
Kent Academic Repository
Full text document (pdf)

Copyright & reuse

Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all

content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions

for further reuse of content should be sought from the publisher, author or other copyright holder.

Versions of research

The version in the Kent Academic Repository may differ from the final published version.

Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the

published version of record.

Enquiries

For any further enquiries regarding the licence status of this document, please contact:

researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down

information provided at http://kar.kent.ac.uk/contact.html

Citation for published version

Iliasov, Alexei and Arief, Budi and Romanovsky, Alexander (2009) Step-wise development of
resilient ambient campus scenarios. In: Butler, Michael and Jones, Cliff and Romanovsky, Alexander
and Troubitsyna, Elena, eds. Methods, Models and Tools for Fault Tolerance. Lecture Notes
in Computer Science . Springer, pp. 297-323. ISBN 0302-9743.

DOI

http://doi.org/10.1007/978-3-642-00867-2_14

Link to record in KAR

http://kar.kent.ac.uk/58690/

Document Version

Author's Accepted Manuscript

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kent Academic Repository

https://core.ac.uk/display/74208599?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Step-wise Development of

Resilient Ambient Campus Scenarios

Alexei Iliasov, Budi Arief, and Alexander Romanovsky

School of Computing Science, Newcastle University,
Newcastle upon Tyne NE1 7RU, England.

{Alexei.Iliasov, L.B.Arief, Alexander.Romanovsky}@newcastle.ac.uk

Abstract. This paper puts forward a new approach to developing re-
silient ambient applications. In its core is a novel rigorous development
method supported by a formal theory that enables us to produce a well-
structured step-wise design and to ensure disciplined integration of error
recovery measures into the resulting implementation. The development
method, called AgentB, uses the idea of modelling database to support
a coherent development of and reasoning about several model views, in-
cluding the variable, event, role, agent and protocol views. This helps
system developers in separating various modelling concerns and makes
it easier for future tool developers to design a toolset supporting this de-
velopment. Fault tolerance is systematically introduced during the devel-
opment of various model views. The approach is demonstrated through
the development of several application scenarios within an ambient cam-
pus case study conducted at Newcastle University (UK) as part of the
FP6 RODIN project.

1 Introduction

We use the term ambient campus to refer to the ambient intelligence (AmI)1 sys-
tems deployed in an educational setting (a university campus). Ambient campus
applications are tailored to support educational, administrative and research
activities typically found in a campus, including delivering lectures, organising
meetings, and facilitating collaborations among researchers and students.

This paper reports our work on the development of the ambient campus case
study within the RODIN project [1]. This EU-funded project, led by the School
of Computing Science of Newcastle University, aimed to create a methodology
and supporting open tool platform for the cost-effective rigorous development
of dependable complex software systems and services. In the RODIN project,
the ambient campus case study acted as one of the research drivers, where we
investigated how to use formal methods combined with advanced fault-tolerance
techniques in developing dependable AmI applications.

1 A concept developed by the Information Society Technologies Advisory Group
(ISTAG) to the EC Information Society and the Media DG, where humans are
surrounded by unobtrusive computing and networking technology to assist them in
their activities – http://cordis.europa.eu/ist/istag.htm.

Software developed for AmI applications needs to be able to operate in an
unstable environment susceptible to various errors and unexpected changes (such
as network disconnection and re-connection) as well as to deliver context-aware
services. These applications tend to rely on the mobile agent paradigm, which
supports system-structuring using decentralised and distributed entities (agents)
working together in order to achieve their individual aims. Development of multi-
agent applications poses many challenges due to their openness, the inherent
autonomy of their components (i.e. the agents), the asynchrony and anonymity of
their communication, and the specific types of faults they need to be resilient to.
To address these issues, we designed a framework called Cama (Context-Aware
Mobile Agents), which encourages disciplined development of open fault-tolerant
mobile agent applications by supporting a set of abstractions ensuring exception
handling, system structuring and openness. These abstractions are backed by
an effective and easy-to-use middleware allowing high system scalability and
guaranteeing agent compatibility. More details on Cama and its abstractions
can be found in [2–4].

The rest of this paper discusses the challenges in developing fault tolerant
AmI systems (Section 2), describes the theory behind our design approach (Sec-
tion 3), outlines various approaches to tackling fault-tolerant issues (Section 4),
and illustrates how our design approach was applied in the case study scenarios
(Section 5).

2 Challenges in Developing Fault-Tolerant Ambient

Intelligence Systems

Developers of fault-tolerant AmI systems face many challenging factors, some of
the most important ones are:

– Decentralisation and homogeneity
AmI systems are composed of a number of independent computing nodes.
However, while traditional distributed systems are orchestrated – explicitly,
by a dedicated entity, or implicitly, through an implemented algorithm –
in order to solve a common task, agents in AmI system make independent
decisions about collaboration in order to achieve their individual goals. In
other words, AmI systems do not have inherent hierarchical organisation.
Typically, individual agents are not linked by any relations and they may
not have the same privileges, rights or capabilities.

– Weak Communication Mechanisms
AmI systems commonly employ communication mechanisms which provide
very weak, if any, delivery and ordering guarantees. This is important from
the implementation point of view as AmI systems are often deployed on
wearable computing platforms with limited processing power, and they tend
to use unreliable wireless networks for communication means. This makes
it difficult to distinguish between a crash of an agent, a delay in a mes-
sage delivery and other similar problems caused by network delay. Thus, a

recovery mechanism should not attempt to make a distinction between net-
work failures and agent crashes unless there is a support for this from the
communication mechanism.

– Autonomy
During its lifetime, an agent usually communicates with a large number
of other agents, which are often developed in a decentralised manner by
independent developers. This is very different from the situation in classical
distributed system where all the system components are part of a closed
system and thus fully trusted. Each agent participating in a multi-agent
application tries to achieve its own goal. This may lead to a situation where
some agents may have conflicting goals. From recovery viewpoint, this means
that no single agent should be given an unfair advantage. Any scenarios
where an agent controls or prescribes a recovery process to another agent
must be avoided.

