReadF ile = ...

Submit = ...

END

REFINEMENT fserver

REFINES faremote

VARIABLES

rfiles, outbuffer, req cmd, req id, ...,

〈 additional variables of file user 〉
creq cmd, creq id, creq block, ...

...

EVENTS

NewFile = ...

AddBlock = ...

...

〈 additional events of file user 〉
ReqCreate = ...

ReqRead = ...

ReqWrite = ...

ReqReWrite = ...

END

Figure 5. The specifications for faremote and

fserver

Let us now consider a simple refinement pattern. In

our development of the Filesystem scope, we start with an

abstract specification describing the basic file access oper-

ations (specification fileacess). This scope describes co-

operation of two roles: a file server and a file user. There-

fore, our goal is to refine the scope specification in such

a way that, at some point of the development, it would be

possible to decompose it into the corresponding specifica-

tions of a file server (the FileServer role) and a file user (the

FileUser role).

For this purpose, we use one of the role decomposi-

tion patterns proposed earlier [9]. It allows us to develop

a scope, treating all its data and operations as belonging to

the main (managing) role. Then, in a separate refinement

step, we introduce new data and operations of a secondary

role, tying them together with the corresponding data and

operations of the main role. The operation guards and the

invariant are modified in such a way that scope activities in-

volving both roles are carried out only following a certain

predefined scenario.

In the Filesystem scope, the main role is FileServer and

the secondary role is FileUser. The refinement step, which

applies the described pattern, takes specification faremote

and produces specification fserver. The structure of the

faremote and fserver specifications is presented in Fig. 5.

The resulting specification fserver is now ready to be de-

composed into the corresponding specifications, specifying

the roles of FileServer and FileUser (see Fig. 6).

The alternative role decomposition pattern allows us

to actually split both the data and the abstract operations

among the involved roles. More details about the decompo-

sition patterns can be found in [9].

Using the refinement patterns described above, we have

developed the identified scopes of the shared editor applica-

tion, arriving at the specifications of the involved roles. As

a result, we have decomposed the Filesystem scope into two

separate roles – FileServer and FileUser. The development

of the Editing scope has produced a single role, DistRing,

representing the distributed token ring. The whole applica-

tion development structure is shown in Fig. 6.

In the next section we discuss how we can use these de-

veloped models to construct different types of cooperating

agents involved in the shared editor application.

3.2 Constructing the Agents for the
Shared Editor Application

In our formal development, we have designed two scopes

(Filesystem and Editing) with three different roles (File-

Server, FileUser, and DistRing). The next stage is to

construct a running application based on these scopes and

roles models. This resulted in the construction of five

agents: FileManager, ResourceManager, CodeFormatter,

Compiler and Editor agents. Fig. 7 illustrates how these

agents are structured within the scopes mentioned above.

ResourceManager

Agent

FileManager

Agent Editor

Agent

CodeFormatter

Agent

Compiler

Agent

Filesystem scope

Editing scope

*

Figure 7. The scopes and agents for the shared

editor application

The ResourceManager agent combines two roles and

acts as a link between the two scopes. The CodeFormat-

ter, Compiler and Editor agents implement the same role

(DistRing), but they each provide different functionality on

top of the role model.

Fig. 8 gives the overall structure and some details of

implementation of the DistRing role model. The meth-

ods with the reaction prefix are the role events (we do not



Figure 6. The overall picture of the shared editor application development

use ’event’ prefix to avoid possible confusion with unre-

lated Java libraries) and the methods with the action pre-

fix are the role actions. The middleware uses Java intro-

spection capability to find all the methods starting with a

particular prefix. When an instance of a role is created,

the middleware analyses the class and automatically creates

event subscriptions for each role event. For example, the

declaration of reactionChangeOwnership method

will result in a subscription of events that match the fol-

lowing LINDA-style pattern: {’ChangeOwnership’,
String: *}. The first field is the event name and the re-

maining fields are type-constrained wildcards created from

the list of formal event arguments. Hence, an event is

matched by its name and also by the number and the types

of the parameters.

public class DistRingRole extends RoleSkeleton {
private Scope scope;
private boolean ringready = false;
private boolean isowner = false;
private String myLeftNeighbour = null;
private Listener listener = null;
public DistRingRole(String myname, Scope s, Listener list)

throws CamaException { ... }
public void actionJoinRing() throws CamaException { ... }
public void actionRingReady() throws CamaException { ... }
public void actionChangeOwnership() throws CamaException {

if (ringready && isowner) {
isowner = false;
post(”ChangeOwnership”, new Record().addString(myLeftNeighbour));
listener.event(Record.empty, this);

}}
public void reactionSetNeighbour(String node, String neighbour)

throws CamaException { ... }
public void reactionRingReady() throws CamaException { ... }
public void reactionChangeOwnership(String nodename) { ... }

Figure 8. Implementation of DistRing

An event method is invoked whenever a matching

event is posted. The middleware extracts the values

supplied with the event and feeds them as the event

method arguments. An event is created by an action

or a reaction of a role in the current scope. The

actionChangeOwnership method demonstrates the

use of the post which creates new events. This partic-

ular statement triggers reactionChangeOwnership

events in all the roles of all the agents in the current scope

with the current value of myLeftNeighbour as the argu-

ment.

