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Abstract: 

The complex nature of waste management and planning requires a long-term strategic 

policy formation approach incorporating sustainable development principles. 

Consequently, the transition from a waste paradigm to valuing materials as resources is 

central for transitioning towards a ‘zero waste’ future. A need is identified, via 

infrastructure planning, to move beyond short-term forecasting and predictive methods 

previously used in waste research in order to overcome target-driven decision-making. 

The application of a participatory backcasting methodology: visioning, baseline 

assessment, scenario development and feasibility testing; produced transformative 

scenarios which are visualised using GIS reflecting the choices, ideas and beliefs of 

participants.  The structural governance (e.g. waste infrastructure planning and strategic 

waste policy) of an English county is used to evaluate the efficacy of waste management 

scenarios. A quantitative model was developed to test scenarios for three metrics 

(tonnages, economics and carbon). The final model utilises the synergy between 

backcasting and GIS to spatially and temporally analyse empirically quantified outputs.  

This structured approach produced three transformative scenarios and one reference 

scenario. Waste prevention and changes to systemic waste generation produced long-term 

tonnage reductions across the transformative scenarios. Costs of future waste management 

witnessed the reference scenario outperforming one of the transformative scenarios; while 

the highest emissions savings were attributable to the scenario most closely reflecting the 

notion of ‘deep sustainability’. In terms of waste infrastructure planning, a centralised 

pattern of large integrated facilities emphasising catchments rather than administrative 

boundary were most effective. All three transformative scenarios surpassed the 90% 

recycling and recovery level used as the zero waste benchmark.   

The research concludes that backcasting can offer a range of potential futures capable of 

achieving an arbitrary definition of zero waste. Further, these futures can be visualised and 

analysed via GIS; enhancing stakeholder engagement. Overall, the GIS-based Backcasting 

Framework Model (G-BFM) produced has the potential to benefit a range of stakeholders 

and practitioners and is strategically scalable. 

Keywords: waste paradigm; zero waste; backcasting; GIS; transformative scenarios; 

visualisation 
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Chapter 1: Introduction 

In this thesis, Chapter 1 sets out the context of the research in terms of envisaging waste 

management from a position of sustainability with the framing concept of zero waste 

acting as the change catalyst for transition. It will begin by introducing the main issues 

relating to waste in England so as to orientate the problem in terms of waste infrastructure 

provision in relation to the changed emphasis for waste planning at the local level before 

describing the study area for the research. The chapter then presents the rationale for the 

research before outlining the research aim and objectives. The final section of Chapter 1 

gives a brief outline of the remaining chapters.  

1.1 Context of the research 

Waste management is a diverse and complex system which includes flows of materials at 

local; regional; national and international scales. In recent decades, a complex legislative 

and regulatory framework has developed around waste within England and the United 

Kingdom (see for example: 75/442/EEC; 99/31/EC; 2008/98/EC). In England, the last 

decade has witnessed a strategic policy change towards developing a ‘zero waste’ economy 

(DEFRA, 2007a; 2011a; 2013a). The Waste Strategy for England (DEFRA, 2007a) first 

introduced the concept of zero waste and this has remained the strategic position under the 

coalition government (from 2010). The Review of Waste Policy in England (DEFRA, 

2011a) reiterated the zero waste ambition and also introduced new strategic policies on 

Anaerobic Digestion (DECC/DEFRA, 2011) to align waste policy with the broader debate 

around energy security. Most recently, the Waste Management Plan for England (WMPE) 

(DEFRA, 2013a) combined with the Waste Prevention Plan for England (WPPE) 

(DEFRA, 2013b) as well as equivalent documents from the devolved administrations 



10 

 

(Scotland, Wales and Northern Ireland1) and local waste management plans (produced at 

the Waste Planning Authority level in England) fulfils the requirement in Article 282 of the 

revised Waste Framework Directive (WFD). In parallel to the WMPE national planning 

policy on waste is set out in Planning Policy Statement 10 (PPS10) – Planning for 

Sustainable Waste Management (DCLG, 2013). PPS10 provides the planning framework 

enabling Local Authorities (LAs) in England to put forward strategies which identify sites 

and areas suitable for facilities (new or expanded) to meet the waste management needs of 

their areas (DCLG, 2013; DEFRA, 2013a). In this new planning context the provision of 

adequate and economically viable infrastructure, within the framework of the Waste 

Hierarchy, has increased the pressure on local level planners to find robust means of 

modelling future capacity with inadequate and out-of-date predictive modelling.    

These strategic policy changes have placed significant pressure on practitioners within the 

public and private sectors as waste has operationally moved from being viewed as a public 

utility towards an increasingly valuable economic sector in its own right (Ohno, 1988; 

Seadon, 2006; APSRG, 2011). Developments around systems thinking have broadened the 

concept of waste to consideration of all inputs to and outputs from production and 

consumption processes including: raw materials; energy; water; labour and multiple other 

‘hidden’ costs (Ohno, 1988). There are numerous reasons for such a broadening of the 

waste remit with the main drivers including:  

 record highs for commodity prices over the last decade (McKinsey and co for EMF, 

2011);  

 ever more detailed reports and scientific understanding of the feedback loops and 

resultant impacts of waste generation on climate change (IPCC, 2007); and  

                                                           
1 The devolved administrations also include Gibraltar but this is beyond the scope of the research which focuses on 
England in relation to the United Kingdom geographic area (DEFRA, 2013a). 
2 Article 28 of the revised Waste Framework Directive requires that Member States ensure that their competent 

authorities establish one or more waste management plans covering all of their territory. 



11 

 

 tangible security concerns relating to economic and social systems stability linked 

with growing awareness of finite resource depletion (Green Alliance, 2009; 

WBCSD, 2010).  

Such concerns have led to greater consideration of the fundamental principles of 

sustainable development (e.g. the polluter pays and precautionary principles) in formal top-

down policy formation at the levels of supranational governance; national and regional 

government; as well as for local authorities charged with delivery on the ground. 

Correspondingly, local communities; non-governmental organizations (NGOs); charitable 

organisations and environmental activist groups are putting considerable lobbying pressure 

on hierarchical governance structures to implement policies which reflect localised 

concerns (FOE, 2009; Transition Network, 2014).  

In response to increasing calls for new approaches towards economic, social and 

environmental issues, the coalition government introduced a new policy agenda framed 

around ‘localism’ (HMG, 2010). This new policy lens has seen the regional tier of 

governance largely removed in matters concerning waste management (DCLG, 2012). 

Change has been accompanied by uncertainty and resistance, as policy review and 

implementation have been staged and somewhat light on detail in a number of cases (ESA, 

2011). Further concerns have been expressed by practitioners and academics as to the 

efficacy of such a localism approach in delivering national obligations under European 

waste legislation (Salder, 2013). Principal among these concerns has been the potential to 

fall short of key targets for recycling, recovery and diversion of waste from landfill. At the 

time of writing, this position is being emphasised in relation to the slowdown in recycling 

and recovery rates for England (CIWM, 2013a; LARAC; 2014) (see Table 1.1).    

Other concerns relate to a lack of policy ambition at ministerial level within the 

Department for Environment Food and Rural Affairs (DEFRA), particularly in relation to 
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the stated objective of moving England towards becoming a zero waste economy (DEFRA, 

2007a; 2011a; DEFRA, 2013a). For example; a pilot scheme, supported by accreditation, 

which aimed to move areas towards becoming ‘zero waste places’ focusing on LACW 

wastes (Phillips et al. 2011) has not been expanded in England in spite of meeting and 

surpassing the DEFRA objectives for the scheme (Warner et al. 2014). In contrast, the 

devolved Assembly Government in Wales and Parliament in Scotland have each set out 

ambitious plans for moving towards ‘zero waste’ (WAG, 2010; TSE, 2010). The focus of 

these policies has been on achieving high recycling rates combined with efforts to reduce 

unnecessary waste arisings. The policy in England, under the WMPE and WPPE, has taken 

an approach which can only be described as unambitious in terms of aiming to hit the 

minimum targets defined in the revised Waste Framework Directive (WFD) (e.g. 50% 

recycling rate for household waste by 2020).  

Table 1.1: Impact of policy approaches on household waste recycling rates  

Year Measure UK England NI Scotland Wales 

2010 Arisings ('000 tonnes) 26,973 22,150 829 2,649 1,344 

 
Recycled ('000 tonnes) 10,879 9,112 315 861 591 

 
Recycling rate (%) 40.3 41.1 38.0 32.5 44.0 

2011 Arisings ('000 tonnes) 26,810 22,187 810 2,484 1,329 

 
Recycled ('000 tonnes) 11,496 9,596 327 922 651 

 
Recycling rate (%) 42.9 43.3 40.4 37.1 49.0 

2012 Arisings ('000 tonnes) 26,431 21,960 783 2,383 1,304 

 
Recycled ('000 tonnes) 11,607 9,684 326 912 685 

 
Recycling rate (%) 43.9 44.1 41.7 38.3 52.5 

Source: (DEFRA, 2014) 

Table 1.1 is used to show the slowdown in recycling in England compared with the 

devolved administrations. It can be seen that waste from household sources has marginally 

decreased in England between 2010 and 2012 (by 0.86%) compared with percentage 

decreases of 5.55% for NI; 10.04% for Scotland; and 2.98% in Wales for the same period.    

This inability to fully develop a holistic approach towards waste in England, combined 

with the concerns raised previously, may be considered indicative of individuals ‘bounded 
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rationality’ (Meadows, 2008, p.106). Such a position on waste, where policy decisions are 

made without adequate knowledge and data, entrench thinking and behaviour making these 

difficult to change. Evidence of a specific mind-set (or paradigm) within the waste sector 

can be seen with continued calls and reports espousing the dire need for large scale 

investment of around £20Bn in waste management infrastructure (ESA, 2011; Eunomia, 

2012; CIWM, 2013). This is problematic for a number of reasons:  

 Calls for such large scale investment have been made at a time of changing 

perceptions of investment risk as well as coinciding with the aftermath of one of the 

deepest economic recessions in UK history (APSRG, 2012);  

 Much of the focus has been on large scale projects such as Energy from Waste 

(EfW) which suffers from a negative perception with the public;  

 The emphasis on large infrastructure is fundamentally problematic in terms of the 

lack of demonstrable strategic thinking on the part of the sector towards the waste 

hierarchy and fails to adequately consider the waste prevention agenda.  

Increasing emphasis in England is being placed on developing zero waste within a circular 

economy framework (Greyson, 2007; EMF, 2013). This requires capturing and 

recirculating materials to extend their useful life rather than losing these resources to 

energy generation (Braungart et al. 2007; Greyson, 2007). This subtle change in policy 

focus on waste, encompassing circularity within the economy, demonstrates the need for 

approaches capable of presenting multiple alternatives to decision-makers. These 

alternatives must be plausible but critically have the potential to offer visions of radical 

change which are based on sound assumptions on the role of waste materials (including 

solid waste; water; and embedded energy) as resources within the wider economy. In 

addition, such a scenario based modelling approach can analyse the future infrastructure 
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needs for all facility types and waste streams at the local level with a view towards 

extending to regional and national scale assessments.        

1.1.1 The role of the EU in UK waste policy formation      

The European Union has been central in developing legislative frameworks on waste. In 

particular, the development and implementation of the Waste Framework Directive (WFD 

– 75/442/EEC) has led to numerous requirements being placed on Member States to 

control waste production within a paradigm of minimising environmental degradation and 

protection of human health. As part of this framework the approach has been to produce 

legislation aimed at specific components of the waste system with a view to mitigating 

potential harm from processes and procedures. The most significant of these for policy 

formation in England and the wider UK, has been European Council Directive 1999/31/EC 

(commonly and henceforth referred to as the ‘Landfill Directive’), which introduced 

mandatory targets for the diversion of biodegradable waste (BW) from landfill. Other 

European Directives with wide ranging implications for waste are categorised in relation to 

products (Ecodesign Directive – 2009/129/EC); treatments (Waste Incineration Directive – 

2000/76/EC; Industrial Emissions Directive – 2010/75/EC) and waste streams (covering 

such fractions as End-of-Life Vehicles; Batteries and Accumulators; Packaging & 

Packaging Waste). 

A recent development at the level of the EU; has included the formation of roadmaps on 

resource efficiency (EC, 2011a); high recycling societies (ETC/SCP, 2011); low carbon 

economies (EC, 2011b) and scoping reports on materials security (GOS, 2013). These 

types of approaches are more focused on the design stages of the life-cycle of products and 

goods thus reflecting the shift in focus for Directives to cover supply-side characteristics of 

waste generation (e.g. through the Ecodesign Directive (2009/129/EC)). Indeed, this tier of 

policy development around waste has been the primary focus of the Horizon 2020 project 
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(Vasilakos, 2013); aimed at supporting research through EU funding; which has included 

the collaborative European Pathway to Zero Waste (EP0W) (WRAP, 2014a). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.1.2 The policy context of waste – the impact of devolution     

Since the process of devolution was introduced (1997-2010), waste management has 

become the responsibility of each devolved entity (England, Scotland, Wales and Northern 

Box 1.1: Devolved administrations strategic approaches to waste 

Both WAG and TSE set out long-term plans (to 2050) which outline overall policy 

direction on moving their economies towards a position of ‘zero waste’.  

The Welsh Assembly set out a vision for Wales becoming a high recycling society 

(75%) by 2025 before moving to a zero waste society by 2050 (WAG, 2010) outlining 

four key challenges to be addressed: sustainability, ecological footprint, climate change 

and security of resources.  

Similarly, Scotland’s vision sees a high recycling rate (70%) for all wastes by 2025 and 

sets out ambitious policies on: banning materials from landfill, capping the amount of 

materials which can be diverted to energy recovery (25% for MSW initially then all 

wastes), introduction of a carbon metric for waste and sector specific programmes to 

prevent and reduce waste generation.  

At the time of writing the Northern Ireland Assembly (NIA) has introduced a new 

waste strategy – ‘delivering resource efficiency’ (DOENI, 2013). This waste strategy 

does not go as far as Wales and Scotland in defining a ‘zero waste’ vision but does 

frame the strategy around sustainability principles in terms of resource efficiency, 

particularly around LACW.   

Differences in strategic policy implementation between England and the devolved 

administrations relate to LA structure. The LAs within Wales, Scotland and NI are all 

unitary authorities (single-tier) with responsibility for waste strategy development 

(including disposal and collection) whereas England has a mixture of UAs (covering 

between 60-70% of the population) and two-tier authorities; made up of a single Waste 

Disposal Authority – WDA (typically a county council) and multiple waste collection 

authorities - WCAs (typically district councils). 



16 

 

Ireland). However, policy formation has taken a number of different approaches between 

the devolved administrations when compared to England. Specifically, England has taken a 

policy position on waste, within the WMPE (DEFRA, 2013a) and WPPE (DEFRA, 2013b) 

where meeting European targets is the main aim rather than developing more ambitious 

and holistic approaches. This is in sharp contrast to positions taken by the Welsh Assembly 

Government (WAG) in their waste strategy ‘Towards Zero Waste’ (WAG, 2010) and The 

Scottish Executive (TSE, 2010) in their ‘Zero Waste Plan’ (see Box 1.1). 

Taking the last point from Box 1.1 forwards; the introduction and implementation of 

strategic waste policy is oftentimes more protracted in the two-tier model due to competing 

local priorities and political dimensions (Gilford et al. 2013). This position is changing in 

England with the move towards a Unitary Authority (UA) model driven by considerations 

over budgetary constraints and the increasing use of public private partnerships (PPPs) for 

waste management contracts (Gilford et al. 2013).  

1.1.2.1 Waste policy in England   

In 2013 the Coalition Government introduced the WMPE (DEFRA, 2013a) which set out 

key goals on waste to 2020. The limited strategic scope is reflected in the moderate targets 

set for specific waste streams. A target of 50% recycling is set out for household waste by 

2020 with a further target of 70% recovery for C&D wastes (which is already being 

exceeded). No specific target is set for C&I wastes or for reducing the overall toxicity of 

hazardous wastes. An approach which focuses on specific elements of C&I wastes is 

preferred via producer responsibility (SI/2007/871); with legislation and regulations on 

packaging, end-of-life vehicles and batteries as well as voluntary agreements between 

government and economic sectors (e.g. Love Food Hate Waste and the Courtauld 

Commitments (WRAP, 2007a); and Halving Waste to Landfill (WRAP, 2011).   
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Various policy approaches are also proposed with a view towards helping England move 

towards becoming a ‘zero waste economy’ including: setting out a Waste Prevention Plan 

(DEFRA, 2013b); and promoting the uptake of anaerobic digestion (AD) (DECC/DEFRA, 

2011). Indeed, energy policy alignment with waste has been subject to considerable 

discussion over the last decade (Hughes, 2009). Scaling back of government involvement 

with waste is also evident from recent departmental communications (CIWM, 2014). The 

rationale for such ‘disengagement’ is linked to financial pressures placed on government 

but also reflects a continuing trend for waste policy in England since 2010. This policy 

trend shifts the focus of responsibility back to local authorities, business and individuals 

under the Localism agenda (DCLG, 2012; Coulson, 2012) as well as initiatives around 

increasing individual responsibility through the ‘big society’ (Scott, 2011). Evidence of 

this disengagement was also seen after the Resource Efficiency Delivery Landscape 

Review (DEFRA, 2009). This review focused on the Waste and Resources Action 

Programme (WRAP); National Industrial Symbiosis Programme (NISP); and Envirowise. 

The outcome of the review saw funding withdrawn from the latter two and reduced 

funding for WRAP. Further evidence can be seen with the scaling back of funding for the 

Environment Agency (EA) in England and the separation of the Welsh portion (becoming 

Natural Resources Wales - NRW).        

1.1.2.2 Impact of historic waste policy on waste arisings  

In spite of these diverging policy priorities across the various devolved administrations in 

the UK3 significant progress has been made on reducing waste generation across economic 

sectors. The data in Table 1.2 identifies a number of key points. In terms of overall waste 

arisings across all economic sectors there has been a 27.5% (almost 98.5Mt) reduction 

between 2004 and 2010. 

                                                           
3 Reporting to the EU is for the UK as a whole under the Eurostat data reporting scheme (see Eurostat, 2012). 
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Table 1.2: Reported waste arisings (thousand tonnes) in the UK under NACE categories 
between 2004 and 2010 

Sector (thousand tonnes) 2004 2006 2008 2010 

Agriculture, forestry and fishing 719 666 681 494 

Mining and quarrying 93,883 86,779 85,963 23,092 

Manufacturing 35,056 28,161 22,837 19,970 

Electricity, gas, steam and air conditioning supply 6,915 6,873 4,885 6,239 

Water supply; sewerage, waste / remediation 38,963 29,726 33,315 25,983 

Construction 99,234 109,546 100,999 105,560 

Services  39,120 41,088 39,584 31,648 

Wholesale of waste and scrap 12,646 10,838 14,324 17,134 

Households 31,007 32,466 31,539 28,949 

Total 357,544 346,144 334,127 259,068 

Source: (Eurostat, 2012)  

The most significant reduction can be seen in mining and quarrying waste generation from 

98.3Mt (2004) to 23.1Mt (2010), equivalent to a 76.5% reduction overall. Other notable 

sectors with reduced arisings include manufacturing (43.0%); water supply (33.3%); 

services (19.1%); and households (6.64%). The data also shows that construction and 

wholesale of waste/scrap are generating more waste in 2010 than 2004 (6.37 and 35.5% 

respectively).  

1.1.3 The scale of waste arisings in England 

England is by far the largest constituent part of the UK in terms of population 

(incorporating some 53m people or around 84% of the total population). As a consequence, 

policy formation around waste must deal with flows of significantly larger magnitude than 

those seen at the devolved (regional equivalence in England) scale. For comparison, 

Scotland (5.1m) is approximately equivalent in population to the South West or East 

Midlands regions of England, whereas Wales (3.1m) is on a par with the North East (2.9m) 

while Northern Ireland (1.8m) is around 60% of this figure making it the smallest 

population of all the regional entities in the UK. The issue of scaling will be examined in 
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more detail when considering the modelling approach applied to the study area in Chapters 

4 and 5. Scaling up is also considered in the impact analysis of scenarios developed within 

the GBFM quantitative model (see section 5.4).   

1.1.3.1 Local Authority Collected Waste in England  

Historically, waste generation has been linked most closely with economic growth 

(Sjöström, and Östblom, 2010). This has led to an increased policy focus, particularly 

within the EU 6th Environmental Action Programme (EC, 2013) and accompanying 

Thematic Strategy on Waste Prevention (COM (2005) 666), at the EU and national level 

on so-called ‘decoupling’ (Everett et al. 2010). Indeed, decoupling of waste generation 

from economic growth was a key aim of Waste Strategy for England (DEFRA, 2007a) and 

has remained a high priority in all subsequent reviews and plans (DEFRA, 2011a; 2013a). 

Figure 1.1: LACW arisings in England and annual percentage change between 2000 and 
2012 (Source: DEFRA, 2013c). 

 

In the context of England, LACW has been declining since 2006. It should be noted that 

LACW encompasses more than just households as defined in the NACE reporting (Table 
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1.2) with approximately 15% of the total coming from other non-household sources 

(DEFRA, 2013c). Figure 1.1 illustrates overall arisings of LACW during the period 2000 

to 2012 and describes the annual percentage change in those arisings. This shows LACW 

arisings have followed three distinct phases during the 13 year period. These phases are 

characterised by increasing arisings between 2000 and 2002; significant fluctuations from 

2002 to 2006; and consistently reducing arisings for the remaining period 2006 to 2012. 

The percentage change throughout the period follows a similar pattern moving from 

strongly positive percentage increases; to fluctuations between positive and negative 

change; and culminating in negative percentage change from 2006 onwards. Of note is the 

weakening of this percentage change since 2008 with reductions ranging between 1.29% 

(2010) and 2.98% (2011). 

1.1.3.2 Commercial and Industrial waste in England 

Commercial and industrial (C&I) waste arisings have historically been reported together. 

This reporting is somewhat sparse due to the lack of statutory reporting requirement as 

seen with municipal wastes. Indeed, national scale studies have only been carried out in 

1998/99; 2002/03 and 2009 (EA, 2003; DEFRA, 2010). There have been a number of 

regional scale studies carried out which have challenged results from the last national scale 

study (Urban Mines, 2011; NCC, 2012). Given this lack of detailed data an approach has 

been taken by most planning authorities; relying on estimation based forecast modelling 

(FM) (DEFRA, 2013d). Indeed, much of the waste planning documentation scrutinised, 

utilises a model developed by ADAS consulting as part of their ‘Study into commercial 

and industrial waste arisings’ (ADAS, 2009) for the East of England Regional Assembly. 

Table 1.3 shows the results of the last two national scale surveys into C&I waste arisings 

within England reporting the percentage change between them.  
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Table 1.3: Commercial and Industrial (C&I) waste arisings (kt) in England by reporting 
year and percentage (%) change 

 Waste 2002/03  
(kt) 

Waste 2009          
(kt) 

Percentage change 
2002/03 to 2009 (%) 

Industrial Sector 37,587 24,173 35.7 

Commercial Sector 30,320 23,844 21.4 

England Total 67,907 48,018 29.3 

Source: (after DEFRA, 2010 ‘Commercial and Industrial Waste Survey 2009’) 

 

Analysis of the data in Table 1.3 shows considerable change between the periods. 

Specifically, the reduction of industrial waste generation is in keeping with a move away 

from a traditional manufacturing base towards a service based economy. The reduction in 

commercial waste during the same period is more complex and may reflect the similarities 

in waste composition between commercial and household waste and changes to the 

definition of municipal waste from the EU level. However, caution must be used given the 

lack of regular reporting and thus incompleteness of the data   

1.1.3.3 Construction and Demolition waste in England 

In England, the construction sector produces the largest single amount of waste arisings of 

all economic sectors. This figure is estimated to have declined in recent years but detailed 

provision of data at the sub-regional level is unavailable in the main. Estimation has been 

made at the national scale and is presented over the last reported period in Table 1.4. 

Table 1.4: Estimated C&D waste arisings (kt) for England across the last three reported 
years (2008-10) 

Management route (kt) 2008 2009 2010 

C&D to waste transfer/treatment  7,053 6,885 7,203 

C&D to landfill  23,785 18,192 19,839 

C&D to exempt sites  10,978 9,708 8,150 

C&D aggregate  52,730 42,184 42,184 

Estimated Total  94,546 76,970 77,375 

Source: (Gov.uk (2013) ‘CD&E waste generation estimate: England 2008-2010’)     
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A number of issues are raised by the data estimations in Table 1.4 First the very significant 

18.6% reduction in arisings from 2008 to 2009 may reflect the substantial recession which 

affected the construction sector after the financial crisis of 2008. Second there is an 

observed increase of 0.53% in estimated overall arisings between 2009 and 2010 with a 

marked increase in landfill of C&D waste. However, the estimated increase in landfill does 

not bring it back to the 2008 level (3.9Mt lower in 2010). Third, C&D waste being sent for 

recovery via exempt sites and used as aggregates has declined by 2.8 and 10.6Mt 

respectively. This coincides with an overall increase (150kt) in materials being sent for 

recovery at treatment and transfer facilities.    

1.1.3.4 Hazardous waste arisings in England 

Data on hazardous waste is considered more accurate and is reported through the EA 

Hazardous Waste Interrogator database which holds information on arisings, movements 

and management method. Data for 2012 was accessed and is reported in Table 1.5.  

Table 1.5 Hazardous waste arisings (tonnes) and management method for England in 2012 

Origin Recovery 
(tonnes) 

Disposal 
(tonnes) 

Treatment 
(tonnes) 

Total waste 
arisings 
(tonnes) 

East of England 99,283 147,083 103,450 349,816 

East Midlands 121,609 179,843 69,796 371,248 

North East 98,042 113,506 80,112 291,660 

North West 217,771 160,673 119,531 497,975 

South West 144,539 357,222 84,131 585,891 

South East 172,770 189,372 178,670 540,811 

London 82,042 78,899 193,744 354,685 

West Midlands 179,309 165,538 139,697 484,545 

Yorkshire & Humber 209,678 145,294 154,121 509,092 

Not codeable 3,544 3,937 6,996 14,476 

England 1,328,586 1,541,366 1,130,249 4,000,201 

Source: (EA, 2012b; DEFRA, 2013a) 

 

Total hazardous waste arising within the English regions in 2012 shown in Table 1.5 

amounted to just over 4.0Mt. The South West region of England had the greatest level of 
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arisings originating therein with almost 590kt followed by the South East region with 

540kt. Of the 4.0Mt arising in England it can be ascertained that overall recovery and 

treatment accounted for 61.5% as the end fate for hazardous materials.  

1.1.3.5 Controlled wastes in England 

Table 1.6 provides a summary for controlled waste arisings in England and is followed by 

a summary of considerations to draw from the data. 

Table 1.6: Summary of controlled waste arisings (kt) in England showing last reporting 
year available and type of data source used  

Waste type Sub-total        
(kt) 

Reporting 
year 

Validity 

LACW 24,967 2012 Quarterly reporting 

C&I 48,018 2009 Intermittent surveys 

C&D 77,375 2010 Estimation methodology 

Hazardous 4,000 2012 Annual reporting 

Total 154,360   

Sources: (after DEFRA, 2013c; DEFRA, 2010; Gov.uk, 2013; EA, 2012b) 

Table 1.6 indicates that when combined controlled waste arisings in England are likely to 

sum to 154.4Mt. As the reporting for C&I waste is based on national scale data this has the 

potential to be accurate and is used in all calculations by relevant government departments. 

However, the lack of any complete data series means evaluating the trend is somewhat 

meaningless. These shortcomings are addressed through alternative data sources when 

compiling the baseline estimation for the study region and for scaling up purposes (see 

section 4.3.1). A similar situation is seen with data for C&D but this data is based on the 

AEA developed estimation methodology (Gov.uk, 2013) and thus is likely to have a 

significant margin of error associated with it. The figure of 154.4Mt in Table 1.6 compares 

favourably with the estimated tonnage for England contained in the WMPE (DEFRA, 

2013a) of 154.6Mt.  
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1.2 Study area 

In light of changes to waste planning, with the removal of regional scale planning 

structures, the design of the research project focussed on the sub-regional scale, namely the 

county of Northamptonshire in the East Midlands of England (see Figure 1.2). This 

administrative level delineates an individual Waste Planning Authority (WPA) with 

responsibility for the strategic planning of waste management activities within its 

boundaries. The county has a two-tier system (see section 1.1.2) with the WDA 

undertaking the waste planning role as WPA responsible for local waste management 

strategy, encompassing minerals and waste planning within the Minerals and Waste 

Development Framework (MWDF)4.   

Figure 1.2: The centralised location of Northamptonshire within England and its seven 
boroughs and districts (Local Authorities).  

                                                           
4 This MWDF is to be replaced with a Minerals and Waste Local Plan (MWLP) to meet the requirements under the 
WMPE (DEFRA, 2013a) and NPPF (DCLG, 2012)  
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Further, as part of the National Planning Policy Framework (NPPF – DCLG, 2012), all 

WPAs exporting or importing waste have a Duty to Cooperate with all other WPAs 

impacted thereof. In practical terms this means offering ways of reducing the burden of 

exports and seeking alternatives wherever Technically, Economically or Environmentally 

Practicable (TEEP) (CIWM, 2012).  

Northamptonshire is an affluent county with a broad economic base including specialised 

clusters of commerce and industry, including: finance and banking; automotive 

engineering; logistics, distribution and warehousing; and Information Technology 

companies. However, a number of areas of high deprivation (DCLG, 2011) are 

concentrated in the urban centres of Corby and Northampton.  

1.2.1 Waste arisings within Northamptonshire 

Total waste arisings within Northamptonshire in 2012 are estimated at 2.70Mt. Table 1.7 

presents waste arisings by LA (with estimated figures based on per capita calculations). 

Table 1.7: Estimated waste arisings (tonnes) based on per capita calculations by waste 
stream for Northamptonshire local authorities in 2012   

LA LACW C&I C&D Hazardous Sub-totals 

CBC 30,074 84,529 116,444 8,343 239,390 

DDC 38,219 107,419 147,977 10,602 304,217 

ENC 42,599 119,731 164,938 11,817 339,085 

KBC 45,893 128,991 177,693 12,731 365,309 

NBC 104,119 292,645 403,137 28,884 828,785 

SNC 41,825 117,557 161,942 11,603 332,926 

WBC 36,997 103,987 143,250 10,263 294,498 

Totals 339,727 954,859 1,315,382 94,243 2,704,212 

Sources: (DEFRA, 2013c; 2009; 2010; Gov.uk, 2013; EA, 2012a; 2012b; NCC, 2013). 

 

Table 1.7 shows estimated C&D waste to be around 50% of overall waste arisings 

followed by estimated C&I wastes of around 35%, LACW of around 12% and hazardous 

wastes accounting for around 3% in Northamptonshire. When calculations are made 
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according to population of each LA, overall arisings are directly correlated. This is 

problematic at the micro-scale as individual areas have different concentrations of 

activities (industry type and sector) as well as the intensity of waste from these activities 

and from household sources which can differ markedly (being reflective of local initiatives 

on waste prevention, resource efficiency and type of collection system). However, for the 

purposes of macro-scale analysis these figures give an acceptable level of indication5.   

1.2.1.1 Waste arisings trends 

The most complete data set available at the county scale in England is for LACW wastes. 

Indeed, this data set has complete results (quarterly) for all LAs in England between 

2006/07 and 2013/14 (time of writing). For indicative purposes the trends in household 

waste arisings (which account for around 90% of all LACW) are presented in order to 

visualise the changes which have occurred over this 8 year period in Table 1.8. 

Table 1.8: Total household waste collected (tonnes) by LA in Northamptonshire (2006/07 
to 2013/14)  

LA 2006/07 2007/08 2008/09 2009/10 2010/11 2011/12 2012/13 2013/14 

CBC 22,126 22,541 23,393 23,202 23,966 23,100 23,836 25,104 

DDC 35,952 35,291 34,315 33,872 33,801 32,565 28,767 33,899 

ENC 31,463 30,753 29,527 29,126 29,447 26,831 24,800 25,582 

KBC 38,858 39,035 37,392 35,908 36,493 35,777 36,400 37,613 

NBC 80,488 79,127 78,214 75,081 75,419 77,753 81,635 76,894 

SNC 38,463 38,314 37,952 36,840 36,780 36,296 36,829 37,687 

WBC 30,395 29,910 28,925 28,258 28,903 28,150 29,246 28,812 

NCC 347,122 344,888 336,846 327,906 324,729 316,634 315,693 322,041 

Source: (Waste Data Flow, 2014). 

 

Table 1.8 shows total household waste has decreased at the county scale by more than 25kt 

(7.23%). Performance at the LA level is mixed with 6 LAs seeing an overall decrease and 

                                                           
5 See Chapter 4 for a more detailed macro-scale baseline assessment of waste arisings.  
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1 LA (CBC) showing an overall increase of almost 3kt (13.5%). ENC has seen the largest 

overall percentage decrease at 18.7% while SNC has seen the smallest decrease of 2.02%.      

1.2.2 Population and demographics 

The county has witnessed a significant influx of migrants from South Asia and Africa in 

the early 2000s with large numbers of Eastern European migrants subsequent to the 

freedom of movement extended to European Union accession states in the mid-2000s. The 

combination of economic growth, witnessed in the county, attracting internal migration 

from parts of the UK and the arrival of overseas migrants, the county has had a rapidly 

increasing population for more than a decade. The 2011 census showed the county as 

having a resident population of 691,952 (ONS, 2012) representing an increase of 61,500 

since the 2001 census (Northamptonshire Observatory, 2012). Northampton is the largest 

urban centre in the county. In addition, there are a further three principal urban areas 

(PUAs) centred on Kettering; Wellingborough; and Corby. Key demographic information 

for the study area is presented in Table 1.9. 

Table 1.9: Key demographic data for Northamptonshire  

LA LA Classification Resident 
population 

Area (ha) Population 
density 
(pop/ha) 

Average 
household 

size 

CBC Other Urban 61,255 8,028 7.63 2.42 

DDC Rural-80 77,843 66,259 1.18 2.40 

ENC Rural-50 86,765 50,979 1.70 2.38 

KBC Significant Rural 93,475 23,349 4.00 2.33 

NBC Other Urban 212,069 8,076 26.26 2.35 

SNC Rural-80 85,189 63,402 1.34 2.43 

WBC Significant Rural 75,356 16,304 4.62 2.33 

NCC  691,952 236,397 6.68 2.38 

Source: (ONS, 2012; DEFRA, 2012d) 

The seven districts which comprise the county are defined in the DEFRA rural-urban 

classification scheme ranging from Rural-80 for Daventry and South Northamptonshire to 

Other Urban for Northampton and Corby.  
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1.2.2.1 Population trends 

While the population of Northamptonshire for the baseline year (2012) is derived from the 

official census data, reporting of population change is also undertaken by LAs within the 

county. Table 1.10 shows the reported population of Northamptonshire has increased by 

just over 50,000 (or 7.72%) between 2006/07 and 2013/14 from 651k to 702k residents. In 

terms of LAs all have seen an overall increase, although the change is varied between LAs. 

The largest increase is seen for CBC, KBC and NBC (18.4, 10.5 and 10.3% respectively). 

While the smallest overall changes are seen in SNC, WBC and DDC (0.73, 2.93 and 3.23% 

respectively) which show populations peaking in 2009/10 before declining until 2012/13 

(or in the case of WBC declining to 2011/12).   

Table 1.10: Population change of LAs in Northamptonshire (2006/07 to 2013/14) 

LA 2006/07 2007/08 2008/09 2009/10 2010/11 2011/12 2012/13 2013/14 

CBC 53,500 54,800 54,900 55,200 55,200 55,800 61,968 63,358 

DDC 75,900 78,200 78,425 79,100 79,050 79,000 78,145 78,350 

ENC 81,500 84,000 84,350 85,400 85,300 85,300 87,016 87,516 

KBC 86,000 87,900 88,300 89,500 89,650 90,600 94,060 95,068 

NBC 195,000 200,100 200,775 202,800 204,725 212,100 213,017 215,109 

SNC 86,000 88,800 89,175 90,300 89,850 88,800 85,638 86,629 

WBC 73,900 75,500 75,600 75,900 75,850 75,700 75,725 76,065 

NCC 651,800 669,100 671,400 678,300 679,675 687,300 695,644 702,094 

Source: (Waste Data Flow, 2014). 

 

1.2.3 Administrative structure – waste planning 

The county council as WDA (with responsibility for final disposal of LACW) is also the 

Waste Planning Authority (WPA) responsible for developing and implementing strategy, 

infrastructure provision and policy measures to manage waste in line with national targets. 

