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Sensor fault detection for rail vehicle suspension
systems with disturbances and stochastic noises

Zehui Mao, Yanhao Zhan, Gang Tao,Fellow, IEEE, Bin Jiang,Senior Member, IEEE, Xing-Gang Yan

Abstract—This paper develops a sensor fault detection scheme
for rail vehicle passive suspension systems, using a fault detection
observer, in the presence of uncertain track regularity and
vehicle noises which are modeled as external disturbances and
stochastic process signals. To design the fault detection observer,
the suspension system states are augmented with the disturbances
treated as new states, leading to an augmented and singular
system with stochastic noises. Using system output measurements,
the observer is designed to generate the needed residual signal
for fault detection. Existence conditions for observer design are
analyzed and illustrated. In term of the residual signal, both fault
detection threshold and fault detectability condition areobtained,
to form a systematic detection algorithm. Simulation results on
a realistic vehicle system model are presented to illustrate the
observer behavior and fault detection performance.

Index Terms—Fault detection, observer design, rail vehicle
suspension systems.

I. I NTRODUCTION

Suspension systems for rail vehicles are used to support
the carbody and bogie, to isolate the road-induced vibrations,
and to control the vertical and angular of the carbody with
respect to the track surface to provide the comfortable services
to passengers. The suspension systems can be classified into
three categories: passive suspension system (built with spring
and damper); semi-active suspension system (built with spring
and variable damper) and active suspension system (built with
spring, damper and actuator). Since the suspension system is
an essential part for vehicles, different controllers havebeen
proposed and tested on these kinds of suspension systems, see
[1], [2], [3] and [4]. Similar to the other practical systems,
the faults in sensors, actuators (in active suspension systems)
or process (plant) of the suspension systems may drastically
change the system behavior, resulting in performance degra-
dation or even instability. Therefore, effective fault detection
technologies are crucial for the suspension systems.
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Fault detection (FD) and diagnosis have been investigated
for several years, and many results are available in several
books [5]-[7] and many papers [8]-[13]. A widely used method
for fault detection is the model-based observer or filter design
method. When the plant models are available, the method
could be effective and independent of the history dates thatthe
date-driven method needs. And some existing observer design
methods could be extended to achieve the fault detection, such
as [14]-[16]. For suspension systems, the motion models have
been well studied and many results have been obtained, see
[1], [2] and [3]. On the other hand, the track irregularity
is a key and non-ignore element for rail vehicle suspension
systems. One main task for suspension systems is to reduce the
forces generated by the track unevenness. This motivates many
researchers to study the fault problems for suspension systems
in the presence of the disturbances/uncertainties or noises.
The popular method to this problem is to design the robust
residuals, such that the effect of the exogenous disturbance on
the residuals is attenuated with respect to a minimizedH2/H∞

norm, see [17]-[20]. Moreover, the index between the residual
and fault is required to guarantee that the sensitivity of the
residual to the fault is enhanced by means of a maximized
H2/H∞ norm, see [21], [22] and [23]. This method can be
used to deal with a class of uncertainties, which are bounded
by functions of energy. However, the corresponding robust and
sensitivity residual generation method to deal with stochastic
noises, is unavailable in the existing literature. Thus, one of the
motivations for this paper is that the fault detection problem
for suspension systems in the presence of the disturbances and
stochastic noises is not fully studied.

Although the fault problem for active suspension systems is
a hot research topic, (see e.g. [24], [25] and [26]), in reality,
passive suspension systems are widely used in rail train, due to
their simple structure, low cost, and non-power requirement to
achieve the ride performance and quality. The needs to monitor
the states of the passive suspension systems and to design
the controller for active suspension systems, make the sensors
to be important equipments. Note that most of the existing
work for fault detection is about the actuator or process (plant)
faults, in which the sensor fault detections are rarely studied.
However, sensor faults widely exist in the real world. It is
worth studying the fault detection problems for sensors faults.

This paper is focused on the sensor fault detection for
the passive vehicle suspension systems with disturbances and
stochastic noises. A fault detection observer is proposed such
that the state and unknown external disturbances (track irreg-
ularity) are estimated simultaneously to generate the residual.
The thresholds are chosen with enhanced fault detection rates
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for the suspension systems with stochastic noise. The main
contributions of this paper are as follows: (i) The unknown
external disturbances and process noises, which can affectthe
fault residual performance and can not be ignored for the
suspension system, with sensor faults, are considered in this
approach. To deal with the disturbances, an augmented system
is introduced to transform the original system to a singular
system with stochastic noises. (ii) A fault detection observer
is designed for the new singular system to estimate the system
disturbances and generate the residual. Further the existence
conditions of the presented observer are also developed for
general suspension systems. (iii) Based on the analysis of the
residual and the stochastic noises, necessary conditions for the
fault detection are given, which facilitate to obtain the false
and missing alarm rates.

The rest of the paper is organized as follows: Section 2
describes the suspension system model. Section 3 studies a
fault detection observer with existence conditions. Sections
4 proposes the fault detection decision scheme. Section 5
includes the simulation study, followed by conclusions in
Section 6.

II. SUSPENSION MODEL WITH DISTURBANCES AND FAULTS

The suspension mechanism adopted for the rail vehicles is
shown in Figure 1.

Fig. 1: Multibody dynamic platform of the rail vehicle

According to the references [2], [3], [26], and the equipment
used in companies, the passive suspension system mechanism
adopted, can be shown in Figure 2, which consists of two
power cars (car 1 and car 3) and a trailer car (car 2)
with carbody and bogie, respectively. The passive force of
the secondary suspension between the carbody and bogie is
dependent on their relative displacement. The articulation is
always simulated as a spring. There are nine sensors mounted
on the suspension systems to obtain the associated data. The
bounce and pitch motions of its carbodies and the bounce
motions of its bogies should be the main focus. It is important
to note that if the pitch motion of the bogie is also considered
here, extra 3 DOFs (degree of freedoms) are required for
system modelling to describe the pitch angle, which makes the
study more complex and is unnecessary. Therefore, the pitch
angle of the bogie is ignored here in order to convenient.

In Figure 2,y1, y2 and y3 are the vertical displacements
of the center of gravity of the first power carbody, the trailer
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Fig. 2: Suspension systems of the rail vehicle

carbody and the second power carbody;θ1, θ2 andθ3 are the
pitch angles of the first power carbody, the trailer carbody
and the second power carbody;y4, y5 andy6 are the vertical
displacements of the first power bogie, the trailer bogie and
the second power bogie;y7, y8 and y9 are the track vertical
profiles (track irregularity) for the first power bogie, the trailer
bogie and the second power bogie.

