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Abstract—In this paper, a novel interval sliding mode observer
is designed to detect incipient faults for a class of non-Lipschitz
nonlinear systems with mismatched uncertainties. The interval
estimation concept is introduced to design interval estimator for
the nonlinear subsystem with uncertainties bounded by known
intervals. Then novel injection functions are designed to ensure
that the sliding motion takes place and maintains thereafter. At
last, new residual generators and adaptive threshold generators
are designed, and the corresponding fault detectability is studied.
Case study on a traction device in CRH (China Railway High-
Speed) is presented to demonstrate the effectiveness of proposed
incipient fault detection scheme.

I. Introduction

Model-based fault detection relies on the use of dynamic

models, residual generation and evaluation [1], [2]. One of the

central schemes in this area is the so-called observer-based

fault diagnosis technique, where fault diagnosis observers

provide the estimated value of dynamic models. In residual

generation and evaluation scheme, the difference between the

estimated value of models and the real value measured by

sensors, known as residual, will be compared with a threshold

value (zero in the ideal case). When the residual is bigger than

the threshold, it is determined that there is a fault in the system.

Otherwise, it is considered that the system is working properly.

However, when building a model of a dynamic process to

monitor its behavior, there is always a mismatch between the

modeled and real behavior. This is because some effects are

neglected in the model, some nonlinearities are linearized in

order to simplify the model, some parameters have tolerances

when they are compared between several units of the same

component, some errors in parameters or in the structure of

the model are introduced in the model estimation process, etc.

These modeling errors introduce uncertainties in the model

and interfere with the fault detection.

The problem of observer-based fault diagnosis, especially

incipient fault diagnosis for nonlinear systems, have been

extensively studied in the literature, see e.g. [2], [3], [4] and

[5]. Robust fault diagnosis observer design against modeling

uncertainties and external disturbances is the most important

IFD (incipient fault detection) step in observer-based fault

diagnosis. However, it is impossible to estimate nonlinear

systems with observer mismatched uncertainties exactly only

by input-output signals due to that they do not satisfy the

necessary relative degree one condition. This condition is

actually a structure requirement on the uncertainties , which

is used in most papers of this field (see e.g. [2] and [6]).

Nevertheless, the interval estimation technique appears to

estimate the dynamic models with uncertainties represented

by interval models, and has been used for uncertain biological

systems in [7], also for fault diagnosis field (see e.g. [8]

and [9]). Fortunately, interval observers have no structural

requirements on uncertainties, which provide an effective

way to improve the robustness against modeling uncertainties

and disturbances. Unfortunately, most exist results of interval

observers are for linear systems. In the nonlinear case, the

basic idea is to replace the nonlinear complexity of the original

nonlinear system by an enlarged parametric variation in the

LPV representation, which simplify the observer design. There

are several approaches to design observers for LPV systems,

see for instance [8] and [10]. Of course, there is paper [11]

to study the interval observer design for Lipschitz nonlinear

systems, which motivates us to deal with nonlinear complexity

by relax Lipschitz condition.

On the other hand, during the past decades, sliding mode

technique has used for observer based FDI (fault detection

and isolation) widely. The sliding mode observer based FDI

has been extensively studied in [6], [12], [13] and [14]. In

[12], a sliding mode observer is proposed to detect faults by

considering the disruption of sliding motion, which motivates

much research in this area. In [6] and [13], the “equivalent

output injection” concept is used to explicitly reconstruct fault

signals to detect and isolate sensor faults and actuator faults.

Using sliding mode observer, another idea is developed for

actuator FDI by generating residuals instead of reconstructing

fault signals in [15]. This methodology is extended to sensor

FDI scheme in [16]. Therefore, interval estimation technique

in combination with sliding mode technique is a pertinent

solution to improve robustness of IFD against modeling un-

certainties and disturbances.



In this paper, an interval sliding mode observer for a more

general class of nonlinear systems without Lipschitz condition

is designed as incipient fault detection estimator (IFDE). More

specifically, the known nonlinearity under consideration is

modeled as a general nonlinear function of the system inputs

and state variables. It is a challenging problem to construct

observer for this nonlinear system by only input-output signals.

A new approach, the Min-Max approach (see [17]), is used in

this paper to design interval sliding mode observers with the

interval width being guaranteed. Then residual generators and

the corresponding adaptive threshold generators are proposed

based on designed IFDE, and the incipient fault detectability

is studied. The main contribution of this paper is that a novel

interval sliding mode observer as IFDE is designed for a

class of non-Lipschitz nonlinear systems with mismatched

uncertainties. Based on novel designed IFDE, a sequence of

proper adaptive threshold generators are proposed to evaluate

the proposed residuals. The incipient fault detectability is

studied as well.