– Anonymity
Most AmI systems employ anonymous communication where agents do not
have to disclose their names or identity to other agents. This has a number
of benefits: agents do not have to learn the names of other agents prior to
communication; there is no need to create fresh names nor to ensure naming
consistency in the presence of migration; and it is easy to implement group
communication. Anonymity is also an important security feature - no one can
sense an agent’s presence until it produces a message or an event. It is also
harder to tell which messages are produced by which agent. For a recovery
mechanism, anonymity means that we are not able to explicitly address
agents which must be involved in the recovery. It may even be impossible
to discover the number of agents that must be involved. Even though it is
straightforward to implement an exchange for agents names, its impact on
agent security and the cost of maintaining consistency usually outweigh the
benefits of having named-agents.

– Message Context
In sequential systems, recovery actions are attached to certain regions, ob-
jects or classes which define a context for a recovery procedure. There is no
obvious counterpart for these structuring units in asynchronously communi-
cating agents. An agent produces messages in a certain order, each being a
result of some calculations. When the data sent along with a message cause
an exception in an agent, the agent may want to notify the original message
producer, for example, by sending an exception. When an exception arrives
at the message producer (which is believed to be the source of the problem),
it is possible that the agent has proceeded with other calculations and the
context in which the message was produced is already destroyed. In addition,
an agent can disappear due to migration or termination.

– Message Semantics
In a distributed system developed in a centralised manner, semantics of
values passed between system components is fixed at the time of the system
design and implementation. In an open agent system, implementation is
decentralised and thus the message semantics must be defined at the stage

of a multi-agent application design. If an agent is allowed to send exceptions,
the list of exceptions and their semantics must also be defined at the level of
an abstract application model. For a recovery mechanism, this means that
each agent has to deal only with the exception types it can understand,
which usually means having a list of predefined exceptions.

We have to take these issues into account when developing and implementing
fault-tolerant AmI systems. The following section outlines the design approach
intended for constructing the ambient campus case study scenarios.

3 Design Approach

Our overall aim is to develop a fairly detailed model which covers a number of is-
sues critical for ambient systems, including communication, networking failures,
proactive recovery, liveness, termination, and migration.

No existing formal modelling technique can adequately address all the devel-
opment stages of a complex, large-scale agent system. The proposed modelling
method combines high-level behavioural descriptions, detailed functional speci-
fications and agent-level scenarios for an integral approach addressing the issues
of parallelism, distribution, mobility and context.

Different modelling techniques are used to operate on a common general
model. A general system model is projected through a number of views, each
emphasizing some specific aspect of a model. The choice of views was dictated by
the availability of the verification toolkits that can be used to automate analysis
of model properties. Another important role of views is to help a designer to
better understand a model.

Unlike hybrid methods – where two or more notations are used – in our
approach, a whole model is described in single basic notation based on the stan-
dard set theory language. This reduces the possibility of consistency problems
and makes the method more elegant and flexible. The model notation is delib-
erately very schematic, no tool is going to support it and no real system can be
described in it. Instead we propose to use a graphical modelling tool that can
visually layout and manipulate different model parts.

Since it is hard to produce an efficient and scalable verification tool, we try
to reuse the well-established formalisms supported by verifications tools. Our
approach is based on a combination of a process algebra and a state-based mod-
elling method. A CSP-inspired process algebra is used for verification of high-
level system behaviour while the Event-B specification method [5] is employed to
construct detailed functional specifications. The Mobility Plugin model checker
[6] is used to verify hybrid specifications composed of a process algebraic model
and an Event-B machine.

The motivations for this work is the construction of a tool for computer-aided
development of agent systems. Such tool would combine simplicity of visual mod-
elling tools such as UML, the expressive power of specifications languages such
as B ([7]) and Z ([8]) and systematic step-wise development of the refinement.

The result of such development is a set of specifications of agent roles. Due
to the top-down development, such specifications are interoperable. Role specifi-
cations can be taken apart and implemented or further developed independently
without risking losing interoperability with the other agent roles of the system. In
many cases, executable code can be generated directly from a role specification.

3.1 The AgentB Modelling Database

The AgentB modelling database concept unites the various model types used in
a development. Most of the models are rather simple on their own and thus easy
to read and update. Combining these models together produces a powerful mod-
elling tool, and their combination is never written out as a single specification.
Instead, a software tool is responsible for maintaining links among model parts
to ensure consistency of the whole development.

A refinement of a formal development is constructed by refining different
database parts, one at a time. This is possibly the most attractive feature of the
approach. Instead of tackling a whole model, a modeller can choose a specific
aspect of a model to work on. At any given moment, the focus of a modeller is
on a single database part or a synthetic view constructed from a combination of
several parts. The modelling database has the following structure:

Sys = (S, V, E, R, P, F, C, D, A, I)

where

S - collection of carrier sets and variables. They are used in the functional,
communication and agent database parts.

V - variable model. This includes variables used by functional, communication
and agent models.

E - event model, as a set of possible system events.
R - role model, collection of system roles.
P - a protocol model, in the form of a CSP-like process algebraic expression.

A protocol model is a high-level description of observable system behaviour.
This model does not refer to or update system state. For this reason it is
very convenient to use the protocol part alone to design an initial system
abstraction.

F - functional model. It describes the state updates done by events present in the
system. Functional model of a single event includes a set of local variables,
a guard, and a before-after predicate relating a new system state to an old
one.

C - communication model. It is used to describe how information is passed
between different agents roles, as roles do not normally share variables. The
model helps to distinguish between internal control flow of an agent and
external message passing.

D - distribution model. This model relates elements of the event and variable
models to roles from the role model. An empty distribution model stands for
an implicit single role which contains all the variables and events.

A - agent model. This model describes locations and agents of a system. The
model helps to address the problems of mobility and context-awareness.

I - a system invariant. Properties expressed by a model invariant must be pre-
served at all stages of a system execution. Typically, an invariant consists
of typing predicates for system variables, functional model properties, agent
model properties and, possibly, a gluing invariant for linking model refine-
ments.

Model context contains static information used by a development. It declares
user carrier sets, constants and a context properties: (S, C, P).

Variable Model The variable model part describes the state space of the mod-
elled system. This model must be accompanied by the invariant part providing
typing predicates for all the variables.

In a modelling database, the variable model part is used by four other parts
– functional, distribution, communication and agent models. All variables are
visible to these parts. The initialisation event of the functional model is respon-
sible for computing the initial state of a system. Agent and functional models
are the only parts which can update variable states.