As part of their legislative requirements the WPA must develop and keep up-to-date a 

Minerals and Waste Development Framework (MWDF). This MWDF is a portfolio of 

individual Local Development Documents (LDDs). There are two types of LDD, 
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Development Plan Documents (DPDs) and Supplementary Planning Documents (SPDs) 

(NCC, 2012). In the most recent partial review (NCC, 2012) of the MWDF the WPA has 

maintained its recommended plan for the provision of waste management at a number of 

main and non-main sites throughout the county. However, this spatial plan dates back to 

earlier planning documentation (2008) and has not been revisited in terms of advances in 

spatial analysis techniques and thus requires further evaluation.   

The MWDF must account for all other controlled waste streams as well as planning for 

minerals provision (ODPM, 2005). The scope of the study herein focuses on MSW 

(defined as Local Authority Collected Waste – LACW since 2010); C&I; C&D and 

Hazardous wastes. Agricultural wastes and radioactive wastes are not included within the 

scope of the study other than in the context of key strategic policy approaches, namely: 

The AD Strategy and Action Plan (DECC/DEFRA, 2011) as well as the National 

Infrastructure Plan (HMT, 2013) which addresses sites defined as having a national 

significance either in terms of scale or from a strategic perspective. This holistic planning 

context dictates a more systemic approach to future infrastructure provision which 

accounts for the uncertainty created by incomplete data. A scenario-based approach such 

as backcasting avoids the limitations associated with current predictive modelling methods 

(e.g. forecasting) and has considerable flexibility and an inherent ability to visualise future 

states for complex issues while accounting for uncertainty (Robinson, 1990; Quist, 2007; 

Quist et al. 2011) and represents a novel application in the context of this research.    

1.3 Research aim and objectives 

This section outlines the need for the research in terms of the research agenda around 

strategic waste planning, before presenting the main research aim and key objectives (1-6) 

proposed to achieve the research aim addressing the identified research gaps. This 
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identified need is presented in the form of a rationale for choosing a hybrid approach to 

waste and resource management systems assessment.  

1.3.1 Research agenda 

The waste management system (including strategic planning of infrastructure) in England 

is facing multiple challenges which are adding to the complexity of finding suitable and 

environmentally sustainable solutions to the problem of shifting towards a ‘zero waste 

economy’ (DEFRA, 2007a; 2011a; 2013a). The Environment Agency recently 

commissioned a study to identify potential gaps in waste infrastructure provision for the 

Anglian Region with a view to 2031 (Head et al. 2013 unpublished). This research looked 

extensively at all treatment options on the table, including landfill as a continued waste 

management method for the future. A number of potential scenarios for the future of waste 

management, affecting a significant section of the English population (~8.9m or 16.8%), 

were developed. These scenarios are incorporated into this research as part of the non-

linear quantitative model (QM) developed to test the impact of the backcasting scenarios. 

Within this study, recommendations were made to apply a broader scenario based 

approach with visualisation techniques; this approach is relevant for stakeholder 

engagement allowing the ‘geography of waste’ (Mihai, 2012) to be mapped and presented.   

Policy approaches seeking to shift the emphasis up the waste hierarchy do not address the 

fundamental need to view waste from a systems perspective (Dace et al. 2014). Indeed, 

current policies which rely on predicting levels of waste generation, composition of waste 

streams and developing infrastructure to manage these materials can often be part of the 

underlying problem (Seadon, 2010). Predictive methodologies based on forecasting and 

trend analysis may not be adequate to deal with the uncertainty and complexity of future 

waste and resource management systems (Dreborg, 2004; Robinson et al. 2013).  
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Backcasting offers a novel means by which to perceive waste and has the capacity to view 

the problem from a systems perspective (Robinson, 2003; Quist et al. 2011). The process 

of developing visions and scenario pathways, grounded with detailed analysis of the 

current waste system, allows more radical transformative change to be evaluated. Further, 

embedding backcasting analysis within a GIS environment has the potential to enhance the 

process of stakeholder engagement, thus addressing issues around public perception and 

inclusion (Hicks, 2004) within the wider decision-making process on waste and resource 

management issues (De Beer, 2013).   

1.3.2 Research aims 

Using the County of Northamptonshire within the East Midlands of England as the case 

study area, the aims of the project are twofold:  

1. “Evaluate backasting as a holistic multi-criteria modelling approach for 

moving towards zero waste, by 2050.” and: 

2. “Spatially and temporally visualise the ‘geography of waste’ to enhance the 

decision-making process.”  

The model is designed for use by waste planning practitioners and decision-makers 

including Government Departments and Agencies; and Local Authorities in England; as 

well as private and third sector decision makers for strategic foresight on waste and 

resource management issues. 

1.3.3 Research objectives 

The research aims outlined above were disaggregated to produce the following objectives 

(two distinct objectives per aim and a fifth synthesising objective) in order to offer 

measurable outputs from the research process. Aim 1 had the following two objectives: 

1. Analyse the likely causes for variation of waste arisings through stakeholder 

participation and baseline analysis of the case study area.  
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2. Evaluate potential “future” scenarios for zero waste management through 

utilization of a backcasting approach. 

Aim 2 had the following objectives: 

3. Analyse the future infrastructure capacity needs at the sub-regional level for 

effective management of waste using Geographic Information Systems (GIS). 

4. Visualise the spatial characteristics of the waste management system within a 

case study area. 

The final objective is proposed to coherently blend the research aims 

5. Synthesise the backcasting outputs with GIS to produce a scenario-based 

practitioner focused holistic model of zero waste futures.   

1.4 Chapter Outlines 

This thesis consists of nine chapters, the remainder of which is summarised briefly below: 

Chapter 2 presents a review of the key literature, starting with definitions of waste and 

waste management. It discusses waste management in England as well as the formation of 

waste policy at the European, United Kingdom and England spatial scales. The chapter 

ends with a review of previous research on backcasting and GIS in relation to waste and 

resource management. 

Chapter 3 presents the main research methodology applied and discusses the key methods 

used within the methodological framework developed.  It begins with a description of the 

research design and the techniques used for data collection, sampling and field work 

undertaken. The chapter ends with a detailed discussion of the key data sources and main 

methods used in the analysis and serves as an introduction to the next chapter.    
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Chapter 4 presents statistical results of the baseline analysis which forms the first stage of 

the backcasting framework proposed and presents the first results of mapping system 

conditions within a GIS environment.  

These results are followed in Chapter 5 by the main results from the remaining stages of 

the backcasting process, namely: visioning, scenario development and impact analysis.  

Chapter 6 presents the main GIS results in terms of mapping the spatial distribution of 

waste arisings and infrastructure. This chapter presents results of the GIS-AHP process 

used to evaluate the planned distribution of waste facilities in terms of identified areas of 

search relating to criteria identified as opportunities and constraints. 

Chapter 7 presents the last results from the research in terms of the final GIS based 

Backcasting Framework Model (GBFM) which presents the visions in terms of spatial 

distribution of: waste tonnages; economic costs and savings associated with each scenario; 

and potential impacts in the form of direct and avoided carbon emissions within the 

envisioned waste management systems under each scenario.   

Chapter 8 presents a detailed discussion of the main results from chapters 4 through 7 in 

relation to the research aim and objectives (Chapter 1) and the identified research gaps 

(Chapter 2). The chapter also discusses the strengths and weaknesses of the proposed 

methodology and individual methods used (Chapter 3) as well as problems encountered in 

the research and solutions found.  

Chapter 9 presents a short conclusion and makes recommendations in relation to these 

before outlining potential areas of future research. 
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Chapter 2: Literature review  

The aim of chapter 2 is to identify gaps within the literature around moving towards a zero 

waste future in line with long-term aspirational concepts such as circular economy 

(Greyson, 2007) and sustainable resource management (where waste is viewed as resource 

rather than a problem) (Seadon, 2006) as well as applying the waste hierarchy across the 

life-cycle of materials and products (Su et al. 2013).  

2.1 Introduction 

Waste management and the generation of solid wastes has increasingly become part of the 

policy agenda internationally in recent decades (Hoornweg and Bhada-Tata, 2012; EEA, 

2013). Since the 1970’s issues around exponential growth in production and consumption 

with corresponding growth in waste generation, has been framed as a significant challenge 

to be overcome (Meadows et al. 1972; WCED, 1987). Such concerns have come about 

largely as a consequence of transitioning to a consumption based economic model since 

the 1950’s (WCED, 1987). Recent decades have accelerated this pattern with many 

developing economies following a rapid industrialisation pathway which has vastly 

increased the numbers of consumers and increased demand for services, products and raw 

materials (Deloitte, 2011).  

The environmental impacts of such rapid industrialisation are well documented and have 

formed some of the assumptions behind global climate change modelling based on 

scenario planning methods (Borjesson et al. 2006; IPCC, 2007). However, such modelling 

is often predicated on methods and techniques which utilise analysis and extrapolation of 

past trends within predictive forecast models. Given the degree of feedback within 

complex systems of all kinds the use of predictive methods which exclude certain 
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parameters (or variables) are almost certain to be unreliable over the long-term. Gleick 

(2008) eloquently captures this inherent problem of prediction thus:  

“…trends in nature are real, but they can vanish as quickly as they come.” 

Source: (Gleick, 2008, p.94).    

There is an important point to draw from Gleick’s statement, if trends in nature vanish 

quickly then trends in the socio-political realm are likely to be just as ephemeral. To this 

end, planning for uncertain conditions and basing long-term economic investments on such 

approaches is problematic. Emblemsvag and Bras (2000) suggested that making decisions 

based on current conditions is ill-founded without consideration of change. Rapid 

industrialisation and economic development has been predicated on the need for change 

and innovation but has failed to adequately address the environmental impacts of 

production and growth; particularly in relation to the generation of wastes (World Bank, 

2011). This has resulted in the waste of resources and associated environmental problems 

we see today.   

2.1.1 Definitions of waste 

2.1.1.1 Defining waste from an operational perspective 

The most recognisable waste from an operational perspective is solid waste, which is that 

fraction of material input which is left over and thus requires a further management route 

(Ohno, 1988). For example; materials passing through production processes can be 

exposed to contaminants in the form of additive materials such as chromium (and 

previously to cadmium) in leather tanning. Such exposure does not impact on the 

functional properties of the product but has specific ramifications at the end of its useful 

life, post consumption (e.g. when they are discarded). These products then pass into a 
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waste stream which must consider the material composition of the product and the 

concentrations of additives used in the production process.  

This example illustrates that waste can be produced at different stages along the ‘life’ of a 

product or service. A range of systems tools have been developed to ‘map’ the generation 

of wastes at different life cycle stages (Holmberg and Robert, 2000). Pires et al. (2011) 

suggest that system assessment tools such as Life-Cycle Assessment (LCA) should be 

considered within a ‘technology hub’ (Chang et al. 2009) (Figure 2.1) looking at waste 

from a systems perspective.  

     
Figure 2.1: The technology hub for solid waste management (Source: Chang et al. 2009 in 
Pires et al. 2011). 

 

Figure 2.1 holistically shows the range of systems engineering tools (e.g. forecast models 

(FoM) and cost-benefit analysis (CBA)) and the position of LCA (outer ring) as one 
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approach among a range of system assessment tools applied to waste management 

research. However, it can be seen from the literature that LCA has in the main been applied 

to systems components (Badino and Baldo, 1996; EC, 2006; Hogg et al. 2007) or in a more 

limited role for specific materials (Finnvenden et al. 1995; Arena et al. 2003; Roy et al. 

2009) and processes (Tukker, 2002; Perugini et al. 2005). Ekvall et al. (2007) emphasise 

the strength of LCA for waste management research (and Life Cycle Thinking more 

generally) in terms of expanding perspectives beyond the waste management system 

(WMS). Notably, they point out that a serious limitation of LCA relates to the inadequacy 

of the approach in identification and assessment of waste prevention strategies within 

waste management scenarios (Ekvall et al. 2007). As a means of overcoming some of the 

shortcomings they identify, Ekvall et al. (2007) suggest the use of futures studies 

techniques (including backcasting, forecast models and extrapolation of trends) to allow 

flexibility in the assessment and to account for waste prevention by means of developing 

different scenarios.  

Broader systems thinking approaches (such as scenario development (SD in Figure 2.1)) 

are getting increasing attention from a waste perspective in England (DEFRA, 2012b). 

This ‘systems thinking’ (ST) approach has been a central consideration in research relating 

to Industrial Ecology (Isenmann, 2003; Korhonen, 2004) and Industrial Symbiosis 

(Chertow, 2007; Bain et al. 2010; Giurco et al. 2011). ST can also be considered central in 

research approaches looking at integrated waste management (Clift et al. 2000; Seadon, 

2006; Consonni and Vigano, 2011). There has also been significant research using systems 

dynamics for waste systems analysis, with emphasis placed on dynamic modelling of 

urban-resource-environment (Guan et al. 2011); urban solid waste (Sufian and Bala, 2007); 

and modelling feedback loops in resource consumption (John, 1998).    
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2.1.1.2 The broader concept of waste 

Solid waste is only one facet of total operational waste and has been extensively researched 

in terms of resource efficiency (Phillips et al. 2002; Oakdene Hollins, 2009; BIS, 2011), 

lean manufacturing (Ohno, 1988; Hicks, 2004) and increasingly so for circularity 

(McDonough and Braungart, 2002; Braungart et al. 2007; Greyson, 2007; Preston, 2012). 

For example; seven types of waste were identified by Ohno (1988) as part of the Toyota 

Production System for Lean Manufacturing. 

The seven types of operational wastes described Table 2.1 can be summarised around 

critical business interests in terms of minimising costs; adding value; process and materials 

efficiency; and time savings. Similar work has been undertaken in the UK around waste 

minimisation clubs (Phillips et al. 1999; Pratt and Phillips, 2000; Clarkson et al. 2002) and 

later for resource efficiency clubs (Ackroyd et al. 2003; Mattson et al. 2010).  

Table 2.1: Activity types and descriptions of Toyota System for Lean Manufacturing  

Type of waste activity Description 

Overproduction Making too many items or making items too early causes this 
situation. This produces excessive lead-times and storage times with 
increased inventory. 

Waiting Any time that materials or components are not having value added to 
them. 

Transportation The movement of materials within the factory adds cost but not 
value. 

Inappropriate processing The use of a large expensive machine instead of several small ones 
leads to pressure to run the machine as much as possible rather than 
only when needed. This can contribute to poor layout, extra 
transportation and poor communication 

Unnecessary inventory Inventory tends to increase lead-times, reduces flexibility and 
prevents the rapid identification of problems. 

Unnecessary motions Relates to ergonomics. If operators have to bend and stretch it may 
lead to quality and productivity problems. 

Cost of defects Includes internal failure (scrap, rework and delay) as well as external 
failure (re pairs, warranty cost and lost custom). 

Source: (after Ohno, 1988 cited in Hicks, 2004). 
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This research focus has increasingly been supplemented and expanded in England by 

government efforts to raise awareness among businesses through delivery bodies (e.g. 

Business Resource Efficiency and Waste centre – BREW; National Industrial Symbiosis 

Programme – NISP; and Envirowise) largely funded from landfill tax returns post 1995. 

2.1.1.3 Resource efficiency – broadening the policy definition of waste    

As previously mentioned waste is far more than just the physical manifestation of materials 

being discarded or captured for recycling and recovery. Specific attention has been placed 

on energy and water as further significant opportunities for reducing costs (Scott et al. 

2009). A number of reports have been produced in England on the potential scale of the 

opportunity for reducing costs and embedded CO2 emissions across the three main areas of 

waste generation (Oakdene Hollins & Grant Thornton, 2007; Oakdene Hollins, 2009; BIS, 

2011). The scale of these financial and CO2 savings opportunities is shown in Table 2.2. 

It can be seen from the data in Table 2.2 that the scale of opportunity for financial savings 

and emissions reductions which can be realised from resource efficiency in England is very 

significant (£55Bn and 90MtCO2). The estimated financial savings from resource 

efficiency associated with waste alone is a combined £40Bn with the capacity to reduce 

emissions associated with the generation of waste by some 48MtCO2.    

Table 2.2: Summary of estimated resource efficiency opportunities based on 2009 data 

Type of savings Resource Estimated Savings Opportunity 

£Bn MtCO2 

No cost / low cost 

Energy 4 13 

Waste 18 19 

Water 1 0 

Sub-total 23 29 

Payback greater than 1 
year 

Energy 7 30 

Waste 22 29 

Water 4 1 

Sub-total 33 61 

Grand Total 55 90 

Source: (Oakdene Hollins, 2009 ‘Further business benefits of resource efficiency’) 
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2.1.1.4 Defining waste from a legal perspective     

The waste sector is heavily regulated, with substantial financial and regulatory incentives 

to reduce the quantity of waste arising and to reuse, recycle or recover value from waste 

materials (including energy recovery from residual fractions). Clarity is essential for both 

producers and consumers in understanding when materials shift into the waste remit. 

Figure 2.2 schematically illustrates the legal definition of waste from the EU.  

 It is important to note the subtle contradiction this definition poses. It is evident; if one 

views the schematic as a simplified model of the waste system; that two types of flow are 

occurring within the system. 

Figure 2.2: Illustration of the EU legal definition of waste (Source: after EC, 2012). 

 

There is an obvious linear flow from production (company) and consumption (consumer) 

directly into the legally defined waste system (legally defined as waste or intended to 
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discard as waste). However, cyclical flows are also evident within the system in the form 

of by-products which can be reused by the company or are suitable for use by a third party 

(as a consumer of such by products). In addition, goods consumed do not have to flow into 

the waste system and can be exchanged as second hand items.  

Such system flows are evidence of both supply-side and demand-side developments which 

can: increase product life; maximise efficiency of materials use; and provide secondary 

markets which creates added value to otherwise worthless materials. It may be argued that 

far from being prescriptive the legal definition can legitimately form the basis for the 

development of new systems such as industrial symbiosis networks. What is often lacking 

is institutional and organisational capacity to perceive such legislative frameworks as 

anything other than prescriptive. 

2.1.2 Impact of composition changes on waste management practices 

Changing composition poses challenges to recovery of specific materials fractions and the 

effective management of the waste system (Dennison et al. 1996; Burnley, 2007a; Chang 

et al. 2008). This is particularly the case with waste from households in England, which 

represents around 9-10% of all wastes generated, but is perhaps the most challenging waste 

stream to capture materials from. Specific issues have been raised over household waste in 

relation to separation of materials at source (WYG, 2012); and after comingling (FOE, 

2009) as well as levels of contaminants in material fractions destined for secondary usage 

as recyclate (Woodard et al. 2001; Timlett and Williams, 2008). Given this level of 

heterogeneity within the waste matrix, rigid waste management practices of diversion to a 

specific technological solution may be of limited value and potentially more expensive 

than ‘soft systems’ solutions such as prevention of waste or designing products with less 

toxicity (Curran and Williams, 2012; Freeman et al. 2013). 
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2.1.2.1 Diversion of waste from landfill and technological innovation 

One of the key drivers for changes to waste management practices witnessed across the EU 

and within in England has been the introduction of key targets for the diversion of 

biodegradable waste from landfill. The so called ‘Landfill Directive’ (99/31/EC) set strict 

targets for diversion of biodegradable materials from landfill for milestone years (2010; 

2013 and 2020 applicable to England because of the 4 year derivation allowed for those 

Member States whom sent more than 85% of waste to landfill disposal prior to 1995).  

 

 

 

 

 

 

 

 

 

 

 

 

Box 2.1 shows the structure of the key Landfill Directive targets as well as the response 

from successive governments in England since 2007. Significant emphasis within this 

target driven approach, was placed on the potential to incur significant fines 

Box 2.1: Landfill Directive targets and key strategic targets in England 

The Landfill Directive (99/31/EC) requires the amount of biodegradable municipal waste 
sent to landfill to be reduced: 

 to 75% of 1995 levels by 2010 

 to 50% of 1995 levels by 2013, and 

 to 35% of 1995 levels by 2020 

Waste Strategy for England (DEFRA, 2007a) set the following targets for diversion from 

landfill: 

 Reduce the amount of household waste not re-used, recycled or composted 

from over 22.2 million tonnes in 2000 by 35% in 2015 with an aspiration to 

reduce it to 12.2 million tonnes in 2020 (a reduction of 45%).  

 Increased recycling and composting of household waste to at least 45% by 

2015 and 50% by 2020.  

 Increased recovery of municipal waste to 67% by 2015 and 75% by 2020. 

The Review of Waste in England (DEFRA, 2011a) amendments to the previous targets 

from 2007: 

 Waste Framework Directive target to recover at least 70% of construction and 

demolition waste by 2020; 

 A range of minimum producer responsibility targets covering packaging, 

WEEE, ELV and batteries. 

The Waste Management Plan for England (DEFRA, 2013a) restates the previous targets.  
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(£150/tonne/day) if these targets were not met. In response, the government in England 

have embedded responsibility for achieving diversion targets with Local Authorities and 

private contractors by means of setting the ‘landfill tax’ in accordance with an escalator 

mechanism (HMT, 2010).  

A further mechanism was developed under the Emissions Trading Act (2003) which 

introduced a Landfill Allowance Trading Scheme (LATS) whereby LAs were able to trade 

allowances and thereby meet their obligations under the Landfill Directive (NCC, 2008; 

Audit Commission, 2014). The LATS scheme largely failed to establish a meaningful 

trading scheme between LAs and the private sector (EA, 2009) but may be attributed as 

contributing towards driving diversion from landfill as LAs sought to avoid fines by 

commissioning new types of residual waste treatment facilities (EA, 2009). The LATS 

scheme was ended by the coalition government in 2013 (Audit Commission, 2014) as the 

fiscal mechanism of the landfill tax was determined as being the most effective driver of 

diversion (BIS, 2012).  As a response to the targets for diversion and subsequent 

management of residual waste fractions, much of the EU has taken a technology-led 

approach to managing material fractions of waste streams and residual waste (Ragazzi et 

al. 2011). This has produced innovative solutions aimed at recovering value through: 

automated sorting of multiple fractions within a single process (e.g. Material Recycling 

Facility screening technologies) or providing a solution to managing biogenic waste within 

a controlled environment (e.g. Anaerobic Digestion) with the added value of producing an 

energy source in the form of biogas (Bernsatd and la Cour Jansen, 2012).  

Other innovations seek to reduce pollution and health risks. In particular, advanced thermal 

treatment (ATT) aims to neutralise the active biological content of waste streams (e.g. 

biogenic municipal waste and similarly constituted wastes from commercial and industrial 

sectors). Further by-products of such operations are excess heat which can be utilised for 
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district heating schemes (Difs et al. 2010; Pattiya, 2011; Shabani et al. 2013) or the 

production of Syngas and/or hydrogen as fuel sources from Gasification processes (Cuoto, 

2013). In addition, it is feasible for more technically challenging materials such as 

hazardous waste (e.g. asbestos) to be processed and altered at a chemical constituent level 

within Plasma Arc facilities to produce an inert by-product (Gomez et al. 2009).  

2.1.2.2 Infrastructure provision for waste management 

A significant factor for all such technologies is a requirement to build multiple facilities or 

integrated sites capable of handling large quantities of materials (primarily by means of 

road transportation). Therefore, a perceived need exists within the waste sector for the 

provision of land, investment and sympathetic planning in order to allow the sector to 

realise legislative targets on recycling and recovery (APSRG, 2011; ESA, 2013). Minehart 

and Neeman (2002) argued that responses to such varied and valid issues have been 

frequently muted by a lack of political will and outright public opposition. They go on to 

suggest NIMBYs (Not In My Back Yard) and LULUs (Locally Unwanted Land Uses) are 

directly related to a lack of consideration for local costs and benefits (Minehart and 

Neeman, 2002). On the other hand, Wright (1993) suggested there to be a relationship 

between site-relevant knowledge and NIMBYism. These factors are particularly germane 

when consideration is given to local planning issues around siting of waste management 

infrastructure (Bates et al. 2008). Seadon (2006) also highlighted planning factors when 

considering an integrated approach framed around sustainability principles, incorporating 

multiple types of facilities. Figure 2.3 shows the structure of the waste sector in England.  

Given the systematic and hierarchical barriers to effective waste policy development stated 

previously; a need exists to address sustainability concerns around waste management 

systemically (Freeman et al. 2013). The longevity of problems; around transitioning waste 

management systems from landfill reliance to technological treatments of multiple material 
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fractions; dictates approaches will be required which can account for dynamic complexity 

and long-term uncertainty while being capable of delivering sustainable outcomes. It is 

also the case that public engagement is an essential requirement for sustainable waste 

management planning (Bates et al. 2009).  

Figure 2.3: The waste sector in England and the wider UK (Source: Grant Thornton, 2011). 

 

2.1.2.3 Barriers to waste infrastructure development 

A number of key barriers to developing waste infrastructure have dominated the debate 

over the last 5 years in England. These barriers can be placed in three main categories: 

local, policy and industry. Figure 2.4 illustrates these categories and the individual 

elements within each as well as the interconnectedness of the elements and categories.  

As Figure 2.4 shows a number of elements impact across all categories. Specifically, the 

planning system in England is often cited as a key barrier to developing waste 

infrastructure (Bates et al. 2008; DTZ/SLR, 2009; APSRG, 2010). However, the planning 

regime can only be considered as one contributing element.  
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Figure 2.4: Barriers and complexity of waste infrastructure development in England 
(Source: AEA, 2012a) 

 

2.1.2.3.1 Public attitudes and behaviour  

Perhaps the most applicable element in decision making around waste infrastructure relates 

to public attitudes. As previously stated NIMBY attitudes and LULUs can be real problems 

(Wright, 1993; Minehart and Neeman, 2002) but these can be overcome if consideration is 

given to local circumstances, such as: housing types within locations; land availability; 

levels of development; and health concerns (Curran and Williams, 2012). Tonglet et al. 

(2004a; 2004b) suggested attitudes towards waste at the household level could be 

determined through consideration of the Theory of Planned Behaviour (TPB). They found 

that recycling attitudes were a key determinant for recycling behaviour (Tonglet et al. 

2004a); which in turn required appropriate opportunities, facilities and knowledge  to 

recycle as well as not being deterred by issues around physically recycling (e.g. time, space 

and inconvenience) (Tonglet et al. 2004b). A more in-depth examination of the literature 
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undertaken by Timlett and Williams (2011) used the framing model of Infrastructure 

Service and Behaviour (ISB) to identify key variables which influenced recycling. Indeed, 

they found that focussing on recycling alone would be unlikely to exceed 50% and that 

‘upstream’ interventions would be needed to move towards a zero waste future (Timlett 

and Williams, 2011).       

In essence, there is a need for a transparent process of stakeholder engagement which 

includes taking account of local decision-making in cases of infrastructure siting (AEA, 

2012a). Companies have increasingly sought to address this problem through 

communication (Read, 2011). This communication has taken the form of stakeholder 

engagement programmes and educational initiatives (VES, 2008) often at waste facilities 

or within schools. However, when considering provisioning of infrastructure cost is a 

major concern (see Figure 2.5).  

2.1.2.3.2 Investment in infrastructure 

Following the Comprehensive Spending Review (HMT, 2010) there has been a substantial 

reduction in public sector spending, leaving DEFRA with a 29% real terms reduction in its 

departmental budget for 2011-15. Further, government ceased funding for the Treasury 

Infrastructure Finance Unit (TIFU) as the lender of last resort (Coggins, 2011). As a result, 

the Government’s National Infrastructure Plan suggested that 70% of investment must 

come from the private sector (HMT, 2010). This leads to the final point from Figure 2.4 in 

terms of the lack of investors. Investment is generally based on level of risk (BNP Paribas, 

2009) which translates into uncertainty over level of returns. Government has gone some 

way to trying to address this uncertainty and has decreased fears over investment risk 

through the introduction of a Green Investment Bank (GIB) (EAC, 2011) and more 

recently with UK Green Investments (BIS, 2012). Notwithstanding the introduction of the 
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GIB and the £80m UKGI fund, there are further deep-rooted concerns amongst investors 

over a perceived lack of coherent policy towards waste.   

2.1.3 Overcoming barriers 

Since the introduction of Waste Strategy 2007 (DEFRA, 2007a) the overarching policy 

focus for waste has been framed around moving the economy towards a position of zero 

waste. At the time of writing, this position has not been realised in England, nor has it been 

formally adopted as a fully defined strategic policy, in contrast to Wales and Scotland. 

Indeed, the objective of attaining a zero waste economy remains an aspirational goal with 

many within the waste management sector openly questioning whether such a goal is 

achievable or desirable (CIWM, 2012).  

 

 

 

 

 

 

 

 

 

Many of the factors previously mentioned (e.g. the legal definition of waste and end-of-

waste criteria for materials to be recirculated; changing composition of residual waste 

streams; levels of technological innovation; infrastructure type, availability and scale; 

Box 2.2: Exogenous factors impacting the WMS in England 

 The economic downturn from 2008 restricting the availability of financing for 

new infrastructure capable of diverting waste from landfill and incineration; 

 Drawback from the notion of the ‘big society’ and the localism agenda on 

achieving greater decision-making responsibility for waste matters;  

 Population growth and internal migration towards areas of growth and 

development within England;  

 Consumption patterns and environmental behaviour; 

 Structure of the economy in terms of shifting towards decarbonising and 

greening the economy with a greater emphasis on eco-design of products and 

services; and  

 Corporate eco-behaviour beyond corporate social responsibility (CSR) 

reporting towards embedding resource efficiency practices and processes. 
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planning considerations; public attitudes and behaviours; business attitudes towards 

reducing costs) have combined to provide significant internal obstacles (endogenous 

variables) towards realising this aspiration. A number of macro scale factors outside of but 

impacting on; so called exogenous variables (Robinson, 1990); the waste system have 

hindered the implementation of a specified zero waste strategy in England (Box 2.2). 

Although these exogenous variables are outlined here as obstacles to realising a zero waste 

vision, changes to any one of them has the potential to significantly reshape policy on 

waste and ultimately for achieving zero waste. For this reason, policy initiatives which 

focus on waste must also consider broader system variables (Freeman et al. 2013). 

2.1.4 Complexity within the waste system 

The generation of wastes has been postulated as an inevitable outcome of systematic 

production and consumption processes (DEFRA, 2007a; BIS, 2012). This position is 

premised on individuals; groups and organisations’ inability to perceive large scale social, 

economic or environmental problems as a whole. Feedback loops and interrelationships 

between sub-systems can be overwhelming for decision-makers (Johnson-Laird, 2005; 

Chermack, 2011) and consequently in policy formation processes. Inaction and indecision 

within waste planning delays required action and leads to choices which do not reflect 

scientific evidence (Bates et al. 2008). Davoudi (2000) has further suggested that planning 

for waste management in England (as well as the wider UK) has been hindered 

significantly by the ‘sectoral’ nature of the system and end-of-pipe approach to 

participation.  This viewpoint is endorsed by Seadon (2010) in his work on integrating 

waste management systems in New Zealand (see Box 2.3 and Table 2.3). 

Seadon gives a number of examples which range from intervening too soon when a 

feedback period has not been established to focusing on detailed metric data at the expense 

of macro data on overall systems performance (Seadon, 2010).   
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He also draws extensively on general systems theory (GST - von Bertalanffy, 1968) and 

systems thinking approaches (Capra, 1996;  Vester, 2007) in positing waste management 

research between a reductionist and systems approach (as shown in Table 2.3).   

Table 2.3: Comparison of reductionist and systems approaches  

Reductionist Systems 

Analytical Synthesis 

Objects Relationships 

Parts Holistic 

Context independent Context dependent 

Practitioner independent Practitioner dependent 

Hierarchies Networks 

Structure Process 

Sources: after Tapp and Mamula-Stojnic (2001); Capra (1996) cited in Seadon (2010) 

 

2.1.4.1 Changes to waste planning 

One such variable which has long been considered as a major barrier to developing more 

sustainable systems of waste management is the planning system. Indeed, Ackers 

Box 2.3: Seven shortcomings of traditional waste management   

1. Effort is spent collecting and analysing immaterial data. 

2. Interventions may be irreversible, rather than providing for mechanisms to deal 

with emerging correctable side effects. 

3. Solutions are based around short-term goals rather than longer term 

sustainability thinking. 

4. Time lags between intervention and effects are underestimated, thus 

misinterpreting the perceived lack of response as a need to invoke stronger 

interventions resulting in overcorrection that then needs to be fixed. 

5. Disregard or undervaluing the side effects of intervention. 

6. The focus on fixing individual problems rather than the viability of the Waste 

Management System (WMS). 

7. Reliance on linear extrapolations of recent short-term events. 

Source: (Seadon, 2010). 
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(2012,p2) attributes great significance for increasing the complexity of waste planning in 

England to EU legislation requiring ever increasing diversion of municipal (now LACW) 

wastes from landfill. Ackers identified the Planning and Compulsory Purchase Act (2004; 

amended 2008) as the critical piece of waste planning regulation for England. More 

recently, an overhaul of the planning system in England under the National Planning 

Policy Framework (NPPF – DCLG, 2012) has witnessed planning being framed within the 

political lens of Localism (Davoudi, 2000; Clarke and Cochrane, 2013). This has largely 

been necessitated through the removal of the regional tier of governance in relation to 

strategic waste planning (HoC, 2011). The impact on waste planning has been mixed (Box 

2.4) with Local Authorities and the waste sector claiming localism is not an appropriate 

mechanism to manage the strategic nature of waste planning (LGA, 2011; ESA, 2011). 

 

 

 

  

 

 

 

Nonetheless, the solutions being proposed by the waste sector as a whole are grounded 

within the paradigm of ‘moving waste up the hierarchy’ (DEFRA, 2011a; EEF, 2009; 

Ackers, 2012; CIWM, 2013).  

Once again, this paradigm reflects Davoudi’s argument about the planning regime 

systematically approaches waste from an ‘end-of-pipe’ direction (Davoudi, 2000), rather 

Box 2.4: LGA position on the impact of localism on waste management planning 

A report by the Local Government Association (LGA, 2012) states:  

‘…waste planning must account for multiple variables impacting on levels of waste 
generation’.  

Source: (LGA, 2012). 

According to the LGA such variables include: demographic pressures; changing 

seasonal composition of waste streams; non-standardised methods of collection and 

separation of recyclates; end market development for recyclable materials; and 

frequent regulatory change (LGA, 2012). 
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than planning systemically and thus considering prevention and reduction as the priority 

actions for sustainable waste management (Cole et al. 2014). Meadows (2008, p.92) 

suggests such a paradigm, or archetype, reflects certain perceptions and vested interests 

which themselves produce a state of ‘policy lock-in’.  

For waste management planning, this ‘lock-in’ can be seen with an emphasis on recycling 

over waste prevention or through policy support for large scale development of AD 

(DECC/DEFRA, 2011) rather than initiatives to reduce food waste in households and the 

food processing industry. However, significant research has examined alternative waste 

management models where the traditional functions of waste management companies are 

taken on through existing organisational structures (Hickford and Cherret, 2007) or 

supported by the expansion of roles for the informal sector (Zaman and Lehman, 2013). 

Evidence of this can be seen through reverse logistics operations (Pourmohammadi et al. 

2008) within many supply chains, where ‘waste’ materials are returned to central locations 

for sorting and separation prior to resale as a commodity or as a valuable ‘resource’ within 

industrial networks (Curran and Williams, 2012). 

Such reverse logistics systems have been extensively explored in the literature on industrial 

symbiosis (IS) (Chertow, 2003; 2007) particularly in relation to by-product exchange 

(BPE) networks (Zhu et al. 2007). Hickford and Cherrett (2007) suggested that thinking of 

wastes and by-products as potentially valuable feedstock may allow for the design of a 

high degree of sustainability into them. The implications of such exchange networks are 

significant in terms of achieving stated government aims of developing markets for ‘waste 

materials’ (WRAP, 2010a). 

2.1.4.2 Future waste management policies 

Waste planners must consider the potential impact of certain policy choices within their 

local plans. In order to do this, they have historically examined predictive forecasting 
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approaches such as that developed for the East of England (ADAS, 2009). Such tools bring 

together data on key variables thought to have the most significant impacts on future waste 

generation affecting households and economic sectors, often utilising economic forecasting 

tools (Oxford Econometrics, 2010; SERI, 2010). However, a number of key shortcomings 

are identified as problematic with such an approach: extrapolation of existing patterns 

become more uncertain the longer the time horizon (Robinson, 1990); not accounting for 

certain systems variables undermine the results (Dreborg, 1996; Borjesson et al. 2006); and 

the feedbacks within a system can amplify changes from a relatively small variation in a 

single variable (Capra, 1996; Gleick, 2008) thus rendering a predictive approach 

inappropriate. To address these problems, certain waste policies which have been 

implemented in some contexts may be considered in terms of their potential impact on: 

waste generation; infrastructure requirements (capital investment); and environmental 

emissions.  