Role implementations for the case study use exclusive

execution model for reactions and actions. Only one action

or reaction can be running at any given moment. This is

crucial for preserving the properties of the formal model as

they are proved under the assumption of atomic operation

execution. Threads and monitors are automatically man-

aged by the middleware, thus the execution model appears

very natural to a developer. We allow a role to invoke reac-

tion on itself by creating an event. Actions, however, cannot

be invoked within a role due to the requirement of atomic

execution of reactions and actions. The middleware uses a

special mechanism to avoid role starvation from cyclic re-

action invocations.

While reactions are managed by the middleware and in-

voked externally by other agents, actions must be taken care

of by an agent developer. It is possible to have a role with-

out actions at all. For example, the FileServer role does

not contain any action and thus it can be implemented as a

completely autonomous role. In general, however, an agent

developer must write a code that manages a role. This is a

deliberate methodological decision. We think it is impor-



tant to have a well defined means of balancing formalisa-

tion efforts and implementation freedom. Role actions are

like ports to which developers can attach their customised

extension code, unspecified but foreseen by the formal de-

sign. It is a correct way of extending the role functionality

without risking violating the role properties proved during

the formal development.

public void event(Record values, Object role) {
if (pred1(ρ)) { ... }
else if (pred2(ρ)) { ... }

...
else if (predn (ρ)) { ... }

}

Figure 9. Specifying reactions on roles’ vari-

ables change

A role action invocation is similar to calling a class

method. An action can be invoked at any moment. How-

ever, the calling code might be blocked if there are other

actions or reactions running at the same time. To match

the style used in the roles, agent developers will have to

implement the role management code in a reactive man-

ner. This requires implementation of a code reacting to the

changes in the roles states, or in other words, a code for

monitoring the role variables. Procedural languages typi-

cally do not support such a feature. It can be reasonably

simulated by registering a callback method that requires a

role to call it whenever a role variable is updated. The

listener variable in Fig. 8 is a pointer to a callback

procedure (which is an instance of an interface in Java). It

calls the actionChangeOwnership action to notify the

role management code that a role variable has been updated.

The callback will usually have a structure as shown in Fig.

9. A callback is made-up of a number of actions, each acti-

vated by a predicate over the variables of one or more roles.

This is a scalable and structured approach to coordinate any

number of roles.

A complex agent is typically composed of more than one

role. In many case, the roles must be orchestrated so that

they work together towards the same global goal. Some

changes in a state of one role can result in an action being

called in another role. The ResourceManager agent from

our case study is an example of an agent with such two

roles. When a ResourceManager agent gets a token in the

Editing scope, it can upload or download a file to/from the

FileServer agent. The content of a downloaded file can be

made available to other agents in the Editing scope.

3.3 Fault Tolerance

During the formal development of the case study we de-

cided against introducing faults and recovery actions as we

could not find recovery algorithms for the modelled prob-

lems which would be general enough to retain the desired

level of abstraction. This means that we had to rely on im-

plementation stage techniques to bring fault tolerance into

the case study application. However, we consider it to be

natural to approach the problem using the structures intro-

duced by the formal design. Hence, to make the whole ap-

plication more robust, we individually analyse the two parts

of the application – the Filesystem scope and the Editing

scope – and try to define possible faults and the correspond-

ing recovery actions.

3.3.1 Role-level Recovery

The FileSystem scope has two roles: one for generating re-

quests and reading the results; the other for serving these re-

quests. One possible source of faults is malformed requests.

ResourceManager might try to download a non-existent file

or read beyond a file end. The information needed to val-

idate these is private to the FileServer role. Thus, a re-

quest can be found invalid only after it triggers a reaction

in the server part. The FileServer role cannot handle a mal-

formed request in a normal circumstances. It must, how-

ever, inform the calling agent in order to avoid deadlocks

since the calling agent may be expecting some results from

the request. Effectively, an ability to handle malformed re-

quests requires us to introduce new protocols of communi-

cation, not described in the formal model. We use the ex-

ception propagation technique to deal with new behaviour

and new control flow in a disciplined manner. Access to a

non-existent file will result in an exception sent back to the

agent that generated the request. Each role implementation

is extended in such a way that it is ready to accept an excep-

tion in place of normal events. The basic communication

mechanism is the same for exceptions and normal events.