Event Model Event is an observable action of a system, it has no duration
and thus only one event can be observed at any given moment. An event model
indicates which events may be observed in a correct model implementation. For
example, for event model {a, b}, all the systems with the following observable
behaviours are correct implementations:

〈a, a, a, ...〉
〈b, b, b, ...〉
〈a, a, b, a, b, b, ...〉
〈〉

where by 〈〉 we denote a system which stops immediately when started (a system
doing nothing is a valid implementation of any event model). Any system with
events other than a and b is not a valid model implementation. For instance,
a, a, a, c, ... does not implement the model since c is not included in the event
model.

Role Model The role model part declares a set of system roles (component
types) and for each role, specifies the minimum number of role instances re-
quired to construct a system and the maximum number of role instances that
is supported by a system. A role model is defined with a tuple made of a set of
roles and two functions defining the restriction on role instance number:

(R, rmin, rmax)

where R is the set of roles, rmin and rmax are functions specifying the minimum
and maximum number of instances for each role:

rmin : R → N1

rmax : R → N1 ∪ {∞}

Protocol Model Behavioural modelling is a natural choice for high-level mod-
elling of parallel and distributed systems. Behavioural specifications focus on
temporal ordering of events, omitting details of state evolution. The agent sys-
tem paradigm is one example where behavioural model is preferable for high-
level system abstraction although state-based description may be required at
later stages. The protocol model language is based on a subset of CSP notation
(Figure 1).

e→ P synchronisation prefix
P ;Q sequential composition
P‖Q parallel composition
P ⊓Q choice
µx · P (x) recursion
skip no-effect process

Fig. 1. The language of protocol model expression.

We will often use the following shortcut notation for describing loops:

∗

(P) = P ; P ; P ; ... = µX · (P ; (X ⊓ skip))

Reactions In AgentB, we are interested in the modelling of distributed systems.
To make transition into implementation stage easier, we try to achieve distri-
bution at the modelling level. Protocol model is one of the parts that must be
split somehow into pieces to faithfully model a distributed system. For this,
we represent a protocol model as a collection of several independent protocol
models:

P1, P2, ..., Pn

To be able to refer to parts of a protocol model, protocol sub-models are
identified with unique labels:

l1 : P1, l2 : P2, ..., ln : Pn

Here Pi are the protocol model parts and li are the attached labels. For
example, a model of a server providing two different services – reading a file and
saving a file – can be described as:

readfile : P‖
savefile : Q

Each reaction name has a special meaning. Reaction with label ⋆ is a protocol
model of a whole system before it is completely decomposed into models of
individual roles. Other reactions labels are only notational decorations and are
not given any interpretation.

Functional Model With the functional model part, a modeller specifies how
an event updates the state of a system. This is done by formulating predicates
relating old and new system states. Such a predicate does not have to describe
a unique new state, instead it describes a whole family of possible next states.
Functional model of an event is equipped with a guard. A guard defines the
states when the event can be enabled. If an event execution is attempted in a
state prohibited by its guard, execution is suspended until the system arrives at
a state satisfying the guard.

Functional model of an event computes a new system state in a single atomic
step. It does not use any intermediate steps or intermediate local results and it
is not interleaved with the execution of other events. Functional model always
contains initialisation event. This event is special: it cannot be referred-to any-
where in a model (for example, in a protocol model expression) and this event is
always prior to any other event. The functional model of an event is described
by event guard and event action:

F : Ev 7→ (Grd × Act)

where

Ev - event identifier, must be an element of the Event model;
Grd - event guard. In addition to typing predicates for parameters and event

enabling conditions, an event guard can also have free variable that must
be typed by the guard. These variables are the local variables of the event.
They are not seen outside the event and cannot be updated by the event
action;

Act - generalised substitution defined on variables from the variable model.

We use generalised substitutions to describe how an action transforms a
model state. The table below lists the substitution styles that are used to describe
an action:

notation relation predicate
v := F (c, s, v, l) v′ = F (c, s, v, l) assignment
skip v′ = v no-effect assignment
v :∈ F (c, s, v, l) v′ ∈ F (c, s, v, l) set choice
V :| F (c, s, V0, V1, l) F (c, s, V0, V1, l) generalised substitution

where v is a variable, F is an expression, V is a vector of variables and V0 and
V1 are the old and new values of V . Expression F may refer to constants c, sets
s, system variables v and local variables l. The first of the substitution type,

:=, is a simple assignment. The assigned variable becomes equal to the value of
expression F . Substitution v :∈ F selects a new value for v such that it belongs
to set F . The most general substitution operator, :|, uses a predicate to link the
new and old model states.

Several substitution types can be combined into a single action with the
parallel composition operator:

s1‖s2‖...‖sk

We perceive parallel composition of actions as a simultaneous execution of all
the actions. We can always replace the set of parallel substitutions with a single
generalised substitution.

Communication Model The communication model allows a modeller to anal-
yse and update communications that may occur in a system. By communication
we understand a pair of ”a sending event” and ”a receiving reaction” (described
by the protocol model part) and a predicate-binding parameters that define
the communication-enabling conditions. As with the functional model part, the
communication model does not have explicit parameters. Parameter passing is
modelled by the conjunction of event and communication guards.

The purpose of this model is to keep the information about communication
separate from other parts. The reason to do this is because we cannot assign
communication to protocol model as it would make it very hard to achieve
decomposition into agent models which is important to our method. Communi-
cation cannot be described in the functional model part as a functional model
is formulated on per-event basis. Introducing communication would destroy this
simple architecture.

Communication is introduced when a system has more than one role. To
make sure that parts of the system that are to be implemented as independent
components are linked in a manner that does not prevent their distribution,
we use communication model to describe possible messages exchanged by such
components.

A communication model associates a set or sets of communications with a
source event (message sender). Each communication is a tuple of a guard and a
destination event:

C : Ev 7→ P(Grd × Rct)

where Ev is the message source – the event sending the message. Predicate
Grd determines whether a message should be sent and the values for the param-
eters should be passed to the designation event. The message target is a reaction
name.

Distribution Model Distribution model defines how the functionality and the
state of a model are partitioned among the roles of a system. This permits a
system to be realised as a set of independent components. Each variable and

event of a model is associated with a particular role and additional restrictions
are imposed on protocol and functional models. Formally, a distribution model
is described as a tuple of functions partitioning events and variables:

D = (De, Dv)

where function De : Ev ։ P(R) maps an event into a role to which the event
belong. Function Dv : V ։ P(R) does the same for a model variable.