A. Continuous-time model with disturbances and faults

The continuous state-space model of the above suspension
system dynamics (see [3]) can be written in the continuous
state-space model format as (see [1], [3], [26]):

ẋ(t)=A′x(t) +B′g(x, t) +D′d(t) + δ′(t) (1)

z(t)=Cx(t) + Fsf(t) + η(t) (2)

whereA′, B′, g(·, ·), C, D′ and Fs are state-space matrix,
input matrix and nonlinear function, output matrix, disturbance
and fault distributing matrix, respectively.
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x(t) ∈ R18 is the state defined for the center of
gravity of the cars and bogies, in whichx1,··· ,6(t) =
[ẏ1(t), θ̇1(t), ẏ4(t), y1(t), θ1(t), y4(t)], x7,··· ,12(t) =
[ẏ2(t), θ̇2(t), ẏ5(t), y2(t), θ2(t), y5(t)] andx13,··· ,18(t) =
[ẏ3(t), θ̇3(t), ẏ6(t), y3(t), θ3(t), y6(t)].
x1 = ẏ1 the vertical velocity of car 1,
x2 = θ̇1 the pitch angle velocity of car 1,
x3 = ẏ4 the vertical velocity of bogie 1,
x4 = y1 the vertical displacement of car 1,
x5 = θ1 the pitch angle of car 1,
x6 = y4 the vertical displacement of bogie 1,
x7 = ẏ2 the vertical velocity of car 2,
x8 = θ̇2 the pitch angle velocity of car 2,
x9 = ẏ5 the vertical velocity of bogie 2,
x10 = y2 the vertical displacement of car 2,
x11 = θ2 the pitch angle of car 2,
x12 = y5 the vertical displacement of bogie 2,
x13 = ẏ3 the vertical velocity of car 3,
x14 = θ̇3 the pitch angle velocity of car 3,
x15 = ẏ6 the vertical velocity of bogie 3,

x16 = y3 the vertical displacemen of car 3,
x17 = θ3 the pitch angle of car 3,
x18 = y6 the vertical displacement of bogie 3.
g(x, t) ∈ R18 = [0, 0, 0, 0, sinx5(t), 0, 0, 0, 0, 0,
sinx11(t), 0, 0, 0, 0, 0, sinx17(t), 0]T . z(t) ∈ R9 =
[x4(t), x5(t), x6(t), x10(t), x11(t), x12(t), x16(t),
x17(t), x18(t)]

T is the system output vector available from
sensors.d(t) ∈ R6 = [y7(t), ẏ7(t), y8(t), ẏ8(t), y9(t),
ẏ9(t)] is the unknown disturbance caused by the track
irregularity. f(t) ∈ Rp with p ≤ 9 represents the
sensors fault with the distribution matrixFs representing
the fault occurring locations.δ′(t) ∈ R18 and η(t) ∈
R9 are process and measurement noise described as in-
dependent zero mean white noise sequences with covari-
ance matricesQ′

18×18(t) and R9×9(t) respectively, where
Q′(t) = diag{(q′)21(t), (q

′)22(t), . . . , (q
′)218(t)} and R(t) =

diag{r21(t), r
2
2(t), . . . , r

2
9(t)}.

Remark 1: Compared with the model proposed in [2], [3],
[26], the nonlinear termg(x, t) exists in the suspension system
(1)-(2). The movements of the suspension mounting and the
articulation (end) positions of the rail vehicles are depicted
asy10 = y1 − d1 sin(θ1), y12 = y1 − d2 sin(θ1), y13 = y2 −
d3 sin(θ2), y24 = y2−d3 sin(θ2), y23 = y3−d2 sin(θ3), y11 =
y3−d1 sin(θ3), which lead to the nonlinear system (1)-(2). The
nonlinear system (1)-(2) can be approximated by a linear form
in [3], and the proposed method in this paper can be applied
to the linear model. 2

B. Discrete-time model

Consider discrete-time controllers used in the suspension
systems, which is implemented via computer. For the future
semi-physical simulation, considering the requirements from
the rail vehicle company, the discrete-time model based fault
scheme is discussed in this paper. In connected with this, the
plant is discretized, firstly.

Set the sampling timeT . Using the Euler discretization
method, the continuous state-space model (1)-(2) can be
discretized in the discrete state-space as:

x(k + 1)=Ax(k) +Bg(x, k) +Dd(k) + δ(k) (3)

z(k)=Cx(k) + Fsf(k) + η(k) (4)

where A = I + TA
′

, B = TB
′

, D = TD
′

,
δ(k) = Tδ′(k) with covariance matricesQ(k) =
diag{q21(k), q

2
2(k), . . . , q

2
18(k)} and the other matrices are the

same as those of system (1)-(2).
Remark 2: There are a number of sensors mounted on the rail
vehicle suspension systems, such as angular velocity sensors,
displacement sensors, acceleration sensors, and so on. These
sensors may have faults, such as drift, bias, and freezing etc.,
which may be constant, time-varying and random. Here, the
general fault form is considered, which may have any fault
mode. 2

Remark 3: For suspension systems (1)-(2) or (3)-(4), the
modelling uncertainties are described as the unknown dis-
turbanced(t) and stochastic noises (δ(k) and η(k)), which
are generated by the track irregularity and some electrical
components. The zero mean white noise is the popular noise
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description for research. For the other noises, if the probability
density function is known, the method in the following section
can be applied as well. 2

C. Problem statement

In this paper, the objective is to develop a sensor fault
detection scheme with some detection rates for the suspension
system described by (3)-(4), in which track irregularity is
modeled as unknown external disturbance, and processing
and sensor noise are modeled as stochastic zero mean white
noise. The main task in this paper is to find a effective
residual generation method and the thresholds chosen way
under certain disturbances with stochastic signal. To solve such
a problem, the following technical issues are summarized and
need to be solved:

1) In fault-free case, design a fault detection observer
to estimate the statex(k) and disturbanced(k) to
guarantee that the observer errore(k) = [x̂T (k) −
xT (k) d̂T (k) − dT (k)]T dynamics is stochastically
stable, i.e.,||e(k)||E 6 χ, wherex̂(k) and d̂(k) are the
estimates of the system statex(k) and disturbanced(k),
respectively.||e(k)||E = E

{
eT (k)e(k)

}1/2
andχ > 0

is a scalar.
2) In the faulty case, use the designed observer to generate

the fault detection residualr(k) and calculate the resid-
ual to obtain the statics characters for fault detection
scheme design, in which the fault informationf(k) and
the inevitable stochastic noisesδ(k) and η(k) must be
contained in the residual.

3) Based on the statics characters of residual and con-
sidering the detection rates (false alarm and missing
alarm rate), analyze the relations among the residual,
thresholds and noises to obtain the condition that can
guarantee the fault detection scheme effectively.

Under the proposed fault detection framework, the observer
can estimate the system state and disturbance under the fault-
free case, which also can be used as an estimation observer
for controller design. For fault detection, the detection rates,
such as false alarm and missing alarm rate, will be discussed
and used to determine the thresholds for fault detection.