2.1.4.2.1 Waste generation as a recognisable evaluation metric 

The Sustainable Development Indicators (SDIs) used by the UK government were revised 

in July 2013 bringing the total number of SDIs down from 68 (and 123 measures) to 12 (25 

measures) headline and 23 (41 measures) supplementary indicators (DEFRA, 2013a). 

Within this revision waste became a supplementary indicator with two measures included 

to account for levels of waste generation in the economy:  

1) Proportion of household waste recycled 

2) Proportion of construction and demolition waste recovered 

Such an approach is problematic for two main reasons. Firstly, household wastes account 

for around 10% of all controlled wastes in England (DEFRA, 2014a) and the factors which 

influence changes at the household level are considered more diverse than for other waste 

streams (see Resource Futures, 2009). Secondly, the data on C&D wastes is widely 
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regarded as the most inaccurate and incomplete (RPS, 2009; EA, 2012a; NCC, 2012) 

which suggests the variances in estimations of recovered C&D materials, are likely to be 

unreliable at best. A more reasoned approach might include the level of waste generation 

from all controlled wastes as seen in requirements for the production of Minerals and 

Waste Development Framework (NCC, 2012). Such an approach would still utilise 

estimation methodologies for certain waste streams (e.g. C&D and some C&I wastes) but 

would employ a scenario based methodology thus normalising the potential for variance 

with this type of data. Indeed, a non-predictive scenario methodology would only apply 

quantifiable data as a means of determining the plausibility of a potential desirable future 

state (Robinson, 1990) rather than defining what that future state would entail. 

2.1.4.2.2 Identifying an economic evaluation metric   

Largely related to the use of forecast models (FoM’s) within LAs for waste planning as 

well as utilising software packages designed to address the whole life-cycle of the WMS 

(e.g. WRATE), significant lobbying pressure has been placed on government as to the need 

for considerable capital investment within the WMS (e.g. waste treatment and recovery 

facilities, collection schemes and types thereof) (ESA, 2009; APSRG, 2011; Eunomia, 

2012), some £20Bn of this on waste infrastructure alone by 2020. At the same time 

resistance to specific policies (e.g. landfill bans); which have been shown to rapidly 

increase diversion towards treatment and recovery (WRAP, 2010b; Green Alliance, 2010); 

has been justified on the grounds of having a waste planning system which cannot deliver 

the capacity required to meet statutory targets (Bates et al. 2009; Fitzgerald, 2011). This 

approach is problematic as it favours large-scale projects such as incineration which can 

have an attractive ROI if long-term LA contracts are included.  Indeed, a series of reports 

by Eunomia Consulting has increasingly shown the potential for an over-capacity in terms 
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of incineration (EfW) facilities to exist before the current plan period ends in 20316. To put 

this in a systems context Figure 2.5 shows the waste hierarchy with economic costs. 

Figure 2.5: Economic impact of the waste hierarchy (Source: after DEFRA, 2011a). 

 

Figure 2.5 shows the cost threshold for provision of infrastructure within a WMS centred 

on the waste hierarchy. This threshold separates elements requiring significant capital 

investment as ‘hard infrastructure’ (waste facilities or increased collection and separation 

capacity for kerbside collected materials) and initiatives and actions which require more 

systemic changes and interventions at low cost as ‘soft infrastructure’ (campaigns on 

preventing specific waste fractions – such as Love Food Hate Waste). The point, in terms 

of economic impacts, is that effort to view wastes as resources allows these materials to sit 

above the cost threshold and thus incurs a low cost / most sustainable outcome. In contrast; 

                                                           
6 Waste Planning Authorities have a statutory requirement to show how a minimum of 10 years waste management 
capacity can be delivered within their administrative area under PPS10 (DCLG, 2013). Under the duty-to-cooperate 
brought in with the NPPF (DCLG, 2012) WPAs must have consideration for all areas which they interact with 
(import/export of wastes) which means Local Plans typically run from 2012 to 2026/31 and must also be kept up-to-date.  
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a traditional ‘waste paradigm’ approach is likely to sit below the cost threshold and thus 

incurs a high cost / low sustainability outcome. Given the calls for £20Bn investment 

(APSRG, 2011) in hard infrastructure, if the approach described in Figure 2.5 were applied 

this would suggest a considerable investment savings opportunity at a time when LAs 

budgets are stretched (Gilford et al. 2013). 

2.1.4.2.3 Identifying a robust emissions evaluation metric 

Reducing emissions associated with waste is another key policy aim in England (CAT, 

2010; DEFRA, 2013a). Statistical releases in England on LACW are accompanied by 

calculation of the carbon emissions associated with the constituent material types and 

destination route (recycling, composting, recovery or residual disposal) (DEFRA, 2013). 

The calculations used are in line with those developed under the carbon metric for Scotland 

(TSE, 2010); the first of its kind to be utilised in a coherent strategy of quantifying the 

environmental impacts of waste management.  

The basis for such calculations used with the ZWS and DEFRA carbon metric comes from 

a considerable amount of climate change research (IPCC, 2007; Gomes et al. 2008; 

Kennedy et al. 2010) as well as specific research into the GHG and climate change 

potential of waste management (Consonni et al. 2005; Fisher et al. 2006; Cleary, 2009; 

Muhle et al. 2010; Luckow et al. 2010). The comprehensive study by Muhle et al. (2010) 

made a comparison between the UK and Germany on carbon equivalent emissions which 

used compositional characterisation of MSW to assign emissions values to. In terms of the 

results for the UK these were derived from an earlier DEFRA report ‘Carbon Balances and 

Energy Impacts of the Management of UK Wastes’ (Fisher et al. 2006). This work was 

incorporated into the calculations for carbon metric reporting by DEFRA and ZWS; along 

with the updated greenhouse gas inventories for England and the Devolved 

Administrations (AEA, 2012b).          
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2.2 Zero Waste: an evolving conceptualisation of resources 

Zero waste is not a new concept having first been mentioned by economist Kenneth 

Boulding in 1966 in relation to what Greyson (2007) describes as a circular economy goal-

set: “a [CE] is a long-term aim compatible with economic growth, sustainability and zero 

waste”. In this context, zero waste is being used in the broadest sense – preventing waste of 

resources as well as associated actions and activities. Perhaps the most structured 

definition of the term comes from Zero Waste International Alliance (Box 2.5). 

The term zero waste has also been formalised in terms of lean manufacturing approaches 

since the 1980s as an organisational response to concerns over environmental impacts of 

resource depletion (Ohno, 1988). However, the developmental goal of zero waste is 

frequently diluted with incremental change the default policy approach which Greyson 

argues produces a situation where: no waste becomes less waste in practice (Greyson, 

2007). 

 

 

 

 

 

 

Zaman and Lehman (2013) support this stance arguing that terminology such as zero waste 

to landfill is often substituted for the preventive aspect of ‘zero waste’. In both cases a 

position of less bad is not good enough (Greyson, 2007; Zaman and Lehman, 2013).  

Box 2.5: Zero Waste International Alliance definition of zero waste 

‘‘Zero waste” means designing and managing products and processes systematically to 

avoid and eliminate the waste and materials, and to conserve and recover all resources 

from waste streams’    

(Source: ZWIA, 2004) 

In 2009 a revised definition was accepted by ZWIA which aimed to assist businesses and 

communities in defining their own zero waste goals (ZWIA, 2013). A figure of 90% 

diversion of waste from landfills and incinerators is considered to have met the new 

definition.   
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2.2.1.1 Conceptual origins 

Zero waste is a goal, an aspiration, or a mind-set which profoundly changes society’s 

approach to resources, production processes and consumption practices (DEFRA, 2007a; 

TSE, 2010; Phillips et al. 2011). The notion of zero waste has been discussed in the 

academic literature for a number of years and has its philosophical origins in the 

management approaches of Lean Manufacturing (Ohno, 1988) and Total Quality 

Management (TQM) (Petek and Glavic, 1993; May and Flannery, 1995) used in many 

Japanese corporations since the late 1980s and 1990s. The focus of Lean Manufacturing 

and TQM; is to minimise wastes from all areas of production (Ohno, 1988). Similarly, the 

concepts of Industrial Ecology (IE) and Industrial Symbiosis (IS) recognise the need to 

reorganise production systems around by-product exchange (BPE) (Chertow, 2007; Mattila 

et al. 2012) and redesign of products and production processes (Isenmann, 2003) with the 

aim of minimising waste and reframing waste as a resource of value.    

2.2.1.2 Zero waste in practice  

Zero waste remains a firm aspiration for governments across the globe (DEFRA, 2011a). 

This has materialised in terms of specific policy formation at the national level in only a 

handful of locations (TSE, 2010; WAG, 2010; Young et al. 2010). However, it is uptake at 

regional and city level; organisations; interest groups and applied research which is seeing 

significant results in terms of innovative research towards making the transition to zero 

waste. As identified previously (section 2.2) ‘zero waste’ has developed from Lean 

Manufacturing and TQM (Seadon, 2006). This view is supported by Womack and Jones 

(2003) whom suggested the automotive industry embraced such concepts based on a 

refusal to accept the inevitability of waste. Indeed, Ohno (1988) put forwards and 

introduced; within the Toyota Production System; seven areas: overproduction, waiting 
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time, transportation, inappropriate processing, unnecessary inventory, unnecessary motions 

and cost of defects; where intrinsic waste can be addressed.   

A number of major cities around the world have introduced and implemented zero waste 

strategies and community based initiatives (e.g. Stockholm and Adelaide) (Zaman and 

Lehman, 2011; 2013). In addition, “zero waste commitments” have been introduced in a 

number of countries including: New Zealand; China; Taiwan; USA (California); Canada 

(Nova Scotia) Australia (South Australia) and South Africa (Greyson, 2007; Zaman and 

Lehman, 2014).  

Empirical research has been undertaken at different scales; from area based approaches, to 

a whole city context as well as from a systems perspective. An early piece of zero waste 

research looked at a university campus and how grassroots concerns could be addressed 

through the implementation of an EMS approach (Mason et al. 2003). Other area based 

approaches have been undertaken relating to IWM in Chennai (Colon and Fawcett, 2006) 

which found that almost 95% of wastes from households were potentially recyclable. 

Similarly, Matete and Trois (2008) looked at an IWM system within an urban setting of 

South Africa using a zero waste model. Another project was implemented in two phases 

within England in 2008/09 and 2009/10 using the Zero Waste Places model (Phillips and 

Tudor, 2011; Warner et al. 2014). 

At the city scale, Fujita and Hill (2007) explored the concept of a zero waste city which 

was followed by Zaman and Lehman (2011) using a comparative analysis of three large 

developed cities looking at consumption levels of these urban centres. Other research has 

tried to quantify changes to systems which are high producers of wastes. For example; 

Kinuthia and Nidzam (2011) examined the C&D waste stream using the eco-efficiency 

principle of doing more with less. In the UK, Curran and Williams (2012) have proposed 

the philosophical approach of zero waste and applied this as a whole system approach for 
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industrial networks within an EU funded research programme. Research beyond these 

scales is lacking with one study found which explored the application of C2C design 

within a zero waste context, in order to maintain materials as a resource (Braungart et al. 

2007). While these studies were undertaken as independent pieces of research, the findings 

and outputs identified a number of key synergies across multiple contexts (Box 2.6).  

 

 

 

 

 

Alongside these synergies a number of studies identified conflicts between policy 

aspiration on zero waste and policy implementation. For example; the Zero Waste Places 

project in England was a government based initiative with broad support from 

communities, regional government, the public sector and government departments (Warner 

et al. 2014). Both pilot schemes (running 2008/09 and 2009/10) met key performance 

criteria and were judged successful overall (Phillips et al. 2011; Warner et al. 2014). 

However, the projects coincided with the severe economic downturn in England and found 

their funding sources evaporate as DEFRA has increasingly sought to withdraw from waste 

in favour of actions driven from the local level (Edie.net; 2013). Projects undertaken by 

Zaman and Lehman have been some of the most extensive on implementing zero waste 

laws (e.g. South Australia) and have gone on to develop a Zero Waste Index (ZWI – 

Zaman and Lehman, 2013) which if adopted has the potential to standardise the method of 

measuring the efficacy of different zero waste policies. At the time of writing (late 2014) 

Box 2.6: Key considerations of zero waste research studies 

 a focus on the reduced consumption of resources;  

 eco-effectiveness of products and systems of production;  

 the role of individuals consumptive behaviour;  

 product design and early intervention at this stage to mitigate end-of-pipe 

problems; 

 the maximisation of landfill diversion; and  

 the optimum recovery of resources. 
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there was no detailed evidence available of the ZWI being evaluated outside the original 

research project or being utilised to quantify the impacts of zero waste strategies.           

2.2.2 The holistic  approach in waste management 

The European Commission has introduced much of its waste legislation predicated on 

either a specific waste stream (e.g. ELV and batteries) or a specific area of operation (e.g. 

packaging) (Figure 2.6). This analytical viewpoint towards ‘waste’ reflects the dominant 

Cartesian paradigm of scientific investigation. This may explain responses to the problem 

of waste as a technological challenge (e.g. a symptom which requires a cure) rather than a 

socially constructed phenomena (Capra, 1996) requiring a broader view of the overlapping 

systems which produce the notion of a wicked problem (Meadows, 2008). In short, if the 

problem is socially constructed then it is feasible to suggest it can be deconstructed through 

changes to beliefs, values and norms which perpetuate the concept of waste. 

Figure 2.6: European Union waste related framework legislation (Source: after EC, 2013). 

Ecodesign 

Directive 

(2009/129/EC) 
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It may thus be suggested that a holistic approach to waste management must consider not 

only the visible system of infrastructure and material flows but also the policy frameworks 

and overlapping areas of synergy with debates around energy (CAT, 2010; HMG, 2010; 

2011; Ernst and Young. 2011); transport policy (DFT, 2005); and materials security (CBI, 

2011; Deloitte, 2011) with a view to protecting the economy from system shocks. Perhaps 

through addressing such systems conditions it may be possible to view waste as resources 

which are nested within ‘systems of systems’ (Kefalas, 2011). In other words, a holistic 

approach towards achieving a zero waste future addresses the three main characteristics of 

systems thinking: as a world view; interdisciplinary by nature; and phenomena in the real 

world have interactions and interrelationships (Kefalas, 2011). The notion of interactions 

(positive and negative) and the concept of feedback (Capra, 1996; Gleick, 2008) are useful 

when considering environmental impacts of waste systems.  

                                 
Figure 2.7: Causal loop diagram showing feedback loops in a waste management system 
(B1, B2 balancing loops and R1 reinforcing loop) (Source: Dace et al. 2014). 
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For example; sending discarded materials to landfill is an example of a reinforcing 

feedback loop (see Figure 2.7) where more extraction and thus depletion of natural 

resources is required to replace those ‘lost’ materials. In contrast, preventing the wastage 

of resources and their embedded factors is an example of a balancing feedback loop which 

seeks to move the system towards equilibrium.  

2.2.2.1 Zero waste as a holistic waste management approach            

There is a need to fully define the problem of waste and ultimately this may require a less 

rigid approach to the ‘concept of waste’. Freeman et al. (2013) suggest both the ‘definition 

of waste’ and ‘end-of-waste criteria’ represent significant barriers towards bringing 

materials back into the resource value chain. This point is also highlighted by Curran and 

Williams (2012) in terms of zero waste for: resources, emissions, activities, product life 

and use of toxics when looking at zero waste in industrial networks (ZeroWIN).  

                            
Figure 2.8: Linear and cyclical resource flows (Source: Curran and Williams, 2012).  
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Freeman et al. (2013) focus on changing the perception of materials as resource to prevent 

those becoming wastes; while Curran and Williams emphasise the business case for 

minimising wastes through applying a closed-loop philosophy thus increasing ‘the 

productivity of raw materials’ (Curran and Williams, 2012). They are focusing attention 

towards a more holistic view of waste management by examining the upper tiers of the 

waste hierarchy (e.g. prevention) as a means of closing loops and shifting away from a 

linear waste model.       

In a similar way to Figure 2.2; which identified the potential for cyclical flows of materials 

within the regulatory framework; the two types of flow (linear and cyclical) shown in 

Figure 2.8 demonstrate a specific understanding of such flows within the confines of 

current thinking. As previously raised, Meadows (2008) would describe this as a bounded 

rationality closely aligned with the notion of lock-in. Figure 2.8 represents material flows 

within two waste systems, it is possible to envisage new arrows from raw materials 

‘reservoirs’ and landfill ‘reservoir’ through landfill mining (van der Zee et al. 2004; van 

Pessel et al. 2013) as well as significantly increasing cyclical flows from landfill bans on 

specific material types (WRAP, 2010).  

2.3 From linear waste models to a circular economy   

It may be argued the model for waste management in England has been in transition from a 

linear (take-make-dispose) (Figure 2.9) model towards a more cyclical model (where 

increasing amounts of materials are recycled and to a lesser extent reused) since first Waste 

Strategy for England (DETR, 2000; Preston, 2012). Recognition of recycling limitations in 

moving towards sustainable waste management were raised soon after its introduction 

(Strategy Unit, 2002) and increasingly so by the mid-2000’s (Green Alliance, 2006).  
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Figure 2.9: A linear economy (take-make-dispose) (Source: Webster and Johnson, 2010). 

 

These concerns were embodied within the aspiration of moving towards a zero waste 

society (DEFRA, 2007a; Greyson, 2007) in the subsequent strategic plan and have 

remained on the policy horizon ever since (DEFRA, 2013a; 2013b). 

2.3.1 Circular economy origins 

The “circular economy” concept has its theoretical foundations in the works of Boulding 

(1966), Stahel (Stahel and Reday-Mulvey, 1981), Pearce and Turner (Pearce and Turner, 

1990). These foundations come from the field of environmental economics with its 

concern with the long-term sustainability of human systems with nature. Pearce and 

Turner’s (1990) seminal work ‘Economics of Natural Resources and the Environment’ 

stated that an open-ended (linear) economy had no built-in capacity to recycle and 

consequently the environment (natural ecosystems) were treated as waste reservoirs. In 

their work, the earth was viewed as a closed economic system where the economy and 

environment had a circular relationship; thus drawing on Boulding’s (1966) earlier idea of 
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a ‘spaceship earth’. Stahel’s vision of the circular economy began with thinking about the 

notion of ‘cradle-to-cradle’ (C2C) for wastes in society (Stahel and Reday-Mulvey, 1981).  

This thinking transformed through recognition of the fundamental need for considering the 

economy as this would drive the elimination of wastes (Stahel, 2013). This would be 

achieved through a regenerative economy where some types of ‘wastes’ re-enter the 

biosphere and are recycled as nutrients while others are designed to continuously circulate 

in the human ‘technosphere’ (Making It, 2013; Garcia-Olivares and Sole, In Press). 

Braungart and McDonough (2002) significantly expanded the concept of C2C as a 

fundamental principle from which economic, social and environmental considerations may 

be accounted for. This is extended in terms of the fundamental focus on design in their 

work on upcycling (McDonough and Braungart, 2013); where products and services can be 

manufactured and structured around modular designs or through leasing packages.       

Within the literature other authors link CE with specific theoretical approaches on 

reorganising systems. Geng et al. (2011) suggest that the CE concept originates from eco-

industrial development (EID) theory; a position supported by Spiegelman (2001); an 

extension of industrial ecology thinking (see Isenmann, 2003; and Korhonen, 2004 for 

more detailed exploration of the IE concept) most often linked with the formal organisation 

of eco-industrial parks (EIPs) (Tudor et al. 2007; HKGCC, 2010) based on the broader 

principle of industrial symbiosis (IS) (see Chertow, 2003; 2007; Zhu et al. 2007; Bain et al. 

2010; Giurco et al. 2011 for the development of IS in recent years incorporating theory and 

empirical research on EIPs). Indeed, the notion of re-circulating wastes as secondary 

materials through by-product exchange is well recognised within the waste literature 

(Kurup et al. 2005; Zhu et al. 2007; Chertow, 2008).  
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2.3.1.1 Implementing the Circular Economy 

The notion of a CE is a relatively recent shift in economic thinking but has increasingly 

gained legal status in some developed countries (e.g. Germany and Japan) (Davis and Hall, 

2006) and is becoming increasingly influential among businesses and government bodies 

in the UK (EMF, 2013). 

Figure 2.10: The circular economy framework (Source: McKinsey.com, 2014). 

The concept is based on a number of key principles: redesigning industrial systems 

(Dewberry and Sherwin, 2002; EMF, 2012); C2C production (Stahel and Reday-Mulvey, 

1981; Braungart and McDonough, 2002); a shift towards collaborative consumption 

(Botsman and Rogers, 2010); and measuring progress (see Box 2.7). The CE framework 

(Figure 2.10) suggests the inherent value of wastes can be realised as economic, technical 

or biological value through a continuous process of recirculating these ‘resources’ in the 

economy (McDonough and Braungart, 2013; McKinsey.com, 2014). This extends resource 

life and reduces the input of other finite resource such as water or energy (Preston, 2012). 
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2.3.2 Circular economy in practice 

A number of countries (Germany, Japan and China) have been developing legislation and 

implementing national laws requiring waste management to be reframed around the 

concept of CE (HKGCC, 2010). More recently, uptake of the CE banner has been driven 

by business and industry in response to materials and energy security concerns amid 

Box 2.7: A note on Circular Economy principles 

Redesigning industrial systems (the right side of Figure 2.10) has long been a 

consideration for policy-makers and academics seeking ways of increasing efficiency 

(Ohno, 1988; Oakdene Hollens, 2009) or minimising waste within production 

networks (Chertow, 2003; Curran and Williams, 2011). Fundamental concepts to 

achieve such a redesign include: industrial ecology; industrial symbiosis (Korhonen, 

2004); and biomimicry (Benyus, 1997) (this concept speaks to realising value from 

the biological materials in Figure 2.10 as much as it does to technical innovation).  

Cradle-to-cradle (C2C) is about the circulation and design (Dewberry and Sherwin, 

2002) of biological and technical materials (represented as loops from one life-cycle 

stage to an earlier stage in the system in Figure 2.10). The aim is to avoid energy 

recovery and landfill as these represent losses to the system which must be replaced 

with new inputs. For consumers and users an increasing role is seen for leasing and 

rental models to change the notion of ownership through ideas such as collaborative 

consumption and the shared economy (Botsman and Rogers, 2010). This allows 

producers to retain resource ownership increasing quality and boosts bottom line, 

exploiting reverse logistics practices across supply chains (Zheng and Zhang, 2010).  

To measure progress towards CE new approaches which can map resource flows 

within the economy would be useful. These are under-utilised currently at national 

scales because of the problems of acquiring resource-related data (Preston, 2012). 

The use of spatial models built around scenarios of the future may be a useful tool for 

measuring this progress; additionally allowing consideration of other conditions 

(valorisation and sustainability) as either transitional phases or as alternatives which 

can still deliver the overall goal (the elimination of waste from the economy – zero 

waste).        
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rapidly increasing commodity prices (EMF, 2011) and the imposition of caps on the export 

of certain key materials at the national scale (BIS, 2012). In the UK and internationally, 

this has manifested itself at the business level through the CE 100 (a group of companies 

under the auspices of the Ellen MacArthur Foundation committed to the CE principles). 

This is supported at government level through the CE Taskforce to enable sharing of best 

practice and delivering knowledge exchange between business and governments.      

2.3.2.1 Policies implementing circular economy as law 

In Europe, Germany has been the lead country on implementing CE principles within 

policy approaches and through legislation (Davis and Hall, 2006). Karavezyris (2010) 

points out that the paradigm shift from waste management to a circular economy is in line 

with the EU goal of a ‘recycling society’ and has been underway in Germany since the 

1990’s. The first substantive CE law introduced globally was the ‘Closed Substance Cycle 

Waste Management Act’ (Karavezyris, 2002) becoming law in 1996 “Kreislaufwirtschafts- 

und Abfallgesetz” (Janz, 2012). This has recently been overhauled; to reflect European 

priorities (high recycling society and roadmap to resource efficiency); under the new 

Closed Cycle Management Act, 2012 (Kreislaufwirtschaftsgesetz – KrWG) which 

prioritises recycling over other recovery in German law (Janz, 2012).  

Laws have also been enacted in Japan (Davis and Hall, 2006; HKGCC, 2010) which have 

systematically moved towards greater embodiment of CE principles; with China utilising 

lessons from both of these first movers and developing a range of comprehensive laws (Li 

and Yu, 2011; Preston, 2012) as well as undertaking continuous research on the efficacy of 

specific interventions aimed at achieving an overhaul of the entire economy on circular, 

closed loop principles (Liu et al. 2009;Yang et al. 2011; Preston, 2012). There is growing 

recognition at government level in England on the rationale for shifting from a throw-away 

society to growing a circular economy (EAC, 2014). The influential Environmental 
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Auditing Committee’s recent report called for a raft of changes to incentivise the transition 

including:  

 lower VAT on recycled products;  

 longer warranty periods for consumer goods; and  

 banning food waste being sent to landfill  

Source: (EAC, 2014).  

However, under the lens of austerity which has been shaping government thinking (in 

England particularly) around cost savings wherever possible; this has seen a significant 

reduction lead from Defra, preferring an industry lead on waste matters, including circular 

economy research and development (Rogerson, 2014).     

2.3.2.2 Business focus on the circular economy model 

Progress on introducing CE through legislative mechanisms may be limited (particularly in 

England) but there are many examples from different industrial sectors of implementing 

CE business models which have increased competitiveness and profitability for companies. 

In some cases the development has been incremental in nature (e.g. RICOH UK Ltd) 

following continuous improvement (Kaizen) principles (Ohno, 1988). This has seen a 

number of companies and organisations transition through zero waste to landfill and 

onwards towards the aspiration of zero waste across all operations (RICOH UK, 2009; 

EMF, 2014b). Other organisations have gone further and are innovating around ‘products 

of service’ (EMF, 2014c); where an exemplar project saw lighting delivered as a service 

(so many hours of light per year at a certain specification) where the customer wanted the 

performance and not the need to replace a system once it became obsolete (EMF, 2014c; 

EMF, 2014d).  
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A significant amount of impetus has been building around raising awareness of the CE 

(SITA UK, 2011), at the business level, through the work of the Ellen MacArthur 

Foundation (EMF, 2011; 2012) supported by the economic profiling undertaken by 

McKinsey & Co. This has translated into the formation of the ‘Circular Economy 100’; a 

group of companies, innovators and regions taking a lead on CE implementation globally 

within organisations and across supply chains (EMF, 2014). A further delivery body for 

CE under-utilised at present are LEPs (Peck et al. 2013); particularly in locations such as 

the study area, which may provide the interface between governance structures (e.g. WPAs 

and government departments) and locally specific aspirations on sustainable waste 

management (FfTF, 2011).   

2.3.3 Circular Economy: future resource management strategy in England      

The scale of the economic opportunity posed by shifting to a CE business model in 

England is well documented (Oakdene Hollens, 2009; BIS, 2012) (see Table 2.2).  

 

 

 

 

 

 

 

Indeed, the CE framework (Figure 2.10) identifies multiple leverage points on both the 

technical and biological materials spheres. In his work on global security, Greyson (2009) 

Box 2.8: Global leverage points 

1. Reframe global problems as whole system strategy 

2. Redirect education away from reductionist herd thinking 

3. Make markets design-out waste from all products in the entire economy 

4. Reverse the arms race with a simple national accounting innovation 

5. Rescue ecosystems and ecosystem services worldwide 

6. Match the stockpile of legacy problems with the stockpile of funds 

7. Get money supply monetary without rising debt 

Source: (Greyson, 2009). 
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has emphasised the need for activating these leverage points (or ‘switches’) to achieve 

radical system change (see Box 2.8).  

The key to these leverage points relates to the disproportionate (non-linear) impact of 

interventions within complex systems. Meadows (1992) describes these leverage points as 

“…where a small shift in one thing can produce big changes in everything”. A notion 

explored extensively in chaos theory; commonly referred to as ‘the butterfly effect’ 

(Lorenz, 1972). In terms of England, the change to a circular economy will necessitate 

radical change from the current ‘waste paradigm’. Indeed, there will be a requirement to 

adopt far more ambitious goals, in line with Scotland and Wales, than those outlined in the 

WMPE and WPPE (DEFRA, 2013a; 2013b). This transition faces significant hurdles in 

terms of the recycling focus adopted (DEFRA, 2013a) as Timlett and Williams (2011) 

have indicated in terms of the need for further initiatives to realise a zero waste goal. The 

absence of emphasis on the upper tiers of the Waste Hierarchy are a lost opportunity and 

only serves to delay actions which will become increasingly relevant in the future 

(Blindspot, 2014). Further, the cost differential between building large scale infrastructure 

and promoting waste prevention and reuse initiatives (see Figure 2.5) increases the 

business case for a more radical approach to ‘waste’.  An approach is thus required which 

is capable of visualising plausible futures where specific policies have been implemented 

and assessed in terms of potential impact.        

2.3.3.1 Limitations of the Circular Economy 

In a comprehensive study of the potential offered by transitioning towards a CE, Preston 

(2012) identified seven key barriers to implementation (Box 2.8). A compelling alternative 

to the circular economy relates to ideas and thinking around the ‘blue economy’ (Pauli, 

2014). This is a visionary approach heavily inspired by the natural world which draws on 

‘deep ecology’ and ‘biomimicry’ (Benyus, 1997) ideas; coupling these with environmental 
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economics to offer an alternative business model with minimal environmental impacts; 

social inclusion and cohesion through localised job creation; and a sustainable economic 

future decoupled from growth models. This is a more radical model than CE and is 

strongly grounded in the ‘sustainability’ archetype (see Dreborg, 2004).   

 

 

 

 

 

   

2.4 Futures studies and the development of backcasting 

2.4.1 Introduction 

The field of futures oriented research is concerned with looking at real world issues and 

envisaging their long term impact on society. Borjesson et al. (2006) proposed placing 

futures studies into three main types dependent on three types of question: What will 

happen? What can happen? and How can a specific target be met? As pointed out, there is 

no consensus on scenario typologies (Borjesson et al. 2006) but several of the typologies in 

Figure 2.11 reflect the view that futures studies examine: possible; probable; and 

preferable futures (van Vliet, 2012). Futures studies’ have previously been positioned by a 

number of researchers either within 3 categories (Amara, 1981) or added others (Marien, 

2002); with Masini (1993) identifying ‘vision’ as a specific approach.  

Box 2.8: Seven barriers to implementation 

1. Lock-in to resource-intensive infrastructure and development models; 

2. Political obstacles to putting an appropriate price on resource use; 

3. High up-front costs; 

4. Complex international supply chains; 

5. Lack of consumer enthusiasm; 

6. Challenges for company-to-company cooperation; and 

7. The innovation challenge 

Source: (Preston, 2012) 
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Figure 2.11: Scenario typologies with the normative scenario transforming approach 
identified (dashed boxes) (Source: Borjesson et al. 2006) 

 

Of particular note in relation to backcasting, Dreborg (2004) identified visionary thinking 

as one of his three modes of thinking. He went on to suggest that backcasting represents a 

methodology which is a ‘pure’ form of the visionary mode of thinking (Borjesson et al 

2006). This later work firmly acknowledges backcasting as a methodology in contrast to 

his seminal work on the ‘essence’ of backcasting (Dreborg, 1996) where he defines it as an 

approach rather than a specific method or methodology.      

Notwithstanding the debate on typologies and methodologies; a range of other methods 

have been developed to provide potential solutions or desirable visions to address issues 

such as sustainability (Quist and Vergragt, 2011). A number of established and widely 

used quantitative and qualitative methods are employed in futures studies at governmental; 

organisational and societal levels (SERI, 2010a; DEFRA, 2011d; DECC, 2011a; Haslauer 

et al. 2012; DEFRA, 2013b). Figure 2.12 illustrates some of the main methods and 

complementary tools used. Quantitative methods used in futures studies, typically apply 

trend evaluation techniques and are premised around likelihood and predictability (see 
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Figure 2.11), particularly in terms of policy development (Schwartz, 2008). Such methods 

(e.g. forecasting) make prediction based on mathematical and statistical evaluations.   

Figure 2.12: Classification of Futures Studies methods and complimentary tools (Source: 
after Guell, 2013).  

 

Objectivity is a key strength of such approaches (Robinson, 2003) but requires historic and 

current numerical data to be effective. In contrast, qualitative methods (e.g. backcasting 

and visioning) are largely based on intuition and expert opinion. Qualitative methods have 

value through subjectivity and are often used when there is a lack of data. Their usefulness 

is further enhanced when the problem are long-term in nature (Guell, 2013).  

2.4.2 What is backcasting? 

The origins of backcasting date back to the 1970’s when oil crises had a destabilising 

effect on many economies in the West. Royal Dutch Shell was the first to use a scenario 

based approach which was akin to later backcasting development (Schwartz, 1991; 
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Haslauer et al. 2012). At a national scale, concerns over the future of the electricity sector, 

partly in response to the oil crises, Lovins (1976) developed a method known as 

‘backwards looking analysis’ which was further developed by Robinson (1982) and 

became referred to as backcasting. These early uses were technical in nature with small 

groups of researchers and experts undertaking the backcasting exercises (van Vliet, 2011; 

Haslauer et al. 2012). Dreborg (1996) systematically reviewed the emergent ‘method’ of 

backcasting and suggested it was not a method but an approach. But he differentiated 

backcasting as having a number of benefits over predictive methods including forecasting; 

directional studies; and short term studies.  

    
Figure 2.13: Application of backcasting to sustainability issues (Source: Dreborg, 1996). 

 

Each approach is characterised by the level of uncertainty and the inability to achieve 

sustainability as the time horizon extends (Steen and Ackerman, 1994; Ackerman, 2011).  

To overcome the impact of uncertainty on short-term predictions the method of sensitivity 

analysis is often applied (Morrissey and Browne, 2004; DEFRA, 2013b) which offers 

different quantifiable ‘scenarios’ of likely future conditions based on current system trends. 
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Figure 2.13 illustrates Dreborg’s interpretation of when backcasting should be applied to 

sustainability issues.   

As can be seen in Figure 2.13, Dreborg (1996) sees a distinct barrier between predictive 

methods (A and B) and normative approaches such as backcasting (C) in reaching a 

position of target fulfilment. It is also clear that the timescale for studies based on images 

of the future extends much further along as these studies require a long-term perspective 

(Steen and Ackerman, 1994).Uncertainty within predictive models is acknowledged by 

means of utilising sensitivity analysis. To overcome the impact of uncertainty on 

predictions sensitivity analysis is often applied to offer different quantifiable ‘scenarios’ of 

likely future conditions based on current system trends (Morrissey and Browne, 2004; 

IPCC, 2007; DEFRA, 2013b). Such approaches are problematic over the long-term as 

predictions based on the current reality are significantly exposed to error when potential 

(or even desirable) political, economic, social and technological developments are explored 

(Eames and Egmose, 2011). To address this problem Hunt et al. (2012); drawing on earlier 

work by Dreborg (1996); postulate that:  

‘Future scenarios provide challenging, plausible and relevant stories about how the future 

could unfold’.  

Source: (Hunt et al. 2012). 

Disaggregating this statement shows four key components (challenging; plausible; 

relevant; and how the future could develop) of what it is such future scenario approaches 

offer differently from predictive methods.  

To address each, scenario based approaches must challenge the current paradigm (e.g. 

resources rather than wastes) and offer visions of radical change (Robinson, 1990; 

Dreborg, 1996; Kok et al. 2011). But these radical visions must be both plausible (are 

somewhat realistic given the current position) and relevant (an important aspect of 
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choosing time horizons of 25-50 years is the ability of people to perceive the impact of 

changes on theirs or their children’s futures – Quist and Vergragt, 2006; van Vliet, 2011). 

Demonstrating how futures could develop is perhaps the defining characteristic of 

backcasting (Greyson, 2007; Giurco et al. 2011). This is especially so when one considers 

the divergence in approaches towards backcasting, as there are two commonalities. The 

first is the normative element with a concern for values, beliefs and ideas; while the second 

is ‘working backwards from a desired future end-point (Robinson, 1990; 2003).   

2.4.2.1 When to apply backcasting 

The purpose of applying a backcasting methodology is primarily related to the long-term 

nature of the issues surrounding waste management and the complexity of those issues 

when considering waste from a systems perspective. The process is both explorative and 

interactive being described as a tool for ‘social learning’ (Robinson, 2003; Robinson et al. 