II. Preliminaries

From [18], the nonlinear system with incipient sensor faults

can be represented by an augmented system, which can be

transformed to

ẋ1 =A11x1 + A12x2 + g1(x1, x2, u) + η1(x, u, ω, t), (1)

ẋ2 =A21x1 + A22x2 + g2(x1, x2, u) + η2(x, u, ω, t)

+ D2ξ (x, u, t) , (2)

y =C2x2, (3)

where x1 ∈ R
n1 and x2 ∈ R

p with n1 + p = n are state vectors,

u ∈ Rm is control, ω ∈ R represents perturbation parameter

and assumed to belong to a known compact set Θ i.e. ω ∈

Θ. g1(·) and g2(·) are known nonlinear smooth vector fields,

η1(·) and η2(·) represent lumped uncertainties. It should be

pointed out that η1(·) is observer mismatched uncertainties.

The function ξ is a continuous and small amplitude vector to

drive incipient faults. The matrices A11, A12, A21, A22, C2 ∈

Rp×p (non-singular), D2 ∈ R
p×q all can be obtained based on

[6]. In addition, from [18], if the minimum phase condition is

satisfied, the matrix A11 is Hurwitz. It is assumed throughout

this paper that C2 is identity matrix, n1 = 1, p ≥ q, and A11 is

a negative scalar.

Based on [6], the matrix D2 has structure that D2 =

col(0,D22) with D22 ∈ R
q×q being non-singular. Then, Eqs.

(2) and (3) can be rewritten as

ẋ21 =A1
21x1 + A11

22x21 + A12
22x22 + g1

2(·) + η1
2(·), (4)

ẋ22 =A2
21x1 + A21

22x21 + A22
22x22 + g2

2(·) + η2
2(·) + D22ξ(·), (5)

y =C21x21 +C22x22, (6)

where x2 := col(x21, x22) = C−1
2

y with x21 = [Ip−q, 0]C−1
2

y ∈

Rp−q and x22 = [0, Iq]C−1
2

y ∈ Rq.

For certain practical system, there is an inherent operation

region determined by physics which is not influenced by work

condition. By considering this inherent operation region, there

is an known interval such that before and after faults occur,

x1 ∈ Ω = [x1 min, x1 max]. However, the interval Ω is not

tight enough for incipient fault detection. Therefore, it is

necessary to redesign a new interval based on Ω such that

the new interval is tighter than Ω. Suppose that there exist

Ω̂ = [x
1 min

, x̄1 max] with x
1
, x̄1 ∈ R

n1 such that x̄1 max ≥ x1 max,

x̄1 max > 0, x
1 min
≤ x1 min, x

1 min
< 0.

Some general notation to be used in interval estimator

design is shown as follows. For two vectors x1, x2 ∈ R
n or

matrices A1, A2 ∈ R
n×n, the relations x1 ≤ x2 and A1 ≤ A2 are

defined in element wise, respectively. Given a matrix A ∈ Rm×n

or a vector x ∈ Rn, defining A+ = max{0, A}, A− = A+ − A and

x+ = max{0, x}, x− = x+− x, respectively, then A+, A−, x+, x−

are nonnegative.

Lemma 1: [10] Let x, x, x̄ ∈ Rn satisfy that x ≤ x ≤ x̄.

Then, for any matrix A with appropriate dimensions, A+x −

A− x̄ ≤ Ax ≤ A+ x̄ − A−x.

Assumption 1: There exist functions η
1
(x

1
, x̄1, ·),

η̄1(x
1
, x̄1, ·) such that η1(·) ∈ [η

1
(·), η̄1(·)]. Moreover, there ex-

ist functions η̄1
2
(y, u, t) such that ‖η1

2
(·)‖ ≤ η̄1

2
(·), and functions

η̄2
2
(y, u, t) and η2

2
(y, u, t) such that η2

2
(·) ≤ [η2

2
(·), η̄2

2
(·)].

Remark 1: According to Assumption 1, the uncertainty

η1(·) is enclosed in the interval [η̄1(·), η
1
(·)]. In addition, the

bound on η1
2
(·) is used to guarantee the sliding motion takes

place in finite time and maintains thereafter [6] [13], and the

interval bound [η2

2
(·), η̄2

2
(·)] is to distinguish the effect between

faults and uncertainties [2], [4]. ∇

III. Fault Detection Estimator Design

In this section, an interval sliding mode observer as FDE for

general nonlinear systems will be designed to detect incipient

faults.