Agent Model An agent model is a tuple of locations set L and agent specifi-
cations A:

M = (L, A)

An agent specification describes the behaviour of a single agent. At any given
moment, an agent is located at some location from the set L. The set L always
contains the predefined location limbo which is understood as the whole of the
’outside’ world. From this location, new agents appear in a system and via this
location agents may leave a system.

The role of the location concept is to structure an agent system into disjoint
set of communicating agent groups. This addresses the scalability problem of
agents-system. A large and complex system can be described as a composition
of smaller and simpler sub-systems, well isolated from each other.

An agent may communicate with other agents in the same location. Agents
from different locations may also communicate. An agent may decide to change
its position by migrating to a new location. This changes the set of agents it
sees and can communicate to. The structuring of an agent system and agent
grouping is dynamic. An agent can use its current state, produced by interacting
with other agents, to compute the next migration destination. This permits the
description of dynamic agent systems with complex reconfiguration polices.

Specification of an agent behaviour is a process algebraic expression. The
decomposition model makes sure agents are defined in a non-conflicting manner.

The starting point for the construction of an agent system is the assignment
of a set of roles to each agent. An agent with roles R is understood to be a
component implementing the complete functionality of all the roles from R and
is required to provide all the services attributed to these roles.

An agent model is described by two functions: Arl provides the list of roles
implemented by an agent and Asp returns an agent specification.

Arl : Agt 7→ P1(R)
Asp : Agt 7→ Sp

We require that dom(Asp) = dom(Arl) 6= ⊘.

An agent specification is described using a small subset of CSP, which features
the following constructs:

Pred?a guarded action
P ; Q sequential composition
P‖Q parallel composition
P ⊓ Q choice
Pred?

∗

(P) loop

where action a is:

[m, p] invocation of an internal reaction
go(l) migration
evt(p1, p2, ..., pn) execution of an event from a functional model
[m, p] communication process sending event m with parameters p

The migration action changes the current position of an agent. Invocation
of an internal reaction results in a creation of a new process within an agent.
Such a process is described by a combination of protocol and functional models.
An agent can send a message to another agent provided the destination agent
can be found at the current location. As a reaction to a message, the receiver
creates a new process with the internal reaction invocation action. Finally, an
agent model may call an event defined in the functional model of an agent.

To summarize, the proposed modelling framework has been developed to fit
well with the major characteristics of the agent systems identified in Section 2.
Role, distribution and communication models guarantee agent decentralization
and weak communication. The event-based communication between agents en-
sures their anonymity. Agents are autonomous and do not have to communicate
if this does not fit their goals. The framework supports independent development
of individual agents in such a way that they are interoperable, function in the
distributed settings and can move by changing locations when and where they
want to achieve their individual goals.

4 Fault-Tolerance

To ensure fault tolerance of complex ambient applications, we address the fault-
tolerance issues through the entire development process starting from eliciting
relevant operational and functional requirements. In our approach, system op-
erational and functional requirements – among other information – capture all
possible situations which are abnormal from the point of view of the system
stakeholders (including, system users, support, developers, distributors and own-
ers). First of all, this allows us to state the high level fault assumptions, which,
generally speaking, define what can go wrong with the system – and as such,
needs tolerating – and what we assume will never go wrong (the latter is as
important as the former as it defines the foundation on which fault tolerance
can be built). These requirements guide the modelling of the error detection and
system recovery.

Due to the complex nature of large-scale AmI applications – caused by their
dynamic nature and openness – the traditional fault tolerance structuring tech-
niques, such as procedure-level exception handling, atomic transactions, con-
versations and rollback cannot be applied directly as the systems typically need
combined approaches used for dealing with different threats in different contexts.
Within our modelling approach, fault tolerance becomes a crosscutting concern
integrated into a number of model views and at different phases of incremen-
tal system development. System structuring, ensuring that potential errors are
contained in small scopes (contexts) represented as the first class entities during
system modelling, is in the core of this approach (in the same way as it is in the
core of providing any application fault tolerance [9]).

Fault tolerance is systematically introduced during the development of var-
ious model views. Thus, the event model includes both normal and abnormal
events, where the latter represents various situations ranging from detecting
errors to successful completion of system recovery. Each role model typically
constitutes a simple scope, which becomes the first level of system recovery, to
be conducted by the individual role, without involving other agents or other
roles of the same agent. In some situations, this type of recovery can be success-
ful considering the agent’s autonomy and the decentralized nature of the AmI
applications.

Unfortunately, our experience shows that in real systems, we often need to
conduct a higher level recovery which involves other agents. There are many rea-
sons for this, including cooperative and interactive nature of these applications,
in which agents come together to achieve their goals, so that they often need
to cooperate to recover and to ensure that during and after recovery, the whole
system is in a consistent state.

Within AgentB, different model views deal with faults and errors in view-
specific ways and use specific fault tolerance measures. The protocol model allows
us to raise and propagate exceptional messages and to conduct application-
specific recovery modelled as a separate part of each protocol (providing a special
form of exception handler – see [10]). The abnormal part of the protocol view
shows message sequences typically exchanged during system recovery.

In the agent models, we introduce fault-tolerance properties at the level of
agents, which are the units of deployment and mobility in the AmI systems, as
well as at the level of groups of cooperating agents. This allows us to represent
fault tolerance at both: the level of individual agents and the level of groups of
agents deployed in the same location. In particular, we can represent the use of
redundancy (e.g. to achieve fault handing by spawning an agent copy to survive
an agent crash) and diversity (to achieve error recovery by employing the same
service provided by independently implemented agents). We can also model fault
tolerance of a group of agents (for example, when they need to leave a location
in emergency or when we need to conduct load balancing operation to avoid
system degradation).

To automate system modelling, we are currently designing a number of fault
tolerance patterns to help system developers introduce some common fault-

tolerance techniques when modelling an agent system [11, 12]. These techniques
range from abstract system-level patterns to very specific agent-level patterns
dealing with specific faults and focus on integrating fault tolerance in the specific
modelling views.

Early on, we have extended the blackboard communication pattern [13] with
nested scopes and exception propagation [14]. These two extensions are essen-
tially the modelling and the implementation techniques aiming at representing
recovery actions. In the implementation of fault tolerance, we extensively rely
on the reactive agent architecture. This has two immediate benefits: its imple-
mentation style matches the event modelling style, captured by the event and
functional model views; and recovery of multi-threaded agents becomes similar
to that of the asynchronous reactive architecture.