2011). Backcasting is a process working backwards from future scenarios, 25-100 years 

ahead, to the present situation consisting of a rule based analysis and resulting in normative 

policies in order to achieve the desired goals, which are independent of present limitations 

and problems (Robert, 2005; Robinson, 2003). However, backcasting should not be used as 

a means of revealing policies in the future or for prediction of future situations, but instead 

should be used to assess the feasibility and potential impacts of different strategies as 

outlined in the final scenarios (Robinson, 2003; Robinson et al. 2011). 

2.4.2.2 Backcasting and waste management 

There are few empirical examples of backcasting being applied to issues around waste 

management. A study which looked at changing the structure of municipal waste 

management in Georgia (Antadze, 2004) found that producing a model of a desired future 

for municipal waste management revealed the underlying structure of the system and the 

amount of adaptation required to meet legislative requirements of the EU (e.g. those set out 
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in the Waste Framework Directive). The framing parameters for the study were those 

stipulated in the waste hierarchy but were extended to include the minimisation of 

incineration and compliance with EU legislation (Antadze, 2004). A three step 

methodology was applied. The limited scope of the study (municipal waste only) reflected 

the main policy focus of the EU; namely the development landfill regulations in Member 

States in order to transpose the Landfill Directive (99/31/EC).   

Another empirical study using backasting for waste management planning was undertaken 

as part of a broader study in Sweden (SERI, 2010a) on moving ‘towards sustainable waste 

management’. This study produced four scenarios to 2030: global sustainability; global 

markets; regional markets; and European sustainability which were characterised by 

varying levels of global cooperation and political control/influence (Dreborg and Tyskeng, 

2008). These framing scenarios were developed in a two stage process, with each of these 

projects forming the baseline assessment; pathways and impacts. The main finding relates 

to the considerably divergent futures which can be envisaged compared with a reference 

scenario based on forecasting approaches (Dreborg and Tyskeng, 2008). In addition, 

economic and political situations can have markedly different impacts on achieving a 

position of sustainable waste management. These empirical studies (Antadze, 2004; 

Dreborg and Tyskeng, 2008) are undertaken at the national scale, with no other studies 

found offering empirical evidence of applying backcasting to waste. However, other 

studies, applying backasting in the form of scenarios, do mention waste in terms of 

resource depletion (ETC/SCP, 2012); urban planning (Eames and Egmose, 2011; Haslauer 

et al. 2012); and within life-cycle inventories for climate change (Shepherd et al. 2011).  

2.4.2.3 Social learning and mental models   

Social learning in the context of backcasting studies, can be viewed as a qualitative 

outcome of the scenario development and visioning processes which has been linked with 



80 

 

altering individual and organisational perceptions of the world (so-called mental models – 

see Box 2.9) (Levanen and Hukkinen, 2013).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

. I  this o te t a o i e  a  e o sidered to represe t a la -person or non-technical  

Box 2.9: A note on mental models 

A ‘mental model’ may be described as a cognitive mechanism for representing or 

constructing situations which may be real, imagined or hypothetical (Glick et al. 

2011). Al-Diban and Ifenthaler (2011) develop this notion further by suggesting ‘…a 

person constructs a mental model in order to explain or simulate specific phenomena 

of objects or events if no sufficient schema are available’. They go on to propose that 

‘…a domain expert’s mental model is considered more elaborate and complex’ when 

compared with that of a novice (Al-Diban and Ifenthaler, 2011). 

Craik suggested that ‘thought’ was the critical means by which one experiences the 

external world (Craik, 1943). Crucially, he argued the fundamental property of 

thought, in this regard, was ‘…its power to predict events’ (Johnson-Laird, 2005). 

Craik went on to suggest this power depends on three steps, namely: 

1. The translation of an external process into words, numbers, or other 

symbols, which can function as a model of the world 

2. A process of reasoning from these symbols leading to others. 

3. The retranslation back from the resulting symbols into external processes, 

or at least to a recognition that they correspond to external processes. 

Source: (Craik, 1943 cited in Johnson-Laird, 2005). 

Forrester captured the essence of Craik’s theorising in terms of the function and role 

of mental models in the statement:  

“…mental models are the lenses through which we see the world 

…incorporating our preferences, experiences and beliefs about how the world 

works.”    

Source: (Forrester, 1961 cited in Glick et al. 2011). 
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In terms of waste generation and natural resource depletion, it has been suggested that 

issues of governance (e.g. waste policy formation and implementation) are closely related 

to ‘practices of policy deliberation and institutional lock-in’ (Young, 2002; North, 2005 

cited in Levanen and Hukkinen, 2013, p15). This notion of institutional lock-in reflects 

Meadows’ views about bounded rationality (Meadows, 2008, p106) and vested interests 

producing ‘policy lock-in’ (Meadows, 2008, p92).    

2.4.2.3.1 Reframing the waste hierarchy with social learning  

This research uses the concept of zero waste to visualise scenarios towards attaining a 

more sustainable system of waste management in England by 2050. Robinson (2003) and 

Quist (2006) have emphasised the need to broaden the scope of backcasting to become a 

participatory process for multiple stakeholders in order to make the decision-making 

process more inclusive. In doing so, stakeholders are exposed to innovative ways of 

viewing, interacting with and participating in sustainability issues (Quist and Vergragt, 

2006; Anderson et al. 2008; Mander et al. 2008; Wangel, 2012). From the perspective of 

viewing waste as resource (Braungart et al. 2007) the waste hierarchy is a powerful tool 

(see section 2.2). However, the upper tiers (waste prevention and reuse) are more difficult 

for stakeholders to visualise as this implies physical avoidance of materials entering the 

waste system and thus requires more abstract cognitive processes.  

This is particularly pertinent when considering movement towards a zero waste economy 

(Greyson, 2007; Zaman and Lehmann, 2013); a circular economy (Su et al. 2013; DG 

Environment, 2014); or greater integration of material flows based on industrial ecology 

(Giurco et al. 2011; Kaufman, 2012). To achieve these goals, tools and methods are 

required which can visualise these tiers of the waste hierarchy (see Objective 4) and 

account for policy changes (see Objective 2) such as end-of-waste (EOW) which reclassify 

waste materials as by-products or products (Levanen and Hukkinen, 2013). However, 
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current approaches which seek to incrementally change the waste management sector are 

unlikely to achieve a position of sustainability (Dreborg, 1996; Hickman and Bannister, 

2007) as the apparatus of policy development is not systemically focused and may even be 

locked-in (Meadows, 2008) to responding to change in order to ‘preserve’ the current 

system (Borjesson et al. 2006). This ‘waste paradigm’ opposes the dynamic and proactive 

development of mechanisms and applications capable of transformational change based on 

systems thinking principles (Boulding, 1966; Lovelock, 1971; Robinson, 1982; 1990; 

Borjesson et al. 2006).  

As previously mentioned, evidence of the systematic approach to policy development is 

seen with emphasis placed on moving up the waste hierarchy (ESA, 2011; CIWM, 2012); 

applying technological solutions to residual wastes (Eunomia, 2013); becoming high 

recycling societies (EC, 2011a); and to a certain extent altering processes to be more 

resource efficient (BIS, 2012). Notwithstanding, this evidentiary policy development 

within England, facilitating deep changes within the waste system have been identified in 

terms of: changing attitudes and behaviours (Williams and Kelly, 2003; Tonglet et al. 

2004b; Barr, 2004; Timlett and Williams, 2011); innovations around design of products 

embodied within eco-design principles (WRAP, 2013a); accreditation for schemes 

designed to move communities to becoming ‘zero waste places’ (Phillips et al. 2011; 

Warner et al. 2014); and industry lead on circular economy development (Greyson, 2007; 

EMF, 2011).           

2.5 Waste systems visualisation with GIS 

2.5.1 GIS development and application to waste  

Developments in geographic information science, particularly spatial databases, spatial 

analysis, global positioning technologies, remote sensing, earth observation technologies 
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and geo-visualisation have progressed significantly both during and since the 1990’s 

(Longley et al. 2005; Goodchild, 2009). Geographic information systems (GIS) have been 

used to produce data models since the 1950s (Goodchild, 2000). The techniques of data 

modelling within GIS were further applied in pioneering work on site suitability analysis 

by Ian McHarg (McHarg, 1969).  

McHarg (1969) articulated the basic mapping ideas for site suitability analysis; which had 

a specific focus on identifying the best location for a specific function. To achieve this aim, 

McHarg proposed the preparation and use of thematic maps (layers) and superimposing 

them to create a composite structure which would facilitate comparison with a pre-existing 

set of interacting factors. This simple overlay analysis technique has subsequently been 

refined and used in diverse research fields such as land use planning (Dobson, 1979; 

Blaschke and Strobl, 2001); ecology (Clevenger et al. 2002); transport system development 

(Goodchild, 2000; Miller and Wu, 2000); and waste facility siting (Clark, 1970; Helms and 

Clark, 1971; Lin and Kao, 1998; Kontos et al. 2005). 

Today multiple techniques are implemented through GIS from landscape and spatial 

planning of urban design (Sumathi et al. 2008) to ecological monitoring of habitat change 

(Jensen et al. 2012). In the field of waste management GIS is increasingly being applied. 

This is not surprising considering the spatial data being gathered around arisings and the 

need to plan transportation/logistics around route optimisation for fuel economy, emissions 

reductions and wider cost savings. GIS is now an important tool for simulating future 

changes on the Earth’s surface through the implementation of digital representations (e.g. 

maps and conceptual models) of landscape-modifying processes. 

2.5.2 Spatial planning for waste and resource management 

Waste management systems are inherently spatial in character, enabling detailed geospatial 

analysis to determine optimum facility location based on specified criteria. Further, non-
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spatial criteria impacting choice of facility type (e.g. economic considerations) can be 

captured and analysed within a bespoke GIS environment (Goodchild et al. 2007).  

GIS is increasingly being utilised in the field of WRM to understand the spatial distribution 

of waste arisings and management solutions aimed at achieving a more integrated 

approach. The literature shows that GIS has primarily been utilised in research on waste 

focusing on collection systems and route optimisation (Kanchanabhan et al. 2011); site 

selection (Kontos et al. 2005; Sumathi et al. 2008; Tavares et al. 2011; Chatzouridis & 

Komilis, 2012; Gorsevski et al. 2012); systems dynamics (Guan et al. 2011); stakeholder 

involvement (De Feo & De Gisi, 2010); environmental assessment and profiling of waste 

activities (Antunes et al. 2001; Jensen et al. 2012; Khoo et al. 2012); and distributed 

generation through AD (Ma et al. 2005). However, there is scant evidence in the literature 

of applying GIS techniques (e.g. spatial analysis and modelling) towards integration of 

planning for waste management facilities. 

2.5.2.1 The AWM regional approach to waste infrastructure provision 

In 2009, Advantage West Midlands (AWM) the former Regional Development Agency 

(RDA) for the West Midlands launched the UKs first low carbon economic strategy 

(DTZ/SLR, 2009a). As part of their corporate plan, AWM identified a need within England 

for an approach which could identify priority locations for investment in waste 

infrastructure (DTZ/SLR, 2009b). The tool was linked with traditional planning 

approaches around forecasting capacity gaps (SLR, 2006; RPS, 2009; Sacks Consulting, 

2012; Head et al. 2013) for provisioning adequate facilities to meet landfill diversion 

targets for England. The preliminary work undertaken by SLR consulting for the West 

Midlands RTAB as well as follow-on work for AWM led to a Waste Infrastructure 

Development Programme (DTZ/SLR, 2009a). These pieces of work forecast a future waste 



85 

 

infrastructure capacity gap of 3.7Mt by 2021 which it predicted would require around 

260ha of land take to facilitate.  

Although the RDAs have largely been removed from the waste planning hierarchy in 

England (DCLG, 2013) since the coalition government came to power, the approach 

developed was a novel GIS-based location-analysis tool. The GIS tool extended the use of 

spatial analysis for waste infrastructure developed by the consultancy firm SLR (SLR, 

2006), which had undertaken a regional assessment; in association with the University of 

Northampton; of infrastructure provision for the East Midlands region of England (EMRA, 

2006). This level of development reflected changes within the functionality of GIS 

software from developers such as ESRI but also newer open access tools (e.g. Quantum 

GIS). The tool consisted of four distinct spatial analysis stages: identify and agree location 

drivers; mapping of location drivers; identify areas of search; and identify available sites 

(SLR, 2006). A similar approach has been used in a number of location analysis projects 

using multi-criteria assessment and evaluation (MCA/MCE) techniques on landfill site 

selection (Kao and Lin, 1996; Curtis et al. 2000; Sumathi et al. 2008; Yildrim, 2012; 

Gorsevski et al. 2012); as well as in studies for siting AD plants (Ma et al. 2005); and 

waste incineration plants in small island states (Tavares et al. 2011).  

Other approaches have used binary programming for siting of municipal waste transfer 

sites (Chatzouridis and Komilis, 2012) as well as detailed and in-depth stakeholder 

involvement in order to produce robust criteria weightings which reflected local concerns 

(De Feo and De Gisi; 2010). This last point on local concerns is a critical factor in 

determining the use of a GIS-based tool. The generation of a location specific database of 

multiple variables (criteria) is identified as an enduring legacy of such studies (Blaschke, 

2006; Haslauer et al. 2012) allowing future enhancement as better data become available or 

more powerful analytical approaches are developed. Given the structure of the AWM tool, 
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based on a multi-criteria evaluation of regionally specific variables, as well as the high-

level previous use (e.g. regional planning and governance) it may be considered robust. 

However, the tool is designed for regional scale evaluation and as such may require 

alterations and adaptation’s to make it applicable at the individual WPA level (e.g. county 

or unitary scale in England).  

2.5.2.2 Waste infrastructure assessment at the WPA scale in England 

Within England, LAs have the responsibility to produce spatial plans within their remit as 

Waste Planning Authorities (WPAs). These WPAs are usually county level administrative 

units but also include Unitary Authorities (UAs) which a dual responsibility for collection 

and disposal of wastes within their localities (NCC, 2012; DCLG, 2012).  

Until 2014, this required the production of Minerals and Waste Development Framework 

(MWDF) (Figure 2.14) documents7, which includes an assessment of waste management 

needs covering a period a minimum of 10 years into the future (DCLG, 2013). The MWDF 

documents also include a plan for waste development (facility locations) (NCC, 2013a) 

which are subject to a Sustainability Appraisal (SA) and Habitats Regulations Assessment 

(HRA) as part of the Core Strategy consultation and implementation process. These 

environmental appraisals are required under European Directives 2001/42/EC (SEA 

Directive) and 92/43/EEC (Habitats Directive) with the SA expanding the assessment to 

encompass economic and social impacts. 

The MWDF (Figure 2.14) uses the revised European WFD (2008/98/EC) to define ‘waste’ 

and covers municipal wastes (LACW); commercial and industrial wastes (C&I); and 

construction and demolition wastes (C&D) but must also consider other waste types (e.g. 

hazardous and agricultural wastes) (NCC, 2013a). 

                                                           
7 The MWDF is proposed to be replaced with a Minerals and Waste Local Plan (MWLP) which at the time of writing had 
just finished its consultation process and was being schedule for introduction in 2015. However, delays have held  this 
back and so the MWDF is still the applicable document set. 
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Figure 2.14: The Northamptonshire MWDF with relevant spatial documents highlighted 
(Source: NCC, 2013a).  

 

The MWDF also stipulates criteria for waste management sites in terms of: 

 Sites for integrated waste management facilities;  

 Sites for waste management use in or adjacent to urban areas; 

 Industrial area locations for waste management uses; and 

 Sites for waste management use in rural areas. 

Such planning requirements reflect the focus within England on environmental protection 

and transparency (community involvement). However, much of the documentation 

produced is based on considerations which at best can consider out-of-date.  Indeed, 

planning for future capacity is based on a recognised LA forecasting approach (DEFRA, 

2012). In terms of WPAs like Northamptonshire; the plan period runs from 2006-26 

meaning that these forecasts are based on trends in waste which are not relevant given the 

scale of change witnessed between 2005/6 and 2012/13 (DEFRA, 2014).    



88 

 

As such a gap exists to bring up-to-date the development plan in terms of forecast arisings 

and potential capacity gap; suitability appraisal of locations for waste development (using 

the existing proposals maps to produce new spatial patterns meeting different future 

requirements); and providing practitioners with a database tool which is readily 

reproducible and robust for local waste planning requirements (see objective 3). 

2.5.3 Utilising MCDA with GIS  

The use of MCDA techniques allows multiple variables to be considered within a model of 

the system under consideration, which represents a means by which the non-linearity of 

said system can be visualised. GIS-MCDA is a complex process of analysis due to the 

intricacy of the variables being considered and their relative impact on the WMS under 

scrutiny. Chen et al. (2010) suggest GIS based MCDA approaches are primarily concerned 

with combining information from several criteria to form a simple index of evaluation. 

Malczewski (2006) suggested using MCDA techniques with GIS methods provided a 

framework for handling different views and conceptualisations of the elements within a 

complex decision problem. This allows them to be organised into a hierarchical structure 

thus permitting the relationships among the problem components to be studied 

(Malczewski, 2006). A further strength of using GIS with MCDA relates to the procedures 

within an MCDA avoid the users preferences and manipulation of data;  this is overcome 

by combining preferences with the data according to ‘specified’ decision rules 

(Malczewski, 2004; Rahman et al. 2012). An example of this type of approach is seen with 

De Feo and De Gisi (2010) whom characterised their AHP criteria according to specified 

typologies: exclusionary, preferential or penalizing. 

. . .  Saaty s AHP 

The Analytical Hierarchy Process (AHP) developed by Thomas Saaty (Saaty, 1980) breaks 

down a decision-making problem into several levels producing a hierarchy which has 
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unidirectional hierarchical relationships between levels (Aragones-Beltran et al. 2010). 

AHP uses the mathematical approach of pairwise comparison to allocate weights to the 

elements of each level (e.g. group criteria and individual criteria) measuring their relative 

importance on 1-9 scale (Saaty scale shown in Table 2.4). 

Overall calculated weights are evaluated at the bottom level and verified for coherence of 

the judgments through a calculated consistency ratio (CR) which must be 0.10 or less to be 

acceptable (Aragones-Beltran et al. 2010; De Feo and de Gisi, 2010). The AHP tool is 

conceptually easy to use and the data capture stage is relatively simple to explain to 

stakeholders with limited knowledge of a specific decision problem (e.g. siting of waste 

facilities).   

Tale 2.4: The Saaty Scale with definitions  

Intensity of importance on an 
absolute scale  

Definition  

1 Equal Importance  

3 Moderate importance of one over another  

5 Essential or strong importance  

7 Very strong importance  

9 Extreme importance  

2,4,6,8  Intermediate values between the two adjacent judgements  

Reciprocals  If activity i has one of the above numbers attached to it when 
compared with activity j, then j has the reciprocal value when 
compared with i  

Rationales  Ratios arising from the scale  

Source: (De Feo and de Gisi, 2010). 

2.5.3.2 Alternatives to AHP 

A more complex tool also developed by Saaty is the Analytical Network Process (ANP) 

(Saaty, 1999) and was designed to incorporate feedback and complex inter-relationships 

within and between clusters identified (from nodes of network clustering) (Aragones-

Beltran et al. 2010). However, the predictive nature of the output within a decision-making 

model seemed at odds with the overall aim and rationale for employing GIS to represent 

future scenarios elicited from backcasting.  
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2.6 Research gaps identified 

As a result of reviewing the literature a number of gaps in the research have been identified 

which can be addressed through the application of the research methodology. The first 

relates to the lack of holistic approaches taken to assessing waste at a systems scale. There 

are many examples in the literature which look at specific waste streams, producing 

models based on predictions of what will happen to the likes of LACW (DEFRA, 2011a) 

or C&I (ADAS, 2009) wastes. However, the predominant focus is on LACW, even within 

the planning literature (NCC, 2012, DCC, 2012) which has a requirement to consider all 

wastes within a specified administrative area (DCLG, 2011). Using estimations 

methodologies to base financial investment decisions on at a time of constrained budgets is 

problematic. So too is the use of predicted results based on extrapolated trends from past 

levels of wastes generated, which run the risk of providing over-capacity (Eunomia, 2014) 

and tying LAs into strategies focused at the lower tiers of the waste hierarchy through 

contractual limitations. 

A gap also exists in terms of linking policy approaches across areas of synergy (e.g. waste. 

energy and climate change). The issue relates to a lack of systems thinking (DEFRA, 

2012b) which would bring together research and produce a long-term strategy. This has 

been partially addressed within the ambitious zero wastes policies in Wales and Scotland 

(WAG, 2010; TSE, 2010) as well as medium-term studies in England (DEFRA, 2011b) but 

there is a failure to fully integrate these policy areas within such studies. Scenarios and 

scenario planning are tools widely utilised in climate research and energy policy 

development but this has not been embraced in determining the sustainability of the WMS 

within a future ‘resource’ paradigm (BIS, 2012).   

Waste planning is another area where a lack of foresight derives from inadequate data at 

the local scale. Planners have been effective at producing schemes to deliver national 
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objectives but these are undermined through the available data as well as the way that data 

is interpreted; with an understandable tendency to plan for the worst case scenario. For this 

reason, local waste plans (as part of MWDFs at the WPA scale) are questionable 

(Cochrane et al. 2013). Coupled with a need to identify potential sites for future waste 

facilities (DTZ/SLR, 2009a) and concerns around capacity being able to recirculate 

materials effectively within the current WMS; if CE business models are adopted; suggests 

the need to assess these plans as being fit-for-purpose (Hojer et al. 2011).  
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Chapter 3 Methodology and Methods  

3.1 Introduction 

In this thesis, a mixed methodology approach was utilised in order to achieve the desired 

aim and objectives (see Section 1.3) with a view towards framing sustainable waste 

management within the concept of a ‘zero waste’ economy. Such an approach has 

significant potential for improving long-term thinking on waste planning at Local 

Authority level. Backcasting is a strategic foresight method suitable for governmental and 

organisational decision-makers (GOS, 2010). 

Application of a futures oriented methodology such as backcasting is in keeping with calls 

from government for a wider range of interdisciplinary research methods to be applied to 

waste management research in England (DEFRA, 2008). Specifically, the use of 

backcasting in this research may be seen as addressing thematic requirements of the 

WRRAG R&D Evidence Provision programme (DEFRA, 2008), namely: 

 Theme 8 - decision tools and related evidence mechanisms 

 Theme 2 – systems for waste collection, separation and resource 

 Theme 1 (1.1) – understanding resource flows 

 Theme 3 (3.3) – delivering waste management infrastructure   

A backcasting framework is utilised as the principal qualitative research method 

(Robinson, 1990) in order to allow a broader strategic evaluation of a specified waste 

management system (Dreborg, 1996). This evaluation is then embedded within a 

Geographic Information System (GIS) framework in order to visualise the key findings and 

is analysed using the AHP method put forwards by Saaty (1977; 1980) and expanded on by 

De Gisi and De Feo (2010). These principal components are applied to a case study of a 

defined waste management system to test the robustness and validity of the methodological 
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framework developed. GIS was utilised as a means of visualising results with a view to 

being an integral part of the model addressing the issue of stakeholder engagement 

(Zakaria, 2011; APSRG, 2010).   

3.1.1 Research agenda for waste management 

In this project, a number of key questions are raised relating to key policy objectives and 

their implementation, as well as the aspirational strategic goals on waste management and 

planning, as outlined in key Government documents (e.g. DEFRA, 2007a; 2009; 2011a; 

2013a; 2013b; DECC/DEFRA, 2011; EA, 2011). The research agenda around moving 

towards sustainable waste management has been characterised by numerous policy 

changes over the last 10-15 years. The strategic policy objective has moved from disposal 

to resource management and recovery. These changes raise a number of questions: 

1. What contribution can the concept of zero waste make to the wider 

sustainability agenda for England? 

2. What new and existing approaches may be applied in order to generate 

innovations in managing wastes holistically and using wastes as a resource? 

3. How can England meet its international obligations relating to waste over the 

short, medium and long-term? 

4. What are the implications for/potential barriers to developing infrastructure at 

suitable sites under the new localised planning regime? 

Addressing these questions was a fundamental driver when formulating the research aim 

and objectives (see Section 1.3). 

3.1.2 GIS-based Backcasting Framework Model (G-BFM) 

In this study, the overarching methodology was designed as a framework model (FM) 

following a logical and progressively detailed structure. The three key elements to the FM 

have been described previously but can be summarised as encompassing backcasting; GIS; 

and a quantitative model. The purpose of such a model is to deconstruct complex problems 

around waste management in order to develop a strategic vision of a desirable sustainable  
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Figure 3.1: Empirical stages schematic of the GIS-based Backcasting Framework Model 
(G-BFM)  
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waste management future. The framework model uses a mixed methodology approach to 

generate data and capture inputs from stakeholders. This is in keeping with Robinson’s 

original backcasting framework (Robinson, 1990) while being flexible enough to provide 

recognisable output for multiple stakeholders. Figure 3.1 describes the empirical stages 

within the GIS-based backcasting framework model (G-BFM) schematically. 

3.2 Methods used 

While there is no single defined methodology for backcasting a decision was taken to 

apply Robinson’s original generic method (Robinson, 1990) and develop this in such a way 

as to meet the research aims and objectives. There are limitations with this approach as 

“second order” backcasting (Robinson. 2003; Quist, 2006) has shifted to a more 

participatory approach with large numbers of stakeholders and multiple large scale 

workshops being employed in the process (Hickman & Bannister, 2008). However, time 

and resource restrictions were drivers for adaptation while striving to maintain the integrity 

of the methodological approach. In order to present and analyse the output from the stages 

of the backcasting process an approach was formulated which used GIS to represent the 

quantitative output visually. Such an approach has been utilised in previous waste research 

on issues such as infrastructure provision (SLR, 2006); landfill siting (Sumathi, 2008) and 

testing scenarios for optimal MSW management (De Feo & De Gisi, 2010).The following 

sections (Sections 3.3 through 3.5) are used to detail the research methods used; limitations 

and adaptations; and potential areas for synergy.  

3.3 Backcasting  

Backcasting has been used in this research to provide a novel means of framing the 

complex issue of waste management to offer potentially radical visions of systems change. 

This process requires both qualitative research (in the form of visioning; and scenario 
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development) as well as quantitative research methods (baseline analysis within a 

determined system boundary, including: waste arisings trends; compositional analysis; 

waste infrastructure capacity assessment; and impact analysis). 

Figure 3.2: Workflow schematic of the backcasting research framework 

Figure 3.2 illustrates the backcasting research framework schematically and shows the 

process moving from visioning and baseline analysis into the iterative stages of scenario 

development and feasibility testing in terms of impact analysis. The remainder of Section 

3.3 will describe the individual stages in detail. 

3.3.1 Designing the applied backcasting method   

The literature differs on whether or not the visioning process should be the first step in the 

backcasting process. Robinson’s original conceptualisation of the backcasting method 

(Robinson, 1990) followed a six step approach which is shown in Figure 3.3. It is possible 

and to some extent desirable, to integrate some of these generic steps to reframe the 

method into a simpler 4 step approach, as put forwards by The Natural Step (TNS) 
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(Holmberg, 1998). The purpose of doing so relates to the social learning element ascribed 

to undertaking backcasting and the potential benefits this can have for stakeholder 

engagement (Quist et al. 2011).  

Figure 3.3: Outline of generic backcasting method (Robinson, 1990) 

This research has taken the generic backcasting framework (Robinson, 1990) as a starting 

point for evaluation of the waste system. The proposed backcasting method combines steps 

1 and 2 (determining objectives; and specifying goals, constraints and targets) into 

preliminary step covered in the formulation of the research aims and objectives (see 

Section 1.3). The research objectives are subsequently used to analyse and evaluate outputs 

(see Sections 4.5).  

3.3.1.1 Objectives of the backcast – purpose and scope  

The principal aim of the backcasting phase of the research was to determine whether the 

waste management sector in England could move towards a zero waste vision over the 
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long-term. Scenarios were used to evaluate the desirability of such a zero waste vision(s) 

and what implications these have for wider economic, social and political systems. 

The temporal scope of this research is out to 2050 with a baseline year of 2012. This gives 

a 38 year timeline which sits at the lower end of Robinson’s recommended temporal scale 

of 20-100 years (Robinson, 1982). It can also be argued that 2050 goes far enough beyond 

the policy targets outlined in much of the recent European and national scale legislation 

(2020 is a pivotal year in much of the target driven literature) to offer potentially radical 

insight. The defined 38 year timeline may also be considered as generational with 

individuals being more able to comprehend impacts within their own or their children’s 

lifetimes. Further, 2050 is a significant date in terms of climate change assessment (IPCC, 

2007), providing a logical framing point.  

The spatial scale of the study relates to England as a specific geographic and political 

entity with a county level administrative entity (Northamptonshire) used as a case study of 

a functioning waste management system. This level of administration is comparable to 

other European administrative levels with analogous data reporting allowing the potential 

for further evaluation. The waste and resource management sector, with inclusive policies 

and practices, provides the substantive scope of the study. Northamptonshire is chosen 

because of the existing two-tier waste system, where the county council is the Waste 

Disposal Authority (WDA) and the seven district and borough councils are Waste 

Collection Authorities (WCAs) responsible for the collection of municipal and some 

commercial wastes.  

The number of scenarios put forwards is four (which includes a reference scenario of 

continuing current trends and practices). These scenarios are distinctly normative in nature 

drawing on qualitative data based on input of beliefs, ideas and opinions from 

stakeholders. The scenarios move on to more quantitative analysis drawn from the baseline 
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assessment of the current system in order to determine the feasibility of policy choices and 

practical change required under each scenario.  

3.3.1.2 Specifying the goals, constraints and targets 

The specific goal of the backcasting was to determine if a zero waste vision was feasible in 

the context of transitioning towards a more sustainable system of resource management 

within England. In order to evaluate the feasibility of achieving a zero waste vision (or not) 

the four scenarios act to focus the evaluation of the proposed visions in terms of the criteria 

both internal to and external of the system boundary.  

A range of quantifiable targets were set for system elements such as waste prevention; 

levels of reuse; recycling and recovery rates; and the role of landfill as a management 

option in 2050. In doing so, these targets provide a fixed level of assessment which can be 

presented visually to stakeholders by means of GIS mapping. 

3.3.1.3 Specifying the main exogenous variables 

As with most systems the waste management system is impacted either directly or 

indirectly by a range of variables. Waste arisings derive from all economic sectors as well 

as from the broader societal level. A number of these variables warrant consideration due 

to the degree of impact they can have on waste arisings, composition and infrastructure 

provision. The main points for consideration within Table 3.1 include: the impact of 

population growth which is addressed through census data; impact of prolonged periods of 

economic downturn on consumption patterns and subsequent waste arisings; the direction 

of economic development being pursued in policy initiatives such as housing and 

infrastructure development; and the degree to which resource efficient practices are 

embedded within corporate cultures. These latter points are addressed through policy 

analysis (Eriksson and Baky, 2010) and the potential for new policy directions associated 

with the outlined visions. 
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Table 3.1: Main exogenous variables and brief definition of main features considered 

Variable Definition of main features considered 
Demographics Population structure in terms of absolute numbers of persons; net 

migration; age structure or birth/death rates  

Socio-Economic 
Situation 

Levels of relative affluence or deprivation; numbers of households and 
persons per household; cultural norms; and housing type/density  

Consumption patterns 
+ environmental 
behaviour 

Lifestyle choices and personal attitudes towards developing social norms 
such as recycling; reusing second hand items or reducing waste through 
changing shopping habits  

Economic output Whether or not the economy is growing or in recession can dramatically 
alter individuals and groups’ behaviour 

Economy structure A continued shift towards a service based economy; energy and materials 
security focus; a new manufacturing base developed around the green 
economy 

Corporate Eco-
Behaviour 

Broad initiatives to reduce waste sent to landfill; considerations of 
environmental impact from operating practices; shifting towards circular 
business models; and realising greater economic efficiency through better 
use of resources   

Commodity Markets Levels of volatility in markets; protectionist practices; upwards trending 
prices; strong downwards pressure on prices  

Energy System Increased alignment of policy surrounding waste as well as a need 
identified to recover energy from all possible sources can be an influence 
on policy choices around investing in technology capable of producing 
energy from waste   

Source: (after DTZ/SLR, 2009a; DEFRA, 2011b, expert stakeholder input, 2011). 

 

In terms of commodity prices and the potential for alignment of policy with energy, these 

are addressed through stakeholder opinion and examination of past trends in terms of the 

cyclical nature of economies.    

3.3.2 The Visioning process: defining a zero waste future     

The visioning approach developed was designed to produce an overall image of what a 

desirable zero waste future could look like. A number of key parameters had to be met in 

order to capture the essence of the backcasting methodology. These included: participation 

of stakeholders; adequate and appropriate timeframe; and establishing an ongoing dialogue 

to validate outcomes drawing on the hybrid-Delphi approach defined by Borjeson et al. 

(2006) which has a mixture of stakeholders (expert and lay persons). This approach 
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addresses concerns around lack of stakeholder participation and the potential for researcher 

bias with first order backcasting (Quist, 2007; van Vliet, 2011).    

3.3.2.1 Backcasting workshop 

The workshop was designed around three sessions aimed at capturing ideas on: future 

states for waste; timeline – to identify critical points between the baseline and the end 

point; and scenario development (Anderson, 2000a) – including “what if?” questions and 

key social, technological, economic, environmental and political considerations. The 

workshop was designed to include a broad range of stakeholders but not to have too large a 

group as to exclude individuals from participating in discussions (Anderson, 2000b).  

The workshop produced a range of output materials including: brainstorming maps; initial 

thematic analysis of ideas; transcripts and visualisations (by means of photographic 

recording); a synopsis report of the session disseminated for validation; and agreements for 

follow-up contact to give feedback on research stages. 

3.3.2.2 Pre-workshop questionnaire    

Prior to the workshop a questionnaire was developed, with the agreement of the 

supervisory team, to capture stakeholder’s ideas on what a zero waste future could be. The 

questionnaire used open and structured questions to capture qualitative and some 

quantitative data. Key stakeholders were identified during the early stage of the research 

and approached for expressions of interest in attending or inputting to the visioning 

process. These stakeholders were asked to recommend others from their sector or field as a 

purposive snowball sampling approach (Goodman, 1961; Heckathorn, 1997) which sought 

expert opinion rather than a consideration of ethnography or demography. However, 

consideration was given to gender once potential participants were identified. A total of 

115 forms were sent out to potential expert participants who were almost equally split 

between male and female; 59:56.  
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A key group of stakeholders identified for inclusion was the general public, a number of 

participants in previous waste and planning related consultations were recommended by 

Local Authorities, professional associations and research consultancies. In addition, 

contacts made through participation at open meetings attended were approached for 

expressions of interest and to recommend others. The limitations of snowball sampling 

(Hardon et al. 2004) (e.g. limiting variation in the population) were addressed by means of 

countering the potential for expert bias by sampling from lay persons (general public) as 

well as from interest groups whom have a tendency to scrutinise the waste sector and 

highly waste intensive industries. A total of 20 individuals expressed an interest in 

participating in the process along with a further 10 from local interest groups (including 

Transition Town Northampton; Peoples Supermarket; Freecycle; Permaculture 

Northampton; Friends of the Earth; The Green Party and Furniture Reuse Network). This 

participant group comprised 14:16 male to female and had an age range from 25-75, with 

20 participants over the age of 50.   

3.3.2.3 Capturing the waste sector view: CIWM survey data 

At an early stage of the research, approaches were made to the Chartered Institution of 

Wastes Management (CIWM) around input to the visioning process as the main industry 

body for waste in the UK. CIWM were approached to see if they had data which could be 

used to capture the sector view. The annual survey was deemed most appropriate and a 

data set which asked for views on zero waste was provided for analysis. 

The data set contained 222 responses from a total of 500 forms being sent out, giving a 

response rate of 44.4%. Responses from waste management professionals were 

thematically analysed and the output was incorporated with thematic analysis of the 

visioning process in order to capture sector views. 
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3.3.2.4 Continuing the dialogue: interviews, discussions and feedback 

Although the data captured in the previous three stages of visioning was considerably 

detailed, it was necessary to continue a dialogue with stakeholders in order to clarify points 

and to reflect anything which was missed. Between June 2011 and February 2013 a total of 

16 semi-structured interviews were undertaken. These interviews were mainly carried out 

by telephone or through Skype (n=11) with the remainder carried out face-to-face (n=5).  

The aim of using semi-structured interviews was to clarify positions on specific points in 

terms of yes/no or giving a particular value or merely to expand on points made. One 

specific benefit of this approach was in capturing more detail on individual visions of zero 

waste futures. A further benefit was to establish a network of participants willing to give 

their views on the development of scenarios or assigning weightings to plausibility criteria 

and as part of the AHP process for location criteria.  