Consider following systems

˙̄x1=A11 x̄1+A12C−1
2 y + ϕ̄(·)+η̄1(·) + F1(·)(x̄1 − x

1
) − Ῡ (·) , (7)

ẋ
1
=A11x

1
+A12C−1

2 y + ϕ(·) + η
1
(·) − F2(·)(x̄1 − x

1
) − Υ (·) (8)

where ϕ̄ (·) and ϕ (·) are defined in (40) and (41) respectively

(See Appendix), F1(·) and F2(·) are nonnegative scalar func-

tions.

Based on the fact that Ω ⊆ Ω̂, functions Ῡ (·) and Υ (·) are

designed as

Ῡ(·)=











A12C−1
2

y + ϕ̄ (·) + η̄1(·) + F1(·)(x̄1 − x
1
), if x̄1 ≥ x̄1 max,

0, elsewise.

(9)

Υ(·)=











A12C−1
2

y + ϕ (·) + η
1
(·) − F2(·)(x̄1 − x

1
), if x

1
≤ x

1 min

0, elsewise.

(10)

Denote e1 = col(ē1, e1
) where ē1 = x̄1−x1 and e

1
= x1−x

1
. By

comparing (7) and (8) with (1), the error dynamic is obtained

by

ė1 = Âe1 + φ(x̄1, x1
, x1, ψ) (11)

where: Â =
[

A11+F1(·) F1(·)
F2(·) A11+F2(·)

]

and φ(·) =
[

φ1(·)
φ2(·)

]

=
[

ϕ̄(·)−g1(·)+η̄1(·)−η1(·)−Ῡ(·)
g1(·)−ϕ(·)+η1(·)−η

1
(·)+Υ(·)

]

.



Proposition 1: Under Assumption 1, if there exist nonneg-

ative scalar functions F1(·) and F2(·) such that the matrix Â in

(11) is Metzler, and the pair ((7), (8)) is initialized by x
1
(0) and

x̄1(0) satisfying that x
1 min

< x
1
(0) ≤ x1(0) ≤ x̄1(0) < x̄1 max,

then ∀t ≥ 0, x
1 min
≤ x

1
(t), x̄1(t) ≤ x̄1 max, moreover, the pair

((7), (8)) is a framer (defined in [19] ) of system (1), (i.e.,

∀t ≥ 0, x
1 min
≤ x

1
(t) ≤ x1(t) ≤ x̄1(t) ≤ x̄1 max).

Proof : From the limitation to initial conditions, it is straight-

forward to see that 0 ≤ e1(0), x
1 min

< x
1
(0) and x̄1(0) < x̄1 max.

Assume that there is time constant t0 at which x̄1 increases

to x̄1 max. Under the function Ῡ(·) given in (9), it has that
˙̄x1(t0) = A11 x̄1 max. From the fact that A11 is negative constant

and x̄1 max > 0, ˙̄x1(t0) < 0. As a consequence, x̄1 will be smaller

than x̄1 max and x̄1(t) ≤ x̄1 max for all time t ≥ 0. Also, using the

same analysis, under function Υ(·) given in (10), x
1
(t) ≥ x

1 min

for all time t ≥ 0.

Considering the first time constant t1 when ē1 of vector e1

is equal to zero, it has that

˙̄e1 (t1) = (A11 + F1(·))ē1(t1) + F1e
1
(t1) + φ1 (·) |t=t1 . (12)

Note that ē1(t1) = 0, x̄1(t1) = x1(t1), which implies that x̄1(t1) <

x̄1 max, and Ῡ(·)|t=t1 = 0 in (11). From (39) and Assumption

1, it can infer that φ1(·)|t=t1 ≥ 0. Since e
1
(t1) > 0, it can

be concluded that ˙̄e1 (t1) ≥ 0. As a consequence ē1 will stay

nonnegative and finally ē1 remains nonnegative for any time

t ≥ 0. Using the same analysis, the same result for e
1

can

be got, that is ē1 remains nonnegative for any time t ≥ 0.

Therefore, e1(t) ≥ 0 for any time t ≥ 0.

Hence, the result follows. �

Let e∗
1
(t) = col(ē∗

1
(t), e∗

1
(t)), and e∗

1
(t) satisfies that 0 ≤

e1(t) ≤ e∗
1
(t),∀t ≥ 0. From (40)-(43) in Appendix, it follows

that

0≤ϕ̄ (·) − g1 (·)≤(a
1
+ā1)(·) +

(

w−
1
+ w̄+1

)

(·)ē∗1 + w̄+1 (·)e∗
1
, (13)

0≤g1 (·) − ϕ (·)≤(a
1
+ ā1)(·) + (w̄−1 + w̄+1 )(·)e∗

1
+ w̄+1 (·)ē∗1. (14)