In spite of some success in modelling different fault tolerance solutions for
the AmI systems, we realise that our approach needs further work, in particular,
in coherent modelling of fault tolerance represented in different model views. In
the work we report here, in most cases we treat fault tolerance in different views
as being orthogonal and non interfering, assuming that the erroneous state is
always confined to one model view at a time: in this case, error recovery can be
localised in this view. To address the more general cases where the same error
affects several views or recovery from concurrent errors that need coordinated
activities in several views, we will need to define common parts of the views and
some rules of their sharing/transformation.

5 Case Study Scenarios

In our previous work, we implemented two scenarios within the ambient campus
case study using the Cama framework as the core component of the applications
[15, 16, 4]. The first scenario (ambient lecture) deals with the activities carried
out by the teacher and the students during a lecture – such as questions and
answers, and group work among the students – using various mobile devices
(PDAs and smartphones). The second scenario (presentation assistant) covers
the activities involved in giving and attending a presentation. The presenters
uses a PDA to control the slides during their presentation and they may receive
’quiet’ questions on the topic displayed on the slide from the audience. Each
member of the audience will have the current slide displayed on his/her PDA,
which also provides a feature to type in questions relevant to that slide.

In this section we discuss our work on a more challenging scenario which
involves greater agent mobility as well as the use of the location specific services.
Agents may move physically among multiple locations (rooms), and depending
on the location, different services will be provided for them. In this work, we shift
our focus from implementation to design and we use this scenario to validate our
formal development approach.

In this scenario – we call it the student induction assistant scenario – we
have new students visiting the university campus for the first time. They need
to register to various university departments and services, which are spread

on many locations on campus, but they do not want to spend too much time
looking for offices and standing in queues. They much prefer spending their
time getting to know other students and socialising. So they can delegate the
registration process to their personalised software agent, which then visits virtual
offices of various university departments and institutions, obtains the necessary
information for the registration, and makes decisions based on the student’s
preferences. The agent also records pieces of information collected during this
process so that the students can retrieve all the details about their registration.

Unfortunately, not all the registration stages can be handled automatically.
Certain steps require personal involvement of the student, for example, signing
paperwork in the financial department and manually handling the registration
in some of the departments which do not provide fully-featured agents able to
handle the registration automatically. To help the student to go through the
rest of registration process, his/her software agent creates an optimal plan for
visiting different university departments and even arranges appointments when
needed.

Walking around on the university campus, these new students pass through
ambients – special locations providing context-sensitive services (see Figure 2).
An ambient has sensors detecting the presence of a student and a means of
communicating to the student. An ambient gets additional information about
students nearby by talking to their software agent. Ambients help students to
navigate within the campus, provide information on campus events and activi-
ties, and assist them with the registration process. The ambient infrastructure
can also be used to guide students to safety in case of emergency, such as fire.

Fig. 2. Student induction assistant scenario: the dots represent free roaming student
agents; the cylinders are static infrastructure agents (equipped with detection sensors);
and the ovals represent ambients – areas where roaming agents can get connection and
location-specific services.

5.1 Application of Our Approach to the Scenario

To proceed further, we need to agree on some major design principles, identify
major challenges and outline the strategy for finding the solution. In order to un-
derstand the scenario better, we apply the agent metaphor. The agent metaphor
is a way to reason about systems (not necessarily information systems) by de-
composing it into agents and agent subsystems. In this paper, we use the term
agent to refer to a component with an independent thread of control and state,
and the term agent system to refer to a system of cooperative agents.

From agent systems’ viewpoint, the scenario is composed of the following
three major parts: physical university campus, virtual university campus and
ambients. In the physical university campus, there are students and univer-
sity employees. Virtual campus is populated with student agents and university
agents. Ambients typically have a single controlling agent and a number of vis-
iting agents. These systems are not isolated, they interact in a complex manner
and information can flow from one part to another.

However, since we are building a distributed system, it is important to get an
implementation as a set of independent but cooperative components (agents).
To achieve this, we apply the following design patterns:

agent decomposition During the design, we will gradually introduce more
agents by replacing abstract agents with two or more concrete agents.

super agent It is often hard to make a transition from an abstract agent to a
set of autonomous agents. What before was a simple centralised algorithm
in a set of agents must now be implemented in a distributed manner. To aid
this transition, we use super agent abstraction, which controls some aspects
of the behaviour of the associated agents. Super agent must be gradually
removed during refinement as it is unimplementable.

scoping Our system has three clearly distinguishable parts: physical campus,
virtual campus and ambients. We want to isolate these subsystems as much
as possible. To do this, we use the scoping mechanism, which temporarily
isolates cooperating agents. This is a way to achieve the required system
decomposition. The isolation properties of the scoping mechanism also make
it possible to attempt autonomous recovery of a subsystem.

orthogonal composition As mentioned above, the different parts of our sce-
nario are actually interlinked in a complex manner. To model this connec-
tions, we use the orthogonal composition pattern. In orthogonal composition,
two systems are connected by one or more shared agents. Hence, information
from one system into another can flow only through the agent states. We
will try to constrain this flow as much as possible in order to obtain a more
robust system.

locations definition To help students and student agents navigate within the
physical campus and the virtual campus, we define location as places asso-
ciated with a particular agent type.

decomposition into roles The end result of system design is a set of agent
roles. To obtain role specifications, we decompose scopes into a set of roles.

5.2 Formulating the Requirements

From the initial description of the scenario, we formulated a set of requirements
that would assist us in implementing the student induction assistant system, in
particular concerning the registration process. These requirements can also be
found in the RODIN Deliverable D27 [17]. We divided the system requirements
into the following categories:

ENV Facts about the operating environment of the system.
DES Early design decisions captured as requirements.
FUN Requirements to the system functionality.
OPR Requirements to the system behaviour.
SEC Requirements related to the security properties of the system.

Top-Level Requirements First we attempt a high-level description of the system.
The description captures different aspects of the system: environment, some design
decisions (dictated by the motivation for this case study), and few general functionality
and security requirements.

FUN1 The system helps new students to go through the registration process.

DES1 The system is composed of university campus, virtual campus and ambients.

OPR1 A student must have a choice between automated and manual registration.

OPR2
Malfunctioning or failure of the automated registration support should not

prevent a student from manual registration.