III. FAULT DETECTION OBSERVER

Fault detection scheme includes two steps: generating resid-
ual and making decision. The purpose of residual generation
is to generate a fault indicating residual signal, using available
information from the monitored system to extract fault symp-
toms from the system. There are a lot of methods to generate
the residual, in which observer-based method has been widely
used. In this section, the fault detection observer is designed
to obtain the residual, and then analysis of the residual will
be given to help making decision design.

A. Fault detection observer design

According to the form of system (3)-(4), it should be
noted that there exists disturbance, which makes it difficult to
generate residual to eliminate the effect from the disturbance.

To solve this problem, a new vectorω(k) = [xT (k) dT (k)]T

is introduced. Then, the system (3)-(4) can be rewritten as:

Eω(k + 1)= Āω(k) +Bg(x, k) + δ(k) (5)

z(k)= C̄ω(k) + Fsf(k) + η(k) (6)

whereE = [I18 018×6], Ā = [A D] and C̄ = [C 09×6].
It is obvious to see that system (3)-(4) has been transformed

into a singular system (5)-(6) with stochastic noises. The ob-
jective now is to design a fault detection observer and residual
generator for the singular system (5)-(6). This section focuses
on the fault detection observer design. Firstly, constructthe
following dynamic system:

ξ(k + 1)=Y ξ(k) +Gz(k) +XBg(x̂, u, k) (7)

ω̂(k)= ξ(k) +Mz(k) (8)

whereξ(k) ∈ R18+6 is the state,̂ω(k) = [x̂T (k) d̂T (k)]T ∈
R18+6 is expected to be an estimate ofω(k). The matricesY ,
X , G and M are design parameter matrices, which will be
determined later.

Denote the observer errore(k) = ω̂(k)− ω(k). Then from
(6) and (8), the errore(k) can be expressed as

e(k)= ξ(k) +Mz(k)− ω(k)

= ξ(k) + (MC̄ − I)ω(k) +Mη(k) +MFsf(k) (9)

The purpose of the observer (7)-(8) is to make the error
e(k) convergent to zero or bounded to a satisfied domain in
the fault-free case (f(k) = 0) for Eq. (9).

B. Observer performance

For the fault-free case,f(k) = 0, it follows from Eq. (9)
that the error dynamical system can be described by

e(k + 1)= ξ(k + 1) + (MC̄ − I)ω(k + 1) +Mη(k + 1)

DefineXE +MC̄ − I = 0, using Eq. (5)

e(k + 1)

=Y ξ(k) +Gz(k) +XBg(x̂, k) +Mη(k + 1)

−X
[
Āω(k) +Bg(x, k) + δ(k)

]

=Y e(k) + (Y XE +GC̄ −XĀ)ω(k)

+XB[g(x̂, k)− g(x, k)] + (G− YM)η(k)

−Xδ(k) +Mη(k + 1) (10)

If the following matrix equations hold,

Y XE +GC̄ −XĀ = 0

XB = 0

then, the error dynamical equation (10) yields

e(k + 1)

=Y e(k) + (G− YM)η(k)−Xδ(k) +Mη(k + 1)(11)

Further, consider the following Lyapunov function:

V (k)=eT (k)Pe(k) (12)
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whereP = PT > 0. The corresponding Lyapunov difference
along the trajectoriese(k) of the error system (11) is given
by:

∆V (k)

=E{V (k + 1)} − V (k)

=E{[eT (k)Y T + ηT (k)(G − YM)T − δT (k)XT

+ηT (k + 1)MT ]P [Y e(k) + (G− YM)η(k)

−Xδ(k) +Mη(k + 1)]} − eT (k)Pe(k) (13)

According to the distribution ofη(k) andδ(k), it follows that

∆V (k)

=E
{
eT (k)Y TPY e(k) + δT (k)XTPXδ(k)

+ηT (k + 1)MTPMη(k + 1)

+ηT (k)(G − YM)TP (G− YM)η(k)
}

−eT (k)Pe(k) (14)

Let P a = XTPX , P b = MTPM , P c = (G−NM)TP (G−
NM) andP i

mn are the elements of the matrixP i in the m
row andn column, withi = a, b, c. From the characters of the
stochastic noises,

∆V (k)

= eT (k)Y TPY e(k)− eT (k)Pe(k) +

n∑

i=1

P a
iiq

2
i (k)

+

r∑

j=1

P b
jjr

2
j (k + 1) +

r∑

j=1

P c
jjr

2
j (k) (15)

Denote −Γ = Y TPY − P and Ω =
n∑

i=1

P a
iiq

2
i (k) +

r∑
j=1

P b
jjr

2
j (k + 1) +

r∑
j=1

P c
jjr

2
j (k). It is straight forward to see

thatΩ is a positive constant. Further, whenΓ = ΓT > 0, we
obtain

∆V (k) = −eT (k)Γe(k) + Ω ≤ −λmin(Γ)‖e(k)‖
2 +Ω (16)

The uniformly ultimately boundness of the estimation erroris
guaranteed with the proposed observer, which is summarized
in the following theorem.

Theorem 1: Consider the stochastic singular system (5) - (6)
and the observer (7) - (8). Under the fault free case, the state
estimation errore(k) given in Eq. (9) is uniformly ultimately
bounded if there exists a matrixP = PT > 0 such that

Y XE +GC̄ −XĀ = 0, (17)

XB = 0, (18)

XE +MC̄ − I = 0, (19)

Y TPY − P < 0. (20)

Based on Theorem 1, we summarize the observer design
algorithm as follows.

1. FromXB = 0, obtain matrixX .
2. Use XE + MC̄ − I = 0, obtain matrixM = (I −

XE)C̄+, whereC̄+ = (C̄T C̄)−1C̄T is the generalized
inverse ofC̄.

3. Obtain matrixY , usingY TPY − P < 0.
4. Obtain matrixG = (XĀ − Y XE)C̄+, from Y XE +

GC̄ −XĀ = 0. 2

In the observer design, the disturbances are augmented as
a subset of states, thus, the disturbances and system states
are estimated, simultaneously. Using the parameters of the
suspension system given in [1], [3] and the rail vehicle
company, which are shown in Table I, the designed matrices
of observer can be obtained. The existences of the solutions
to Eq. (17)-(20) will be discussed in the next section.

TABLE I: Vehicle parameters.