According to [17], it has that ā1(·), a
1
(·) and w̄1(·) and w

1
(·)

obtained from Lemma 2 in Appendix are piecewise continuous

functions with respect to x̄1, x
1
. Based on Proposition 2, it

has that x
1 min

≤ x
1
≤ x1 ≤ x̄1 ≤ x̄1 max. Therefore, it can

be deduced that there exist functions Λ1(ψ), Λ2(ψ), Λ3(ψ),

Λ4(ψ), Λ5(ψ) and Λ6(ψ) such that (a
1
+ ā1)(x̄1, ψ) ≤ Λ1(·),

(

w−
11
+ w̄+

1

)

(x̄1, ψ) ≤ Λ2(·), w̄+
1
(x̄1, ψ) ≤ Λ3(·), (a

1
+ ā1)(x

1
, ψ) ≤

Λ4(·), (w̄−
1
+ w̄+

1
)(x

1
, ψ) ≤ Λ5(·) and w̄+

1
(x

1
, ψ) ≤ Λ6(·).

Suppose that η̄(·) − η(·) < ∆̄1(·) and η(·) − η(·) < ∆1(·).

Consider the system

ė∗1 = Âe∗1 + φ̄(·) (15)

where φ̄(·) =

[

Λ1(·)+Λ2(·)ē∗
1
+Λ3(·)e∗

1
+∆̄1(·)

Λ4(·)+Λ5(·)e∗
1
+Λ6(·)ē∗

1
+∆1(·)

]

. Denoting ĕ1 = e∗
1
− e1,

then ˙̆e1 = Âĕ1 + φ̆(·) where φ̆(·) = φ̄(·) − φ(·). Under the initial

condition that 0 ≤ e1(0) ≤ ē∗
1
(0), i.e., ĕ1(0) ≥ 0, for the first

time t3 when the kth component ĕ1k of vector ĕ1 is equal to

zero, it has that ˙̆e1k (t3) =
∑2n1

i=1
âkiĕ1i(t3) + φ̆k (·) |t=t3 , where

âki is the kth row and jth column of Â. From (13) and (14),

φ̆(·)|t=t3 ≥ 0, then ˙̆e1k (t3) ≥ 0, which means that ĕ1k will stay

nonnegative and ĕ1k will remain nonnegative for all time t ≥ 0.

Then it can be concluded that 0 ≤ e1(t) ≤ e∗
1
(t), ∀t ≥ 0.

By putting Λ2(·)ē∗
1

and Λ5(·)e∗
1

out of φ̄(·), system (15) can

be rewritten as

ė∗1 = Ãe∗1 + H (16)

where Ã =
[

A11+F1(·)+Λ2(·) F1(·)+Λ3(·)
F2(·)+Λ6(·) A11+F2(·)+Λ5(·)

]

, H =
[

Λ1(·)+∆̄1(·)
Λ4(·)+∆1(·)

]

.

Then, a proposition is presented as follows.

Proposition 2: Under Assumptions 1, if the nonnegative

scalar functions F1(·), F2(·), and the initial condition ē1(0)

and e
1
(0) are chosen such that the matrix Ã given in (16)

is Hurwitz, and the conditions in Proposition 1 are satisfied,

respectively, then the pair ((7), (8)) is an interval observer

(defined in [20]) of subsystem (1).

Proof : Because Ã is Hurwitz, system (16) is ISS and e∗
1

in

system (16) will asymptotically converge to a bounded region

associated to Ã and H. Then, it can be got e1 in (11) will also

asymptotically converge to a guaranteed bound of e∗
1
. Hence,

the result follows. �

Denote x̂21 as estimation of x21, and x̂1 ∈ [x̄1, x1
] ⊆ Ω̂ as

the estimation of x1 where the dynamics x̄1 and x
1

are given

in (7) and (8) respectively. Consider the following system

˙̂x21 =A1
21 x̂1 + A11

22 x̂21 + A12
22[0, Iq]C−1

2 y + g1
2(x̂1, ψ)

+ (A11
22 − Â11

22)
(

[Ip−q, 0]C−1
2 y − x̂21

)

+ ν1 + ν2 (17)

where Â11
22

is symmetric negative definite. The functions ν1 and

ν2 are defined by

ν1 =m1(·)sgn([Ip−q, 0]C−1
2 y − x̂21),

ν2 =M2(·)sgn([Ip−q, 0]C−1
2 y − x̂21) (18)

where m1(·) is a positive scalar function, and M2(·) is a

diagonal matrix function, which are both determined later.

