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Abstract—Fisher vector coding methods have been demon-
strated to be effective for image classification. With the help
of convolutional neural networks (CNN), several Fisher vector
coding methods have shown state-of-the-art performance by
adopting the activations of a single fully-connected layer as region
features. These methods generally exploit a diagonal Gaussian
mixture model (GMM) to describe the generative process of
region features. However, it is difficult to model the complex
distribution of high-dimensional feature space with a limited
number of Gaussians obtained by unsupervised learning. Simply
increasing the number of Gaussians turns out to be inefficient
and computationally impractical.

To address this issue, we re-interpret a pre-trained CNN as
the probabilistic discriminative model, and present a CNN based
Fisher vector coding method, termed CNN-FVC. Specifically,
activations of the intermediate fully-connected and output soft-
max layers are exploited to derive the posteriors, mean and
covariance parameters for Fisher vector coding implicitly. To
further improve the efficiency, we convert the pre-trained CNN
to a fully convolutional one to extract the region features.
Extensive experiments have been conducted on two standard
scene benchmarks (i.e. SUN397 and MIT67) to evaluate the
effectiveness of the proposed method. Classification accuracies
of 60.7% and 82.1% are achieved on the SUN397 and MIT67
benchmarks respectively, outperforming previous state-of-the-
art approaches. Furthermore, the method is complementary to
GMM-FVC methods, allowing a simple fusion scheme to further
improve performance to 61.1% and 83.1% respectively.

Index Terms—Image Classification, Convolutional Neural Net-
work, Gaussian Mixture Model, Fisher Vector Coding

I. INTRODUCTION

Over the past few decades, Fisher Vector coding (FVC) and

its variants [1], [2], [3] stand out as very effective methods

for image classification. FVC was originally derived from the

Fisher kernel, which aims to combine the benefit of generative

and discriminative approaches for pattern recognition [4].

Generally, the FVC process can be roughly divided into

front-end feature extraction and back-end modeling stages.

Existing methods mostly employ a diagonal Gaussian mixture

model (GMM) as a generative model to characterize the

distribution of local features, such as SIFT [5] and HoG [6].

The Fisher vector is then derived from the gradients with

respect to the GMM parameters, as detailed in Section II.

Recently, deep convolutional neural networks(CNN) applied

to FVC have demonstrated state-of-the-art performance by

adopting the activations from a single fully-connected layer as

the image or patch features [7], [8], [9]. However, it is difficult

to model the complex distribution of high-dimensional region

features using the GMM obtained via unsupervised learning

methods. Simply increasing the number of Gaussians has

substantial impact on computational complexity and storage.

In [8], a generative model with an infinite number of Gaus-

sians was used for back-end modeling, which can be further

approximated by a sparse coding procedure. However, it is still

time-consuming to encode the high-dimensional features. As

an alternative, Doersch .et.al. proposed a discriminative mode

seeking method to discover visual elements from mid-level

regions [10]. In [9], a semantic FVC method was proposed,

which uses the outputs of a CNN soft-max layer as patch

descriptors, and computes the Fisher vector with GMM in the

projected natural parameter space.

Unlike existing FVC methods, we reinterpret the pre-trained

CNN as a probabilistic discriminative model, and present a

CNN based Fisher vector coding method (CNN-FVC). Specif-

ically, a CNN pre-trained on ImageNet [11] is first converted

into a fully-convolutional one, with which the feature maps

of the intermediate and soft-max layers can be efficiently

computed. By using the output soft-max probabilities together

with activations of the intermediate feature map, the statistics

required for the Fisher vector can be derived, as detailed in

Section III. The contributions of this work can be summarized

as follows.

• We exploit CNN activations from different layers to

cover both the front-end feature extraction and back-end

modeling stages in FVC. It is known that there exists a

gradual transition from low-level visual features and high-

level semantics in deep neural networks trained on natural

images [12]. Exploiting information from different layers

may help to improve the effectiveness of representation.

• We use the pre-trained CNN to classify image patches

and consider the class posterior probabilities as locally

extracted semantic descriptors. This effectively represents

an image as a bag-of-semantics. Compared to the unsu-

pervised trained GMM, the CNN posteriors may provide

more discriminative and accurate information.

• With a limited number of components, the proposed

CNN-FVC method can achieve state-of-the-art perfor-

mance on MIT67 and SUN397 scene benchmarks.
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II. GMM BASED FISHER VECTOR CODING

In this section, we will briefly introduce the GMM based

Fisher vector coding (GMM-FVC) method by building on the

established setup introduced in [1].