Symbol Description Unit Value
mp Power-carbody mass kg 10 820
Ip Power-carbody pitch inertia kgm2 71 000
mt Trailer-carbody mass kg 4470
It Trailer-carbody pitch inertia kgm2 6000
mpb Power-bogie mass kg 2940
mtb Trailer-bogie mass kg 1150

d1
Distance between c.g. and suspension
positions of the power carbody m 2.825

d2
Distance between c.g. and rear
positions of the power carbody m 6

d3
Distance between c.g. and end
positions of the trailer carbody m 1.9625

k1
Spring constant of secondary
suspension of the power carbody N/m 560 000

c1
Damping constant of secondary
suspension of the power carbody N.s/m 29 584

k2
Spring constant of secondary
suspension of the trailer carbody N/m 1 092 000

c2
Damping constant of secondary
suspension of the trailer carbody N.s/m 50 205

k3
Spring constant of secondary
suspension of the power bogie N/m 2 400 000

c3
Damping constant of secondary
suspension of the power bogie N.s/m 11 883

k4
Spring constant of secondary
suspension of the trailer bogie N/m 3 864 000

c4
Damping constant of secondary
suspension of the trailer bogie N.s/m 176 673

k Spring constant of articulation N/m 163 000

C. Design condition analysis

The observer has been designed in the last subsection. It is
obvious that the design of observer (7)-(8) for system (5)-(6)
is reduced to find the matricesY , X , G and M such that
all the conditions in Theorem 1 are satisfied. To analyze the
existence of solutions of observer matrix, let us define

Au =

[
Ā

06×(18+6)

]
and Ā = EAu (21)

Bu =

[
B

06×18

]
and B = EBu (22)

Substituting (19) and (21) into (17)

Y =Au − [M T ]Θ (23)

whereT = G− YM andΘ =

[
C̄Au

C̄

]
.

Let E1 = I − Y +Y , whereY + = (Y TY )−1Y T is the
generalized inverse ofY . Post-multiply (23) withE1 gives

AuE1=[M T ]ΘE1 (24)
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Using the definition as described in (19), (18) can be written
as

MC̄Bu=Bu (25)

Then, Equations (24) and (25) can be augmented as follows

[M T ]Ω=Ψ (26)

where

Ω =

[
C̄AuE1 C̄Bu

C̄E1 0

]
, Ψ = [AuE1 Bu]

Until now, the solution problem has been transformed to solve
the equation (26) forM andI. The following lemma provides
the sufficient and necessary condition for the existence of the
solution of (26).

Lemma 1: There exists solution to (26) forM and I if and
only if

rank




C̄Au C̄Bu

C̄ 0
Au Bu


= rank

[
C̄Au C̄Bu

C̄ 0

]
. (27)

Proof: Based on the general solution of linear matrix equa-
tions, there are solutions to equation (26) if and only if

rank

[
Ω
Ψ

]
= rank(Ω) (28)

The left-hand side of (27) can be expressed as

rank




C̄Au C̄Bu

C̄ 0
Au Bu




= rank








C̄Au C̄Bu

C̄ 0
Au Bu



[

E1 0
0 I

]


= rank

[
Ω
Ψ

]
(29)

Similarly, the right-hand side of (27) can be expressed as

rank

[
C̄Au C̄Bu

C̄ 0

]

= rank

{[
C̄Au C̄Bu

C̄ 0

] [
E1 0
0 I

]}

= rank(Ω) (30)

So, it can be shown that (27) is equivalent to (29) and (30),
which is equivalent to the condition in (28). This completes
the proof of Lemma 1. ∇

From Lemma 1, a general solution to Eq. (27) exists if Eq.
(28) holds.
Remark 4: The idea of the fault detection observer design is
from the unknown input observer, which is utilized for fault
detection since 1990’s and is often used to deal with robust
fault detection problems [6]. Until now, there exist a lot of
results about the unknown input observer based fault detection,
see [6], [7], [8] and [9]. Compared with the other observers,
the proposed fault detection observer in this paper can handle
the disturbanced(k) and help to obtain the estimation error
expression, which is the key procedure to generate the fault
detection residual and to decide the thresholds with certain
performances (false alarm and missing alarm). 2

IV. FAULT DETECTION DECISION SCHEME

In order to accomplish the fault detection task, a fault
indication signal, i.e. residual, should be sensitive to the sensor
faults, but at the same time, insensitive to the noises. Next,
a fault detection scheme based on the proposed observer is
provided.

A. Fault detection residual

To detect the fault, the residual should be generated. The
residual generator based on the observer design technique with
the residual vector is given by

r(k)=S1ξ(k) + S2z(k) (31)

wherer(k) ∈ R, S1 ∈ R1×(18+6) andS2 ∈ R1×9. The resid-
ual is used to detect the influence of the faults on the system.
In the non-faulty case, the observer error is independent ofthe
stochastic noises.

Substituting (6) and (7) into (31), residual for faulty case
yields

rf (k)=S1e(k) + (S2C̄ + S1XE)ω(k)

+(S2 − S1M)Fsf(k) + (S2 − S1M)η(k) (32)

From Eq. (32), the disturbance effect has been explicitly
decoupled from the error dynamics and the residual expres-
sion. The faults can be detected, if the residual expressionis
independent of the state vector, which requires that

S2C̄ + S1XE=0 (33)

and

S2 − S1M 6=0 (34)

Choose appropriate matricesS1 andS2 satisfying both condi-
tions (33) and (34). Then the noise term appears in the residual,
which can be presented as

rf (k)=S1e(k) + (S2 − S1M)Fsf(k)

+(S2 − S1M)η(k) (35)

When a fault occurs in the plant, the state estimation error
(or residual vector) changes, and hopefully so does its mean
vector. The situation in which the fault effect is reflected on
the residual mean, as generic, is focused in the subsequent
analysis.

For no fault casef(k) = 0, it can be obtained from (11),
that

e(k)=Y ke(0) +
k−1∑

n=0

Y k−n−1(G− YM)η(n)

+

k∑

n=1

Y k−nMη(n)−
k−1∑

n=0

Y k−n−1Xδ(n) (36)

Due to the Gaussian process noisesη(k) and δ(k), e(k) is
also a Gaussian process, whose mean and variance can be
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calculated as follows:

E {e(k)} = Y ke(0) (37)

V ar{e(k)}

=E{[e(k)− E{e(k)}] · [e(k)− E{e(k)}]T }

=

k−1∑

n=1

[Y k−n−1(G− YM) + Y k−nM ]R(n)

×[(G− YM)T (Y k−n−1)T +MT (Y k−n)T ]

+Y k−1(G− YM)R(0)(G− YM)T (Y k−1)T

+MR(k)MT +

k−1∑

n=0

Y k−n−1XQ(n)XT (Y k−n−1)T

,Te(k) (38)

Therefore,e(k) ∼ N (Y ke(0), Te(k)). Further, the residual for
faulty-free case is represented as

rh(k)=S1e(k) + (S2 − S1M)η(k) (39)

Define Tr(k) , S1Te(k)S
T
1 + (S2 − S1M)R(k)(S2 −

S1M)T −S1Y
ke(0)eT (0)(Y k)TST

1 . Using Eq. (39), the mean
and variance of the residual can be calculatedrh(k) ∼
N (S1Y

ke(0), Tr(k)).
On the other hand, for the faulty case,f(k) 6= 0, the residual

is presented as

rf (k)=S1e(k) + (S2 − S1M)η(k)

+(S2 − S1M)Fsf(k) (40)

It is obvious that the faulty residualrf (k) is also the Gaussian
process, whose mean and variance can be calculatedrf (k) ∼
N (S1Y

ke(0) + (S2 − S1M)Fsf(k), Tr(k)).