SEC1 The system should not disclose sensitive information about students.

SEC2
The system must prevent malicious or unauthorised software to disguise itself

as acting on behalf of a student or an employee.

University University campus forms the environment for the software-based regis-
tration process (Figure 3). The university campus is obviously not something that can
be designed and implemented. However it is important to consider it in the develop-
ment of the scenario as it provides an operating environment for the other two parts
(virtual campus and ambients) which can be implemented in software and hardware.

ENV1 In university campus, students interact with university employees.

ENV2 Students can freely move around while employees do not change their position.

ENV3 Each university employee is permanently associated with a unique location.

Fig. 3. University campus is modelled as a number of university employees (U) and
students (S). Virtual campus has the same structure but is populated with student and
university agents.

Virtual Campus Virtual campus uses software-based solution to process student
registration automatically. Its organisation is similar to that of a real campus.

DES2 Virtual campus is composed of university agents and student agents.

DES3 In virtual campus, student agents can autonomously change their location.

DES4 Each university agent is permanently associated with a unique location.

Virtual campus is a meeting place for student agents and university agents. During
registration, student agent talks to different university agents.

FUN2
Student agents and university agents can exchange information related to the

registration process.

Some registration steps require intervention from a student.

OPR3
A registration process may fail due to inability of a particular university agent

to handle the registration.

Before the registration process is initiated, a student agent has to go through several
other stages. This results in a tree of dependencies. The root of the tree represents
a successful registration and its leaves represent the registration stages without any
prerequisites (see Figure 4). Student agent does not know about the tree structure and
so it has to explore it dynamically. Reconstructing the tree for each agent makes the
system more flexible and robust.

OPR4 Each registration stage has number of dependencies.

DES5 Initially, student agent does not know the dependency tree.

a) b)

Fig. 4. a) Registration process starts from a random location (f9 on the figure). The
basic requirements f1, f2, f3 are discovered by tracing back the requirements graph. b)
Student agent attempts to do the registration by satisfying each known requirement. It
does not yet know the full set of registration requirements (unknown steps are greyed).
They are discovered during this process.

DES6 Student agent autonomously constructs the dependency tree.

Interacting with university agents, student agent records all the information related
to the registration process. This information can be used to restart the registration
process or to be passed to the student in order to do manual registration. In the latter
case, student agent creates a schedule that helps a student to visit different university
offices in the right order and at the right time (see Figure 5).

DES7
Student agent keeps a history of the registration process that can be used to

restart the registration from the point of last completed registration step.

DES8
Student agent can create an itinerary for a student to complete the registration

manually.

DES9 Itinerary must satisfy the registration dependencies.

Ambient As implied by the scenario, ambients provide services within a predefined
physical location. By services we understand an interaction of an ambient with student’s
software. An interaction is triggered when a student enters a location associated with
a given ambient.

OPR5 Ambients interact with student agents to assist with the registration process.

a) b)

Fig. 5. a) During registration a student agent accumulates registration information. b)
Itinerary for manual continuation of a registration is a path covering all the remaining
registration graph nodes and satisfying a number of constrains. A node of the path is
described by a pair containing when and where should go to resolve a given registration
dependency.

FUN3 Ambient provides services by interacting with student software.

FUN4
Interaction with an ambient is triggered when a student enters a location

associated with the ambient.

FUN5
Interaction with an ambient is terminated when a student leaves the location

of the ambient.

Positioning Service For simplicity, we assume that ambient locations are discreet
– a student is either within a location or outside of it – and do not change over time.

FUN6 Ambient locations are discreet and static.

Discovery of an ambient by a student (or vice versa) does not come for free. It is
achieved using tiny mobile sensor platforms called smart dust [18]. Smart dust devices
– also known as motes – has low-power, short-range radio capability, enabling them to
communicate with other motes within range (Figure 6).

ENV4 Ambients detect students nearby using the mote radio communication.

Each student carries one such mote which broadcasts student’s identity at certain
intervals.

ENV5 Each student carries a mote.

Fig. 6. Composition of motes and ambients system.

FUN7 Student mote broadcasts student id.

Student motes’ signals are sensed by ambients. Ambient agent is equipped with a
mote radio receiver.

ENV6 Each ambient is equipped with a mote radio receiver.

When an ambient senses that a student mote is within range, it transmits this
information to all other ambients.

FUN8
Position of a student detected by an ambient is made available to all other

ambients.

We will rely on this functionality to implement recovery in emergency situations.

Student Automated registration must be under the full control of a student. A stu-
dent should be able to start, stop and inspect the current state of a registration.

FUN9 Student starts and stops registration process.

FUN10
Student may enquire the current state of a registration while registration is in

progress.

FUN11
When registration is finished or interrupted, a student can access the recorded

registration state.

Student Agent Student agent is a software unit assisting a student in registration.

FUN12
Student agent assists a student in manual registration by creating a schedule

for visiting university employees.

FUN13 Student agent records the state of registration process.

Mobility The scenario includes several types of mobility. There is physical mobility
of computing platforms owned by students (e.g. mobile phones and PDAs). Students’
agents can migrate to and from a virtual campus world. In this case, agent code and
agent states are transferred to a new platform using code mobility. Finally, agents
migrate within a virtual campus using virtual mobility.

Different styles of mobility have different requirements. Code mobility is a complex
and fail-prone process: it is dangerous to have an agent separated from its state or
having an agent with only partially available state or code. There is also a danger of
an agent disappearing during the migration: the source of migration, believing that
migration was successful, shuts down and removes the local agent copy, while the
destination platform fails to initialise the agent due to transfer problems.

OPR6
Agent either migrates fully to a new platforms or is informed about inability to

migrate and continues at a current platform.

Physical mobility presents the problems of spontaneous context change. A student
agent may be involved in a collaboration with an ambient when a student decides to
walk away. Clearly, student behaviour cannot be restricted and such abrupt changes
of context and disconnections must be accounted for during the design of agents and
ambients.

OPR7
Interaction between an ambient and a student agent can be interrupted at any

moment.

Virtual mobility is the simplest flavour of mobility as it does not involve any net-
working and nothing is actually moving in space. The only possible failure that can
affect virtual migration is a failure or a shut-down of the hosting platform. However,
such dramatic failure is unlikely to happen during an agent lifetime and thus we do
not consider it at all in this document.