The pre-trained CNN is first converted to a fully convolu-

tional one by considering the fully connected layers as the

convolutions with kernels that cover their entire regions. This

conversion allows us to take input of any size and output cor-

responding feature maps. Compared to previous works [7], [8],

[9], using the fully convolutional neural network can greatly

reduce the computational complexity. In GMM-FVC, the re-

gion features are extracted from the feature map corresponding

to the 7-th fully-connected layer (FC7). Following [1], PCA

projection is first applied to reduce the dimensionality and de-

correlate the coefficients of region features.

We assume a K-component diagonal GMM in D-

dimensional descriptor space, λ = {λk = (πk,µk,σk)}Kk=1
,

where πk ∈ [0, 1], µk ∈ RD and σk ∈ RD are the mixture

weight, mean vector and diagonal covariance vectors of the

k-th component respectively. Given a descriptor x, we can

write the likelihood function as p(x|λ) =
∑K

k=1
πkg(x;λk),

where g(x;λk) denotes a Gaussian. The GMM parameters

are obtained on a large training set of descriptors using

the expectation-maximization (EM) algorithm to optimize a

maximum likelihood criterion.

According to [1], for any descriptor x ∈ RD, we define

a vector Ψ(x) = (ψ1(x), ψ2(x), . . . , ψK(x)) ∈ RKD. Each

component ψk(x) is a gradient vector of p(x|λk) with respect

to the µk. 1

ψk(x) =
1√
πk
γk(x)

(

x− µk

σk

)

(1)

where γk(x) is the posterior probability or responsibility of

feature x on Gaussian component λk,

γk(x) =
πkg(x;λk)

∑K

j=1
πjg(x;λj)

(2)

To represent a image X = {x1,x2, . . . ,xT } with T descrip-

tors, the Fisher vector Ψ(X) can be obtained by average-

pooling,

Ψ(X) =
1

T

T
∑

t=1

Ψ(xt) (3)

In practice, we further post-process the Fisher vector using

Ψ̂(X) = sign(Ψ(X))
√

|Ψ(X)|/
√

‖Ψ(X)‖L1
(4)

which computes the signed-square of Fisher vector coefficients

followed by normalization. This post-processing has been

shown to further improve the effectiveness of Fisher vectors

in [1].

1For high-dimensional descriptors, using Ψ(x) is sufficient for good
performance [9].

III. CNN-BASED FISHER VECTOR CODING

In this section, we first consider the pre-trained CNN as a

probabilistic discriminative model, and show its relationship to

conventional GMM. Subsequently, we derive the FVC method

using outputs of soft-max and intermediate fully-connected

layers.

In the GMM-FVC method, the k-th Gaussian posterior

can be conceptually represented as γk(x) = Fλk
(x), where

Fλk
(·) is defined by eqn.(2). Similarly, a pre-trained CNN

that consists of L-layers can be parameterized with θ =
{θ1, θ2, . . . , θL}. The actual computation within the l-th layer

has two phases: first, a linear convolution of the inputs.

For CNNs, these maps are convolutions of the inputs with

learned filter parameters. Afterwards, a non-linear activation

function, such as a sigmoid or a ReLU [13], and often a

spatial pooling or a sub-sampling operation are applied. The

CNN output probabilities can be conceptually represented as

γ(xl) = Gθ(l+1:L)
(xl), where x

l are the activations of the l-th

layer, γ(xl) = (γ1(x
l), γ2(x

l), . . . , γK(xl)), and Gθ(l+1:L)
(·)

represents the linear/nonlinear operations in the CNN layers.

The main difference is that the GMM parameters are

trained using unsupervised EM, while the CNN parameters

are obtained using the cross-entropy criterion with supervision.

Furthermore, the CNN structure contains millions of param-

eters tuned from large scale datasets, which provides much

stronger descriptive and discriminative capability.

Let {xt}Tt=1
be the extracted region descriptors, and γ(xt)

be the output posterior probabilities2 of xt.

As shown in [14] and [1], the 0th-, 1st-, and 2nd-order

Baum-Welch statistics can be computed using feature/posterior

pairs from a large-scale training set: (xt, γ(xt))
T
t=1

.

Nk =

T
∑

t=1

γk,t, Fk =

T
∑

t=1

γk,txt, Sk =

T
∑

t=1

γk,txtx
T

t

(5)

With these statistics, the parameter of k-th component λk =
{wk,µk,σk} can then be computed as

wk =
Nk

T
, µk =

Fk

Nk

, σk =
Sk

Nk

− µkµ
T

k (6)

This implicitly represents a diagonal GMM that is derived

from the activations of intermediate and output soft-max

layers3. Given an image X, the Fisher vector in eqn. (3) can

be rewritten by using the computed statistics.