B. Probabilistic residual evaluation

According to residual (39) and (40), the change of the
mean implies that the faults just appeared. So, the following
hypothesis test can be presented:

H0 : E{r(k)} = S1Y
ke(0), H1 : E{r(k)} 6= S1Y

ke(0)

Here,r(k) itself is chosen as the mean estimator, which is the
Gaussian process. Then the acceptance region of the testB(k)
can be assumed to satisfy

P (r(k) ∈ B(k)|H0)=1− λ (41)

whereλ is positive with a small value previously chosen which
constitutes the test size.

A natural measure of the distance fromr(k) to E{r(k)|H0}
is the Mahalanobis distance defined as

dM (r(k), E{r(k)|H0})=
|r(k) − E{r(k)|H0}|√

V arr(k)|H0

(42)

The test acceptance region will be the circle defined by

B(k)= {ξ ∈ ℜ : dM (ξ, E{r(k)|H0}) 6 kλ}

where the operatordM (·, ·) is given in (42) and the radiuskλ
is to be determined from the condition (41). Specifically, for
a Gaussian mean estimator,kλ = hλ/2.

Therefore, the test acceptance regionB(k) can take the form
of an interval as

B(k)= [l(k), u(k)]

=
[
S1Y

ke(0)− hλ/2

√
Cov{rh(k)/H0} ,

S1Y
ke(0) + hλ/2

√
Cov{rh(k)/H0}

]
(43)

where Cov{rh(k)|H0} = Tr(k) and hλ/2 means that the
standard normal distributed variable has the probability of λ/2
to fall into [hλ/2,+∞).

According to the above results, the following fault de-
tection decision can be formed: ifr(k) /∈ B(k), a fault
has likely occurred in plant, where the instant time when
the fault is detected can be defined by the random variable
Td = inf {k > T0 : r(k) /∈ B(k)}, T0 is the unknown instant
when the fault occurs. As a quality measure index of such
tests, the false alarm rate is given by:

P (Dtest(k) = H1|H0)=1− P (r(k) ∈ B(k)|H0) = λ (44)

whereDtest(k) is the test decision at instantk.
Further, when the fault occurs (consequentlyk > T0),

there also exists a confidence regionA(k) ⊂ R, in which
(1 − υ) of the mean estimator realizations remain at instant
k. In particular, that region will be symmetric with respect to
E{r(k)|H1} such that

P (r(k) ∈ A(k)|H1) = 1− υ, k > T0 (45)

The same as the approach of computing the acceptance region
B(k), the confidence regionA(k) can be obtained by:

A(k)

= [a(k), b(k)]

=
[

S1Y
ke(0) + (S2 − S1M)Fsf(k)− hυ/2

√

Cov{rf (k)/H1} ,

S1Y
ke(0) + (S2 − S1M)Fsf(k) + hυ/2

√

Cov{rf (k)/H1}
]

Therefore, if T̂d < +∞, then the fault is detectable with
T̂d = inf {k ≥ T0 : A(k) ∩B(k) = ∅}.

C. Fault detectability analysis

Based on the analysis above, necessary fault detectability
conditions can be presented. Intuitively, a fault is detectable
if there exists timeTd < +∞, in which the mean estimator
realization crosses the bounds of the test acceptance region,
which occurs for most realizations. This idea is formalized
in the probabilistic environment, concluding in a probabilistic
definition of fault detectability.

Theorem 2: For a fault f(k) with its ith element satisfying
|fi(k)| > ε, ∀k > T0, i = 1, . . . , p and a fixed value
υ ∈ (0, 1), a sufficient and necessary condition to assure the
existence of a finite valuêTd > T0 such that the faultf(k)
can be detectable by the FD scheme associated with residual
r(k), is

ε > ε0 =
1

‖(S2 − S1M)Fs‖

(
hλ/2

√
Cov{rh(k)/H0}

+hυ/2

√
Cov{rf (k)/H1}

)
(46)
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Proof: Using the residualr(k) in Eq. (40) and taking into
account the linearity of the mean operator, it follows that

E{rf (k)|H1}=E{rh(k)|H0}+ (S2 − S1M)Fsf(k)(47)

DenoteΦ(f(k)) = (S2 − S1M)Fsf(k).
Sufficiency: i) When Φ (f(k)) > 0, it is related to the

situation f(k) > ε , ∀k > T0. Condition (46) is satisfied,
which implies∃ k > T0 such that

Φ (f(k))

>

(
hλ/2

√
Cov{rh(k)/H0}+ hυ/2

√
Cov{rf (k)/H1}

)

Therefore

{k ≥ T0 : a(k) ≥ u(k)}

=

{
k ≥ T0 : E{rf (k)|H1} − hυ/2

√
Cov{rf (k)/H1}

≥ E{rh(k)|H0}+ hλ/2

√
Cov{rh(k)/H0}

}

= {k ≥ T0 : E{rf (k)|H1} − E{rh(k)|H0}

≥ hλ/2

√
Cov{rh(k)/H0}+ hυ/2

√
Cov{rf (k)/H1}

}

⊇
{
k ≥ T0 : Φ (f(k)) > hλ/2

√
Cov{rh(k)/H0}

+hυ/2

√
Cov{rf (k)/H1}

}

⊇ [k∗,+∞) 6= ∅ (48)

So

∃ T̂d=inf{k ≥ T0 : a(k) ≥ u(k)} ≤ k∗ ≤ +∞

ii) When Φ (f(k)) 6 0, it means thatf(k) 6 −ε , ∀k > T0.
The fact that condition (46) is satisfied, implies that∃ k > T0

fulfills that

Φ (f(k))

<−

(
hλ/2

√
Cov{rh(k)/H0}+ hυ/2

√
Cov{rf (k)/H1}

)

Therefore

{k ≥ T0 : b(k) ≤ l(k)}

=

{
k ≥ T0 : E{rf (k)|H1}+ hυ/2

√
Cov{rf (k)/H1}.