Fault-Tolerance The system we are designing is a complex distributed system with
a multitude of possible failure sources. In addition to traditional failures associated with
networking, we have to account for failures related to environmental changes which are
beyond the control of our system. Below is the list of faults we are going to address
and which we believe covers the possible failures in our system:

– disconnections and lost messages:

OPR8 Agents must tolerate disconnections and message loss.

– failure of ambients:

OPR9
Student agents must be able to autonomously recover from a terminal

ambient failure.

also, since ambient services are not critical, it is better to avoid failing or misbe-
having ambient:

FUN14
Student agent drops interaction with an ambient if it suspects that the

ambient is malfunctioning.

– failure of university agents. University agents are critical for the completion of the
registration, so it is worth trying to recover cooperatively:

OPR10 Student and university agents cooperate to recover after failure.

It does not make sense to remain in virtual campus if one of the university agents
is failing to interact:

FUN15
Student agent leaves virtual campus when it detects a failing university

agent.

– failure of student agents. Failure of a student agent may be detected by a university
agent, ambience agent or student.

FUN16
University agent detecting student agent crash should attempt to notify

the agent owner.

And there is a possibility that a student suddenly terminates without leaving any
notice. In this case, we rely on the student to detect this situation and possibly
try again by sending another agent.

FUN17 Student should be able to restart registration process.

5.3 Refinements

In this section, we demonstrate few initial development steps for the case study.
These steps are done in a process-algebraic style, but at a later refinement, the
development method changes into state-based modelling using Event-B. More
details on our modelling approach can be found in [19].

To ensure interoperability among different agent types in our scenario and
also to verify properties (such as eventual termination of the registration pro-
cess), we use the combination of CSP process algebra [20], AgentB modelling
(Event-B with some syntactic sugar – outlined in Section 3), and the Mobility
Plugin [6]. The AgentB part of the design is responsible for modelling func-
tional properties of the system; for the verification purposes, it is translatable
into proper Event-B models. With the Mobility plugin, we are able to construct
scenarios describing typical system configurations and verify properties related

to system dynamics and termination. For example, we can model-check the mi-
gration algorithm described in Event-B to verify that the algorithm will never
omit a location.

The whole development process is lengthy, so we only show some excerpts
here.

Our system is concerned with the registration of a new student. At a very ab-
stract level, the registration process is accomplished in one step:

S0
REF PREFIX
−−−−−−−→ S1 sat. FUN1

register .

From the description of the system, we know that the registration process is
made of an automatic or manual parts, either of which properly implements the
registration process

S1

REF ICH
−−−−−→ S2 sat. OPR1

auto 7→ register

manual 7→ register
auto. ⊓ manual .

(steps S3 - S6 omitted)

At this stage, we are ready to speak about roles of agents implementing the
system. We introduce two roles: student (s), representing a human operator
using a PDA; and agent (a) which for now stands for all kinds of software in our
system.

S6
REF ROLE
−−−−−−→ S7 sat. DES1

s, a ∈ ρS7

(s′send → a′move.; a′communicate .; a′automatic.) ⊓ (
(auto fail → manual anew .)⊓
(auto part → manual cont .))

In the next model, we focus on a sub-model of the system which represents
virtual campus (vc) activities: the communicate process. The process is refined
into a loop where a student agent visits different university agents and speaks
to them. The loop alternates between termination (break) and the registration
process:

communicate. from S7

REF LOOP
−−−−−−→ Svc

1 sat. FUN3

done 7→ communicate a′
+`

auto register . ⊓ break
´

; a′done .

(steps Svc
2

- Svc
6

omitted)

By adding more details on the interactions between the student and the uni-
versity agents, we arrive to the following model. The model implements a sim-
ple request-reply protocol where the university agent’s role is given through a
choice from a number of replies. Event reply ok is used when registration is suc-
cessful, event reply docs indicates that there are missing documents and that
student agent must visit some other virtual offices before registration can be
completed. In the case when the registration is not possible without the student
being present in person, the reply pers reply is used.

Svc

6

REF DCPL
−−−−−−→ Svc

7

sa′

+0

B

B

B

B

@

sa′migrate → sa′ask .; (
(ua′reply ok .; sa′save repl .)ua′⊓
(ua′reply docs .; sa′doclist .)ua′⊓
(ua′reply pers .; sa′do pers → sa′break))ua′⊓
(ua′fail.; sa′leave vc → sa′break))

1

C

C

C

C

A

; sa′done.

(steps Svc
8

and Svc
9

omitted)

This model prepares the transition to a state-based model with completely de-
coupled agent roles:

Svc

9 −→ Svc

10

([ψ1] ⊓ skip)‖
+`

ψ1 → (sa′(migrate → ask .); [ϕ1])
´

‖
+`

ϕ1 → ua′((reply ok ; [ϕ2]) ⊓ (reply docs ; [ϕ3]) ⊓ (reply pers ; [ϕ4])) ⊓ (fail ; [ϕ5]))
´

‖
+`

ϕ2 → sa′save repl .; [ψ1]
´

‖
+`

ϕ3 → sa′doclist .; [ψ1]
´

‖
+`

ϕ4 → sa′do pers .
´

‖
+`

ϕ5 → sa′leave vc.
´

The next two refinement steps add further details to the behavioural model.
Refinement step 10 introduces functional model with the modelling decisions
taken by the student and the university agents. Further refinements introduce
details on how a university agent decides what documents to ask and when the
registration process is complete. The student agent keeps track of all visited
locations and is able to remember branching points in order not to visit the
same university agents twice.

Further details on the refinement process can be found in [17, 21, 19].

5.4 Implemented System and Screenshots

To implement the ambients, we incorporate smart dust devices or motes [18]
into the scenario. In particular, we use off-the-shelf MPR2400 MICAz motes (see
Figure 7) from Crossbow Technology [22]. These motes communicate with each
other using Zigbee radio, and by customising the transmit power of the radio
(in this case, reducing the radio range to around 3-5 meters), we can use them
as a localisation sensor. This enables us to deliver location-specific information
and services to the users.

Fig. 7. MICAz mote used for localisation sensor

Each user carries a mote (programmed with a unique identification number,
so that the mote acts as a badge - sort of speak), as well as a PDA as an inter-
action device. Each room is equipped with a smart dust base station (receiver),
which is connected to a controller application. The latter uses the CAMA mid-
dleware [3] to communicate with the PDAs through Wi-Fi. When a user enters
a particular room, his/her PDA shows the relevant information and/or services
available for that room.