3.3.2.5 Ethical considerations       

All participants were asked to provide consent, either written or verbal. Forms were 

provided to participants detailing the research process and how the data provided would be 

used. It was also made clear that consent could be withdrawn at any point. Personal data 

other than names was not sought as this was not a focus of the analysis. Nevertheless, all 

data provided from individual participants was anonymised after input to database format 

with original forms destroyed to protect identification of individuals. Interviews and 

workshop sessions were recorded (audio) with transcriptions provided to participants for 

authentication and validation.  

3.3.3 Describing the present system: baseline analysis 

Analysis of the scenario pathways required contextualisation in terms of the physical 

processes (e.g. waste generation and movements), and activities (e.g. collection of waste 
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and management method) within the waste management system under scrutiny. This 

physical context must address key flows into and within the system as well as those which 

persist and enter the natural environment after consumption (e.g. residual waste disposal to 

landfill). A detailed desk survey was undertaken to establish the current system for the 

management of controlled wastes within the case study area. A range of primary and 

secondary data sources were used to quantify the six key elements of the waste 

management system, namely: waste arisings; historic trends; waste movements; 

composition; infrastructure provision and legislative framework  

This approach is represented schematically in Figure 3.4 and a discussion of the steps 

employed and the key data sources used in the baseline analysis is now presented. 

Figure 3.4: Schematic of the six step baseline analysis model and key data sources used in 
each step 
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Step 1 described in Figure 3.4 examines waste arisings data. Sources used include: Waste 

Data Flow for LACW; local planning documents for C&I and C&D; and waste returns data 

via the Environment Agency data interrogators (including hazardous waste).  

Step 2 looks at historic trends within available data sets to determine patterns likely to 

impact on future policy formation (e.g. recycling rates decreasing or sustained reductions 

in per capita waste from households). These trends were used in a generalised manner in 

order to establish parameters for scenario testing in the next phase of the backcasting 

framework.  

Step 3 examines the movement of waste into and out of the system boundary to determine 

if the area is a net importer or exporter of wastes. The data sources used for this step were 

the waste data interrogators obtained from the Environment Agency reporting operator 

waste returns notes (WRNs). This is utilised to determine if a gap exists in the provision of 

infrastructure capable of managing those materials arising within the system boundary. 

This assessment of need is an established assessment method for Waste Planning 

Authorities (WPAs) in England (NCC, 2012).  

Step 4 analyses the available waste returns data to determine the fractional composition of 

materials moving through permitted facilities as changes to this has implications for the 

type and amount of capacity identified in step 5. Similar studies have been utilised at the 

regional planning scale (SLR, 2006; EMRA, 2009) to identify potential capacity gaps for 

infrastructure provision in line with previous guidance from government (ODPM, 2005 

amended 2010). 

Step 5 evaluates the amount of operational permitted capacity available currently as well as 

any pending capacity moving through the planning process to give an indication of 

potential future capacity. Key sources used in this step included the Environment Agency 
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national database on waste infrastructure (EA, 2010), obtained under OGL license; and 

planning application documentation held by the WPA (Northamptonshire County Council - 

NCC) which is sub-divided by district or borough. At this point the various steps are 

integrated to determine any waste management capacity gap within the baseline year. The 

results are used within the quantitative model developed to test the scenarios in steps 3 and 

4 of the backcasting framework. 

Step 6 is the final stage of the process and outlines the key policy context impacting on the 

study area. The policy context is determined for international scale obligations; national 

scale strategies; and localised planning considerations (e.g. Local Development Plan 

documentation obtained from NCC). This policy analysis looks at the critical drivers and 

barriers currently in place as well as any legislation within the regulatory delivery pipeline. 

3.3.3.1 Waste arisings: data availability and issues encountered 

There are some significant limitations on data reporting for certain waste streams in 

England. Data reporting for LACW is a legal responsibility of Local Authorities in 

England and is submitted quarterly to the Waste Data Flow (WDF) system. This system 

was introduced in 2005/06 and now contains seven full years of detailed data on municipal 

waste (up to reporting year 2012/13). This source of data was utilised to form the baseline 

for LACW in the study area with a desk survey of local planning documentation also 

undertaken to determine and reconcile any significant gaps identified. Household and 

municipal waste is also reported under the EU data reporting requirements via Eurostat. 

This data is for the UK as a whole and is reported at 2 year intervals (2004; 06; 08 and 10). 

As 2010 was the last reporting point encountered in the data series (accessed July 2013) 

this data has been used as secondary data and to identify similarities and differences 

between the constituent national entities of the UK.    
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Unlike LACW there is no requirement to report C&I waste at a national scale on a regular 

basis. However, all permitted waste sites must report waste returns data to the Environment 

Agency (and similar bodies in Scotland; Wales and Northern Ireland). These waste returns 

data are captured and stored within the data interrogator system. Two interrogator 

databases are held on waste returns – the Waste Data Interrogator (WDI) and Hazardous 

Waste Data Interrogator (HWDI). Although these databases cannot be said to cover all 

waste within the waste system of Northamptonshire (as a significant percentage of low risk 

materials are dealt with by means of exemptions certificates), they do represent a detailed 

account of all waste streams managed at permitted facilities across England. These data 

sets were thus utilised to determine waste flows within the system of permitted facilities 

operating in the study area. Access was obtained to these datasets via user license 

agreement with the EA. This data was supported by means of desk survey covering local 

planning documentation and waste needs assessment. 

To address any gaps in the flow of materials through the study area, waste exemptions data 

were also obtained from the EA for 2012. These data do not give overall tonnages and in 

many cases do not specify an amount of material which can be managed under said 

certificate. However, it is possible to categorise the regime and support any estimations 

based on secondary research identified in the planning literature for Northamptonshire. 

Such reporting is at best an estimate and will be treated as having the greatest amount of 

uncertainty in terms of reliability and accuracy. Further reporting on exemptions is 

provided for landfill tax returns (HMRC, 2013) at a national scale as well as within the 

latest modelling approach for CD&E arisings in England (Gov.UK, 2013). The various 

sources of primary and secondary data are thus collated to provide a range of values from 

which to test the scenarios developed by means of quantitative modelling. 
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3.3.3.2 Historic trends: extrapolating trends across data sets 

The reporting system Waste Data Flow (WDF) is available for research purposes and was 

accessed to generate LACW data for the baseline year identified (2012) and preceding 

years in order to evaluate historic LACW trends. The WDF reporting system has been in 

place since 2005 and thus contains a significant time period for analysis of trends in 

municipal and household waste. Data reporting under WDF is by tonnage and thus requires 

further conversion to determine other metrics.  

Reporting for commercial and industrial (C&I) waste has been intermittent throughout the 

last 15 years in England. The last national scale survey was undertaken in 2009/10. Other 

studies on C&I waste have been undertaken at the regional scale (ADAS, 2009; Urban 

Mines, 2011). These data sources were collated and analysed in order to assess the range of 

waste arisings from commercial and industrial sources within Northamptonshire. Waste 

returns data held by the EA were also accessed under license in order to address C&I waste 

data gaps.  

Significant limitations were found with this process as the data sets were either incomplete, 

absent or not designed for disaggregation to the WPA level. To counter this problem, a 

modelling approach was developed which used a range of potential values for C&I waste 

within the system boundary. A quantitative model was thus developed and used, to 

produce quantifiable data for assessing the impact of scenarios. The model was run from 

2050 to the baseline to produce non-linear (normative) backcasts aligned with the impacts 

of the exogenous and endogenous variables identified. 

The availability of data on construction and demolition waste is the least detailed of all 

available. A modelling approach by AEA Technology (Gov.uk; 2013) has been based on 

estimated quantities at the national scale. To disaggregate the data, a similar modelling 

approach was developed for C&D waste as put forwards for C&I waste. Some variations 
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had to be incorporated within the C&D model in order to account for wastes managed 

under exemptions and the potential level of recovery as aggregates. 

3.3.3.3 Waste movements: examining the WPA and district levels 

A number of considerations are necessary when determining movements of waste. First, 

the majority of municipal waste passes through transfer or bulking facilities prior to 

treatment or final disposal (EMRA, 2009). This must be considered to avoid double 

counting and thus overestimation of quantities. To address this issue, reported quantities of 

LACW were used to test accuracy of waste returns data. Any discrepancies (over the 

reported figures) were assigned to either C&I or C&D depending on the EWC description 

of the waste. 

Second, C&I waste is likely to move the greatest distance as this is traditionally 

provisioned through national scale private sector contracts, where waste is sent to 

contractors own sites rather than the closest appropriate facility (ODPM, 2005). This 

assumption was tested in terms of the source WPA for the material types and reported in 

terms of percentage of materials from outside the WPA.  

Finally, the use of exemptions within the wider permitting scheme potentially accounts for 

significant quantities of materials but is not required to report tonnages. This necessitates 

the need for an estimation approach to C&D figures. 

3.3.3.4 Determining the composition of waste streams 

Understanding and accounting for changes in the composition of waste from different 

waste streams is an essential part of developing reliable scenarios of future system 

conditions. Specific policy objectives such as banning waste from landfill or incineration 

routes can impact on implementation of technological innovations; calorific value of 
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specific feedstock types; developing integrated facility sites; and collection services 

offered by local authorities (Burnley, 2007b; Tudor et al. 2007; Bates et al. 2008). 

A more fundamental issue must also be considered when determining the composition of 

waste streams, that of waste prevention. The impact of waste prevention initiatives has far 

reaching implications in three main ways.  

1. If waste prevention has a broad and constant impact this may diminish the 

requirement for new policy measures as composition too would likely remain 

constant.  

2. Targeted and material specific prevention approaches would have implications for 

the traditional waste management sector and the design of supporting policies.  

3. Low engagement levels with prevention initiatives or changes in behaviours would 

leave generation rates open to fluctuate according to existing policy initiatives and 

composition to alter accordingly.  

Data availability and accuracy is again a difficulty in this area across all waste types as 

composition studies are expensive and time consuming. Such studies are also exposed to 

considerable variance associated with seasonality for specific waste fractions (i.e. green 

garden waste). 

A supporting methodology is proposed which looks at waste returns data for district and 

county level. Such a methodology has certain strengths and weaknesses. Key strengths 

include:  

 Returns data gives an indication of the composition of waste managed at facilities 

from all waste streams (as EWC reporting classifications); and  

 Returns data provides granularity for C&I and C&D streams which has been absent 

in most recent reporting.  

A significant weakness identified with waste returns data relates to missing fractions as not 

all waste streams come under the reporting regime (e.g. inert materials). To address this 
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shortcoming localised composition research within the study area and former regional 

planning tier are utilised as secondary sources to validate results. 

3.3.3.5 System structure: collection systems and facility types  

Analysis of the waste management system needed to consider the broad range of elements 

which handle material flows within the legislative framework and informally. A desk 

survey was utilised to review the key components of the waste management system within 

England and Northamptonshire. The EA holds records of all permitted waste facilities 

within England. These records are stored in excel spreadsheet format and are available on 

request from the EA national authority under an OGL (Open Government License). These 

were accessed under license and used for this stage of the research in terms of the 

permitted capacity and the proven capacity based on waste returns tonnages for each site.    

3.3.4 Scenario development and analysis 

Scenario development is very time consuming as it is undertaken with consideration of the 

potential impact of each choice made. This stage requires high levels of participation from 

stakeholders with a need to obtain input at different stages of the process. To meet this 

requirement, results from the visioning process were combined with output from the 

baseline analysis in order to produce both qualitative and quantitative scenarios. These 

scenarios were used to form thematic narratives (section 5.4.2) in the form of futures tables 

as well as forming the basis for calculations within the quantitative model (section 5.4.3.2) 

for testing the feasibility of scenarios in terms of impacts on waste tonnages; economic 

impacts; and carbon equivalence impacts (section 5.5). Figure 3.5 is a schematic 

representation of the data collection stages and the outputs which required further analysis. 

The analytical phase was structured around the types of data collected from the various 

stages of the backcasting (represented as the left column in Figure 3.5).  
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Figure 3.5: Schematic presentation of the scenario development process with participation 
processes, working method and influencing factors illustrated (Source: after Hickman and 
Bannister, 2007)  

 

In terms of generating scenarios, questionnaires were structured to capture quantitative 

data such as levels of recycling and prevention/reuse which were used to formulate targets 

for specific visions. Capturing qualitative data was the main focus of questionnaires, as 

stakeholder views and opinions were sought which could be evaluated using thematic 

analysis based on Social Technological Economic Environmental and Political (STEEP) 

criteria. Mind mapping software (Mind Genius 4) was utilised for this data analysis as well 

as for the qualitative data captured within the workshop setting.  

3.3.4.1 Ethical considerations addressed 

The workshop and follow-up interviews were recorded and transcribed so as to capture 

ideas and visions from participants. They were then sent copies of transcriptions and asked 

to validate these in terms of accuracy and being a true reflection of their views and 
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opinions on visions for the waste sector. Consent was sought from all participants at each 

stage of involvement, with it being made clear that they were free to withdraw this consent 

at any stage. All data was anonymised prior to distribution so as to avoid identification of 

individuals. The University of Northampton code of ethics was adhered to throughout 

(UoN, 2011). 

3.3.4.2 Producing the visions and developing scenario pathways 

The results of thematic analysis and categorisation according to STEEP criteria were 

combined with initial follow-up interviews and discussions (Bovea and Powell, 2006) in 

order to formulate futures tables showing the zero waste scenarios. The resulting visions 

were again distributed to stakeholders for authentication and further feedback, after which 

they were taken as the starting point for feasibility testing. 

3.3.4.2.1 Plausibility matrix testing 

Systems characteristics and variables were determined by means of a plausibility matrix. A 

plausibility matrix is one means of capturing qualitative and quantitative data from 

individual participants within a study. These are commonly used with General 

Morphological Analysis approaches (Ritchey, 2005; 2006) and have also been used to 

capture stakeholder views via Key Factor Analysis techniques (DEFRA, 2011b). Indeed, a 

foresight study carried out by Zpunkt for DEFRA on building future waste policy was used 

as a basis for the variables and policy options (projections) within the final matrix. 

Discussions with industry experts and the supervisory team in early-2012 were used to 

finalise these variables prior to sending out the matrices for stakeholder input.    

The first stage in using plausibility matrix forms was to contact stakeholders (n=63) to give 

their preferences to 14 variables, each with 5 options, on a 1-5 ‘likert’ scale. A total of 22 

stakeholders responded with sufficient detail to be used in the analytical phase with a 

further two of these proving incomplete in terms of sections omitted for evaluation. This 
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meant 20 of the original 63 requests were returned fully completed giving a response rate 

of 31.7%.  

Table 3.2: Individual response matrix showing indicative results for five variables (top 
row) with potential factors (options 1-5), first choices (in green); and preference scale 
(excel conditional formatting) shown. 

 

 

The rationale for applying this analytical approach was to determine relative weightings of 

variables utilised in the quantitative model as well as the choices which would inform the 

qualitative scenario narratives. To this end, output was recorded in two ways. First, the 

forms were used to identify individual scenarios through choice of options within each 

variable grouping (see Table 3.2).  
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This method of recording visually captures the choice of scenario for individual 

respondents. The likert scale was utilised to score each choice with these scores then 

aggregated to produce overall weighted choices (as % scores) for each potential outcome. 

Once the matrices results had been produced, the second stage of the process was to again 

ask stakeholders to give their opinion on the outputs in terms of when the options were 

most likely to be applicable (or if these were to be taken as applicable for the duration of 

the scenario period). These responses were recorded as either a key milestone year or 

duration with numbers of respondents assigned to each category for all variables.   

3.3.4.2.2 Quantifying the plausibility results 

The quantitative data generated through the preference scale is derived from the preference 

scale shown in Table 3.3.  

Table 3.3: Preference scale (based on Likert scale) and descriptor used in the plausibility 
matrices 

Preference scale Descriptor 

5 Strong positive impact perceived 

4 Positive impact perceived 

3 Current trend dominates 

2 Negative impact perceived 

1 Strong negative impact perceived 

   

Using this preference scale has some advantages in terms of stakeholder perception. It is 

often easier to perceive the best choice of categories in terms of a descending scale from 1  

Table 3.4: Indicative results from plausibility matrices with data analysis stages shown  

Demographics Sum of scoring Reversed   
scores 

Priority 
weighting 

Stable Population Growth 28 72 0.2057 

Population boom 28 72 0.2057 

Rapidly ageing population, stagnation 37 63 0.1800 

Increasing population balances ageing 21 79 0.2257 

Decreasing population growth (repatriation) 36 64 0.1829 

Sub-totals 150 350 1.0000 
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to 5 with 5 being the least preferable choice. However, in terms of analysing the results this 

scale had to be reversed in order to give a priority weighting. Table 3.4 shows indicative 

results and the procedure for generating the priority weighting for individual criterion.   

3.3.4.2.3 Methodological development 

The approach in this research differs from the DEFRA study by utilising stakeholder 

responses as the determinant for each variable and choice. This is important when the 

approach is seeking to analyse potential policy pathways from 2050 to the present (as 

opposed to projecting from the present to 2020 or 2030 – DEFRA, 2011b). Projections are 

extensions of current trends and policy directions whereas stakeholder choice can be based 

on desirability, values and beliefs which broaden the spectrum of options.  

3.3.5 Impact analysis  

The final stage of the backcasting method was to test the feasibility of the scenarios 

generated. In order to achieve this outcome a quantitative model was developed which 

could combine the baseline data with the quantified values for the relevant criteria within 

each narrative. This model was designed around producing results in terms of three 

metrics: overall waste arisings (tonnages); economic values (in terms of costs per tonne 

and savings per tonne); and carbon (as CO2 equivalent). 

Tonnage data is used specifically to determine whether or not national targets are being 

achieved or surpassed for each scenario. Economic values and carbon metrics are utilised 

in order to test the cost-effectiveness and potential environmental impact of scenarios 

associated with the waste sector.  

3.4 Systems visualisation utilising GIS 

A number of key tasks were identified in order to visualise the results of the backcasting 

method chosen. The software package ArcGIS 10 was utilised in order to visually project 
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the system under scrutiny and the potential changes envisaged as a result of the scenarios 

outlined. ArcGIS 10 is a powerful analytical platform which allows data manipulation and 

analysis within a digital spatial environment. The goal was to embed the backcasting 

process within a GIS environment in order to meet Objective 4 and rigorously test the 

backcasting output. Figure 3.6 is schematic of the GIS modelling approach used showing 

the connections with the key stages of the backcasting process as well as the quantitative 

model outputs.  

Figure 3.6: Workflow schematic of the GIS modelling approach used 1) data collection; 2) 
data analysis stages; 3) spatial analysis stages; 4) results maps. 

 

3.4.1 Parameters for using GIS with backcasting    

GIS modelling environments offer a range of powerful tools for the analysis of quantifiable 

data. To support the backcasting method applied in the research it was decided to 

4 3 

2 

1 



118 

 

concentrate on a number of key features in order to deliver meaningful outputs. Indeed, the 

quantifiable elements of the visioning process and the scenario development process can be 

represented and analysed by means of GIS tools and applications. The key parameters and 

methods used in developing the GIS model are outlined in Table 3.5. 

Table 3.5: Methods and key parameters (spatial and temporal) used in the GIS modelling 

Modelling Method  Spatial and Temporal parameters  

MCDA (using AHP)  Proximity  -  minimum distances guidance; transport - modal  

 
Scale – investment required; planning process  

 
Feedstock availability – economic viability  

 
Suitability – needs assessment  

Comparative analysis  Results versus policy objectives  

Backcasting  Repeat above steps for desirable vision(s) and mid-points  

 

3.4.2 Outline of the GIS modelling method 

Systems modelling using GIS can be an effective tool for engagement with decision-

makers and broader stakeholders (Guan et al. 2011). This was a central concern when 

designing the research methodology in terms of how to communicate results in a 

meaningful and robust manner to multiple stakeholder groups with differing levels of 

technical understanding. This section outlines the steps within the methodological process 

used and key considerations relating to type of data; accuracy; manipulation required and 

output reliability.  

3.4.2.1 Data collection – thematic layer maps 

Requirements under the INSPIRE Directive (2007/2/EC) established an infrastructure for 

spatial information in Europe. INSPIRE addresses 34 spatial themes relevant to 

environmental applications within three Annexes. Specific to this research, Annex III 

includes sub-category 11 – Area management / restriction / regulation zones & reporting 

units which outlines obligations on making data available on waste sites.  
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The EA as regulator responsible for waste management in England and a range of other 

organisations (e.g. Natural England; English Heritage; Defra; etc.) host and contribute to 

the Data Share portal (http://www.geostore.com/environment-agency/). This portal was 

accessed in order to retrieve required datasets (e.g. land use) (see Table 3.6). Where data 

was not available or data was not in geo-referenced format (e.g. waste arisings data) 

bespoke layers were created with ArcGIS 10 software and assigned geo-referencing 

attribute data (e.g. Eastings and Northings).  

Table 3.6: Data collection requirements by criteria; INSPIRE Annex and organisation 

Criteria / Layer  INSPIRE 
Annex 

Organisation(s)  

Waste sites (permitted facilities and 
exemption sites)  

III  Environment Agency  

Heritage sites (listed buildings; battlefields; 
monuments; parks and gardens)  

I and III  English Heritage  

Environmentally sensitive sites (RAMSAR, 
SSSI, AONB; SPA; etc.)  

I & III  Natural England  

Environmental data (flood risk; groundwater 
vulnerability; nitrate vulnerability; etc.)  

I & III  Environment Agency; 
BGS  

Assessment (land cover; elevation; geology; 
orthoimagery)  

II  CEH; BGS; Natural 
England; EuSA  

  

3.4.2.1.1 Data manipulation and formatting 

Most data was available as shape (.shp) files or equivalent. In the absence of these file 

type’s data was entered to Excel spreadsheet where geo-referencing data was added for 

conversion and import to geodatabase (.gdb) by means of the ArcCatalog tool.  Forming 

the geodatabase (.gdb) requires entering, processing and analysis of data prior to 

combining and interpretation for producing outputs. The geodatabase (.gdb) format was 

chosen above individual shape (.shp) files because of issues around stability (Zeiler, 1999) 

with very large amounts of data storage and the production of analytical maps. 

Determining the mapping methodology requires a detailed consideration of the level of 

analysis (disaggregation) required. As a consequence of the data available at Lower Super 

http://www.geostore.com/environment-agency/
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Output Area (LSOA) and the constancy of association between LSOA and Census data, 

analysis at this scale seemed most appropriate. Northamptonshire contains 422 LSOAs 

(ONS, 2012) with a mean population of 1,640. These geographic units of analysis allow 

calculation of per capita figures for non-spatial data (e.g. tonnages, economic costs and 

carbon emissions) and can be scaled up or down depending on geographic location through 

relatively simple analytical procedures. 

3.4.2.1.2 Data issues encountered 

Not all datasets are available at LSOA level which requires further manipulation and 

formatting of the data. Previous studies have identified significant gaps in the data. 

Nevertheless; as mentioned; data gaps are increasingly being addressed and filled due to 

legislative requirements and commercial demands. In addition, geospatial tools available in 

ArcGIS allow the creation of specific bespoke map layers (point, polygon and polyline). 

Identified data gaps were addressed through the creation of bespoke layers (e.g. industrial 

parks, strategic employment land and previously developed land). 

3.4.2.1.3 Data collection – priority scale forms for AHP 

In order to develop and validate the weightings assigned to each criterion, priority scale 

forms were produced and sent to a number of technical stakeholders (n=30) and non-

technical stakeholders (e.g. stakeholders from outside the waste and resource management 

field) (n=30). The response rate from these 60 stakeholders was high at 93% (56 out of 60). 

However, it is not necessary to have such a large group for analysis by means of AHP (e.g. 

pairwise comparison). As a result the first 40 respondents (20 from each group) were 

chosen as these were principally received within the originally specified time period 

(January 2012 to April 2012) with the remainder being received within a further one month 

window. 
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Table 3.7 shows the means of recording responses within the priority scale framework 

using the Saaty scale as proposed by De Feo and De Gisi (2010). 

Table 3.7: Priority scale input forms for stakeholder responses  

Source: (after De Gisi & De Feo, 2010) 

3.4.2.2 Data analysis stage 

The identification of most likely areas of search is the most involved aspect of the 

modelling methodology put forwards in this research. This consists of three main phases: 

1. Developing a constraints model 

2. Developing an opportunities model 

3. Integration of constraints/opportunities models to produce a suitability model 

The model development process required the production of a set of weightings for each 

criteria grouping. The Analytical Hierarchy Process (AHP) was used to evaluate criteria 

based on input from stakeholders as to the degree of priority which should be assigned to 

each criteria group. Each sub-criterion was then assigned a weighting in a second round of 

Priority Scale (Analytical Hierarchy Process – AHP) - siting of waste facilities in the UK

5) Proximity and Access to transport networks
6) Environmental receptors
7) Conservation receptors
8) Human and social capital receptors
9) Flood risk and ground stability

Criteria

1) Source of waste arisings
2) Existing waste sites
3) Socio-Economic
4) Access to heat and power networks

Drawing up instructions:

Distribute the 9 criteria among the 5 levels in order of decreasing preference
The criteria on the same level have the same preference
Warning: do not repeat the same criteria several times
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comparisons according to preferences stipulated in AHP priority scale forms and through 

discussions with individual stakeholders. 

3.4.2.2.1 Assigning weightings with AHP  

The AHP was put forwards by Saaty as a general theory of measurement (Saaty, 1987). It 

is used to derive ratio scales from both discrete and continuous paired comparisons. In this 

case responses using the Saaty Scale (see Table 2.4) measuring the relative strength of 

preferences and feelings relating to waste infrastructure siting were entered into pair-wise 

matrices in order to produce a weighting value based on output Eigen values. Versions 

2013-08-12 and 2013-12-24 of the AHP software package developed by BPMSG (Goepel, 

2013) were used for data analysis as it meets the criteria set out in the Saaty AHP method 

and benefits from online support with a user friendly interface being based on spreadsheet 

formatting. 

The AHP method is based on a pair-wise comparison of the importance of different 

criteria. The fundamental scale for pair-wise comparison defines and explains the values 1 

to 9 with judgments comparing pairs of like elements in each level of a hierarchy against 

criteria in the next higher level. 

This approach can be explained further in terms of the preference scale thus: a value 1 

(equal importance) means that two criteria contribute equally to the objective. The next 

hierarchical level is represented by value 3 (moderate importance) meaning that experience 

and judgment slightly favour one criterion over another. A value of 5 (strong importance) 

would mean that experience and judgment strongly favour one criterion over another. The 

value 7 (very strong importance) means that a criterion is highly favoured over another. 

Finally, a value of 9 (extreme importance) would mean that the evidence favouring one 

criterion over another is of the highest possible order of affirmation. The values 2, 4, 6 and 

8 have to be utilised for compromise between the above values and represent intermediate 
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values (Saaty, 2001 cited in De Feo & De Gisi, 2010). Respondents in the study had the 

scale and values explained to them prior to completing the input forms. Specifically the use 

of intermediate values (i.e. 2, 4, 6 and 8) was discussed if there was any doubt in terms of 

assigning a marginal preference. However, none of the respondents expressed any such 

indication and as a result the intermediate values were not used. A comments box was 

incorporated with an indication given to respondents to use this for recommendations. 

Figure 3.7: Example summary sheet from the AHP software used, showing results 
considerations around Eigenvalue and Consistency (Source: Goepel, 2013). 

 

Analysis of the data was undertaken with the AHP software package developed by Goepel 

(2013). This open access software is in spreadsheet format requiring data input for each 

participant with a summary sheet for defining the variable set and reporting results for 

individual stakeholders or as an aggregated result of all stakeholders. The output gained 

from the AHP software is shown in Figure 3.7. The summary sheet allows weights and 

rank order to be determined at the macro scale (group criteria) micro scale (individual 
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criterion). It is also possible to determine the consistency of the overall (consolidated) 

results as well as for each participant. The goal in terms of consistency is to achieve a 

value less than 10% otherwise criteria must be re-evaluated.   

 
Figure 3.8: Structure of the AHP spreadsheet software for individual participants (Source: 
Goepel, 2013).  

 

Figure 3.8 gives an example of the spreadsheet structure for entering data from the priority 

scale forms. Essentially, the column showing A and B represents where the score was in 

relation to any other score. For example; if a score of 1 was placed on the middle tier of the 

priority scale and a 2 was placed on the highest tier then a B would be entered in column 

‘more important’ (Figure 3.8). This would be two tiers higher than the score 1 and so a 

value of 5 is entered in the ‘scale’ column. The converse is true if the 2 was a placed on 

tiers below the 1 and would therefore receive an A. The last consideration relates to values 
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placed on the same tier, these are assigned an A and a scale value of 1 as they are deemed 

to be of the same level of importance as each other.    

3.4.2.2.2 Ethical considerations 

Ethical considerations with this stage of data collection were addressed with regards to the 

ethics policy of the University of Northampton (UoN, 2011). Consent was sought from all 

participants prior to sending priority scale forms, with participants being advised they were 

free to withdraw this consent at any time. Responses were anonymised by transferring the 

responses to numerical data sheets for input to the AHP spreadsheet. All records were kept 

in locked offices and once entered into secondary data sheets were destroyed. No personal 

details were used in the analysis as this was not a focus for the analysis.  

3.4.2.3 Spatial analysis and results stages 

Spatial analysis techniques were utilised at three separate stages of the research: mapping 

baseline system conditions and undertaking a suitability assessment for future waste 

facility siting; mapping the key metrics (from the visions through key milestone years); 

and in the final output maps (as part of the impact analysis). 

3.4.2.3.1 Baseline mapping  

The main waste system characteristics were mapped (e.g. tonnages, sources of waste and 

infrastructure type) in order establish a means of assessing each scenario. In addition, the 

main quantifiable exogenous variables were mapped (population density; areas of 

deprivation; areas of employment; and areas of future growth). These system 

characteristics were combined within the suitability assessment for waste infrastructure 

siting in order to test the appropriateness of sites chosen for future waste management 

facilities.  
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The findings of the suitability assessment produced opportunities and constraints maps as 

well as a final suitability map for potential locations to site waste facilities. This 

assessment was used to frame the scenario narratives for the spatial pattern of future waste 

facilities and the policy implications of such changes.  

3.4.2.3.2 Key metrics mapping  

A series of maps were produced showing the spatial distribution of key metric information 

(e.g. per capita tonnages by waste streams; per capita economic costs and savings; and per 

capita direct and avoided emissions of CO2e associated with waste generation and 

management). These maps combined census and demographic data with non-spatial data to 

generate new attribute fields which could be projected within a GIS environment. The 

resulting information was analysed against baseline conditions to determine the relative 

level of impact between each scenario.    

3.4.2.3.3 Final output mapping  

The final output maps were produced in order to provide a means of comparing the overall 

impact of each scenario in terms of meeting the definition of zero waste. Each output map 

visualised the four scenarios before comparing these with the spatial pattern of waste 

facilities proposed within the LDP documentation (NCC, 2012).   

3.5 Case Study approach 

Rowley (2002) states that: ‘A case study approach is utilised in order to explore in detail 

the efficacy of a specific method or approach proposed’. This is particularly the case for a 

model which has applications at both local and national scales. Using a case study 

approach in the context of modelling a waste management system has benefits in terms of 

data availability and the level of detail which can be achieved in terms of mapping 

collected data and results. While the main focus of the G-BFM (see Figure 3.1) is to 
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qualitatively explore the scenarios for zero waste futures there is a need to determine ‘how’ 

the system can change to meet the desirable goal as well as ‘why’ certain choices are made 

during the process.   

3.5.1 The use of Northamptonshire as a backcasting case study 

These two questions are critical to the use of a well-defined administrative unit such as 

Northamptonshire. Mapping ‘how’ the system can change according to the characteristics 

of each scenario and subsequent pathway allows a detailed assessment of the data at a scale 

to which individuals, groups, businesses and decision-makers can relate. In addition, 

testing the model in terms of local conditions allows the possibility of delimiting a range of 

common parameters which would enhance the usability of the model by other WPAs; 

Local Authorities or stakeholders. Using a case study such as Northamptonshire may also 

allow answers to be found to ‘why’ certain choices can be made. For instance, through 

testing different criteria weightings it is possible to expand or restrict the potential areas of 

search which may be suitable as sites for the provisioning of waste infrastructure. 

Conversely, changing criteria such as the legal definition of waste or impact of waste 

prevention on a waste system may provide a visual indication of waste levels requiring 

treatment and potential level of investment for a sustainable future  WMS. 
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Chapter 4 Results: Baseline analysis 

Chapter 4 presents the results of the baseline analysis for the waste system within the study 

area of Northamptonshire for 2012. The results from this stage of the backcasting process 

form the basis for analysing the output from the visioning stage in terms of scenario 

pathways and the feasibility of such considerations of the future and begin to address 

objective 1. In order to analyse the scenario pathways it is necessary to determine the 

physical processes and activities which constitute the baseline system conditions within the 

study area. In addition, the policy considerations which guide current operations require 

outlining. A methodology was developed to analyse the strategic elements of waste 

systems, a schematic of the workflow is shown in Figure 4.1. 

Figure 4.1: Schematic of the baseline analysis methodology 

The section will explore the physical characteristics of the waste management system 

within the study area. The main emphasis will be analysis of controlled waste arisings; 
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other significant sources of waste; waste movements; management systems and regulatory 

requirements with a final assessment of policy targets and any potential capacity gap 

identified. This section analyses the operational context and briefly outlines the main 

exogenous variables impacting the waste system within the study area in 2012. 

4.1 Waste arisings and historic trends 

4.1.1 Local Authority Collected Waste (LACW) 

Reported LACW arisings for Northamptonshire in 2012 totalled 339kt (DEFRA, 2013a) of 

which household waste accounted for 93.5% (see Figure 4.2). Total LACW in 2012/13 

represents a reduction of 13.5% from the 2006/07 peak of 393kt while the percentage share 

of household waste has increased from 89.2%.  

Figure 4.2: Changes in LACW (household and municipal waste) arisings in 
Northamptonshire between 2005/06 and 2012/13 (Source: DEFRA, 2013a). 
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It can be seen in Figure 4.2 that LACW arisngs (e.g. municipal and household waste) have 

been declining since 2006/07. The data also shows an erratic pattern between 2009/10 and 

2012/13 with decreases fluctuating significantly. This change is illustrated in Figure 4.3. 

Figure 4.3: Annual percentage change in total municipal waste for Northamptonshire 
between 2006/07 and 2012/13 (Source: DEFRA, 2013a).    
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means of scenario planning approaches based on a transforming backcasting approach 

(Borjesson et al. 2006).  

4.1.2 Commercial and Industrial waste (C&I) 

Waste returns data are reported under the waste interrogator database held nationally by 

the waste regulator, the Environment Agency (EA). This data source reports C&I waste by 

Substance Oriented Classification (SOC) and European Waste Catalogue (EWC) chapter 

classifications. In terms of granularity, the ECW classification allows more detailed 

analysis of the data and is utilised here. Calculations for C&I waste in Table 4.1 are based 

on summing ‘Internal’ movements (between study area facilities) of waste with ‘Exported’ 

wastes before deducting ‘Imported’ wastes to give an indicative figure for ‘generated’ C&I 

wastes.    

Table 4.1: Waste returns data (tonnes) for C&I sources (EWC categories 2-16 and 19) in 
Northamptonshire between 2008 and 2012  

Movement 2008 2009 2010 2011 2012 

Internal 599,160 579,525 451,882 433,099 448,556 

Exported 597,771 587,709 517,623 638,486 678,612 

Imported 178,871 107,903 241,690 186,928 172,312 

Generated C&I 1,018,060 1,059,331 727,814 884,657 954,856 

Source: (EA, 2012a; EA, 2013a). 

Table 4.1 shows historic C&I returns data for the EWC categories 2 to 16 and 19 as these 

capture the main areas of C&I generation as previously described. Waste returns data 

(Table 4.1) show an overall reduction in C&I waste generation between 2008 and 2012 of 

around 64kt (5.1%). However, the overall levels show a complicated situation as generated 

waste reduced significantly, by 28.5%, in 2010. After this low, returns data shows 

generated C&I waste has increased to just lower than 2008 levels. Movement of C&I waste 

within the WPA (internal) has declined by almost 151kt whereas exported C&I waste has 
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increased by more than 181kt overall. Imports of C&I waste have fluctuated throughout the 

period 2008-12 with the 2012 level being around 3.5% below that of 2008.      

Given the lack of data reporting at national scale for C&I waste and almost no detailed 

reporting at the sub-regional scale, the baseline can only be an estimate for C&I wastes. To 

test the waste returns data other reporting sources are utilised, namely: Jacobs (DEFRA, 

2010) ‘Survey of Commercial and Industrial waste’ undertaken for DEFRA; and NCC 

reporting under the MWDF Partial Review (NCC, 2012).  