≤ E{rh(k)|H0} − hλ/2

√
Cov{rh(k)/H0}

}

= {k ≥ T0 : E{rf (k)|H1} − E{rh(k)|H0} ≤

−

(
hλ/2

√
Cov{rh(k)/H0}+ hυ/2

√
Cov{rf (k)/H1}

)}

⊇
{
k ≥ T0 : Φ (f(k)) < −

(
hλ/2

√
Cov{rh(k)/H0}

+hυ/2

√
Cov{rf (k)/H1}

)}

⊇ [k∗,+∞) 6= ∅

so

∃ T̂d=inf{k ≥ T0 : b(k) ≤ l(k)} ≤ k∗ ≤ +∞

Necessity: If condition (46) is not satisfied, then, when
Φ (f(k)) > 0, there will be the situation

0 < Φ (f(k)) <
(
hλ/2

√
Cov{rh(k)/H0}

+hυ/2

√
Cov{rf (k)/H1}

)

Therefore

{k ≥ T0 : a(k) < u(k)}

= {k ≥ T0 : E{rf (k)|H1} − E{rh(k)|H0}

< hλ/2

√
Cov{rh(k)/H0}+ hυ/2

√
Cov{rf (k)/H1}

}

⊇
{
k ≥ T0 : Φ (f(k)) <

(
hλ/2

√
Cov{rh(k)/H0}

+hυ/2

√
Cov{rf (k)/H1}

)}

The inequalitya(k) < u(k) implies that there will be inter-
section betweenB(k) and A(k), and the detection decision
may provide a wrong alarm, which means the faults may
not be detected. Actually, the derivation above is also valid
in the situationΦ (f(k)) < 0. So, it is obtained that: If the
faults would be detected, it should satisfy condition (46).From
above, it follows that the faultf(k) is detectable, when the
conditions of Theorem 2 hold. ∇
Remark 5: The above fault detection design and performance
analysis are dependent on the evaluation function chosen
as the residual directly. In fact, there are varieties of the
evaluation function generation methods, such asrT (k)r(k),
n∑

k=0

r(k) with n steps,|r(k)| and so on. With the different

evaluation functions, the stochastic character parameters (mean
and variance) can also be calculated. Therefore, the proposed
fault detection method and performance analysis can be easily
extended to the other evaluation function cases. 2

Remark 6: The faults considered in this paper only affect
the mean of the residual, instead of the variance. So Eq. (46)
can be used to obtain the necessary condition for fault when
the fault information is not available completely. For random
faults, the means and variances of faults should be known.
Otherwise Theorem 2 cannot be used. 2

D. Discussion

Usually, the detection power of the testθ or its complement,
the missed detection rate,1 − θ is considered. The missed
detection rate is defined as

1− θ = 1− P (Dtest(k) = H1|H1) = P (rf (k) ∈ B(k)|H1)

In case that the fault processf(k) satisfies any of the given
sufficient detectability conditions associated with the residual,
then, as shown in the proof of Theorem2, ∃ k∗ > T̂d such
that

a(k)≥u(k), ∀k∗ ≥ T̂d

θ > P (r(k) > u(k)|H1)≥P (r(k) > a(k)|H1)

P (r(k) > a(k)|H1)=1−
υ

2
, ∀k∗ ≥ T̂d
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Therefore, the missed detection rate is

1− θ <
υ

2
, ∀k∗ ≥ T̂d (49)

Remark 7: All the noises considered in this paper are the
Gaussian noise, which makes the hypothesis test achievable.
Note that in real systems, the Gaussian noise is one of the
multiple noises. For non-Gaussian noises, if their probability
density functions are available, the probability density func-
tions of the residuals and evaluation functions can also be
computed. Then, in this case, the proposed method can be
used to that class of systems with non-Gaussian noises.2

V. SIMULATION STUDY

To verify the effectiveness of the designed fault detection
strategy, a passive suspension system for city metro is simu-
lated in the presence of sensor faults.

A. Simulation system

The systems parameters and variables considered in the
simulation are given in Table I.

Here, set the sampling timeT = 0.001 sec. For sim-
ulation purpose, the initial conditions are set asx(0) =
0.01[1, 1, . . . , 1︸ ︷︷ ︸

18

]T and x̂(0) = 0.

The track irregular is considered as the disturbance
d(k). Choosey7(k) = y9(k) = sin(0.01πk), y8(k) =
0.1 sin(0.01πk) and∆y7(k) = ∆y9(k) = 0.01π cos(0.01πk),
∆y8(k) = 0.001π cos(0.01πk). Choose the covariance matri-
ces for noise sequences of process and measurementQ(k) =
0.012 × I18×18 andR(k) = 0.012 × I9×9, respectively.

Assume a fault occurs in the sensors of the third car-
body, and the fault distribution matrixFs is chosen as
Fs = [ 0 0 0 0 0 0 1.2 0.6 1 ]T with the fault
expressed in two cases:

Case 1: f1(k)=

{
0 0 < k < 4(sec)
f0
1 4(sec) ≤ k

(50)

Case 2: f2(k)=

{
0 0 < k < 4(sec)

(1 − e−0.8(k−4))f0
2 4(sec) ≤ k

(51)

where f0
1 and f0

2 are the fault amplitude parameters of
the abrupt and incipient fault, respectively. The abrupt fault
occuring at the sec. 4, can be considered as the sensor drift.
The incipient fault could be influenced by the change of sensor
temperature, which occures at the sec. 4.

B. Simulation results

Using Theorem 1, the observer matricesX , M andG can
be obtained. The responses of the health system to the observer
are shown in Fig. 3-6.

The responses of the health system to the observer are
shown in Figs. 3-6. Then, the following faulty cases will be
discussed.

Case 1 (abrupt fault f1): Set λ = υ = 0.06 as test size
in Eq. (41) and (45), respectively, which means that the false

alarm rate is6%. Then, the test acceptance regionB(k) in Eq.
(43) can be calculated as:

[S1Y
ke(0)− 1.88

√
Cov{rh(k)/H0},

S1Y
ke(0) + 1.88

√
Cov{rh(k)/H0}] (52)

The condition for fault detection is given as follows:

f(k) >
1

‖(S2 − S1M)Fs‖

(
hλ/2

√
Cov{rh(k)/H0}

+hυ/2

√
Cov{rf (k)/H1}

)
= 0.2961 (53)

Let the parametersf0
1 = 0.2 and0.4. Then the fault detection

simulation result given in Fig. 7.
Case 2 (incipient fault f2): Chooseλ = υ = 0.03, which

means that the false alarm rate is3%. Similar to case 1, the
test acceptance regionB(k) in Eq. (43) can be calculated as:

[S1Y
ke(0)− 2.17

√
Cov{rh(k)/H0},

S1Y
ke(0) + 2.17

√
Cov{rh(k)/H0}] (54)

The sufficient condition under which the fault (assuming
positive fault) can be detected isf(k) > 0.3418. Choose
the fault parametersf0

2 = 0.25 and0.45. The fault detection
simulation result is shown in Fig. 8.

C. Discussion

Explanation for Figs. 3-6. Figs. 3-6 show the state and
disturbance estimation performance of the observer for the
three carbodies. The states and disturbancesy3, θ3, y6, ∆y3,
∆θ3, ∆y6, y9 and ∆y9 of the second power carbody are
largely the same as those of the first power carbody, whose
simulation results are omitted here. Due to the noises, some
displacements (sataes) of the carbody cannot converge to zero.
From figs. 3-6, it can be seen that in the fault-free case, the
proposed observer can track the states and disturbances with
small errors, even under the noises environment, which verifies
the effectiveness of the proposed observer.