Let e21 = x21 − x̂21 and e1 = x1 − x̂1. For nonlinear

function g1
2
(·), based on Lemma 2 with respect to x̂1 ∈ Ω̂

in Appendix, there exist functions w1
2i

(x̂1, ψ) and a1
2i

(x̂1, ψ),

i = 1, 2, · · · , p − q such that ∆i ≤ 0 where

∆i = sgn(e21i)(g
1
2i(·) − g1

2i(x̂1, ψ) + w1
2i(·)e1) − a1

2i(·). (19)

Denote W1
2
(·) = col(w1

21
(·), · · · ,w1

2(p−q)
(·)). Then comparing (4)

with (17), the error dynamic is obtained by

ė21 = (A1
21 −W1

2 (·))e1 + Â11
22e21 + g1

2(x1, x2, u)

− g1
2(x̂1, ψ) +W1

2 (·)e1 + η
1
2(x, u, ω, t) − ν1 − ν2. (20)

Consider a sliding surface L = {(e1, e21)|e21 = 0}. Then, the

following conclusion is ready to presented.

Proposition 3: Under Assumptions 1, the error system is

driven to the sliding surface L in finite time and remains on

it thereafter if the gains m1(y, u, t) and M2(x̂1, ψ) satisfy that

m1(·) ≥‖A1
21 −W1

2 (·)‖max{e∗
1
, ē∗1} + η̄

1
2(y, u, t) + κ, (21)

M2(·) =A1
2(·) (22)

where e∗
1

and ē∗
1

are defined in (16), η̄1
2
(y, u, t) satis-

fies Assumption 1, κ is a positive constant and A1
2
(·) =

diag{a1
21

(·), · · · , a1
2(p−q)

(·)}.



Proof : Let V = eT
21

e21. It follows from (20) that

V̇ =eT
21

(

Â11
22 + Â11T

22

)

e21 + eT
21(A1

21 −W1
2 (·))e1 + eT

21(η1
2(·)

− ν1 + g1
2(x1, x2, u) − g1

2(x̂1, ψ) +W1
2 (·)e1 − ν2). (23)

Since Â11
22

is symmetric negative definite,

eT
21

(Â11
22
+ (Â11

22
)T )e21 ≤ 0. From (21), it follows that

‖e21‖
(

‖(A1
21
−W1

2
(·))‖ |e1| + ‖η

1
2
(·)‖

)

≤ −κ‖e21‖. Since x̂1

in (17) satisfies that x̂1 ∈ [x̄1, x1
], then −ē1 ≤ e1 ≤ e

1
.

Thus from the fact that 0 ≤ e1 ≤ e∗
1
, it has that

|e1| ≤ max{ē1, e1
} ≤ max{ē∗

1
, e∗

1
}. In addition, it follows from

(19) that eT
21

((

g1
2
(·) − g1

2
(x̂1, ψ) +W1

2
(·)e1

)

− M2(·)sgn (e21)
)

=
p−q
∑

i=1

|e21i|∆i ≤ 0. Therefore, V̇ ≤ −κ ‖e21‖ ≤ −κV
1/2, which

means that the reachable condition is satisfied.

Hence, the conclusion follows. �

IV. Incipient Fault Detection Schemes

A. Residual Generators and threshold generator Design

For subsystem (5), an interval estimator is designed as

˙̄x22 =A2+
21 x̄1 − A2−

21 x
1
+ A21

22[Ip−q, 0]C−1
2 y + A22

22 x̄22

+ g2
2(x̄1, ψ) + η̄2

2(·) + K22

(

[0, Iq]C−1
2 y − x̄22

)

, (24)

ẋ
22
=A2+

21 x
1
− A2−

21 x̄1 + A21
22[Ip−q, 0]C−1

2 y + A22
22x

22

+ g2
2(x

1
, ψ) + η2

2
(·) + K22

(

[0, Iq]C−1
2 y − x

22

)

(25)

where K22 is chosen as A22
22
− Â22

22
with Â22

22
being Hurwitz and

Metzler.

Denote ē22 = x̄22 − x22 and e
22
= x22 − x

22
as residual

generators to detect incipient fault. Before incipient faults

occur, by comparing (24) and (25) with (5), the error dynamics

are obtained by

˙̄e22=A
2+
21 ē1+A2−

21 e
1
+Â22

22ē22+g2
2(x̄2, ψ)−g2

2(·)+η̄2
2(·)−η2

2(·), (26)

ė
22
=A2+

21 e
1
+A2−

21 ē1+Â22
22e

22
+g2

2(·)−g2
2(x

2
, ψ)+η2

2(·)−η2

2
(·). (27)

Based on Lemma 2, for nonlinear function g2
2
(·),

when α < 0, there exist column vectors W2
2
(x̄1, ψ) =

col(w2
21

(·), · · · ,w2
2q

(·)), and A2
2(x̄1, ψ) = col(a2

21
(·), · · · , a2

2q
(·))

such that g2
2
(x̄1, ψ) − g2

2
(·) + W2

2
(·)(x̄1 − x1) − A2

2(·) ≤ 0.