Table 4.2: National survey of C&I waste arisings (tonnes) reported by sector for East 
Midlands and Northamptonshire for 2009 
Business sector East Midlands Northamptonshire 

Food, drink & tobacco 758,649 122,142 

Textiles / wood / paper / publishing 503,633 81,085 

Power & utilities 1,602,171 257,950 

Chemicals / non-metallic minerals manufacture 493,479 79,450 

Metal manufacturing 485,311 78,135 

Machinery & equipment (other manufacture) 174,879 28,156 

Retail & wholesale 699,724 112,656 

Hotels & catering 190,363 30,648 

Public administration & social work 251,110 40,429 

Education 103,175 16,611 

Transport & storage 202,210 32,556 

Other services 843,497 135,803 

Total 6,308,199 1,015,620 

C&I share according to RSS (EMRA, 2006) - 16.1% 

Source: (after DEFRA, 2010; EMRA, 2006) 

Table 4.2 shows the overall estimated tonnage for Northamptonshire, based on the 

Regional Spatial Strategy (RSS) apportionment method (EMRA, 2006), totalling 1.02Mt in 

2009 (based on 2008/09 data). This total represents a 0.34% variance on 2008 returns data 

and a 4.13% variation on the waste returns data for 2009 shown in Table 4.1. Thus, C&I 

waste returns total for 2012 of 0.95Mt is taken forwards as the baseline figure for 

modelling as opposed to the quoted figure in the MWDF partial review (NCC, 2012) of 
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1.06Mt which is based on the ADAS model (ADAS, 2009) used by many Local 

Authorities in England to estimate and model C&I waste arisings.  

The rationale for this choice of baseline relates to waste returns data for 2012 (Table 4.1) 

reflecting the impact of the economic downturn in England since late 2008. The ADAS 

model and Jacob’s survey do not allow for such impacts on C&I waste as these were 

developed and compiled prior to the economic downturn.   

4.1.3 Construction and Demolition waste  

A number of factors require consideration in determining C&D arisings at the WPA scale. 

These include: waste returns data; exemptions data; planning documentation based on 

earlier regional apportionment; and disaggregating national scale studies. In order to 

disaggregate the national scale data to the study area level it was necessary to first ascribe a 

value to the East Midlands region, which was estimated at 10% of the total C&D waste for 

England within the RSS (EMRA, 2006). This figure was further reduced according to the 

apportionment allocated within the RSS for Northamptonshire, some 17% of the East 

Midlands total (EMRA, 2006). 

Table 4.3: Estimated C&D tonnages (kt) and recovery rates (%) reported for England, East 
Midlands and Northamptonshire, 2010 

Metric (kt) Exempt 
sites 

Aggregates 
estimate 

Treatment Landfill Estimated 
Total 

England 8,150 42,184 7,203 19,839 77,375 

East Midlands  
(10% of England) 

815 4,218 720 1,984 7,738 

Northamptonshire  
(17% of EM) 

139 717 122 337 1,315 

Recovery/disposal rates (%) 10.53 54.52 9.31 25.64 74.36 

Source: (after Gov.uk, 2013; EMRA, 2006). 

The figure for estimated C&D arisings in Northamptonshire, 1.3Mt, shown in Table 4.3 is 

consistent with levels reported by the WPA, 1.31Mt (NCC, 2012). The data in Table 4.4 

was generated by using Equation 4.1 for each reporting year: 
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Equation 4.1: 

 = .86 [∑[ + ] −  ∑[ + ]] 

Where: =  − y+z = .86  and:  = .86   

This similarity in the estimated data may be due to the WPA adopting the AEA estimation 

methodology (Gov.uk, 2013) in order to bring the review up to date (based on 2010 

estimations as the construction sector has been subdued between 2008 and 2012). In order 

to further test this similarity the estimation data and waste returns data were synthesised to 

test any difference between the data for 2010 and the potential level in 2012. The synthesis 

of the estimation data (Gov.uk, 2013) is shown in Table 4.4.  

Table 4.4: Waste returns data for EWC 01 and 17 (2008-2012) synthesised with estimation 
methodology giving estimated baseline (tonnes) for Northamptonshire 

Reporting stage 2008 2009 2010 2011 2012 

Internal (A) 646,076 480,672 553,930 572,427 576,853 

Removed (B) 129,522 175,442 183,455 198,422 190,080 

Imported (C) 188,628 171,057 185,040 201,488 271,314 

Not coded (D) 115,485 56,389 94,761 99,218 28,012 

At facilities (x) 471,484 428,668 457,584 470,144 467,607 

Exempt estimate (y) 187,001 165,000 139,001 95,000 117,803 

Aggregate estimate (z) 735,488 668,697 713,805 733,397 729,440 

Estimated totals (T) 1,393,973 1,262,365 1,310,390 1,298,541 1,314,850 

Sources: (after EA, 2008; 2009; 2010; 2011; 2012a; Gov.uk, 2013). 

Given the significant lack of data for C&D waste at all scales, estimations are used in 

Table 4.4 so as to determine the accuracy of disaggregating national estimates with RSS 

apportionment figures (Table 4.3). As can be seen the estimated total for 2012 is almost 

equal to that gained using the disaggregation method (1.31Mt). However, the trend 

between 2008 and 2012 is somewhat erratic with a significant decline from 2008 to 2010 

(9.44%) followed by an increase between 2009 and 2010 (3.80%). The estimated totals for 
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2010 to 2012 remain relatively constant despite significant changes in C&D wastes 

managed internally (23kt); being imported (86kt); and recorded as ‘non-coded’ (71kt). As 

a consequence of the consistency within the methods used, the figure of 1.31Mt will be 

taken forwards for modelling C&D wastes within Northamptonshire, but with a caveat 

around the inadequate nature of the available data.  

4.1.4 Hazardous waste 

Hazardous waste production is typically linked most closely with industrial business 

activities and displays similar generation drivers. According to waste returns data for 2012, 

facilities in Northamptonshire managed around 122kt of hazardous waste (with transfer). 

Table 4.5: Summary of hazardous waste (tonnes) managed at facilities in 
Northamptonshire (2012) 

E
W

C
 

C
ode 

Incineration 
w

ith energy 
recovery 

Incineration 
w

ithout energy 
recovery 

L
andfill 

R
ecovery 

R
ejected 

T
reatm

ent 

T
otals 

T
ransfer (D

) 

T
ransfer (R

) 

02 - 2 - - - - 2 1 0 

03 - - - - - - - 1 - 

04 - - - - - - - 1 - 

05 - - - 24 - 1 26 - - 

06 - - - 1 - 1,340 1,341 55 7 

07 - 10 - 21 - 5 35 77 608 

08 - 1 - 209 - 45 255 165 426 

09 - - - 68 - 8 76 20 12 

10 - 148 - 35 - 128 311 10 - 

11 - - 17 88 - 664 769 150 153 

12 2 233 1 5,630 - 22 5,888 4 1,923 

13 5 0 - 7,214 10 1,085 8,314 300 2,756 

14 6 - - 54 - 10 70 51 181 

15 - 3 - 44 1 74 123 378 695 

16 0 226 92 8,688 8 397 9,411 3,120 5,109 

17 - 3 2,422 - - 986 3,411 185 151 

18 6 1,335 - 5 - 171 1,518 342 2 

19 - 274 57,320 2,467 - 1,687 61,748 1 109 

20 - - - 946 - 0 947 120 1,514 

Total 19 2,235 59,852 25,494 18 6,625 94,243 4,981 13,648 

Source: (EA, 2012b). 
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Table 4.5 provides a summary of all hazardous wastes by management method and EWC 

Chapter code. Landfill handles the largest percentage flow of hazardous materials (61.9%) 

when considered as a final destination. Recovery is the management method with the next 

largest flow (28.9%) with smaller flows going to treatment operations and incineration. In 

Northamptonshire, some 73.3% of hazardous materials passing through transfer operations 

were further sent for recovery as opposed to disposal.   

4.1.5 Other wastes 

A number of other sources of waste arisings require mentioning as part of the wider 

dynamic system of waste management. These include agricultural waste; sludges from 

waste water treatment operations; and radioactive wastes (specifically low level waste – 

LLW). The study area has significant farming activity creating large amounts of slurries 

and compostable materials. In addition, there are around 100 sites which process waste 

water, including 6 large scale sites. In terms of radioactive wastes, the study area has a 

nationally significant facility which manages small quantities of very low and low level 

wastes (VLLW and LLW) (NCC, 2012). 

4.2 Material flows within the study area 

Significant quantities of materials pass between WPAs in England and the movement of 

waste is considerable at the district level where materials have to be shipped to facilities 

with the capacity to manage that material fraction (e.g. metallic wastes to Metal Recycling 

Sites). Certain WPAs are thus net importers or net exporters of waste.  

4.2.1 Waste movements to Northamptonshire 

At the time of writing, the waste data interrogator (WDI) and hazardous waste data 

interrogator (HWDI) were accessible for the reporting year of 2012. This provided a 
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baseline year for data analysis; providing a snapshot of waste received by facilities in 

Northamptonshire.  

Table 4.6 shows Northamptonshire received 0.77Mt of controlled waste imports (excluding 

hazardous wastes) to facilities in 2012. East Northamptonshire received the largest share 

(27.1%) followed by South Northamptonshire (20.3%) and Northampton (15.0%). The 

district of Northampton managed the largest percentage share of materials overall (24.5%), 

with the majority of these materials originating within the WPA. In spite of imports, South 

Northamptonshire facilities received the smallest share of all wastes (10.5%).    

Table 4.6: Waste imports (tonnes) to Northamptonshire districts by overall quantity and 
origin, 2012 

District Total waste received 
at facilities (tonnes) 

Received from WPA 
Districts (tonnes) 

Imports to facilities 
(tonnes) 

Corby 269,199 172,210 96,990 

Daventry 323,900 244,649 79,251 

East Northamptonshire 416,866 209,318 207,548 

Kettering 260,115 225,521 34,593 

Northampton 487,635 373,060 114,575 

South Northamptonshire 249,844 94,709 155,136 

Wellingborough 373,675 296,593 77,082 

Northamptonshire 2,381,234 1,616,060 765,174 

Source: (EA, 2012a) 

Table 4.7: Hazardous waste imports (tonnes) to districts and by destination facility type, 
2012 

Deposit District Landfill Recovery 
Transfer 

(D) 
Transfer 

(R) 
Treatment 

Corby - - - 273 - 

Daventry - 32 291 4,218 - 

East Northamptonshire 27,443 4 20,139 45,059 32,351 

Kettering - - - 32.81 - 

Northampton - 330 151 10,249 - 

South Northamptonshire - - 15 - - 

Wellingborough - 7,797 - 42 - 

Northamptonshire 27,443 8,163 20,596 59,874 32,351 

Source (EA, 2012b). 
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Similar to other imported wastes, Table 4.7 shows East Northamptonshire facilities as the 

primary recipients of hazardous wastes in 2012 with small quantities received by facilities 

in the districts of Northampton, Wellingborough and Daventry. This outcome may be 

anticipated given the specialist nature of any operations and the location of the Augean 

multi-permitted hazardous waste facility at King’s Cliffe in East Northamptonshire.     

4.2.2 Waste movements from Northamptonshire 

The returns data showed that a significant amount of waste moved outside the boundaries 

of Northamptonshire. The WPA is thus obliged under the NPPF (DCLG 2012) with a 

Duty-to-Cooperate with all other WPAs it sends waste to (and vice versa). The ability of 

the current permitting and reporting systems to deliver on these planning obligations forms 

part of this assessment and is explored further in section 4.3.4.  

Table 4.8: Waste exports (tonnes) by district and end fate, 2012 

Exporting district 

R
ecovery 

Incinerator 

L
andfill 

T
ransfer 

U
nknow

n 

T
reatm

ent 

T
otals 

Corby 119,801 16,776 63 5,639 - - 142,279 

Daventry 70,249 90 7,703 3,577 10,293 3,686 95,599 

East Northamptonshire 20,874 1,302 13,575 8,244 2,684 5,641 52,321 

Kettering 12,934 1 1 342 - 3,063 16,341 

Northampton 68,533 717 12,115 - 27,945 854 110,163 

South Northamptonshire 21,127 - 2,540 841 4 - 24,512 

Wellingborough 19,876 2,196 3,416 8,773 1,211 - 35,473 

Northamptonshire 333,395 21,082 39,413 27,417 42,138 13,244 476,689 

Source: (EA, 2012a) 

Table 4.8 shows recovery to be the largest end fate category for waste exports from 

Northamptonshire (333kt). The LAs of Corby and Northampton export the largest 

quantities of materials overall with 142 and 110kt respectively in 2012. This may reflect 

the limited availability of land for large scale facilities in these more urban locations. 
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Facilities located in the districts of Kettering and South Northamptonshire exported the 

least in 2012. 

Table 4.9 shows landfill to be the main destination for hazardous waste exports, with East 

Northamptonshire being the district accounting for the largest material flows to 

destinations outside the county. Recovery is the second largest end fate category 

accounting for nearly 28kt.  

Table 4.9: Hazardous waste exports (tonnes) by district and end fate, 2012 

Arising district Incineration 
with energy 

recovery 

Incineration 
without energy 

recovery 

Landfill Recovery Treatment 

Corby 0 411 160 1,318 304 

Daventry 0 44 358 10,785 2,526 

East Northamptonshire 0 22 57,932 2,644 873 

Kettering 4 523 291 661 90 

Northampton 7 1,035 430 10,439 1,258 

South Northamptonshire 2 170 233 670 249 

Wellingborough 5 29 448 1,390 1,326 

Northamptonshire 19 2,235 59,852 27,907 6,625 

Source (EA, 2012b). 

4.2.3 Internal movements of waste  

It was identified from the returns data that movements of waste between districts were 

commonplace at the time of the study. This is attributable to the different types of facility 

which operate in each of the districts and boroughs as well as the concentration of many 

facility types around urban centres, as these sites are likely to benefit from reduced 

transport costs and access to the largest possible source of materials for their operational 

needs. Table 4.10 shows that 0.62Mt (or 56.5%) of all waste removed from facilities were 

managed at other facility types within the WPA. This quantity of material is significant 

when consideration is given to the overall amount of waste generated in the county in 2012 

(2.73Mt), indicating that 22.7% of all wastes require further management (e.g. after 
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bulking at waste transfer stations). A substantial quantity of this material is likely to be 

from the LACW stream given the nature of the collection systems within 

Northamptonshire and more generally in England.    

Table 4.10: Waste movements (tonnes) from WPA facilities and end fate, 2012 

Fate Waste removed from 
facilities and WPA 

Waste removed but 
remained in WPA 

Waste removed from 
facilities 

Recovery 333,395 329,546 662,942 

Incinerator 21,082 10,400 31,482 

Landfill 39,413 177,559 216,971 

Transfer 27,417 36,323 63,740 

Treatment 13,244 28,653 41,898 

Unknown 42,138 37,349 79,487 

Totals 476,689 619,830 1,096,519 

Source: (EA, 2012a). 

4.3 Composition of waste arisings  

Determining the composition of waste streams is an essential step in understanding the 

potential gap in capacity which may exist within the study area waste system. Figure 4.4 

shows the results of the compositional analyses undertaken for Northamptonshire to 

provide a baseline figure for 2012. Supporting calculations and detailed breakdown of 

fractions are contained in Appendix 1. 

Figure 4.4 shows the combined results for controlled wastes in Northamptonshire in terms 

of 14 indicator categories. A number of key features require explanation. Firstly, the 

categories concrete, inert and plasterboard are solely defined as originating from C&D 

sources. This is a distortion of the results as small amounts of these wastes arise within the 

LACW stream. Similarly, glass arises from the C&D stream but is defined as originating 

from LACW and C&I sources only. However, such issues arise as a result of reporting 

under waste returns as well as some studies assigning codes (either EWC or SOC) which 

are then collated according to these categories and not according to the source per se. 
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Figure 4.4: Estimated composition and tonnages (kt) of all controlled waste by indicator 
category for Northamptonshire (2012) (Sources: EA, 2012a; 2012b; Head et al. 2013). 

 

Secondly, the five key materials (from an LACW perspective) of organics (251kt), 

paper/card (386kt), glass (113kt), metals (282kt) and plastics (83kt) are the most 

significant fractions after concrete. In addition, inert and wood categories contain 

significant tonnages from the C&D controlled waste stream within Northamptonshire 

(276kt and 92kt respectively). Finally, hazardous waste from all sources (136kt) is 

relatively high compared to what may be expected for the county and is likely to reflect the 

level of imported hazardous materials being treated in the county. 

4.3.1 Analysis of controlled waste composition 

In order to determine potential need in terms of infrastructure provision within the study 

area, it is necessary to analyse the composition of waste streams and compare these with 

targets and types of facility capable of managing each category of waste.  Table 4.11 

shows total baseline tonnages across all controlled wastes of 2.70Mt for Northamptonshire 

in 2012. These estimations are based on various sources from the waste planning literature 
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and waste returns data where gaps have been identified. In terms of composition by 

indicator category, a number of indicators are very significant across controlled waste 

streams in Northamptonshire. 

Table 4.11: Summary of tonnages by controlled waste stream and overall indicator 
category for Northamptonshire (2012) 

(tonnes) Controlled waste streams   

Indicator category LACW C&I C&D Hazardous Sub-totals 

Organics 114,318 136,639 - - 250,957 

Paper/Card 77,084 309,453 - - 386,537 

Glass 22,558 90,533 - - 113,091 

Metals 14,608 136,207 131,538 - 282,353 

Plastics 33,939 38,603 10,523 - 83,065 

Textiles 9,614 50,866 10,523 - 71,004 

Wood 12,672 99,156 92,077 - 203,904 

WEEE 7,440 9,789 - - 17,229 

Hazardous 10,328 32,889 - 94,243 137,460 

Bulky 5,402 - - - 5,402 
Non-recyclable 31,764 50,723 - - 82,488 
Inert - - 276,230 - 276,230 

Concrete - - 776,076 - 776,076 

Plasterboard - - 18,415 - 18,415 

Baseline tonnages 339,727 954,859 1,315,382 94,243 2,704,212 

Sources: (EA, 2012a; 2012b; after DEFRA, 2009; after DEFRA, 2010; BRE, 2009; 
WRAP, 2010; after Gov.uk, 2013). 

 

Concrete is the largest category by tonnage being the only category in excess of 500kt. 

Paper and Card; Metals; Inert; and Organics are next most significant categories totalling 

between 250 and 500kt. Other significant categories include: hazardous; glass; plastics; 

textiles; and non-recyclables with much smaller quantities of plasterboard; waste electric 

and electronic equipment (WEEE) and bulky wastes. 

4.3.2 Analysis of capacity versus targets 

A range of sources have been utilised to determine recycling and recovery rates for each 

controlled waste stream by the first milestone year of 2020. Box 2.1 gave a detailed 

description of these targets (see Section 2.1.3).  
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Comparing waste streams in Table 4.11 shows a similar quantity of organic wastes arisings 

from LACW and C&I streams suggesting a potential need for between 160 and 250kt of 

organics recovery capacity (65% to 100% recovery rates) will be needed to meet 2020 

targets. Paper/card; glass; plastics; and wood are typically managed via physical treatment 

routes (e.g. material recycling facilities - MRFs) which means recycling capacity will be 

needed of between 390 and 500kt (50% minimum recycling and between 67% and 75% 

recovery). In addition, textiles; WEEE and bulky wastes may be separable by such 

operations. However, textiles and bulky waste are currently separated either at kerbside or 

at civic amenity (CA) and transfer sites for reuse. WEEE is increasingly segregated from 

other metallic wastes (driven by value) and is thus likely to see a greater tonnage managed 

via specialist WEEE treatment facilities (see Section 4.4.2.1). Recycling and recovery rates 

for metallic wastes have historically been higher than other waste fractions. 

Table 4.12: Baseline recycling, recovery and disposal rates (%) and quantities (tonnes) for 
controlled waste streams in Northamptonshire 

 LACW C&I C&D Hazardous Sub-total 

Recycling 155,554 547,317 839,609 17,435 1,559,914 

Rate (%) 45.79 57.32 63.83 18.50 57.68 

Recovery 19,738 65,694 138,510 23,892 247,834 

Rate (%) 5.81 6.88 10.53 25.35 9.16 

Disposal 164,435 341,847 337,264 52,916 896,448 

Rate (%) 48.40 35.80 25.64 56.15 33.15 

Totals 339,727 954,859 1,315,382 94,243 2,704,197 

Sources: (DEFRA, 2013a; EA, 2012a; 2012b; after Gov.uk, 2013). 
 

According to the composition across waste streams in Table 4.11 a capacity of between 

140 and 210kt would be required to meet targets for metallic wastes recycling and 

recovery. A minimum capacity of between 530 and 720kt would be required to meet 

targets for inert; concrete and plasterboard (50% recycling as aggregates and 70% overall 

recovery). These estimates give a combined recycling requirement of 1.22Mt and an 

additional recovery capacity of 500kt.  
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Comparison between the estimated requirement and performance at the time of the study 

shows an overall surplus in recycling capacity by 2020 of 340kt. In contrast, a deficit of 

250kt recovery capacity would be experienced if performance levels remained the same 

between the baseline and 2020. In reality, the surplus capacity within recycling is likely to 

be utilised for materials which would be destined for recovery routes (particularly for inert 

materials depending on local demand). Section 4.4 will evaluate the capacity in terms of 

individual facility types and material fractions. 

4.4 Infrastructure provision within the study area 

The number of operational waste management facilities within Northamptonshire in 2012 

was 101. These facilities had an overall throughput of 2.38Mt and an overall permitted 

capacity of 6.67Mt. The operational types can be further reduced to specific management 

methods in the form of treatment type; transfer facilities; recovery operations and final 

disposal (landfill only for Northamptonshire). In addition to these large scale facilities all 

district councils (with the exception of Daventry) operate 360 individual bring sites which 

collected over 4,500 tonnes of up to 20 different material types for recycling. Appendix 2 

gives a detailed analysis of infrastructure provision within the case study area.  

Table 4.13: Summary of licensed infrastructure provision in Northamptonshire (2012)       

Management 
method 

Number of 
facility types 

Number of 
facilities 

Throughput 
(tonnes) 

Permitted capacity  
(tonnes) 

Treatment 15 48 595,421 1,900,000 
Transfer 5 36 643,931 1,827,665 
Recovery 4 5 117,759 n/a 
Landfill 4 12 1,024,250 3,270,000 
Totals 28 101 2,381,361 6,997,665 

Source: (after EA, 2010; EA, 2012a; 2012b). 

Overall waste management capacity for Northamptonshire in 2012 (Table 4.13) was 

permitted at 7.00Mt with an overall throughput to the 101 operational facilities totalling 

2.38Mt. Transfer capacity is excluded in determining overall recycling, recovery and 
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disposal rates for all controlled wastes. This consideration means a total of 1.74Mt were 

managed by these three methods. Based on throughput, the recycling rate for all wastes in 

2012 was 34.3% with a further 6.78% of controlled waste (mainly inert) recovered 

separately. This gives a combined recycling and recovery rate of 41.1% with disposal via 

landfill accounting for the remaining 58.9% of controlled wastes. 

4.5 Capacity gap analysis 

This section briefly examines the potential capacity gap between available capacity, 

recycling & recovery rates and targets applicable to Northamptonshire. The section will 

look to 2020 and 2030 as these two milestones are mentioned within the stipulations of the 

Landfill Directive (99/31/EEC) and local planning documents (NCC, 2012) as well as 

forming two of the critical scenario milestones (see Section 5.4). 

4.5.1 Meeting medium-term targets 

Targets have been set by the WPA which addresses both national and EU obligations. 

These targets can therefore be used to analyse the ability of current recycling and recovery 

capacity to meet future obligations. Levels of waste arisings have been kept constant 

within Figure 4.5(a-d) for comparative purposes. In terms of recycling targets Figures 4.5a-

c show that in 2012 the levels of recycling for LACW; C&I and C&D all exceed those for 

2010 set out within the MWDF for Northamptonshire (NCC, 2012). Hazardous waste does 

not have a fixed target within the local plan but has been assigned a value (see Figure 4.5d) 

in line with C&I waste for modelling purposes8. In terms of recovery performance and 

targets for 2012, Figures 4.5c and 4.5d show only C&D9 and hazardous waste exceed the 

2010 targets.  

                                                           
8 According to waste returns data hazardous waste primarily originates from industrial processes (EA, 2012b). Thus 
modelling this waste stream has been aligned with C&I waste in this research.  
9 C&D waste is shown as recycling only but this merely reflects the link between estimations methodologies previously 
used for aggregates and exempt sites 
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Figure 4.5a: Comparison of LACW recycling and recovery performance versus targets  

 

 
Figure 4.5b: Comparison of C&I recycling and recovery performance versus targets 
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Figure 4.5c: Comparison of C&D recycling and recovery performance versus targets10  

 

 
Figure 4.5d: Comparison of hazardous recycling and recovery performance versus targets 

                                                           
10 C&D recycling and recovery performance is shown ‘stacked’ in order to make a visual comparison with the C&D 
recycling/recovery target 
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In terms of any potential capacity gap based on 2012 levels of waste generation and targets 

set out in the WPAs local plan, it can be seen from Figures 4.6a that LACW is the most 

likely to miss targets from 2015 onwards for both recycling and recovery. For C&I waste 

the outlook is similar for recycling which moves into deficit from 2020 (Figure 4.6b). In 

contrast C&I recovery levels are in deficit from 2012 to 2015 but then move into excess 

capacity from 2015 onwards. Lower proportional targets for recovery from 2015 onwards 

account for this anomaly.  

No specific recycling targets stand within national legislation or at a local level for C&D 

wastes. A high target of 70% C&D waste recovery is set at both scales. Figure 4.6c shows 

combined levels of recovery and recycling will be sufficient to avoid any potential capacity 

gap throughout the plan period. However, given data limitations and the fluctuations in 

waste generation levels from the C&D sector associated with economic conditions 

suggests current capacity would not be sufficient if waste generation increased or if 

existing capacity ceased operations. No target is set for hazardous waste reduction; rather a 

commitment is made to reduce the toxicity of wastes originating from all sectors (DEFRA, 

2013a). Figure 4.6d is provided for modelling purposes based on recycling and recovery 

levels for C&I waste. This indicates levels of recycling need to increase throughout the 

period. However, given the specialist nature of the management methods required and the 

health implications of hazardous materials specialist landfill and incineration are likely to 

remain the main method of managing hazardous wastes across the local plan period. 

4.6 Legislative framework for waste in Northamptonshire 

This section briefly outlines the key legislative framework applicable to Northamptonshire 

in terms of planning for sustainable waste management. It will outline the waste planning 

policy framework for the European; National and Local levels. 
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4.6.1 European planning context 

The Waste Framework Directive (2008/98/EC) sets out the concepts of the waste hierarchy 

(see Section 2.2); proximity principle and self-sufficiency. It goes on to stipulate general 

targets to be achieved nationally for specific controlled waste streams. This is supported by 

the Landfill Directive (99/31/EEC) which sets targets for the reduction and diversion of 

biodegradable municipal waste from landfill. 

Key targets applicable to Northamptonshire are: 50% recycling of municipal waste by 

2020 (WFD); 70% recovery of C&D waste by 2020 (WFD) and to reduce biodegradable 

municipal waste to landfill by 65% (relative to 1995 levels) (LFD).  

4.6.2 National planning context   

The Waste Management Plan for England (WMPE) (DEFRA, 2013a) restates the 

government position on waste from the previous waste strategy (DEFRA, 2007a) and with 

regard to the Review of Waste Policy (DEFRA, 2011a). In terms of planning the WMPE 

refers to PPS 10 (DCLG, 2013) as current planning policy (DEFRA, 2013a). This PPS10 

sets out the planning objective of showing a minimum of ten years equivalent waste 

management capacity for each WPA. Stated national targets are the recycling of 50% 

household waste by 2020 (WMPE); 70% recovery of C&D waste (WMPE). 

4.6.2.1 Support mechanisms and financial instruments 

To support waste infrastructure needs at the national and local levels the Waste 

Infrastructure Development Programme (WIDP) was introduced in 2006 (DEFRA, 2007a). 

This programme helps LAs plan for capacity provision and has also provided financial 

support (previously through PFI and subsequently through Waste Infrastructure Credits – 

WCIs). Landfill Tax has become the most significant driver of waste diversion and 

subsequent development of waste infrastructure in England (DEFRA, 2013a). 
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Figure 4.6: Landfill tax returns for England 1997/8 to 2011/12 showing tonnages and rates 
(Source: HMRC, 2013) 

 

Figure 4.6 shows the consistent downwards trend in waste tonnages being sent to landfill 

since 1997/8. A total of 43.7Mt were sent to landfill in 2011/12 representing a 54.3% 

reduction. Of this total some 20.5Mt were deposited at the standard rate11 with the 

remainder (23.3Mt) being split almost evenly between the lower rate charging and exempt 

materials (HMRC, 2013). This drive away from landfill requires alternative management 

routes for large quantities of materials. 

4.6.3 Local planning context      

A revised Minerals and Waste Development Framework (MWDF) sets the strategic spatial 

plan for waste-related development in Northamptonshire. At the time of writing, this  

                                                           
11 Standard rate landfill tax is applied to ‘active’ waste. This comprises heterogeneous wastes from municipal, 
commercial and some industrial sources  
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Figure 4.7: Policy hierarchy applicable to waste planning within a WPA in England 

 

document was submitted for review incorporating all Development Plan Document’s 

(DPDs) for the MWDF into a single Minerals and Waste Local Plan (MWLP). Once 
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adopted, this MWLP will supersede the MWDF as part of the planning reform process 

associated with the NPPF (DCLG, 2012). Until the MWLP is adopted municipal waste in 

the county will be subject to the stipulations set out within the Northamptonshire Joint 

Municipal Waste Management Strategy (NJMWMS) (NWP, 2012).This strategic 

document sets out the vision for municipal waste management to 2025/26 and is thus likely 

to form a central part of the new MWLP. Figure 4.7 summarises the structure of the policy 

hierarchy applicable to WPAs. 

4.7 Exogenous variables  

This section presents results for the key system conditions (exogenous variables) for the 

baseline year of 2012. Results are based on the Lower Super Output Area12 (LSOA) census 

unit for England as used in previous studies (DTZ/SLR, 2009b; ONS, 2012). Mapping the 

spatial distribution of waste allows analysis of change over time. 

4.7.1 Key exogenous variables mapping 

A number of key exogenous variables were identified; in consultation with stakeholders 

and through feedback from the supervisory team; as contributing to waste generation rates 

within the study area. These factors are presented in Figures 4.9 to 4.12 and cover 

population density; employment; strategic employment land (SEL); and deprivation. 

4.7.1.1 Population density 

Northamptonshire contains a total of 422 LSOAs (see Figure 4.8). Mean population per 

LSOA is 1,640 with a minimum of 995 and a maximum of 3,304. Northamptonshire 

covers an area of 236,409ha. The mean area of LSOAs is 560ha. The minimum area of an 

LSOA in Northamptonshire is 13ha, while the maximum LSOA area is 7,632ha. The 

percentage of LSOAs with an area over 1,000ha is 16.4% while the percentage of LSOAs 

                                                           
12 LSOAs are a robust unit of assessment as change between Census taking is limited (prior to the 2011 census the last 
changes were in 2004) whereas using ‘wards’ is more subjective given the frequent political boundary changes  
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with an area of less than 250ha is 74.4%. As LSOAs of this size are found in and around 

urban areas the urban population of Northamptonshire can be calculated at 498,020 or 

72.0%.  

4.7.1.2 Areas of employment and growth 

There are two key factors which must be addressed in terms of employment, namely: the 

location of current employment and development; and areas of future growth. Figure 4.9 

shows NBC is the most urbanised LA within the study area and contains the majority of 

business and industrial parks. The LAs of CBC, KBC and WBC contain mixtures of urban 

and rural land as well as most of the remaining significant business parks.  

South Northamptonshire, Daventry and East Northamptonshire LAs are predominantly 

rural with mainly small scale urban centres and a small number of business park locations. 

Exemptions include Rushden and Daventry which are larger urban centres with a number 

of business parks located on their peripheries. In addition, Daventry LA has DIRFT located 

to the northern boundary which has a significant number of large scale enterprises. 

4.7.1.3 Strategic Employment Land   

A specific emphasis in terms of SEL is the provision of land parcels capable of supporting 

B1, B2 and B813 as well as ‘mixed’ land use categories. Analysis of proposed usage for 

SEL shown in Figure 4.10 indicates a total of 222 land parcels were identified in the 2009 

survey (NCC, 2009). The total area of these parcels was 5,863ha with a maximum size of 

340ha and a minimum size of 0.12ha. The mean value for such land parcels was thus 

29.7ha. Table 4.14 shows the LAs of South Northants and Wellingborough had the largest 

areas of SEL identified in 2009 (1,477 and 1,413ha respectively). In contrast, Northampton 

had the smallest amount of available SEL (241ha). However, much of the SEL within  

                                                           
13 Codes are defined as: B1 – Office and Light Industry; B2 – General Industry; B8 – Storage and Distribution (see NCC, 
2009) 
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South Northants is situated adjacent to Northampton (see Figure 4.11). 

Table 4.14: Statistical summary of SEL by Local Authority for Northamptonshire in 2009      

Local Authority 
Total SEL 

(ha) 
# of land 
parcels 

Mean (ha) Min (ha) Max (ha) 

Corby  461 24 19.21 0.75 125.00 

Daventry  799 33 24.22 0.50 210.00 

East Northants  505 29 17.41 0.20 223.00 

Kettering  967 39 24.79 0.15 121.00 

Northampton  241 37 6.51 0.12 32.37 

South Northants  1,477 43 32.81 0.20 330.00 

Wellingborough  1,413 17 83.13 0.64 340.00 

Northamptonshire 5,863 222 29.73 0.12 340.00 

Source: (after NCC, 2009). 

4.7.1.4 Deprivation 

Figure 4.11 shows the overall IMD score for LSOAs in Northamptonshire. Overall scores 

are an aggregation of a number of criterions, including: employment, income, crime, local 

environment, housing and health (DCLG, 2011). It can be seen in Figure 4.12 that levels of 

deprivation are higher in the urbanised LSOAs (e.g. Northampton and Corby) while rural 

locations (e.g. all of South Northamptonshire) tend to have low levels of overall 

deprivation. In relation to waste, it can be noted that areas of higher deprivation (scoring 

between 26.84 and 68.41) tend to have lower household recycling rates (Corby – 41.8% 

and Northampton – 38.3% in 2011/12) compared to more rural locales (Daventry – 48.2% 

and South Northamptonshire – 49.9%) (NWP, 2012).  

Table 4.15: Northamptonshire LAs by highest and lowest 50% IMD rankings in 2010  

Percentages (%) CBC DDC ENC KBC NBC SNC WBC 

LSOAs in lowest 
IMD 50% 

81.08 15.56 29.17 35.85 55.04 4.17 51.06 

LSOAs in highest 
IMD 50% 

18.92 84.44 70.83 64.15 44.96 95.83 48.94 

Source: (after DCLG, 201114). 

                                                           
14 IMD was calculated for 2010 based on 2004 LSOA classification and covered 407 LSOAs (see DCLG, 2011). In 
contrast the 2011 census had 422 LSOAs within Northamptonshire. 
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When considered against other LAs in England, CBC at 81.1% of LSOAs (Table 4.16) is 

comparable in deprivation to many urbanised LAs such as Merseyside or Greater 

Manchester (DCLG, 2011). In contrast, South Northamptonshire has 95.8% of its LSOAs 

in the highest 50% IMD rankings with 35.4% of LSOAs in the highest decile. 

            
Figure 4.8: Baseline population density (persons/ha) by LSOA for Northamptonshire 
(2012) 
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Figure 4.9: Locations of main urban centres and business park locations (principal 
employment areas) within Northamptonshire, with A Roads and Districts15 shown. 

 

                                                           
15 District abbreviations are: CBC - Corby Borough Council; KBC - Kettering Borough Council; BCW – Borough 
Council of Wellingborough; NBC – Northampton Borough Council 
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Figure 4.10: Distribution of Strategic Employment Land (SEL) in Northamptonshire 
(Source: NCC, 2009) 
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Figure 4.11: Index of Multiple Deprivation (IMD) Scores for Northamptonshire LSOAs in 

2010 (Source: DCLG, 2011) 
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4.8 Summary  

The baseline analysis (set at 2012 as the last year of available data from sources during the 

collection phase of the research – February 2011 to June 2012) is a critical step in both the 

backcasting methodology and in determining the conditions at the local scale for variations 

in waste generation rates thus addressing objective 1 of the research. The analysis must 

consider the internal aspects of the WMS (steps 1-5 in Figure 4.1) and the key factors 

external to the physical system (steps 6 & 7 in Figure 4.1). Waste arisings and any historic 

trends (depending on available data) are first determined at the individual waste stream 

level (LACW, C&I, C&D and hazardous wastes) to give a complete picture of controlled 

waste within the study area. Overall tonnages were estimated at 2.70Mt broken down as: 

339kt for LACW (Figure 4.2); 954kt for C&I (Table 4.1); 1.32Mt for C&D (Table 4.3); 

and 94kt for hazardous wastes (Table 4.5).  