Explanation for Fig. 7. (a) beforet < 4 sec ., the residual
within the thresholds indicates fault free and its values that
exceed the thresholds indicate the false alarm time instants.
After 4 sec., the residual is shifted due to fault. The figure
indicates that there is a fault but its amplitude may be small
(because the residual is both above and below the upper
threshold). The residual values within the thresholds indicate
the missing alarm time instants (related toυ given (49)).
This subfigure indicates for this fault amplitude0.2 < 0.2961
(which does not satisfy the fault detection condition givenin
Eq. (53)), the fault cannot be effectively detected. (b) Before
4 sec., the residual is the same as that in (a), which indicates
fault free with 6% false alarm. After 4 sec., the residual
mostly exceeds the upper threshold, which confirms the fault
occurrence. The values of residual within the thresholds also
indicate the missing alarm time instants which are much
less than that in (a). In this case, for the fault amplitude
0.4 > 0.2961 (which satisfies the amplitude condition in Eq.
(53)), the fault can be effectively detected.

Explanation for Fig. 8. (a) Similar to the in Figure 7, before
t < 4 sec ., the residual within the thresholds indicates fault
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free and its values that exceed the thresholds indicate the false
alarm time instants. After 4 sec., the residual is shifted due to
fault. The figure indicates that there is a fault but its amplitude
may be small (because the residual is both above and below
the upper threshold). The residual values within the thresholds
indicate the missing alarm time instants (related toυ given
(49)). This subfigure indicates for this fault amplitude0.25 <
0.3418 (which does not satisfy the fault detection condition
given in Eq. (53)), the fault cannot be effectively detected. (b)
Before 4 sec., the residual is the same as that in (a), which
indicates fault free with6% false alarm. Between 4 to 5 sec.,
the residual is also within the thresholds but ascends slowly,

since fault 2 is a incipient fault. After 5 sec., the residual
mostly exceeds the upper threshold, which confirms the fault
occurrence. The values of residual within the thresholds also
indicate the missing alarm time instants which are much less
than that in (a). In this case, for the fault amplitude0.45 >
0.3418 (which satisfies the amplitude condition in Eq. (53)),
the fault can be effectively detected.

Comparisons between Figs. 7 and 8.Figs. 7 and 8 show
the fault detection residuals for two faulty cases, with the
different thresholds determined by different choices of false
alarm parameters. The observer states and the system outputs
are used to generate the residual designed in Eq. (31). The

X =




2.5022 −2.7365 1 0.5200 −0.2460 0.0200 0 0 −0.0100 1 0.2633 −0.3696 0 0 0 1 0 1
0 0 0 1.0000 1.2285 0.6227 0 0 2.5800 0 0.4931 1.8160 0 0 0 0.7619 1.3446 0
0 0 0 0.4725 1.0000 1 0 0 0.8643 1 −2.5316 0.8813 0 0 0 1.3302 1 0.2557
0 0 0 0.2670 0.3750 1.0000 0 0 1 0 1.6470 1 0 0 0 0.7322 0.6433 0.5469

−2.2658 −5.2630 0 1 0.1057 0.2955 −1.4621 1 0.4671 1 0.5386 0.0252 0 0 0 0.1781 0.8627 0.5590
0 0 0 0.0616 −0.7350 0.3664 0 0 1.0000 0 0.5832 0.1844 0 0 0 0.2880 0.0205 0
0 0 0 −0.3958 0.6948 0.5583 0 0 0 1 0 0.9335 0 0 0 1.7157 0.0474 0.6751
0 0 0 0.8051 0.0610 −0.8588 0 0 0.6003 0 1.0000 0.0915 0 0 0 0.6500 0.1478 0.7283
0 0 0 −0.9171 0.4334 0.5573 0 0 0.3798 0 0.0161 1.0000 0 0 0 0.2144 0.3065 0.6008
0 0 0 0.4079 −0.8605 0.1682 0 0 0.0624 1 0.1839 0.7170 0 0 0 0.5652 0 0.0751
0 0 0 0.5518 0.6533 −0.9728 0 0 0.1874 0 0.8721 0.6125 0 0 0 0.0381 0.8412 0.4471
0 0 0 0.6357 0.1005 0.7985 0 0 −0.8797 0 0.7352 0.0185 0 0 0 0.3202 0.1109 0.2483

1.0000 0 0 0.7537 0.1048 0.8271 −0.2551 0 0.3400 0 0.8467 0.2461 1.0000 0 0 0.7337 0.4068 1
0.0000 −1.0000 0 0.2886 0.3796 0.9460 −0.6654 0 0.7467 1 0.3892 0.9053 0 1 0 0.2433 0 0.3788
−2.5022 2.7365 0 −0.9812 0.8610 0.4076 2.4594 0 0.3270 0 0.4030 0.5209 0 0 1.0000 0.3751 0.0536 0.2395

0 0 0 0.5470 −0.9223 0.3632 0 0 0.4590 0 0.8177 0.1051 0 0 0 1.0000 0.0610 0.4730
0 0 0 −0.7061 0.6871 0.1411 0 0 0.5953 0 0.8288 0.5953 0 0 0 0 1.0000 0
0 0 0 0.1411 0.5121 −0.7529 0 0 0.3225 0 0.7040 0.0843 0 0 0 0.9015 0 1.0000
1 0 0 1 1 1 −0.2550 0 1 1 1 1 1 0 0 1 1 1
0 1 0 1 1 1 0.6654 0 1 1 1 1 0.9122 0 0.3652 1 1 1

0.2364 −7.9995 1 0.2072 0.2457 0.2870 −1.4621 1 0.4929 0 0.1428 0.7811 0 0 0 0.5862 0.2629 0.1957
−1.2658 −5.2630 0 0.9716 0.4429 0.0261 −1.7172 1 0.3879 0 0.1789 0.6581 1 0 0 0.4967 0.1816 0.4324

1 −1 0 0.6343 0.9265 0.5936 −0.9205 0 0.8836 1 0.9092 0 1 1 0 0.3753 0.2138 0.6329
−2.5022 1.7365 0 0.2293 0.6113 0.2313 1.7940 0 0.6894 0 0.0516 0 0 1 1 0.4265 0.3764 0.9971