When α > 0, there exist column vectors W̄2
2
(x

1
, ψ) =

col(w̄2
21

(·), · · · , w̄2
2q

(·)) and Ā2
2
(x

1
, ψ) = col(ā2

21
(·), · · · , ā2

2q
(·))

such that g2
2
(·) − g2

2
(x

1
, ψ) + W̄2

2
(·)(x1 − x

1
) − Ā2

2
(·) ≤ 0.

Suppose that η̄2
2
−η2

2
≤ ∆̄2

2
and η2

2
−η2

2
≤ ∆2

2. Based on positive

system theory, under the initial condition that ē22(0) = δ̄(0) = 0

and e
22

(0) = δ(0) = 0, it can be obtained that ē22(t) ≤ δ̄(t) and

e
22

(t) ≤ δ(t), where δ̄ and δ are given by

˙̄δ =A2+
21 ē1 + A2−

21 e
1
+Â22

22δ̄ −W2
2
(x̄1, ψ)ē1 + A2(x̄1, ψ) + ∆̄2

2, (28)

δ̇ =A2+
21 ē1 + A2−

21 e
1
+ Â22

22δ − W̄2
2 (x

1
, ψ)e

1
+ Ā2(x

1
, ψ) + ∆2

2 (29)

where δ̄(0) = δ(0) = 0.

Before incipient faults occur, ē22(t) ≤ δ̄(t) and e
22

(t) ≤ δ(t).

Thus, according to that threshold selection principle, the dy-

namic function (28) and (29) is selected as threshold generator.

From (28), it follows that δ̄ =
∫ t

0
eÂ22

22
(t−τ)(A2+

21
ē1 + A2−

21
e

1
−

W2
2
(·)ē1 + A2

2(·) + ∆̄2
2
)dτ. For the Metzler matrix Â22

22
, it has

that eÂ22
22

t > 0, ∀t ≥ 0. From W2
2
(·) = W2+

2
(·) − W2−

2
(·) and

A2
2(·) = A2+

2 (·) − A2−
2 (·), and 0 < ē1 ≤ ē∗

1
, 0 < e

1
≤ e∗

1
in

Proposition 2, it follows that

δ̄≤

∫ t

0

eÂ22
22

(t−τ)((A2+
21 +W2−

2
(x̄1, ψ))ē∗1 + A2−

21 e∗
1

+ A2+
2 (x̄1, ψ) + ∆̄2

2)dτ −

∫ t

0

eÂ22
22

(t−τ)A2−
2 (x̄1, ψ)dτ. (30)

Using the same analysis as for (29), it can obtain that

δ≤

∫ t

0

eÂ22
22

(t−τ)((A2+
21 + W̄2−

2 (x
1
, ψ))e∗

1
+ A2−

21 e∗
1

+ Ā2+
2 (x

1
, ψ) + ∆2

2)dτ −

∫ t

0

eÂ22
22

(t−τ)Ā2−
2 (x

1
, ψ)dτ. (31)

In the sequel, the fault detection decision scheme and

detectability will be studied.

B. Incipient Fault Detection Decision Scheme

The decision scheme on incipient faults (continuous and

small amplitude faults) is derived as follows. The decision

on the occurrence of an incipient fault (detection) is made

if residuals ē22 j in (26) and e
22 j

in (27), j = 1, · · · , q are

continuous all the time, and there exists at least one j such

that either ē22 j exceeds adaptive threshold δ̄ j ( jth row of δ̄ in

(30)), or e
22 j

(t) exceeds adaptive threshold δ
j

( jth row of δ in

(31)).

The above design and analysis is summarized in the follow-

ing theorem.

Theorem 1: Under Assumption 1, for nonlinear systems

(1)-(3), the fault detection decision scheme, characterized by

FDEs (7), (8) and (17), residual generators (28), (29) and

corresponding adaptive thresholds δ̄ in (30) and δ in (31),

guarantees that there will be no false alarms before incipient

faults occur.

C. Incipient Fault Detectability Schemes

After incipient faults occur, the new error dynamics repre-

sented by (26) adds −D22ξ(·) and (27) adds D22ξ(·). Only the

one case that g2
2
(·) is a monotone increasing function vector

and the fault vector D22ξ(·) ≥ 0 is studied. Then the fact that

Â22
22

is Metzler implies that ē22 decreases and e
22

increases.

Therefore, the increase e
22

in (27) and δ in (31) are chosen as

residual generator and adaptive threshold respectively to detect

this incipient fault.