The purpose of these exceptions and the exception handlers

is to introduce recovery actions in such a way that the code

for normal activities is not affected and the invariant of a

role is not violated until an exception happens. Exception

detection and the subsequent recovery create a temporary

deviation from a normal behaviour which – provided that

the recovery succeeds – at some point will rejoin the nor-

mal behaviour and restore the role invariant.

public void reactionRi (a) {
if (error-condition(a, v)) {

post(Exceptionk , description);
} else {

... // normal behaviour
}

}
... // reactions and actions corresponding to normal behaviour
public void reactionExceptionj (d) {

... // recovery actions
}

Figure 10. Extending role with error detection

and recovery actions

Exception detection for the FileServer role is based on



the guards of the fserver model operations. These operation

have guards in the form sreq cmd = REQUEST ∧ ρ(v).
The first part of the conjunction tests for a request type. The

implementation of this part is implicit and each reaction is

associated with a single request type. ρ(v) is a predicate

checking a request on well-formedness (e.g., if a file ex-

ists). The negation of the predicate describes all invalid re-

quests. We use this fact to introduce error detection by ex-

tending the corresponding role reactions with new branches

that handle the same request but with a guard in the fol-

lowing form: sreq cmd = REQUEST ∧ not(ρ(v)). The

new code signals an abnormal execution by sending an ex-

ception to the request producer. An exception is an event

and the recovery actions can be constructed as standard role

reactions (see Fig. 10).

3.3.2 Agent-level Recovery

The approach described above cannot be applied to the to-

ken ring role. Neither of the role instances knows about the

global state. In fact, they know so little about the token ring

as a whole that it is not possible to write any error detection

predicates at all. Any attempts will result in extra commu-

nication with the neighbouring agents. We decided to avoid

modifying the role model, so we introduced error detection

and recovery at an agent-level.

The situation from which we want to recover-from is

the disappearance of an agent from the token ring (Edit-

ing) scope. When an agent crashes, disconnects or delib-

erately leaves the scope, the ring is broken and the token

will eventually be lost. The middleware has the capability

to detect agent disconnections and inform all of the scope

participants. Thus error detection is based on the services

provided by the middleware. The corresponding recovery

action must mend the existing ring or create a new valid

ring with all the existing agents. We do the latter as we

found it impossible to perform ring repairs without extend-

ing the functionality of the role.

Once an agent has learnt that another agent has disap-

peared, it terminates the current instance of the token ring

role and starts a new one. This automatically initiates the

construction of a new ring. This approach, although very

simple, is a very efficient recovery method. Not only it

recovers from the situations where one agent disconnects,

but also successfully handles the situations where the ring

is partitioned into two parts. The local recovery actions of

all agents will result in the creation of two new functional

rings, provided there are enough agents in each of them.

3.4 Implementation Details

We implemented the whole case study application in

Java using the features provided by jcama. There are five

different agents implementing three different roles (see Fig.

6 and Fig. 7). In order to simplify the transition from a for-

mal specification into Java code, the implementation was

done in two stages. In the first stage, we produced role im-

plementations according to the formal specifications. The

implementation of the roles was made generic enough to

be reusable by different agent designs. The FileManager,

CodeFormatter, and Compiler agents are non-interactive

and completely autonomous. There can be multiple in-

stances of the Editor agent.

The application was deployed on two PDAs, one smart-

phone, and two desktop PCs. The PDAs and the smartphone

were running the Editor agent. Users of this agent (i.e. the

students) should be able to move around, capitalising on the

wireless connectivity of their devices.

The students – through their Editor agent – can type C

programs, use an automatic code formatter (the CodeFor-

matter agent is based on the UNIX indent utility), compile

and run the program, and see the run-time output. The right

and the middle screenshots in Fig. 12 show the dialog win-

dows of the Editor agent. The left-most screenshot shows a

result from executing the C program through this agent.

All other agents reside on standard PCs running linux-

2.6 and JDK-1.5. The smartphone is a SonyEricsson M600i

running under Symbian 9.1 with CDC Java profile. The

PDAs run Windows Mobile 2003 SE and IBM J9 Java ma-

chine, connected to the location middleware using a wire-

less LAN infrastructure. Smartphones connect to the loca-

tion middleware through ad-hoc Bluetooth networking.

4 Conclusions and Future Work

The main contribution of this paper is in introducing a

novel approach to developing fault tolerant ambient appli-

cations by using a combination of a formal method aug-

mented by specialised development patterns and a set of

design abstractions supported by a dedicated middleware.

This approach has been successfully applied in developing

the lecture scenario as part of a larger ambient campus sys-

tem.

We have found formal methods to be very useful in al-

lowing us to clearly define and rigorously develop in a

stepwise fashion the most critical part of the application.

Our experience suggests that it is useful to combine formal

methods with the more commonly-used ways of building

systems. In our work of developing the lecture scenario, we

have identified and applied several ways of using them in

combination.

Our ongoing and future work focuses on: (i) finalising

the set of abstractions and the functionality of the middle-

ware; (ii) building the complete development method sup-

porting – in addition to the B refinement – verification (by

model checking) of system properties with a specific fo-



Figure 11. ResourceManager and FileManager agents running on a PC

Figure 12. Editor agent on a smartphone and a PDA

cus on the fault tolerance properties; (iii) extending the

exception handling mechanism with an ability to involve

several scopes, to explicitly state and dynamically mod-

ify the exception propagation policies and to use excep-

tional events (reactions) to further separate normal system

behaviour from the abnormal one.
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