Further important considerations are where these materials end up and the type of materials 

they contain. In terms of movements, these come under 3 types: imports, exports and 

internal in relation to the WPA. The study area WPA imported 797kt from outside its 

boundaries and exported 483kt making it a net importer of wastes in 2012 (314kt). The 

amount of materials move between WPA districts was considerable (619kt). Table 4.11 

provides a detailed breakdown of each waste streams composition showing that key 

materials include: paper/card; metals, organics and wood as well as inert materials from the 

construction sector.  

The capacities of facilities to handle wastes generated are next assessed against relevant 

legislative and local targets. This assessment showed throughput to facilities was 2.38Mt 

with a permitted capacity of 7.00Mt. Assessing the future capacity requirement against the 

targets and holding waste generation at a constant rate (baseline values) showed 

considerable shortfall in capacity capable of managing LACW, C&I and hazardous wastes 
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(Figure 4.5a-d) before any potential future increases in generation rates were taken into 

account. 

The chapter concluded with an assessment of the relevant legislative framework 

(European, National and Local) for the case study area before showing key system 

variables as thematic layer maps within GIS (population density; areas of employment and 

growth; strategic employment land; and areas of deprivation).  

To address objective 1 specifically; the baseline assessment shows that waste generation 

rates have changed over recent years; in a downwards manner. This has been partly driven 

by the movements of wastes into and out of the study area. The total amount of wastes 

received at facilities in the WPA does not correspond to the estimated levels of generation 

suggesting substantial quantities of materials are managed within the exemptions regime. 

Any substantive changes to the composition of waste streams will have implications for the 

potential gap in capacity likely to occur at current levels of waste generation.  
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Chapter 5 Results: Backcasting – from visions to pathways 

This chapter presents the results of the backcasting methodology applied within this study, 

in order to achieve objective 2 and contribute towards objective 5 (see Section 1.3). 

Section 1 gives a brief introduction to the backcasting framework used and schematically 

presents the workflow in Figure 5.1. The chapter then presents qualitative results in section 

2 in terms of visioning based on questionnaires; workshop outputs; follow-up interviews 

and dialogue; and stakeholder feedback. This is followed in section 3 by a detailed 

quantitative assessment of the system within the study area while addressing any gaps in 

the required data. The chapter then explores the process of scenario development (Section 

4.4) before concluding with results from the impact analysis of each scenario (Section 4.5). 

5.1 Introduction 
 

A refined version of Robinson’s generic backcasting framework (Robinson, 1990) was 

proposed to allow the output data to be compatible with the mapping requirements of the 

GIS environment. This framework allowed flexibility in modelling the ‘visions’ in terms of 

their impact on a quantifiable system, namely; the waste and resource management system 

within the case study area of Northamptonshire. The sequencing of the steps within the 

chosen backcasting framework is presented schematically in Figure 5.1. 

Preliminary steps have previously been outlined (see section 3.2). These sought to define 

the scope of the research, temporal scale and variables for consideration. These parameters 

were largely determined by the overall research aim and more specifically by the 

requirements of objectives 1 and 2.   

Figure 5.1 illustrates the central role of the visioning and baseline analysis stages in 

building towards the latter stages. It is worth noting that the scenario development stage is 
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explicitly connected with determining the feasibility of scenarios through an iterative 

process of impact analysis of various policy choices within each scenario. 

Figure 5.1: Workflow schematic of the backcasting framework utilised in the study  

5.2 The Visioning Process 

In order to produce visions (scenarios) of what a desirable zero waste future would be like 

a visioning workshop was designed to capture ideas and begin the process of forming 

pathways towards achieving a desirable future. Key stakeholders were identified by the 

researcher and agreed by the supervisory team reflecting both national and local 

considerations around waste management. A schematic of the key stakeholders identified 

is illustrated in Figure 5.2. 
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Figure 5.2: Key stakeholders within the waste sector at the national and local scales  

In terms of stakeholders identified for direct contact Figure 5.2 shows these within the 

highlighted boxes. The branches which are not highlighted represent further considerations 

as to key roles of individuals (Anderson, 2000a). Individuals and organisations identified 

were then approached for expressions of interest and to complete questionnaires. The 

results of this approach are given in the following section.   

5.2.1 The backcasting workshop    

Workshops are widely used in organisations as training and learning tools but also require 

a significant amount of preparation time and preliminary contact work in order to 

maximise the effectiveness of the event itself. Prior to the event, questionnaires were 

designed and sent to experts; after being trialled and amended; expressing an interest in 

attending the event. The questionnaire was formatted with a range of open and structured 

questions in order to capture qualitative and quantitative data. Table 5.1 shows the 

response rate of potential attendees and their domains. 
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Table 5.1: Response rates to pre-visioning workshop questionnaire  

Area of Expertise No. of forms 
sent 

No. of forms 
returned 

Response rate 
(%) 

Government departments 10 6 60.00 

Waste management sector - private 20 8 40.00 

Waste management sector - public 15 9 60.00 

Local government 30 14 46.67 

Local interest groups 10 3 30.00 

General public 20 15 75.00 

Academia 10 8 80.00 

Totals 115 63 54.78 

 

The overall response rate to the questionnaire was 54.78% with most groupings achieving 

over 50% as shown in Table 5.1. The aim of utilising a questionnaire was to capture ideas 

for supporting the workshop process as opposed to providing statistical data in the first 

instance. Post workshop analysis and subsequent thematic characterisation of ideas and 

visions was supported by the collected data. An example questionnaire is included in 

Appendix 3. 

In order for the workshop to be manageable in terms of facilitation a number of key 

stakeholders identified were invited to attend. To maintain networks and allow later 

validation of the output individuals and organisations were asked if they would be willing 

to be approached for secondary research purposes. The final number of attendees on the 

day was fifteen; proving manageable in terms of structuring the sessions and allowing 

space for input from all involved. The workshop was designed around three sessions as 

illustrated in Figure 5.3.   

These sessions used the structure shown in Figure 5.3 and concentrated on broad themes of 

future states (examining zero waste as a concept and goal orientation for 2050); timeline 

(examining critical points for policy development and implementation to facilitate zero 

waste as a vision); and finished with an initial thematic scenario development process 
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(examining narratives of participants ideas, values and beliefs; technical, economic and 

social implications of ideas raised; and what ifs?). 

             
Figure 5.3: Ideas generation process across the sessions within the visioning workshop 
context  

5.2.2 Post workshop analysis 

Post workshop analysis used successive phases of thematic analyses (applying a Social, 

Technological, Economic, Environmental and Policy analytical framework – STEEP) in 

order to classify and group responses. The final phase of analysis used a ‘futures box’ to 

produce coherent visions of zero waste futures based on the STEEP output.      

5.2.2.1 First and second phase analyses 

Post workshop, all recordings were transcribed and anonymised before sending out to 

attendees for feedback on accuracy and content. The mixed data captured in open forum 

and brainstorming was collated using mind mapping software (Mind Genius 4). This 

software package was also used to identify key themes relevant to the discussion and 

research aim. 
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Figure 5.4: Second phase mind mapping of the 77 key factors and characteristics identified 
in the open forum and brainstorming sessions  

 

First phase analysis of the workshop output identified some 168 factors, considerations and 

concerns regarding zero waste as a policy approach for the future of waste management in 

England. These 168 factors were further reduced through second phase analysis to identify 

areas of overlap, similarity in language, specificity and relevance. Figure 5.4 visualises the 

resulting 77 key factors and characteristics essential for understanding zero waste from a 

policy formation perspective. These factors range from issues around definition: “not clear 

what we mean by Zero Waste in 2050”; to practical systems changes such as: ‘embedding 

Eco design principles’ or the ‘introduction of take back schemes’ and ‘leasing models’. 

Other key considerations identified included practicalities such as: ‘introducing economic 

incentives’, ‘scaling of initiatives and technologies’, or defining zero waste as “zero waste 

to landfill” (ZW2L).  
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5.2.2.2 Third phase analysis 

Third phase analysis included grouping and categorizing these factors with particular 

consideration for social, technical, economic, environmental and political (STEEP) 

considerations. The results of this third phase incorporated inputs from session 3 around 

‘potential pathways’ and questionnaires. The results for the open forum and brainstorming 

sessions; using the MindGenius software package; are visualised in Figure 5.5.  

Figure 5.5: Categorisation of the 77 key factors identified from workshop sessions 1 and 2 

 

STEEP analysis was used to broadly categorise the qualitative results. It is noteworthy at 

this point to state that certain factors and considerations are capable of being placed in 

multiple groupings but those chosen represent those groups, deemed by participants, to 

have the largest influence on the individual factors. For example; the use of objectives and 
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goals can be applied across most of the STEEP categories but in the context of the 

discussions was being referred to most often in relation to environmental considerations.    

As can be seen in Figure 5.5 further consideration was given to elements which did not 

easily fit within STEEP categories. This was due to two main factors. Firstly, monitoring 

was mentioned in relation to each category within the sessions. For example; appropriate 

metrics were mentioned as an environmental factor specifically in terms of ‘carbon’ as an 

appropriate means of reporting progress towards sustainability. At the same time it was felt 

that using a ‘misery or happiness index’ may be a more appropriate metric for measuring 

social perceptions of waste. Secondly, the researcher with agreement from the supervisory 

team specified a need to capture some of the statements made to capture the mind-set of 

certain individuals. 

Figure 5.6: Thematic analysis using STEEP criteria for input questionnaire results and 
workshop session 3 ‘potential pathways’ 
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This was followed up by scrutiny of comments later in the session and through discussions 

after the event to evaluate if any change had occurred in terms of language used.  

As the questionnaires were more structured than the workshop sessions, responses received 

had a combination of qualitative and quantitative data. For example; a number of questions 

asked respondents to assign a potential value to levels of recycling or waste prevention for 

the waste sector in 2050. The responses, in terms of quantified targets, are grouped under 

environmental category, in Figure 5.6, to reflect the overarching goal of protecting the 

environment and human health. Notwithstanding this goal, these targets can be applied 

directly or indirectly to all the remaining categories. 

Targets were also mentioned during the ‘potential pathways’ session of the workshop and 

are incorporated in terms of ‘reducing sector carbon emissions by 80%’. However, the real 

value of this session was setting an initial framework of ideas that each pathway was likely 

to take as well as exploring the fundamental principles which would define a zero waste 

future based on sustainability.  

5.2.2.3 Fourth phase analysis – futures table creation 

The workshop closed with most individuals giving their own personal vision for the waste 

sector in 2050. These visions were varied with some having an economic focus around 

issues such as ‘market development for recyclates’ or introducing ‘leasing models’ to 

create a sense of materials ownership. Other visions focussed on technical or technological 

solutions to reduce waste at source, with ‘3D printing’ or capturing all materials, through 

‘landfill mining’.  

In essence, these visions allowed the creation of more structured scenarios. It was also 

clear that while zero waste was the goal, the pathways towards achieving this overarching 

goal could be markedly different. Table 5.2 shows the final iteration of the various visions 
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combined with previous analytical phases in order to produce a futures table outlining the 

main change drivers and relevant trends within the four scenarios identified. 

Table 5.2: Futures table showing the main drivers of change; economic, policy and social 
trends for the four scenarios based on thematic analysis and stakeholder feedback  

 Circular 

Economy (CE) 

Valorisation & 

Materials (VM) 

Ecological 

Citizenship (EC) 

Economic 

Destabilisation 

(ED) 

Drivers         

Population Stable Decreasing Increasing Increasing 

  Skills based 
migrants 

Repatriation 
(voluntary) 

Balances ageing  Rapidly ageing 

Consumption 
patterns 

Low consumption Steady buying power Sustainable 
consumption 

High consumption 

Environmental 
behaviour 

Conscious choices Conscious choices Consumers aware 
and make deliberate 
choices 

Low consciousness 

Corporate eco-
behaviour 

Sustainability 
based on resource 
efficiency 

Competitiveness 
hindered (behind CE 
curve) 

Competitiveness 
enhanced (ahead of 
CE curve) 

Diverse and 
uncoordinated 

Landfill tax Hammering of 
landfill 

Gradual increases Materials based Decrease in landfill 
tax 

  Incineration tax 
(escalator) 

  Incineration tax 
(escalator) 

  

Social justice 
(equity) 

Income 
redistribution 

Inequality  Growing affluence Poorer society 

Waste Decreasing long-
term trend 

Decreasing trend 
after peaking (2020) 

Significant reduction 
(waste prevention 
driven) 

Increasing trend 
reflects economic 
trend 

Economic 

trends 

        

Output/growth Rapid growth Double dip recession Sustained growth Volatility 

    Bust-boom long-
term 

  Bust-boom long-
term 

Structure Product design Diversified Continued service 
focus 

Manufacturing 
resurgence 

  Product 
stewardship 

Green economy  Redesign (products 
and services) 

  

Commodity 
markets 

Increasing over 
long-term 

Reversal of super-
cycle 

Closed markets High prices 

  More 
regional/local 

Global markets National and local 
focus  

Strong volatility 

Policy trends         

Energy Increase in ATT Market reform / 
small producers 

Increase in AD for 
residuals 

Slow shift to 
renewables 

Waste to energy Decoupled fuel 
production 

Large scale  Small-scale  Large increase in 
AD  

System support Incentive schemes Stable legislation Zero Waste Strategy 
(from 2020) 

More legislation 
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Table 5.2: (continued) 

Policy trends     

  Secondary 
markets 

Evolution of 
policies 

Overarching goal Standardisation  

Waste Hierarchy  Adapted for 
closed loops 

Materials based 
approach 

Holistic and integrated Focus on low end  

  Holistic and 
integrated 

Market driven   High cost of WM 
approach 

Social trends         

Employment Green jobs  Green jobs  Green skills through 
education 

Low skilled / low 
paid  

  Resource sector Resource sector New business models 
(diversification) 

Waste 
management 
sector  

Voluntary 
improvements 

Respond to 
policies 

Industry response 
to consumer 
demands 

Industry lead on streams 
(C&I; C&D; hazardous) 

No policy or 
industry lead  

Recycling Social norm  LACW focus Coordinated focus Uncoordinated 
approach 

  High levels >70% High levels >80% High levels after 
prevention > 70% 

Reducing after 
2040 <50% 

Prevention and 
reuse 

Resource 
management 
approach 

Focus on reuse not 
prevention 

Strong focus on 
prevention first 

Low emphasis and 
impact 

 

Table 5.2 shows the main drivers and trends based on the previously identified exogenous 

and endogenous variables (see Table 3.6). Each scenario has markedly different 

characteristics within each cateogory (driver or trend) wich form the basis for the detailed 

development of sceanrio narratives (see Section 5.3). Crtically, the futures table (Table 5.2) 

incorporates some general quantitative elements (e.g. recycling rates) which can be used as 

guiding the development of the quantitative model (QM) in section 5.3.3.  

The final step in the phase four analysis involves identifying the high level factors which 

shape the scenario development process. Figure 5.7 shows the high level factors (waste 

policy and  values/behaviour) as a matrix showing the degree of coordination (vertical 

axis) for future waste policy on a scale between full policy integration and a state of 

uncoordinated policy development. In addition, the horizontal axis depicts values and 

behaviours across a range from being driven at the community scale to a corporate driven 

approach.   
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Figure 5.7: Four waste/resource futures scenarios placed within a policy/value matrix16 
(Source: after OST, 1999 cited in Berkhout, 2002, p42.). 

 

Specifically, Figure 5.7 shows the position of the four scenarios. The ecological citizenship 

(EC) scenario is strongly focused on community scale values and behaviours with an 

emphasis on policy integration. In contrast, the circular economy (CE) scenario is more 

influenced by corporate considerations with a need for a strong integration of waste 

policies with other economic and social considerations. Valorisation and materials (VM) 

lies at the centre of the values behaviour axis as this scenario requires buy-in from both 

supply and demand-side entities. However, it sits slightly below the centre of the policy 

axis reflecting the continuing influence of waste thinking even with a transition towards a 

resource focused sector. Scenario economic destabilisation (ED) reflects the current 

situation most closely (uncoordinated and waste sector lead) and represents a reference 

case scenario with some accounting for continuance of negative trends.        

                                                           
16 The horizontal axis represents values/behaviour; and the vertical axis represents waste policy 
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5.2.3 Triangulation: Stakeholder responses to the visioning process   

In order to validate the results from the visioning process a survey questionnaire was 

designed around three specific questions and sent to stakeholders involved in the various 

stages (questionnaire; workshop and follow-up).  

5.2.3.1 Rating the visioning process 

The results are presented in Figures 5.8; 5.9; and 5.10. Survey questionnaires were sent out 

to 25 stakeholders with responses received from 11 individuals, a response rate of 44.0%. 

                     
Figure 5.8 Summary of responses to survey question 1 

 

Figure 5.8 shows responses to the question: How would you rate the vision(s) produced 

from the backcasting process? The overall response to the question was positive across all 

respondents (this is gauged as scoring above 50%). It is clear that one element of the 

process raised concerns in terms of being ‘committed’. Respondents commented on the 

need to gain ‘buy-in’ within their organisations; from business; and from individuals. Key 
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strengths identified from the analysis pertain to ‘creative’ and ‘communicated’ categories. 

This suggests the process has potential as a tool for enhancing creativity and 

communicating new ideas about specific complex issues (e.g. transitioning to a zero waste 

economy).  

5.2.3.2 Organisational view of visioning 

Figure 5.9 presents the results to the question: How might key decision-makers within your 

organisation rate such visions?  

Figure 5.9: Summary of responses to survey question 2 

 

Responses were generally similar to question 1 in that all had a positive response on all 

categories (>50%). A weaker score was identified in the ‘concrete’ category. This suggests 

a need for using language which positions the desirable future with tangible measures 

derived from the current understanding. Strengths were identified in terms of being ‘clear’ 

and ‘compelling’ as well as the ‘creativity’ of the process from an organisational 
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perspective. All of these categories had aggregated scores >80% (80.9; 81.4 and 80.5% 

respectively).  

5.2.3.3 Rating backcasting as a strategic foresight tool  

Figure 5.10 presents the results to the question: how would you rate the production of 

visions using a backcasting approach as a strategic foresight tool for decision-makers?  

                          
Figure 5.10: Summary of responses to survey question 3 

 

Figure 5.10 shows aggregated responses were positive (scoring >50%). The lowest scoring 

category was ‘consensus’ (67.3%) which respondents suggested as an area where more 

detailed process objectives may have helped foster a greater feeling of building a 

consensus. The categories of ‘creative’ and ‘clear’ scored highest (90.5 and 85.5% 

respectively) with overall comments praising the clarity of the approach in terms of pre-

workshop information and instructions on the day. Further, attendees at the workshop were 
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very positive about the creative nature of the backcasting method for strategic foresight as 

well as the level of opportunity to input through follow up discussions and interviews. 

5.2.4 The sector view on zero waste: 2012 survey data 

Having been identified as a potential participant organisation CIWM expressed an interest 

in supporting the research. As part of this support CIWM supplied secondary data from the 

‘2012 survey of waste professionals’ (CIWM, 2012) on responses to the questions: “What 

is zero waste?” and “Is the sector capable of delivering such a concept as ‘zero waste’?” 

The questionnaire was open to all subscribing and affiliated professionals from the UK 

with the dataset containing 222 responses. Open-ended responses were thematically coded 

as primary and secondary categories to allow comparison with analysis of visioning data. 

Analytical tables are contained in Appendix 4 with results presented here.  

Respondents to the survey were asked in Question 1: What is ‘zero waste’? Responses 

showed that zero waste to landfill (ZW2L – 30.6% of all respondents) was the main 

perception of the term ‘zero waste’ among respondents. There was a 2:1 ratio of 

respondents indicating zero waste was too ambiguous versus being an aspirational focus 

for policy. Other significant themes included ‘valorisation’, with an emphasis on value in 

terms of materials and energy; circularity and Circular Economy (CE); specifically 

referring to closed loop principles; and waste minimisation.   

Secondary coding was undertaken to capture and assess more detailed responses of certain 

individuals. Of the 222 original respondents 60 did not give answers of enough detail to be 

placed in secondary categories. The results again showed ZW2L to be the most common 

response from waste professionals. A similar number of respondents felt ‘zero waste’ to be 

unattainable with a number qualifying their response with statements such as:  

“…not zero waste but very close to it is possible.” and;  
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“…a challenging philosophy well worth pursuing.” 

Once again valorisation was identified as being significant for materials and energy 

security. In addition, systems approaches such as eco-design and circular economy were 

common responses which coincided with publication of the first McKinsey report (EMF, 

2011) and media coverage around developing a Circular Economy.  

Respondents to the survey were asked in Question 2: Is the sector capable of delivering 

such a concept as ‘zero waste’? The majority of respondents to Question 2 felt the waste 

sector was not capable of delivering the concept of ‘zero waste’. Results indicated that in 

2012 waste professionals believed that for the sector zero waste was either ‘unattainable’ 

or was ‘not currently achievable’. Specific reasons given included:  

 ‘there will always be a residual fraction’;  

 ‘lack of commitment’; or  

 ‘the definition of waste is an obstacle’. 

The main point to take from the sector survey data related to the similarity in broad themes 

identified: valorisation and circular economy; as well as the perception of the sector as 

being incapable of delivering zero waste. These similarities and specific viewpoints were 

utilised in the final formation of the qualitative narratives (see section 5.3.2.1).  

5.3 Scenario Development  

The scenario development process is composed of distinct stages which seek to build up a 

coherent picture of necessary decisions and policy options which need to be implemented 

in order to achieve the specific vision. This section will detail the results of each of these 

distinctive stages and culminates with a brief summary of the key findings.  
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5.3.1 Generating the scenario narratives 

This phase of the analytical process was perhaps the most critical in terms of achieving 

objective 2 as all subsequent analysis and testing derives from them. Recent developments 

in England have used plausibility matrices (in the form of morphological boxes) as part of 

a study using a normative forecasting approach (DEFRA, 2011b). This study was used as a 

basis for developing the structured scenario formation process. Stakeholder inputs based on 

a priority ‘likert’ scale are utilised as a basis for further qualitative assessment. It was felt 

this approach best avoids stakeholder subjectivity and the potential for researcher bias. 

5.3.1.1 Reporting the plausibility matrices 

Stakeholders identified during the initial visioning stage of the backcasting process (see 

section 5.2) were asked to complete a plausibility matrix for their preferences on a range of 

key variables identified by the stakeholders, supervisory team and from key literature 

(UNEP, 2007; WBCSD, 2010; DEFRA, 2011b). Responses were captured within a simple 

matrix for 14 variables with 5 options for each (see section 3.3.4.1). These included 7 

exogenous and 7 endogenous variables (see section 3.3.1.3). The matrices were 

numerically coded with preference scores and thus analysed by means of summing the 

scoring for each variable and choice made. 

5.3.1.2 Capturing individual choices  

Individual stakeholder responses were recorded in boxes below the options matrix (a 

sample copy is included as Appendix 5. These responses were then cross tabulated into a 

response matrix. All scores were recorded for each choice of option and summed in order 

to capture relative weightings. Table 5.3 shows the indicative results matrix from an 

individual stakeholder.  
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Table 5.3: Individual stakeholder response matrix with conditional formatting 

Response matrix Choice 1 Choice 2 Choice 3 Choice 4 Choice 5 

Variable 1 3 5 4 1 2 

Variable 2 1 2 3 5 4 

Variable 3 5 3 1 2 4 

Variable 4 1 4 2 5 3 

Variable 5 1 5 3 2 4 

Variable 6 5 4 3 2 1 

Variable 7 2 5 4 3 1 

Variable 8 5 2 1 4 3 

Variable 9 5 2 3 1 4 

Variable 10 4 1 3 2 5 

Variable 11 3 2 5 1 4 

Variable 12 4 2 3 1 5 

Variable 13 3 1 5 2 4 

Variable 14 5 1 3 4 2 

Sum of scoring 47 39 43 35 46 

Mean 3.357 2.786 3.071 2.500 3.286 

Standard Deviation 1.598 1.528 1.207 1.454 1.326 

 

5.3.1.3 Combining individual choices to produce weightings 

The next stage of analysis was to combine all stakeholder responses to categorise choices 

and produce relative weightings (Table 5.4). Stakeholders were further defined as technical 

or non-technical in relation to their involvement with or knowledge of the waste sector. 

This was done to avoid bias within the weightings produced which may otherwise have 

favoured technical stakeholder views. Table 5.4 shows the scores for each choice within 

the 14 variables categories as well as stakeholder results separated as TS, NTS and a mean 

value. The mean value was used in the first instance in order to rank scoring according to 

preference, where obvious contradictions were found or a value was scored equally then 

consideration was given to the scores and rankings from the TS and NTS results depending 

on the type of variable under consideration, For example; under the waste system variable 

the mean of two values is 0.2099 in this case the TS score is looked at first as the  

 



180 

 

Table 5.4: Plausibility results (aggregated scores) for exogenous and endogenous variables by stakeholder groups   

Exogenous Variables Stakeholder results Endogenous Variables Stakeholder results 

Demographics TS NTS Mean Energy System TS NTS Mean 

Stable Population Growth 0.2057 0.2200 0.2129 Slow shift to renewables 0.1944 0.1700 0.1822 

Population boom 0.2057 0.1743 0.1900 Increase in AD and associated EfW 0.2306 0.2210 0.2258 

Rapidly ageing population, stagnation 0.1800 0.1743 0.1771 Large increase in ATT (centralised) 0.2056 0.2125 0.2090 

Increasing population balances ageing 0.2257 0.2171 0.2214 Mergers between energy/waste companies 0.1889 0.1841 0.1865 

Decreasing population (repatriation) 0.1829 0.2143 0.1986 Market reform for smaller producer entry 0.1806 0.2125 0.1965 

Socio-Economic Situation TS NTS Mean Waste System TS NTS Mean 

Growing affluence 0.2371 0.2305 0.2338 Slow increase recycling/ recovery rates 0.2079 0.1695 0.1887 

Income re-distribution 0.2114 0.2305 0.2210 Decreasing waste trend over long-term 0.2107 0.2090 0.2099 

Inequality reigns 0.2029 0.1960 0.1994 Low impact of waste prevention policies 0.1713 0.1836 0.1775 

Poorer society 0.1657 0.1614 0.1635 High impact of waste prevention policies 0.2107 0.2175 0.2141 

Income squeeze 0.1829 0.1816 0.1822 Shift to materials based approach 0.1994 0.2203 0.2099 

Consumption patterns + environmental 
behaviour 

TS NTS Mean EfW Capacities / Technologies TS NTS Mean 

Good attitudes, wasteful behaviour 0.1770 0.1847 0.1808 Small-scale EfW 0.2247 0.2039 0.2143 

Increase in sustainable consumption 0.2275 0.2244 0.2260 Large scale EfW 0.2022 0.2039 0.2031 

Steady buying power, conscious choices 0.2247 0.2045 0.2146 De-coupled fuel production/ consumption 0.2079 0.2011 0.2045 

Low consumption and ECB* 0.2163 0.2330 0.2246 Large % increase centralised AD (biogas) 0.1910 0.1983 0.1947 

High consumption and low ECB 0.1545 0.1534 0.1540 Large increase on-farm AD 0.1742 0.1927 0.1834 

Economic output TS NTS Mean System Support + Intervention TS NTS Mean 

Steady growth 0.2436 0.2356 0.2396 Stable legislation 0.2056 0.2017 0.2036 

Rapid per capita growth 0.2092 0.2241 0.2167 Push for deregulation 0.2139 0.1877 0.2008 

Bust-boom cycle 0.1891 0.1724 0.1808 More legislation, more standardisation 0.1611 0.1625 0.1618 

Double dip (recession) 0.1920 0.1868 0.1894 Zero Waste England (RM Strategy, 2020) 0.2000 0.2353 0.2176 

Triple dip (recession) 0.1662 0.1810 0.1736 Secondary materials markets flourish 0.2194 0.2129 0.2162 
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Table 5.4: (continued) 

Exogenous Variables Stakeholder results Endogenous Variables Stakeholder results 

Economy structure TS NTS Mean 
Development of Landfill Tax (environmental 
taxes) 

TS NTS Mean 

Continued shift to services 0.2235 0.2094 0.2164 Gradual tax increases 0.2133 0.2000 0.2066 

Resurgence of British manufacturing 0.1788 0.1818 0.1803 Hammering of landfill 0.2219 0.2197 0.2208 

Centre of excellence (quality based) 0.1760 0.2094 0.1927 Landfill reduction and Incineration tax 0.1729 0.1915 0.1822 

Balancing (growth of green economy) 0.2067 0.1928 0.1998 Sophisticated materials based approach 0.2305 0.2394 0.2350 

Product design and stewardship focus 0.2151 0.2066 0.2108 Decrease in landfill tax 0.1614 0.1493 0.1553 

Corporate Eco-Behaviour TS NTS Mean Voluntary Improvements TS NTS Mean 

Diverse approaches 0.1829 0.1576 0.1702 Stable support and participation 0.2006 0.2000 0.2003 

Low level of concern and efficiency 0.1829 0.1576 0.1702 Increase in policy driven measures 0.2062 0.2114 0.2088 

Sustainability / resource efficiency drive 0.2171 0.2292 0.2232 Decrease in policy measures / industry responses 0.1610 0.1629 0.1619 

Competitiveness depends on CE (behind) 0.1743 0.2063 0.1903 No policy - strong industry response consumers 0.2119 0.1971 0.2045 

Competitiveness depends on CE (leader) 0.2429 0.2493 0.2461 Industry lead on C&I and C&D 0.2203 0.2286 0.2245 

Commodity Markets TS NTS Mean Recycle & Reuse Capacities / Technology TS NTS Mean 

Closed markets and protectionism 0.2206 0.2286 0.2246 MSW dominates development 0.2157 0.1834 0.1995 

Open markets and stable supplies 0.1948 0.1857 0.1903 Coordinated expansion 0.2269 0.2206 0.2238 

High prices and strong volatility 0.1891 0.1829 0.1860 High-Tech focus on C&I wastes 0.1821 0.2178 0.1999 

Steadily increasing prices 0.1920 0.2143 0.2031 Low-Tech uncoordinated and diverse 0.1597 0.1519 0.1558 

Reversal of super-cycle 0.2034 0.1886 0.1960 Holistic and integrated approach to RM** 0.2157 0.2264 0.2210 
* ECB = environmentally conscious behaviour ** RM = resource management 
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endogenous nature of the variable would indicate a greater role for expert opinion.  

5.3.1.4 Producing narratives from the plausibility results 

In the last stage of the plausibility process, weights were combined to produce indicative 

scenarios based entirely on scores. These were then sent back to stakeholders for final 

feedback. Table 5.5 shows an indicative ‘scored’ scenario sent to stakeholders. 

 Table 5.5: Indicative scenario sent for stakeholder feedback 

Variables Options Weight 

Demographics Increasing population balances ageing 0.2257 

Socio-Economic Situation Growing affluence 0.2371 

Consumption patterns + environmental 
behaviour 

Strong increase in sustainable consumption 0.2275 

Economic output Steady growth 0.2436 

Economy structure Continued shift to services 0.2235 

Corporate Eco-Behaviour Competitiveness depends on CE (leader) 0.2429 

Commodity Markets Closed markets and protectionism 0.2206 

Energy System Increase in AD and associated EfW 0.2306 

Waste System Decreasing trend in waste over long-term 0.2107 

EfW Capacities / Technologies Small-scale EfW 0.2247 

System Support + Intervention Zero Waste England (RM Strategy, 2020) 0.2000 

Development of Landfill Tax Sophisticated materials based approach 0.2305 

Voluntary Improvements Industry lead on C&I and C&D 0.2203 

Recycle & Reuse Capacities / Technology Coordinated expansion 0.2269 

 

Feedback received was combined with previous thematic analysis and futures box results 

(see Section 5.2.2.3) to determine pathways based on variables identified from the 

plausibility matrices and entered into a morphological field.  This process allowed 

refinement of choices and thus avoided any obvious contradictions and inconsistencies, 

such as lowering commodity prices driving the push for materials capture within the VM 

scenario. Undertaking this step allowed the inclusion of choices which were directly 

attributable to specific scenarios. Table 5.6 shows the final CE narrative for 2050 derived 

from the aggregated weights in Table 5.4 and final stakeholder feedback. All other 

scenario narratives captured within morphological fields are included in Appendix 6. 
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Table 5.6: CE Scenario narrative morphological field derived from plausibility scoring and stakeholder feedback 
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5.3.2 Outlining the scenario narratives  

The purpose of producing detailed narratives for each of the scenarios is to make explicit 

the conditions prevalent within each vision. This is an essential step in differentiating 

between the scenarios for stakeholders and decision-makers alike. This section will first 

explore the qualitative narratives in tabular format before describing these in detail in 

terms of the key evaluative criteria (STEEP). It will then move on to quantifying the 

narratives and steps taken to validate these choices in forming the quantitative model.  

5.3.2.1 Qualitative scenario narratives 

The findings of the qualitative narrative formation process for the four scenarios are 

presented in Tables 5.7 to 5.10. These narratives have been assigned recognisable labels 

(Circular Economy - CE; Valorisation & Materials – VM; Ecological Citizenship – EC; 

and Economic Destabilisation – ED) but could equally have been assigned discrete 

numerators. The purpose is not to facilitate preconceptions based on the titles but to act as 

differential signposts for evaluation by stakeholders. The tables are accompanied by short 

descriptive outlines of the key themes and critical points across the timeline. 

5.3.2.1.1 Scenario CE: A narrative on the Circular Economy  

The narrative storyline for the CE scenario should be viewed in conjunction with Table 

5.7. The vision of a zero waste future in 2050 within a Circular Economy (CE) scenario 

sees the waste sector reinvented as a resource management sector with ‘waste’ in all forms 

being targeted through an integrated policy approach. This scenario is significantly policy 

driven with government highly involved in trying to bring about its own version of a 

Circular Economy. This resource focused policy approach is an extension of previous 

policies based on achieving a ‘green economy’ (BIS/DECC/DEFRA, 2011) and sits within 

the broad government commitment to decarbonising the economy (Anderson et al. 2005; 

PWC, 2013). However, change is largely incremental and lacks any real ability to decouple 
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economic growth from waste generation, although gains are made through resource 

efficiency.    

Integrated approaches see modest reductions in waste generation rates particularly with the 

emphasis on product redesign throughout the economy. This integrated approach draws 

heavily on voluntary agreements with business and third sector organisations to divert 

materials from landfill to established secondary materials routes and markets. The case for 

resource efficiency throughout production processes has been well established with 

potential cost savings realised across all business classes and sizes. The period from 2012 

to 2050 has seen an extended decreasing trend in solid waste generation particularly as the 

period up to 2030 saw an increased focus within the sector towards materials rather than 

waste.  

There has been an increased alignment between the ‘waste’ and energy sectors throughout 

the period with a decoupling of fuel production and levels of production. This decoupling 

has largely been within the area of commercial and residential demand with a large amount 

of AD capacity coming on-stream. The scale of such facilities is ideally suited to locations 

close to business parks and new residential developments. These facilities have in certain 

instances been incorporated within larger energy production facilities employing Advanced 

Thermal Treatment (ATT) of residual waste. However, high investment costs combined 

with reducing levels of feedstock (residual fraction) has been problematic for contracts 

between Local Authorities and energy companies. These problems only become manifest 

later in the period as a sustained escalator on landfill tax has seen levels rise by around 

25% each decade. A somewhat contradictory policy has been introduced in the form of an 

incineration tax which has added to operational problems for contracts and ATT facilities. 