From Lemma 2 in Appendix, there exist column vec-

tors A2
2(x

1
, ψ) = col(a2

21
(·), · · · , a2

2q
(·)) and W2

2
(x

1
, ψ) =

col(w2
21

(·), · · · ,w2
2q

(·)) such that when α < 0, g2
2
(·)−g2

2
(x

1
, ψ) ≥

−A2
2(x

1
, ψ) −W2

2
(x

1
, ψ)e

1
. Since W2

2
(·) = W2+

2
(·) −W2−

2
(·) with

W2+
2

(·) and W2−
2

(·) being nonnegative, and 0 ≤ e1 ≤ e∗
1
, it can

be obtained that

g2
2(·) − g2

2(x
1
, ψ) ≥ −A2(x

1
, ψ) −W2+

2
(x

1
, ψ)e∗

1
. (32)

Then it follows from (27) that

e
22

(t)≥−

∫ t

0

eÂ22
22

(t−τ)
(

A2(·) +W2+
2

(·)e∗
1
+ D22ξ(·)

)

dτ. (33)



Assuming that the incipient fault is detected at time Td > T0

where T0 is the fault occurrence time, there exists a e
22 j

, j =

1, · · · , q such that e
22 j

(Td) ≥ δ
j
(Td), which requires that

(∫ Td

T0

eÂ22
22

(t−τ)D22ξ(·)dτ

)

j

≥

(∫ Td

T0

eÂ22
22

(t−τ)(A2+
21 + A2−

21 )e∗
1

+(W̄2−
2 +W2+

2
)(·)e∗

1
+ Ā2+

2 (·) + A2(·) + ∆2
2 − Ā2−

2 (·)dτ
)

j
(34)

where (·) j represents the jth row.

Therefore, it can be concluded that if the incipient fault

signals satisfy (34), then the faults will be detected at time

instant Td. Of course, the incipient fault detectability schemes

in other cases (such as g2
2
(·) is monotone decreasing function

vector or that the fault vector is non-positive, i.e., D22ξ(·) ≤ 0)

can be studied based on the same methodology to get (34).

V. Case Study: Application To A Traction Device

In this section, an application to an single phase rectifier of

traction system in CRH is presented. The single phase PWM

boost rectifier is considered. The differential equations of grid

side current in and dc-link voltage udc are given by















din
dt

dudc

dt















=















−
RN

LN

S
LN

− S
C f

0



























in

udc













+













− 1
LN

0













iL+















0

− 1
C f















un (35)

where the parameters RN , LN , RL, C f are same as in [21],

the load current iL and grid voltage un are considered as

control inputs. Based on [22], the sensor incipient fault is
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Fig. 1. The interval estimations x̄1 and x1, and estimation errors ē1 and e1
of state x(1).

expressed by ḟ = A f f + f 2+ξ( f , x, u, t). Through augmentation

of (35) and f , and linear transformation with coordinate

transformation matrix given in [6], the incipient faulty system

is obtained as follows:

ẋ =Ax + g(x, y, u) + Bu + η(t, x, y, u, ω) + Dξ(t, x, y, u),

y =Cx (36)

where matrices A, B,C,D are given by

AS=0 =

[

−10.0000 −0.7071 −7.0711
176.7767 −75.0000 −125.0000
−14.1421 1.0000 −10.0000

]

, B =

[

0 1.4142
−250 0

0 −1.0000

]

,

AS=1 =

[

−10.0000 0.7071 −7.0711
−176.7767 −75.0000 125.0000
−14.1421 −1.0000 −10.0000

]

, C =
[

0 1 0
0 0 1

]

, D =

[

0
0
1

]

.
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Fig. 2. The dynamic of e21.
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Fig. 3. Residuals ē22 and e22, adaptive thresholds δ̄ and δ.

The nonlinear terms is expressed by g (x, y, u) =

col
(

x2
1
x2

3
, x2

1
x2

2
+ 100sin(x2), x2

1
x2

3

)

, and η(t, x, y, u, ω)

represents uncertainty, given by η = 2 sin (x1x3) + ω

with ω = 2 sin (t). The incipient fault signal ξ(·) is given by

ξ(·)=











0, t < 10s,

−20 + 20e0.2t−10 + 2 sin (5x1 (t − 10)) , t ≥ 10s.
(37)

The simulation results are shown in Figs. 1-3.

It can be seen from Fig. 1 that the designed interval

estimations x̂1 and x
1

of x1 guarantee that x
1
< x1 < x̄1,

and the estimation errors e
1

and ē1 converge to a region of the

origin. Fig. 2 shows that e21 is driven to the sliding surface and

remains on it thereafter. From Fig.3, it shows that residual ē22

(blue and solid lines) exceeds adaptive threshold δ̄ (red and

dash lines) at time instant Td, which means that the incipient

fault can be detected at this time instant.