Ψk(X) = (Fk −Nkµk)/(T
√
wkσk) (7)

For the ImageNet dataset, there are 1000 classes corresponding

to various object classes [11]. In our implementation, we select

K(=100) classes according to descending order of their 0th-

order statistics Nk. Similar to in GMM-FVC, the FC7 layer is

used for front-end feature extraction, since it has been proven

that the FC7 activations are discriminative and generalizable

2For simplicity, we omit the superscript that indicates activations from the
l-th layer

3The multiplication and division of vectors should be understood as
component-wise.



for various image classification tasks [15]. It is worth noting

that FC7 and soft-max activations can be computed in a single

CNN feed-forward pass, which is more efficient compared to

the sparse coding method in [8].

IV. IMPLEMENTATION

We use the excellent MatConvNet toolbox to implement

the proposed CNN-FVC method [16]. The pre-trained CNN

on large-scale ImageNet [11] is first converted into a full-

convolutional one due to its efficiency for region feature ex-

traction [17]. Two CNN structures with different complexities

(namely AlexNet [18] and VGG16 [19]) are employed as

feature extractors. The input images are firstly resized so

that their minimum dimension is at least 512, and then fed

into the fully convolutional neural network, creating feature

maps with about 10× 15 size in different layers. Specifically,

the front-end features are extracted from the feature map of

the FC7 layer, and the corresponding posteriors are from the

output soft-max layer. For the FC7 features, we first reduce

the dimension to 512 using PCA. For the soft-max posteriors,

as aforementioned, we select 100 classes according to the

descending order of {Nk}1000k=1
.

Once the features and corresponding posteriors are extract-

ed, we encode them using the proposed CNN-FVC method,

and generate the image-level representation by average-

pooling and normalization. We use libsvm [20] as the SVM

solver, and precompute the linear kernels as the inputs. This is

because kernel matrix computation actually occupies most of

computational time when the feature dimensionality is high.

Furthermore, linear kernel computation can be implemented

efficiently in parallel.

Table I lists the computational complexities of the feed-

forward pass in terms of seconds using the MatConvNet

toolbox. All evaluations are conducted on a server with Intel

I7-2700k CPU and NVIDIA GTX 980 GPU card installed.

From Table I, we can see that VGG16 is computationally

heavier than AlexNet. However, the feed-forward pass from

the FC7 to soft-max layer, only costs an extra 0.07s in CPU

time and 0.01s in GPU time.

TABLE I
THE COMPUTATIONAL COMPLEXITIES OF FEATURE EXTRACTION USING

ALEXNET AND VGG16.

structures Layer name CPU GPU
VGG16 soft-max 1.54s 0.08s

FC7 1.50s 0.07s
AlexNet soft-max 0.24s 0.02s

FC7 0.17s 0.01s

V. EXPERIMENT AND ANALYSIS

We evaluate the proposed CNN-FVC method on two

benchmarks: MIT67 [23] and SUN397 [24] datasets. For

comparison, we further implement the GMM-FVC method

with the FC7 features, as shown in section II. For GMM-

FVC, the FC7 features are first reduced to 512-dimensions

using PCA, and then GMM-FVC is implemented with a

TABLE II
CLASSIFICATION RESULTS ON MIT67 DATASET IN TERMS OF MAP(%)

Method MAP Comments
SCFVC [8] 68.2 single scale patches

CNN-SVM [15] 58.4 whole image
MOP-CNN [7] 68.9 multi scale patches

Imagenet Finetune 63.8 region of interest
VGG19 [19] 70.8 Multi-scale patches

PlaceCNN [21] 68.2 whole image
Semantic-FVC [9] 72.9 multi-scale patches
VGG19 DAG [22] 77.5 whole image

*GMM-FVC(AlexNet) 67.5 single scale patches
*CNN-FVC(AlexNet) 69.14 single scale patches

*Fusion 69.84 single scale patches
**GMM-FVC(VGG16) 78.9 single scale patches
**CNN-FVC(VGG16) 82.1 single scale patches

**Fusion 83.1 single scale patches

100-component mixture using the public vl feat toolbox [25].

Experiments on MIT67

The MIT67 dataset contains 6700 images over 67 indoor scene

categories, with 100 image in each category. This dataset is

quite challenging since most scenes are collections of objects

organized in a highly variable layout, with some subtle cross-

category differences.