A set of rooms can be prepared to be smart dust aware. This can include
the reception office, in which the users (i.e. students) can start the registration
process or can find out who their tutor is. Figure 8 shows the screen captures
of the PDA used by the student (”Alice”). The picture on the left shows the
situation where Alice is not in any location that supports the scenario. When
she enters the reception room, her PDA adjusts its location and displays the
services available in that room (as can be seen in the picture in the middle). In
this example, Alice opts to find out who her tutor is (the picture on the right).

6 Conclusion

This paper provides an outline of the work that we had carried out in developing
fault-tolerant ambient applications. We introduce a theoretical approach called
AgentB, that is based on the modelling database concept, and is composed of
several simple modelling methods focusing on various aspects of the system.
These modelling techniques allow us to validate the formal development, and

Fig. 8. Screen captures of the registration assistant scenario

to model and build fault tolerant ambient applications. The approach has been
demonstrated through a rigorous development of an ambient campus student
induction assistant scenario, starting from the definition of a set of requirements,
the modelling and refinement processes, and finally, the implementation of the
system. We developed an agent-based system implementing this scenario, using
the Cama framework and the middleware [2] that we have previously developed.

7 Acknowledgements

This work is supported by the FP6 IST RODIN STREP Project [1], the FP7
ICT DEPLOY Integrated Project [23], and the EPSRC/UK TrAmS Platform
Grant [24].

References

1. Rodin: Rigorous Open Development Environment for Complex Systems. IST FP6
STREP project, http://rodin.cs.ncl.ac.uk/ (Last accessed: 6 Aug 2008)

2. Arief, B., Iliasov, A., Romanovsky, A.: On Developing Open Mobile Fault Tolerant
Agent Systems. In Choren, R., et al., eds.: SELMAS 2006, LNCS 4408. Springer-
Verlag (2007) 21–40

3. Iliasov, A.: Implementation of Cama Middleware.
http://sourceforge.net/projects/cama (Last accessed: 6 Aug 2008)

4. Iliasov, A., Romanovsky, A., Arief, B., Laibinis, L., Troubitsyna, E.: On Rigorous
Design and Implementation of Fault Tolerant Ambient Systems. Technical report,
CS-TR-993, School of Computing Science, Newcastle University (Dec 2006)

5. Metayer, C., Abrial, J.R., Voisin, L.: Rodin Deliverable 3.2: Event-B Language.
Technical report, Project IST-511599, School of Computing Science, University of
Newcastle (2005)

6. Iliasov, A., Khomenko, V., Koutny, M., Niaouris, A., Romanovsky, A.: Mobile B
Systems. In: Proceedings of Workshop on Methods, Models and Tools for Fault
Tolerance at IFM 2007, CS-TR 1032, Newcastle University (2007)

7. Abrial, J.R.: The B-Book: Assigning Programs to Meanings. Cambridge University
Press (2005)

8. Abrial, J.R., Schuman, S.A., Meyer, B.: A specification language. In McNaughten,
R., McKeag, R., eds.: On the Construction of Programs, Cambridge University
Press. (1980)

9. Randell, B.: System Structure for Software Fault Tolerance. IEEE Trans. Software
Eng. 1(2) (1975) 221–232

10. Plasil, F., Holub, V.: Exceptions in Component Interaction Protocols - Necessity.
In: Architecting Systems with Trustworthy Components. (2004) 227–244

11. Iliasov, A.: Refinement patterns for rapid development of dependable systems.
In: Proceedings of Engineering Fault Tolerant Systems Workshop (at ESEC/FSE,
Croatia, ACM Digital Library (2007)

12. Iliasov, A., Romanovsky, A.: Refinement Patterns for Fault Tolerant Systems.
In: Technical paper presented at the Seventh European Dependable Computing
Conference (EDCC-7), IEEE CS (2008)

13. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-
Oriented Software Architecture: A System Of Patterns. West Sussex, England:
John Wiley & Sons Ltd. (1996)

14. Iliasov, A., Romanovsky, A.: Structured Coordination Spaces for Fault Tolerant
Mobile Agents. In Dony, C., Knudsen, J.L., Romanovsky, A., Tripathi, A., eds.:
LNCS 4119. (2006) 181–199

15. Arief, B., Coleman, J., Hall, A., Hilton, A., Iliasov, A., Johnson, I., Jones, C.,
Laibinis, L., Leppanen, S., Oliver, I., Romanovsky, A., Snook, C., Troubitsyna,
E., Ziegler, J.: Rodin Deliverable D4: Traceable Requirements Document for Case
Studies. Technical report, Project IST-511599, School of Computing Science, Uni-
versity of Newcastle (2005)

16. Troubitsyna, E., ed.: Rodin Deliverable D8: Initial Report on Case Study Develop-
ment. Project IST-511599, School of Computing Science, University of Newcastle
(2005)

17. Troubitsyna, E., ed.: Rodin Deliverable D27: Case Study Demonstrators. Project
IST-511599, School of Computing Science, University of Newcastle (2007)

18. Smartdust: Wikipedia definition. http://en.wikipedia.org/wiki/Smartdust (Last
accessed: 6 Aug 2008)

19. Iliasov, A., Koutny, M.: A Method and Tool for Design of Multi-Agent Systems. In
Pahl, C., ed.: Proceedings of Software Engineering (SE 2008), ACTA Press (2008)

20. Hoare, C.A.R.: Communicating Sequential Processes. Communications of the
ACM 21(8) (1978) 666–677

21. Troubitsyna, E., ed.: Rodin Deliverable D26: Final Report on Case Study Develop-
ment. Project IST-511599, School of Computing Science, University of Newcastle
(2007)

22. CrossbowTechnology: MPR/MIB User’s Man-
ual. http://www.xbow.com/Support/Support pdf files/MPR-
MIB Series Users Manual.pdf (Last accessed: 6 Aug 2008)

23. Deploy: Industrial Deployment of System Engineering Methods Providing High De-
pendability and Productivity. IST FP7 IP project, http://www.deploy-project.eu/
(Last accessed: 6 Aug 2008)

24. TrAmS: Trustworthy Ambient Systems Platform Grant.
http://www.cs.ncl.ac.uk/research/current%20projects?pid=223/ (Last accessed:
6 Aug 2008)