M =




−0.5200 2.7365 −0.0200 −1.0000 0 0.3696 −1.0000 0 −1.0000
−1.0000 1.0000 −0.6227 0 0 −1.8160 −0.7619 0 0
−0.4725 0 −1.0000 −1.0000 0 −0.8813 −1.3302 0 −0.2557
0.7330 0 −1.0000 0 0 −1.0000 −0.7322 0 −0.5469
−1.0000 5.2630 −0.2955 −1.0000 −1.0000 −0.0252 −0.1781 0 −0.5590
−0.0616 0 0.6336 0 0 −0.1844 −0.2880 0 0
0.3958 0 −0.5583 −1.0000 0 −0.9335 −1.7157 0 −0.6751
−0.8051 0 0.8588 0 1.0000 −0.0915 −0.6500 0 −0.7283
0.9171 0 −0.5573 0 0 −1.0000 −0.2144 0 −0.6008
−0.4079 0 −0.1682 0 0 −0.7170 −0.5652 0 −0.0751
−0.5518 0 0.9728 0 0 −0.6125 −0.0381 0 −0.4471
−0.6357 0 −0.7985 0 0 0.9815 −0.3202 0 −0.2483
−0.7537 0 −0.8271 0 0 −0.2461 −0.7337 0 −1.0000
−0.2886 1.0000 −0.9460 −1.0000 0 −0.9053 −0.2433 0 −0.3788
0.9812 −2.7365 −0.4076 0 0 −0.5209 −0.3751 0 −0.2395
−0.5470 0 −0.3632 0 0 −0.1051 0 0 −0.4730
0.7061 0 −0.1411 0 0 −0.5953 0 0 0
−0.1411 0 0.7529 0 0 −0.0843 −0.9015 0 0
−1.0000 0 −1.0000 −1.0000 0 −1.0000 −1.0000 0 −1.0000
−1.0000 −1.0000 −1.0000 −1.0000 0 −1.0000 −1.0000 0 −1.0000
−0.2072 7.9995 −0.2870 0 −1.0000 −0.7811 −0.5862 0 −0.1957
−0.9716 5.2630 −0.0261 0 −1.0000 −0.6581 −0.4967 0 −0.4324
−0.6343 1.0000 −0.5936 −1.0000 0 0 −0.3753 −1.0000 −0.6329
−0.2293 −1.7365 −0.2313 0 0 0 −0.4265 −1.0000 −0.9971




,

G =




0.8840 −4.6523 −0.7823 1.6905 0.0003 −0.5852 1.7000 0 1.7000
1.7000 0.0012 1.0586 2.4499 0.0005 −8.0315 1.2952 0.0013 0
0.8033 0.0010 1.7000 2.5207 −0.0025 −2.2265 2.2613 0.0010 0.4347
0.4539 0.0004 1.7000 0.9496 0.0016 −2.6096 1.2447 0.0006 0.9297
1.7000 −8.9470 0.5023 2.5007 1.7005 −2.3273 0.3028 0.0009 0.9503
0.1047 −0.0007 0.6229 0.9496 0.0006 −3.9961 0.4896 0.0000 0
−0.6729 0.0007 0.9491 1.7000 0 1.5869 2.9167 0.0000 1.1477
1.3687 0.0001 −1.4600 0.5700 0.0010 −2.4315 1.1050 0.0001 1.2381
−1.5591 0.0004 0.9474 0.3606 0.0000 0.0632 0.3645 0.0003 1.0214
0.6934 −0.0009 0.2859 1.7593 0.0002 0.9500 0.9608 0 0.1277
0.9381 0.0007 −1.6538 0.1779 0.0009 0.2336 0.0648 0.0008 0.7601
1.0807 0.0001 1.3575 −0.8353 0.0007 3.8226 0.5443 0.0001 0.4221
1.2052 0.0078 1.4578 0.4339 0.0008 −1.1092 1.1712 −0.0073 1.7518
0.4578 −1.6963 1.6305 2.5926 0.0004 −1.8415 0.3808 1.6967 0.6662
−1.3879 4.6245 0.5024 −0.4697 0.0004 0.0771 0.9178 0.0285 −0.5997
0.9299 −0.0009 0.6174 0.4359 0.0008 −1.7994 1.7000 0.0001 0.8041
−1.2004 0.0007 0.2399 0.5653 0.0008 −1.5535 0 0.0010 0
0.2399 0.0005 −1.2799 0.3062 0.0007 −1.2465 1.5325 0 1.7000
1.6239 0.0087 1.7518 2.7606 0.0010 −2.6719 1.6239 −0.0067 1.7518
1.7328 1.6977 1.6777 2.4660 0.0010 −2.4470 1.7329 0.0043 1.3795
0.3522 −13.5989 −0.3284 0.8252 1.7001 −1.1535 0.9965 0.0003 0.3327
1.5756 −8.9389 0.0961 0.8366 1.7002 −0.9724 0.7683 −0.0075 0.7868
0.9694 −1.6880 1.0832 2.8336 0.0009 −4.0328 0.5291 1.6892 1.1500
0.6372 2.9276 0.2250 0.0580 0.0001 −2.5327 0.9724 1.7255 0.7105




.
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thresholds are the upper and lower bounds of the acceptance
regionB(k) from Eq. (43) with the detection rateλ (the false
alarm rate), which means the smallerλ is, the less the false
alarms occur.

For the fault-free case, the residuals are same beforet <
4 sec ., in the figures. 7 and 8. In Fig. 7 (fault 1) and Fig.
8 (fault 2), the different detection ratesλ are chosen, which
leads to the different thresholds. Theλ for fault 2 is smaller
than that of fault 1, which makes that the area of acceptance
region for fault 2 is larger than that of fault 1. From figures.
7 and 8, it can be seen that the residual out of the thresholds
of fault 1 is more than that of fault 2, which means that the
false alarms of fault 1 is more than that of fault 2. It matches
the detection ratesλ andυ of these two cases.

In both faults 1 and 2, two amplitudes of faults are chosen:
f0
1 = 0.2 and0.4, f0

2 = 0.25 and0.45, in which one is smaller
than ε0 from Theorem 2, the other one is larger. In Figs. 7
and 8, it is obvious that when the amplitudes are smaller than
ε0, parts of the residuals are still within the thresholds after
faults occur. The fault detection algorithm cannot detect the
fault effectively. But for (b) in Figures 7 and 8, the residuals
exceed the thresholds to give the valid fault alarms.
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Fig. 3: States estimates of the first power carbody
(showing the designed observing error convergence)

VI. CONCLUSIONS

In this paper, the sensor fault detection problem has been
investigated for suspension systems with the track regularity
and noises, which are modelled as input disturbances with
stochastic noise. To design the fault detection observer, the
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Fig. 4: State estimates of the trailer carbody
(showing the designed observing error convergence)
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Fig. 5: The disturbance (track irregularity) estimates of the
first power carbody (the estimate error convergence)
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Fig. 6: The disturbance (track irregularity) estimates of the
trailer carbody (the estimate error convergence)

disturbances were augmented to the suspension system states,
which leads to a singularity system with stochastic noises.
The observer has been designed to generate the fault detection
residual. The detection residual is discussed to obtain the
fault detection threshold with the fault detectability condition.
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Fig. 7: Residual signals and thresholds for noise and fault (see Eq.
(50)) with different values off0

1 .

Simulation results further confirm the obtained theoretical
results.
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