We use the standard training/test split which consists of

80 training and 20 test images for fair comparison. The

experimental results are shown in Table II. Furthermore, we

compare the classification accuracy with previous works [8],

[7], [15], [19], [21]. Firstly, we can see that the proposed

CNN-FV method outperform the GMM-FV by 1.5%-3% for

AlexNet and VGG16 respectively.

With AlexNet, the best performance is 72.9%, which is

achieved by using semantic FVC with multi-scale patch fea-

tures. It is worth noting that our proposed CNN-FVC could

be easily extended to the multi-scale case, but this is left

for future work. Compared to the sparse coding based Fisher

vector (SCFVC) method [8], the GMM-FVC(AlexNet) with

similar settings performs slightly worse, which is consistent

with their conclusion. However, the proposed CNN-FVC can

outperform SCFVC by 1% absolutely. This validates the idea

TABLE III
CLASSIFICATION RESULTS ON SUN397 DATASET IN TERMS OF MAP(%)

Method MAP Comments
MOP-CNN [7] 52.0 multi scale patches

Decaf[26] 40.9 whole image
Semantic-FVC [9] 54.4 multi-scale patches

PlaceCNN [21] 54.3 whole image
VGG19 [19] 51.9 Multi-scale patches

Deep-19 DAG [22] 56.2 Multi-scale features
*CNN-FVC(AlexNet) 52.0 single scale patches
*GMM-FVC(AlexNet) 49.0 single scale patches

*Fusion 52.8 single scale patches
**GMM-FVC(VGG16) 58.2 single scale patches
**CNN-FVC(VGG16) 60.8 single scale patches

**Fusion 61.1 single scale patches

that using the features extracted from different layers may help

to improve classification performance. The PlaceCNN [21]



method learns an AlexNet directly on a 2 million place

dataset [21]. On MIT67, the classification accuracy is about

68.2%, outperforming the 63.8% Imagenet fine-tuning method

with the same CNN structure. It would be interesting to try

the CNN-FVC method using PlaceCNN in future.

With a more complex VGG16 structure, GMM-FVC

achieves 78.9%, outperforming the previously reported state-

of-the-art, such as 77.5% of the VGG19 DAG method that uses

activations from multiple layers [22]. However, the features

extracted at image-level may lack geometric invariance,

which limits their robustness for scene classification. The

VGG19 [19] method extracts the FC7 activations from

multi-scale regions, but it uses a simple average-pooling for

final image representation to achieve an accuracy of 70.8%.

The result for the proposed CNN-FV is 82.1%, which is

particularly impressive compared to the results of GMM-FV

(78.9%) and VGG19-DAG (77.5%).

Experiments on SUN397

SUN397 [24] is a large scale scene recognition dataset with

about 100K images spanning 397 categories. The evaluation

protocol involves publicly available train-test splits, each with

50 training and 50 test images. Table III reports our results

on the SUN397 dataset. From the results, we can see that

CNN-FVC works consistently better than GMM-FVC, with

about 2%-3% performance gap for both AlexNet and VGG16

CNN structures. Among AlexNet CNN structures, the best

performance for SUN397 is achieved by Semantic-FVC [9]

using multi-scale features, which is slightly better than PlaceC-

NN [21]. For the VGG16 CNN structure, the proposed CNN-

FVC method achieves an accuracy of 60.8%, outperforming

the previous best result of 56.2% by a significant margin.

Furthermore, for MIT67 and SUN397, the fusion CNN-FVC

and GMM-FVC systems can improve the accuracy to 61.1%.

In comparison, simply increasing component numbers from

100 to 200 has inly a slight performance improvement in our

experiments.

VI. CONCLUSION

In this paper, we presented a CNN-FVC method by treating

a pre-trained CNN as the probabilistic discriminative model.

More specifically, activations from an intermediate layer (FC7)

and the output soft-max layer are used for both front-end fea-

ture extraction and back-end modeling stages in conventional

FVC methods. These activations can be efficiently obtained

through a single feed-forward pass. Compared to GMM-FVC,

the CNN-FVC method can effectively describe the complex

distribution of the high-dimensional feature space with the

help of the CNN structure. The experimental results on two

standard scene benchmarks (i.e. SUN397 and MIT67) validate

the effectiveness of the proposed CNN-FVC method. Classi-

fication accuracies of 60.7% and 82.1% can be achieved on

SUN397 and MIT67 benchmarks respectively, outperforming

previously reported state-of-the-art results.
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