VI. Conclusions

This paper has proposed new residuals and adaptive thresh-

olds based on the novel designed interval sliding mode observ-

er for a general class of nonlinear systems with mismatched

uncertainties. For nonlinear subsystem with mismatched un-

certainties, a novel interval estimator is designed. The injection

functions are novel designed to ensure that the sliding motion

takes place in finite time. Furthermore, the fault detectability

is studied. At last, a sensor incipient fault of rectifier in CRH

is detected based on the proposed fault detection method to



demonstrate the effectiveness of the proposed incipient fault

detection scheme.

Appendix

In this paper, the Min-Max approach is used for general

nonlinear functions to design sliding mode observer, which is

shown in the following lemma.

Lemma 2: For any continuous scalar function g(x, y, u) with

x ∈ Σ = [xmin, xmax] and bounded with respect to its arguments,

and for any x̂ ∈ Σ, there exist functions w(x̂, y, u) and a(x̂, y, u)

such that

J (w(·), x) − a(·) ≤ 0, (38)

where J (w, x) = sgn (α)
(

g (x, y, u) − g (x̂, y, u) + w(·) (x − x̂)
)

with α being known quantity.

Proof : See [17]. �

Remark 2: In fact, the functions w(·) and a(·) may be

obtained from solving the optimization problem

a = min
‖y‖≤Y,‖u‖≤U

max
x∈Σ

J (w, x) ,w = arg min
‖y‖≤Y,‖u‖≤U

max
x∈Σ

J (w, x) .

The method to solve w(·) and a(·) is available in [17]. ∇

For g1(x1, x2, u) in (1), x1 ∈ Ω ⊆ Ω̂, it follows that there

exist functions a1(·) and w1(·) are calculated based on Lemma

2 with x1 ∈ Ω̂.

Let ψ represents measurable signals y and u. Supposing that

x̂ as the estimation of x, a1(·) and w1(·) are written as when

α > 0, a1(·) = ā1(x̂1, ψ), w1(·) = w̄1(x̂1, ψ), when α < 0 a1(·) =

a
1
(x̂1, ψ), w1(·) = w

1
(x̂1, ψ). Now, denote x̄1 and x

1
as the

estimation of upper bound and low bound of x1, respectively.

Then it follows from Lemma 2 that when α > 0, g1 (·) ≤

g1 (x̄1, ψ)+w̄1 (x̄1, ψ) x̄1−w̄1 (x̄1, ψ) x1+ā1 (x̄1, ψ), and when α <

0, g1 (·) ≥ g1

(

x
1
, ψ

)

+ w
1

(

x
1
, ψ

)

x
1
− w

1

(

x
1
, ψ

)

x1 − a
1

(

x
1
, ψ

)

.

By applying Lemma 1 to −w̄1(x̄1, ψ)x1 and −w
1
(x

1
, ψ)x1 under

the condition that x
1
≤ x1 ≤ x̄1, it follows that

ϕ
(

x̄1, x1
, ψ

)

≤ g1 (·) ≤ ϕ̄
(

x̄1, x1
, ψ

)

(39)

where

ϕ̄
(

x̄1, x1
, ψ

)

= g1 (x̄1, ψ) + w̄1 (x̄1, ψ) x̄1

+ w̄−1 (x̄1, ψ) x̄1 − w̄+1 (x̄1, ψ) x
1
+ ā1 (x̄1, ψ) , (40)

ϕ
(

x̄1, x1
, ψ

)

= g1

(

x
1
, ψ

)

+ w
1

(

x
1
, ψ

)

x
1

+ w−
1

(

x
1
, ψ

)

x
1
− w+

1

(

x
1
, ψ

)

x̄1 − a
1

(

x
1
, ψ

)

. (41)

Moreover, from Lemma 2, when α > 0, g1 (·) − g1

(

x
1
, ψ

)

≤

ā1(x
1
, ψ) − w̄1(x

1
, ψ)

(

x1 − x
1

)

, and when α < 0, g1 (x̄1, ψ) −

g1 (·) ≤ a
1
(x̄1, ψ) − w̄1(x̄1, ψ) (x̄1 − x1). Then, it follows that

g (x̄1, ψ) − g (·) ≤ a
1
(x̄1, ψ) − w

1
(x̄1, ψ)ē1, (42)

g (·) − g
(

x
1
, ψ

)

≤ ā1(x
1
, ψ) − w̄1(x

1
, ψ)e

1
(43)

where ē1 = x̄1 − x1 and e
1
= x1 − x

1
.
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