External pressures on absolute levels of waste have come from an increasing population, 
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Table 5.7: Key characteristics of the Circular Economy (CE) qualitative narrative 

Key Factors 2050 2040 2030 2020 2012 

Demographics 
Stable Population 
Growth 

Stable Population 
Growth 

Increasing population Increasing population Increasing population 

Socio-Economic Situation Income re-distribution Income re-distribution Income re-distribution Income re-distribution Inequality reigns 

Consumption patterns + 
environmental behaviour 

Low consumption and 
environmentally 
conscious behaviour 

Low consumption and 
environmentally 
conscious behaviour 

Low consumption and 
environmentally 
conscious behaviour 

Low consumption and 
environmentally 
conscious behaviour 

Consumption patterns 
shift slowly towards 
2020 

Economic output Rapid per capita growth Rapid per capita growth Rapid per capita growth Rapid per capita growth 
Bust-boom cycle to 
2020 

Economy structure 
Product design and 
stewardship focus 

Product design and 
stewardship focus 

Product design and 
stewardship focus 

Product design and 
stewardship focus 

Service sector focus 
with some consideration 
of design 

Corporate Eco-Behaviour 
Sustainability / resource 
efficiency drive 

Sustainability / resource 
efficiency drive 

Sustainability / resource 
efficiency drive 

Sustainability / resource 
efficiency drive 

Sustainability / resource 
efficiency drive 

Commodity Markets 
Steadily increasing 
prices 

Steadily increasing 
prices 

Steadily increasing 
prices 

Steadily increasing 
prices 

Steadily increasing 
prices 

Energy System 
Large increase in ATT 
(centralised) 

Large increase in ATT 
(centralised) 

Large increase in ATT 
(centralised) 

Large increase in ATT 
(centralised) 

Large increase in ATT 
(centralised) 

Waste System 
Decreasing trend in 
waste arisings over 
long-term 

Decreasing trend in 
waste arisings over 
long-term 

Shift to materials based 
approach  

Shift to materials based 
approach  

Shift to materials based 
approach  

EfW Capacities / Technologies 
De-coupled fuel 
production and 
consumption 

De-coupled fuel 
production and 
consumption 

De-coupled fuel 
production and 
consumption 

De-coupled fuel 
production and 
consumption 

De-coupled fuel 
production and 
consumption 

System Support + Intervention 
Secondary materials 
markets develop 

Secondary materials 
markets develop 

Secondary materials 
markets develop 

Secondary materials 
markets develop 

Secondary materials 
markets develop 

Development of Landfill Tax 
(environmental taxes) 

Hammering of landfill/ 
incineration 

Hammering of landfill/ 
incineration 

Hammering of landfill/ 
incineration 

Hammering of landfill Hammering of landfill 

Voluntary Improvements 
Increase in policy 
driven measures 

Increase in policy 
driven measures 

Increase in policy 
driven measures 

Increase in policy 
driven measures 

Increase in policy 
driven measures 

Recycle & Reuse Capacities / 
Technology 

Holistic and integrated 
approach to resource 
management 

Holistic and integrated 
approach to resource 
management 

Holistic and integrated 
approach to resource 
management 

Holistic and integrated 
approach to resource 
management 

Shift towards holistic 
approach begins 
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particularly within Northamptonshire and other growth areas. In addition, there has been a 

sustained level of rapid per capita economic growth. Commodity markets have witnessed 

steadily increasing prices throughout the period which has put pressure on materials usage 

and issues around scarcity. This situation has boosted incentives to develop technologies 

capable of increasing reuse, recycling and recovery of valuable materials from ‘resource 

streams’. This concept has developed considerably and values have increased significantly 

for all fractions spurring technological development and the growth of secondary markets 

still further. Finally, the period has seen an increased focus on income redistribution in the 

wake of financial crises and increasing disenchantment with political parties. Policies have 

increasingly moved towards social justice which has brought environmental concerns 

further to the fore. This has manifested in lower levels of consumption after sustained 

education and awareness raising programmes on environmental issues including reducing 

waste.  

5.3.2.1.2 Scenario VM: Value above all – Valorisation & Materials     

This scenario is heavily focused on materials security and technological solutions towards 

capturing materials through recycling and recovery (shown in Table 5.8). It is largely 

driven by increased private sector influence and is thus comparable in some ways to the 

GEO-4 Security First scenario (UNEP, 2007). However, the position in England is 

exacerbated by a lack of clear policy direction on resource management issues. There is a 

continued focus on municipal waste throughout the period as market conditions are 

perceived to be the best solution for commercial and industrial waste streams (including 

those from the construction sector). The technological focus is on using large scale 

Advanced Thermal processes to convert waste-to-energy as this is seen as the most 

bankable option for investment.  
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The period sees no substantial change in legislation with continued emphasis on recovery 

as opposed to reducing the overall quantity of waste in order to safeguard feedstock’s for 

large scale infrastructure and capital investment. The landfill tax is continued throughout 

the period in order to encourage diversion from landfill but the level is set at 1% above 

inflation. This approach is seen as the best way of maintaining the viability of large scale 

recovery while still meeting EU driven targets for overall recovery. There is no 

introduction of an incineration tax within this scenario. Ownership remains with large scale 

traditional operators acting within larger financing partnerships. This produces a ‘stacking’ 

effect of technologies at larger sites (similar to Amey Cespa’s Integrated Waste 

Management Site at Waterbeach in Cambridge) which draw wastes in from large 

geographical areas. However, this arrangement is still characterised by Local Authority 

boundaries and contractual arrangements which hampers the overall operational efficiency 

and retains a policy focus on municipal waste. This scenario generates significant success 

in capturing larger percentages of materials for recycling with a large proportion of 

residual waste passing through EfW facilities to recover energy.   

A number of significant external factors drive this technologically focused scenario. 

Principal among these are the steadily increasing prices of commodities and the resultant 

increase this leads to in recovered materials prices. In addition, concerns over energy 

security see a significant upscaling in diversion to EfW which includes large scale building 

of AD facilities with the resulting biogas being used for heat and power as well as for 

biomethane based transport fuels. This emphasis is marketed by corporations as progress 

towards a ‘green economy’ and evidence of their environmental credentials within CSR 

reporting.  Policies in this area are also nested in the concept of a Circular Economy but the 

technological emphasis is the only aspect carried forwards in terms of recycling and 

recovery. Other factors with lesser impacts in this scenario include: the continuation of 

inequality which impacts on lifestyle choices for the majority; and an increasing population
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Table 5.8: Key characteristics of the Valorisation & Materials (VM) qualitative narrative 

Key Factors 2050 2040 2030 2020 2012 

Demographics 
Decreasing population 
growth (EU repatriation 
& skills quota approach) 

Decreasing population 
growth (EU repatriation 
& skills quota approach) 

Stabilising population Population boom Population boom 

Socio-Economic Situation Inequality reigns Inequality reigns Inequality reigns Inequality reigns Inequality reigns 

Consumption patterns + 
environmental behaviour 

Steady buying power, 
conscious choices 

Steady buying power, 
conscious choices 

Steady buying power, 
conscious choices 

Steady buying power, 
conscious choices 

Steady buying power, 
conscious choices 

Economic output Double dip (recession) Bust-boom cycle Double dip (recession) Bust-boom cycle Double dip (recession) 

Economy structure 
Balancing (diversify - 
growth of green 
economy) 

Balancing (diversify - 
growth of green 
economy) 

Balancing (diversify - 
growth of green 
economy) 

Balancing (diversify - 
growth of green 
economy) 

Manufacturing base 
begins to rebuild around 
greening infrastructure 

Corporate Eco-Behaviour 

Economic 
competitiveness depends 
on CE approach (behind 
curve) 

Economic 
competitiveness depends 
on CE approach (behind 
curve) 

Economic 
competitiveness depends 
on CE approach (behind 
curve) 

Economic 
competitiveness depends 
on CE approach (behind 
curve) 

Competitiveness 
concerns grow as 
emerging economies 
adopt CE 

Commodity Markets Reversal of super-cycle Steadily increasing prices Steadily increasing prices Steadily increasing prices Steadily increasing prices 

Energy System 
Market reform for 
smaller producer entry 

Market reform for 
smaller producer entry 

Market reform for 
smaller producer entry 

Market reform for 
smaller producer entry 

Public pressure to reform 
markets increases 

Waste System 
Decreasing long-term 
trend in waste arisings  

Decreasing long-term 
trend in waste arisings  

Shift to materials based 
approach  

Shift to materials based 
approach  

Shift to materials based 
approach  

EfW Capacities / Technologies Large scale EfW Large scale EfW Large scale EfW Large scale EfW Large scale EfW 

System Support + Intervention Stable legislation Stable legislation Stable legislation Stable legislation Stable legislation 

Development of Landfill Tax 
(environmental taxes) 

Gradual tax increases Gradual tax increases Gradual tax increases Gradual tax increases Gradual tax increases 

Voluntary Improvements 
No policy but strong 
industry response to 
consumer demands 

No policy but strong 
industry response to 
consumer demands 

No policy but strong 
industry response to 
consumer demands 

No policy but strong 
industry response to 
consumer demands 

No policy but strong 
industry response to 
consumer demands 

Recycle & Reuse Capacities / 
Technology 

LACW dominates 
development with 
technology focus on C&I 

LACW dominates 
development with 
technology focus on C&I 

LACW dominates 
development with 
technology focus on C&I 

LACW dominates 
development with 
technology focus on C&I 

LACW dominates 
development with 
technology focus on C&I 
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to 2030 before beginning to decline after 2040 with implications for per capita generation. 

These last two points are exacerbated by the continuation of traditional economic cycles 

(boom and bust) throughout the period which impacts on consumer choices over 

environmental considerations for products and services. 

5.3.2.1.3 Scenario EC: sustainable consciousness - Ecological Citizenship   

The EC scenario reflects the principles of sustainability from a deep ecological perspective 

with significant changes in behaviours from individuals, organisations and businesses. This 

scenario is consistent with the GEO-4 Sustainability First scenario (UNEP, 2007, p.410) as 

well as the more optimistic elements of ‘Vision 2050’ (WBCSD, 2010).  The main 

characteristics and timeline for the EC scenario are described in Table 5.9 with a more 

detailed narrative of the key characteristics explored subsequently. 

The population has increased throughout the period driven mainly by migration and 

increased birth rates within the population at large. This has gradually balanced the ageing 

effect witnessed prior to the baseline year. New skills from migrant workers, English 

people retraining around green business sectors and the availability of labour have allowed 

the expansion of reuse models as well as increased materials segregation in labour 

intensive recovery operations. Education and awareness of all resource issues and the 

benefits of more efficient business models has seen school and university leavers 

increasingly skilled around and aware of the need for ecological literacy (Capra, 1996, 

p.299) when doing business. This has embedded practices within corporate behaviour 

which has transformed many businesses into global leaders on applying Circular Economy 

principles. However, the EC scenario goes much further than the previous CE scenario 

with business models based on community ownership a key factor in influencing consumer 

choices and in redistributing wealth through share options for employees and investors. 

These models have allowed private sector funding for required reuse, recycling and 
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recovery infrastructure. Notwithstanding this change, there is a significantly reduced need 

for such infrastructure as systems thinking approaches to waste have seen the waste 

hierarchy applied with regard to waste prevention as the first consideration. This principle 

is embedded within the Zero Waste Strategy for England introduced in 2020 representing a 

radical shift from the target driven approach of earlier years.   

The outcome has been very significant percentage reductions in waste generation rates 

with increased use of redesign for products and services as well as substitution and 

innovation around materials utilised in manufacture of consumables. Leasing models have 

been widely utilised and developed throughout the period. This has drawn on early success 

from the automotive sector which quickly shifted towards a leasing model between 2015 

and 2020 in order to maintain ownership of materials in light of concerns over resource 

scarcity and high commodity prices. Landfill bans have been introduced for all recyclable 

materials as well as a continued focus on high landfill tax for residual waste and the 

introduction of an incineration tax to discourage the diversion of valuable materials to EfW 

before it has been segregated for reuse or recycling.  

The scenario also sees a more protectionist approach to materials and commodities at the 

national scale with increased protectionism from government. This negative outcome has 

implications for international trade but is countered by a strong movement towards 

localised networks with global reach. This process is transitional throughout the period and 

is largely established as a new model for globalisation reflecting networks of relationships 

and a shift away from materialism in favour of happiness and well-being by 2050.            

5.3.2.1.4 Scenario ED: austerity prevails - Economic Destabilisation 

The ED scenario largely fits with the description of a reference scenario as suggested in the 

literature (UNEP, 2007; Anderson et al. 2008; WBCSD, 2010; DEFRA, 2011b). However, 

it departs from this role in certain aspects, largely concerning the impact of 
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Table 5.9: Key characteristics of the Ecological Citizenship (EC) qualitative narrative 

Key Factors 2050 2040 2030 2020 2012 

Demographics 
Increasing pop 
balances ageing, 
greater diversity 

Increasing pop 
balances ageing, 
greater diversity 

Increasing pop 
balances ageing, 
greater diversity 

Increasing pop 
balances ageing, 
greater diversity 

Increasing pop 
balances ageing, 
greater diversity 

Socio-Economic Situation Growing affluence Growing affluence Growing affluence Growing affluence Income squeeze 

Consumption patterns + 
environmental behaviour 

Strong increase in 
sustainable 
consumption 

Strong increase in 
sustainable 
consumption 

Strong increase in 
sustainable 
consumption 

Strong increase in 
sustainable 
consumption 

High consumption and 
low environmentally 
conscious behaviour 

Economic output Steady growth Steady growth Steady growth Steady growth Double dip (recession) 

Economy structure 
Continued shift to 
services 

Continued shift to 
services 

Continued shift to 
services 

Continued shift to 
services 

Continued shift to 
services 

Corporate Eco-Behaviour 
Competitiveness 
depends on CE (ahead 
of curve) 

Competitiveness 
depends on CE (ahead 
of curve) 

Competitiveness 
depends on CE (ahead 
of curve) 

Competitiveness 
depends on CE (ahead 
of curve) 

Competitiveness 
depends on CE (ahead 
of curve) 

Commodity Markets 
Closed markets and 
protectionism 

Closed markets and 
protectionism 

Closed markets and 
protectionism 

Closed markets and 
protectionism 

High prices and strong 
volatility 

Energy System 
Increase in AD and 
associated EfW 

Increase in AD and 
associated EfW 

Increase in AD and 
associated EfW 

Increase in AD and 
associated EfW 

Increase in AD and 
associated EfW 

Waste System 
High impact of waste 
prevention policies 

High impact of waste 
prevention policies 

High impact of waste 
prevention policies 

High impact of waste 
prevention policies 

High impact of waste 
prevention policies 

EfW Capacities / Technologies Small-scale EfW Small-scale EfW Small-scale EfW Small-scale EfW Small-scale EfW 

System Support + Intervention 
Zero Waste England 
(Resource Strategy, 
2020) 

Zero Waste England 
(Resource Strategy, 
2020) 

Zero Waste England 
(Resource Strategy, 
2020) 

Zero Waste England 
(Resource Strategy, 
2020) 

Target driven to 2020 
(continuation) 

Development of Landfill Tax 
(environmental taxes) 

Sophisticated materials 
based approach 

Sophisticated materials 
based approach 

Sophisticated materials 
based approach 

Sophisticated materials 
based approach 

Escalator continues to 
2020 

Voluntary Improvements 
Industry lead on C&I 
and C&D 

Industry lead on C&I 
and C&D 

Industry lead on C&I 
and C&D 

Industry lead on C&I 
and C&D 

Industry lead on C&I 
and C&D 

Recycle & Reuse Capacities / 
Technology 

Coordinated expansion Coordinated expansion Coordinated expansion Coordinated expansion 
Coordinated expansion 
from 2015 
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specific destabilising events. These are limited in scope for the purposes of testing the 

impact of the scenario but have been broadened in terms of testing the sensitivity of this 

‘continuation of current trends’ scenario against the previously described CE; VM; and EC 

scenarios. 

The key characteristics of the ED scenario and timeline for changes are described in Table 

5.10 with a detailed description of the key characteristics made subsequently. It is also 

noteworthy to mention that the results included in ED are the result of iterations with 

stakeholder input through plausibility testing (see section 5.3.3.1) rather than merely 

describing a ‘worst case scenario’. In essence, after scoring data was aggregated these 

results were given to stakeholders for feedback with a broad consensus being taken 

forwards rather than relying solely on scoring.  

The economic downturn of the period immediately prior to the 2012 baseline has a marked 

and prolonged effect on society and all economic sectors. This squeezes investment 

opportunities for waste policy development resulting in a continuation of the approach 

‘doing more with less’ (HMG, 2011). The squeeze carries over to incomes directly related 

to levels of economic growth which are either subdued or increase slowly during 

continuous periods of bust and boom. The population continues the trend of rapidly ageing 

particularly as former migrants begin to repatriate and skills based quotas have an impact 

after introduction prior to 2020. The EU continues to move between crises, particularly 

around the Euro, with resentment from southern states over imposed austerity measures. 

This leads to a strategy of blocking legislation passing through the parliament and impacts 

on new policy formation around waste and resource efficiency.  

As a result, more stringent targets are delayed and countries seek to achieve their minimum 

requirements under existing legislation. This is heightened by some states not achieving  
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Table 5.10: Key characteristics of the Economic Destabilisation (ED) qualitative narrative 

Key Factors 2050 2040 2030 2020 2012 

Demographics 
Rapidly ageing 
population, stagnation 

Rapidly ageing 
population, stagnation 

Rapidly ageing 
population, stagnation 

Rapidly ageing 
population, stagnation 

Rapidly ageing 
population, stagnation 

Socio-Economic Situation Poorer society Poorer society Inequality reigns Inequality reigns Income squeeze 

Consumption patterns + 
environmental behaviour 

High consumption and 
low environmentally 
conscious behaviour 

High consumption and 
low environmentally 
conscious behaviour 

High consumption and 
low environmentally 
conscious behaviour 

High consumption and 
low environmentally 
conscious behaviour 

High consumption and 
low environmentally 
conscious behaviour 

Economic output Triple dip (recession) Bust-boom cycle Bust-boom cycle Bust-boom cycle Triple dip (recession) 

Economy structure 
Resurgence of British 
manufacturing 

Resurgence of British 
manufacturing 

Resurgence of British 
manufacturing 

Resurgence of British 
manufacturing 

Shift to services slows 

Corporate Eco-Behaviour 
Diverse approaches, 
uncoordinated 

Diverse approaches, 
uncoordinated 

Low level of concern and 
efficiency 

Low level of concern and 
efficiency 

Low level of concern and 
efficiency 

Commodity Markets 
High prices and strong 
volatility 

High prices and strong 
volatility 

High prices and strong 
volatility 

High prices and strong 
volatility 

High prices and strong 
volatility 

Energy System Slow shift to renewables Slow shift to renewables Slow shift to renewables Slow shift to renewables Slow shift to renewables 

Waste System 
Low impact of waste 
prevention policies 

Low impact of waste 
prevention policies 

Low impact of waste 
prevention policies 

Low impact of waste 
prevention policies 

Low impact of waste 
prevention policies 

EfW Capacities / Technologies 
Large % increase in on-
farm AD (decentralised 
biogas production) 

Large % increase in on-
farm AD (decentralised 
biogas production) 

Large % increase in on-
farm AD (decentralised 
biogas production) 

Large % increase in on-
farm AD (decentralised 
biogas production) 

Large % increase in on-
farm AD (decentralised 
biogas production) 

System Support + Intervention 
More legislation, more 
standardisation 

More legislation, more 
standardisation 

More legislation, more 
standardisation 

More legislation, more 
standardisation 

More legislation, more 
standardisation 

Development of Landfill Tax 
(environmental taxes) 

Decrease in landfill tax Decrease in landfill tax Decrease in landfill tax Freeze in landfill tax 
Escalator ends in 2015 
with freeze thereafter 

Voluntary Improvements 
Decrease in policy 
measures / industry 
responses 

Decrease in policy 
measures / industry 
responses 

Decrease in policy 
measures / industry 
responses 

Decrease in policy 
measures / industry 
responses 

Decrease in policy 
measures / industry 
responses 

Recycle & Reuse Capacities / 
Technology 

Low-Tech, uncoordinated 
and diverse 

Low-Tech, uncoordinated 
and diverse 

Low-Tech, uncoordinated 
and diverse 

Low-Tech, uncoordinated 
and diverse 

Low-Tech, uncoordinated 
and diverse 
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targets (2020) which results in further crises over fines and the ability or refusal to pay 

these. Overall societies across Europe become poorer as newer global regions come to the 

fore often embedding circular economic models, thus producing further downwards pressure 

on growth in England and the wider EU.  

The waste sector in general is characterised by a lack of coordination in approach with 

municipal waste remaining the focus for Local Authorities thus continuing existing 

inefficiencies in the system as a whole as wastes are treated as separate issues rather than 

holistically. The energy sector continues to slowly shift towards renewables and the uptake 

of AD at the farm scale is a driver for this. This in part is needs driven, on the part of rural 

communities, to diversify as they continue to lag behind urban centres in terms of income 

levels and employment opportunities. Conversely, manufacturing becomes resurgent on the 

back of renewables projects including AD which becomes home grown.   

5.4 Evaluating the visions against the baseline: QM results 

Having established the visions of what a zero waste future would be and the structural 

context of the system in terms of the baseline the next stage of the process is to establish the 

degree of change which would be required to achieve the desirable vision. A quantitative 

model (QM) was developed in spreadsheet format to undertake the assessment. This model 

incorporates targets and levels of waste prevention, reuse, recycling and recovery indicated 

in the visioning process. Given the difference in focus of each scenario these targets are 

likely to differentiate according to the focus of the specific scenario.  

It is also important to demonstrate through the scenario pathways how visions can be 

achieved in terms of the degree of movement away from the baseline (e.g. through increases 

or decreases in waste generation; via economic costs and savings; or in terms of direct and 

avoided emissions of carbon). To this end, established targets in the literature are used to 
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frame progress towards the vision in terms of generalised targets and absolute levels of 

reduction or recovery which may be required.  

5.4.1 Impact on waste tonnages  

5.4.1.1 Baseline tonnages 

The baseline tonnages for the study area are shown in Table 5.11. These quantities formed 

the basis of the QM and were also used as the basis for conversion of the final outputs to 

economic valuations and levels of carbon emissions associated with the waste management 

system. Waste prevention and reuse are reported as nil in order to determine the impact of 

such policies against the starting quantities.  

Table 5.11: QM baseline quantities (tonnes) for all waste streams in 2012 

Baseline tonnages 
(2012) 

LACW C&I C&D Hazardous All wastes 

(t) (t) (t) (t) (t) 
 Waste prevention  - - - - - 
 Reuse  - - - - - 
 Recycling  155,554 547,317 839,609 17,435 1,559,914 
 Recovery  19,738 65,694 138,510 23,892 247,834 
 Disposal  164,435 341,838 337,264 52,918 896,455 
 Totals  339,727 954,850 1,315,382 94,245 2,704,204 

 

Table 5.10 shows that C&D waste is almost half (48.6%) of all wastes and accounts for 

53.8% of all recycling and 55.9% of all recovery. C&I waste is the next largest proportion 

(35.3%) of all wastes accounting for 35.1% of all recycling and 26.5% of recovery. LACW 

is a smaller fraction of all wastes (12.6%) in the study area accounting for almost one tenth 

(9.97%) of recycling and slightly less (7.96%) of recovery. Hazardous waste is the smallest 

fraction of all wastes (3.49%) and accounts for just 1.12% of all recycling but surpasses 

LACW with 9.64% of all recovery. Overall quantities of all wastes were 2.70Mt in 2012 

with 57.7% of this figure recycled, 9.16% sent for recovery with the remaining 33.2% sent 

for disposal via landfill or incineration without energy recovery.   
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5.4.1.2 Impact of system variables on waste arisings 

The next stage in the QM is to produce factor values for each system variable (both 

exogenous and endogenous). A range of indicative values are shown in Table 5.12 for the 

per annum impact of all variables on each waste within each scenario. The full results are 

presented in Appendix 7.  

Table 5.12: Factor values for per annum impact of system variables on waste generation 

LACW 2012 2020 2030 2040 2050 

CE 0.9975 1.0002 0.9984 0.9974 0.9963 

VM 0.9974 0.9996 0.998 0.9977 0.9969 

EC 0.9976 1.0003 0.9986 0.9984 0.9977 

ED 0.9995 1.0013 1.0025 1.0038 1.0031 

C&I 2012 2020 2030 2040 2050 

CE 0.9983 1.0013 0.9989 0.9977 0.9966 

VM 0.9982 1.0006 0.9984 0.9979 0.9971 

EC 0.9984 1.0015 0.9991 0.9987 0.998 

ED 1.0005 1.0026 1.004 1.0051 1.0041 

C&D 2012 2020 2030 2040 2050 

CE 0.9973 1.0002 0.9987 0.9974 0.9965 

VM 0.9972 0.9985 0.9973 0.9968 0.9961 

EC 0.9973 1.0003 0.999 0.9986 0.998 

ED 0.9996 1.0013 1.0027 1.0038 1.003 

Hazardous 2012 2020 2030 2040 2050 

CE 0.9983 1.0013 0.9989 0.9977 0.9966 

VM 0.9982 1.0006 0.9984 0.9979 0.9971 

EC 0.9984 1.0015 0.9991 0.9987 0.998 

ED 1.0005 1.0026 1.004 1.0051 1.0041 

All wastes 2012 2020 2030 2040 2050 

CE 0.998 1.001 0.999 0.998 0.997 

VM 0.998 1.000 0.998 0.998 0.997 

EC 0.998 1.001 0.999 0.999 0.998 

ED 1.000 1.002 1.003 1.004 1.004 

Note: values are shown to 4 significant figures to avoid automatic rounding 

 

As can be seen in Table 5.12 the values across the significant milestones of the scenarios 

(CE, VM, EC and ED) are not linear. This non-linearity is further illustrated in Figure 5.11 

in terms of the cumulative impact of system variables on overall waste arisings.   
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Figure 5.11: Per annum impact of system variables on overall waste arisings 

 

Figure 5.11 shows that all scenarios witness an overall upwards pressure on waste arisings 

until 2019 associated with the cumulative impact of all 14 exogenous and endogenous 

variables. However, from 2020 there is a divergence between scenarios with ED 

maintaining an upwards pressure on arisings throughout the period of the backcast (being 

above the 1.000 factor from 2014 onwards) and all other scenarios experiencing a sustained 

downwards pressure on overall waste generation from 2020 (VM) and 2021 (CE and EC). 

The three reducing scenarios exhibit different profiles across the period (2021 to 2050) with 

VM having the largest and most sustained downwards pressure of 0.2-0.3% per annum (in 

the range 0.997 to 0.998 from 2024 to 2045). The period 2032 to 2045 shows a convergence 

between CE and VM before divergence at 2046 with CE reaching the largest annual value 

of 0.9965 (0.35% pa). A further convergence is seen between CE and EC during the period 

2012 to 2025 whereupon EC parallels VM at a factor of between 0.0009 and 0.0011 higher 

than VM (0.9984 to 0.9979 compared with 0.9975 to 0.9968). Cumulative impacts for the 

backcast period were: CE (5.74% reduction); VM (7.29% reduction); EC (3.59% reduction); 

and ED (9.01% increase).      
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5.4.1.3 Impact of waste prevention and reuse on waste arisings 

The impact of waste prevention initiatives (prevention and reuse according to the WFD 

definition – see section 2.3) are treated separately in terms of the calculations for impact on 

overall waste arisings. Figure 5.12 shows the impact of prevention initiatives across the 

backcast period for all scenarios.  

    
Figure 5.12: Cumulative impact of prevention initiatives on overall waste generation 

 

Figure 5.12 shows prevention initiatives have the largest impact in scenario EC (16.63% 

against the baseline tonnage). This compares to a very similar impact for scenarios CE and 

VM until 2041 when there is a divergence until 2050 when prevention initiatives have a 

cumulative impact of 5.63% compared to 4.50% in scenario CE. Waste prevention 

initiatives do not have any impact across the period for scenario ED. In terms of the impact 

of reuse initiatives, Figure 5.13 visualises these as percentage change in overall waste 

generation against the baseline (2012 tonnages).  
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Figure 5.13: Cumulative impact of reuse initiatives on overall waste generation 

 

Figure 5.13 shows that reuse initiatives have the greatest impact within scenario CE 

(14.00% by 2050 against the baseline). Scenario VM performs better than EC and ED 

throughout the period until 2045 when EC matches then surpasses VM. By 2050, scenario 

EC shows reuse initiatives as having a cumulative impact of 9.13% compared with 8.25% 

for scenario VM. Reuse has some impact within scenario ED and matches scenario EC until 

2021, after which it remains between a range of 0.75 and 1.50% (to 2050). 

These calculations are then combined to give an overall cumulative impact of all waste 

prevention initiatives on overall waste generation across the backcast period (2012 to 2050). 

Figure 5.14 shows the combined result for waste prevention. 

The combined results show that scenario EC has the largest cumulative impact by 2050 on 

overall waste generation against the baseline (a 25.75% reduction). This compares with 

totals for CE (18.50% reduction); VM (13.88% reduction); and ED (1.50% reduction). It is 

also clear that scenario CE outperforms all other scenarios until 2034 when it is matched 

and subsequently passed by scenario EC.  
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Figure 5.14: Cumulative impact of all waste prevention on overall waste generation 

 

By 2050, overall waste prevention within scenarios EC, CE and VM are an order of 

magnitude greater than those within scenario ED.   

5.4.1.4 Summary of impacts on waste tonnages  

In order to make calculations for the economic and carbon equivalence impacts it is first 

necessary to apply the values for waste prevention and the values for systems variables to 

overall waste tonnages. In doing so, it is possible to produce the first results for impact of 

scenarios on waste tonnages allowing the performance to be measured against an industry 

and sector recognised metric.  

When the results from the QM are compared it can be seen that CE has the largest overall 

decrease in waste arisings to just under 2.05Mt (Table 5.13) an overall reduction of 658kt 

from the baseline. Scenario EC has a similar level of overall reduction to just over 2.05Mt 

whereas VM has an overall reduction of 537kt to 2.16Mt in 2050. In contrast, ED is the only 

scenario with an overall increase of 270kt with a final level of 2.97Mt.  

 

 -

 5

 10

 15

 20

 25

 30

P
e

rc
e

n
ta

g
e

 c
h

a
n

g
e

 (
%

)

CE VM EC ED



202 

 

Table 5.13: Summary of recycling, recovery and disposal performance (tonnages and 

percentage change) by scenario in 2050 

Scenario 
performance 

Recycling (t) Recovery (t) Disposal (t) Sub-total (t) 

CE (tonnes) 1,600,276 272,648 173,105 2,046,030 

CE (% change)  +2.59% +10.01% -80.69% 75.66% 

VM (tonnes) 1,710,989 291,795 157,652 2,160,436 

VM (% change)  +9.68% +17.74% -82.41% 79.89% 

EC (tonnes) 1,753,747 165,134 135,251 2,054,132 

EC (% change)  +12.43% -33.37% -84.91% 75.96% 

ED (tonnes) 1,503,441 768,263 630,090 2,901,793 

ED (% change)  -3.62% +309.99% -29.71% 107.31% 
Note: Figures in red are minus values indicating an annual increase by the amount specified  

Overall changes in controlled wastes (by tonnage) across the backcast period (2012 to 2050) 

are summarised for comparison in Figure 5.15. 

Figure 5.15: Impact of waste prevention and variables changes on total controlled wastes 
(Mt) in Northamptonshire for the four scenarios between 2012 and 2050. 

 

Figure 5.15 illustrates the subtle differences between the three reducing scenarios (CE, VM 

and EC) with that of the reference scenario (ED) with reductions occurring throughout the 

period of the backcast (2012-2050). In terms of the continuing trends scenario (ED) arisings 

are relatively unchanged until 2020 when an upwards trend becomes established.  
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In terms of recycling performance; scenarios VM and ED maintain similar levels throughout 

the backcast period ranging from 1.61 to 1.50Mt for VM and from 1.56 to 1.53Mt for ED. 

Both CE and EC reduce the overall tonnages of wastes recycled by 291kt (CE) and 196kt 

(EC) respectively. Levels of recovery vary considerably across the four scenarios. Recovery 

levels for CE and VM fluctuate before returning to their baseline level in 2050 whereas 

scenario EC sees a reduction of 37.2%. In contrast, ED shows recovery increasing by more 

than 300% to 788kt. Disposal shows a reduction across all scenarios but is most pronounced 

within scenario EC going from 896kt to 71kt in 2050. Table 5.14 is a summary of system 

variables and waste prevention impacts. 

Table 5.14: Summary of system variables and waste prevention impacts (t) across all 
scenarios in Northamptonshire (2012-2050) 

Values CE VM EC ED 

Systems variables 155,322 197,268 97,183 -323,694 

Waste prevention 502,058 345,854 552,310 53,441 

 

Table 5.14 shows that changes to system variables had the largest cumulative impact within 

scenario ED (an increase of 324kt) for the 38 year period. Scenario VM showed cumulative 

impacts for system variables producing the largest reduction in tonnages of 197kt. Waste 

prevention in scenario EC had the largest cumulative impact on all waste arisings (552kt) 

compared to the least impact within ED (53kt). Table 5.15 summarises overall impacts on 

total waste arisings.   

Table 5.15: Statistical summary of impacts on total waste arisings (Mt) across all scenarios 
for key milestone years in Northamptonshire  

Year CE (Mt) VM (Mt) EC (Mt) ED (Mt) 

2012 2.70 2.70 2.70 2.70 

2020 2.58 2.60 2.62 2.70 

2030 2.42 2.46 2.48 2.77 

2040 2.23 2.29 2.24 2.83 

2050 2.05 2.16 2.05 2.97 
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Table 5.15 shows scenarios CE and EC as having the same level of overall arisings in 2050 

(2.05Mt) compared with 2.16Mt for scenario VM. Scenario ED shows the highest level of 

waste arisings across all scenarios (2.90Mt). 

5.4.2 Economic impacts of scenarios 

There were three main factors considered for calculating the economic impact of each 

scenario, namely: gate fees; landfill tax; and new infrastructure provision (estimated). The 

following section addresses each in turn before summarising the overall economic impact. 

Estimated costs (direct cost to the LA) and savings (avoided costs through diversion and 

reduction) are based on cost per tonne (£/t) for gate fees and landfill tax. Infrastructure 

costings are based on average prices for specific facility types taken from planning 

documentation, government reports and academic literature where available. 

5.4.2.1 Calculating gate fees for scenarios    

Because of the different gate fees charged for materials destined for the same facility type 

(largely based on scale/capacity of such facilities) mean values were used to provide an 

indicative value per tonne of material handled.  

Table 5.16: Summary of average gate fees (£/t) by management method 2008-2012  

Management method 2008 2009 2010 2011 2012 

Treatment  27.88 34.25 39.75 25.80 29.00 

Treatment (hazardous) n/a n/a n/a n/a 78.00 

Recovery 53.00 62.00 75.00 84.00 75.00 

Landfill (non-hazardous) 21.00 22.00 22.00 20.00 21.00 

Landfill (hazardous) n/a n/a n/a n/a 51.33 

Source: (after WRAP, 2013c). 

Table 5.16 shows gate fees are volatile for all management methods where historic data are 

available. Hazardous materials command a considerable premium being more than 2.5 times 

those of non-hazardous management methods. Recovery operations (e.g. incineration and 

MBT) are comparable to gate fees at hazardous facilities and have on average increased 

consistently throughout the period with the exception of 2012.  
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Table 5.17: Summary of LACW gate fees (£/t) for milestone years under CE scenario 

Year Recycling Recovery Disposal 

2012 £      29.00 £      75.00 £      21.00 

2020 £      30.48 £      78.83 £      22.07 

2030 £      33.67 £      87.07 £      24.38 

2040 £      37.19 £      96.18 £      26.93 

2050 £      41.08 £    106.25 £      29.75 

 

Table 5.17 provides an indicative example of gate fees for LACW (£/t) across the milestone 

years of the four scenarios produced. The increases shown for all management methods 

under a CE scenario are based on incremental changes associated with inflationary 

pressures. However, such changes are not uniform across the scenarios. Figure 5.16 shows 

the profiles of LACW gate fees across the four scenarios.     

Figure 5.16: Changes in landfill gate fees for LACW across the four scenarios 

 

It can be seen in Figure 5.16 that landfill gate fees increase significantly under scenario EC 

from £21/tonne in 2012 to more than £40/tonne in 2050. These increases reflect regulatory 

pressures focused on trying to minimise disposal of waste to landfill within a sustainability 

policy paradigm. Scenarios VM and ED reflect little regulatory influence and are more in 

line with market conditions. In particular, scenario VM shows an overall decrease from 
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£21/tonne in 2012 to £18.71/tonne in 2050. The final requirement in calculating the 

economic impact of gate fees is to combine gate fee values with waste tonnage data. The 

difference in gate fee costs across the backcast period is shown in Figure 5.17.  

 
Figure 5.17: Gate fee costs (£m) for all scenarios (2012-2050)   

 

As can be seen in Figure 5.17 gate fee costs across scenarios EC, CE and ED have very 

linear profiles (with the exception of the period 2029-39 for ED) increasing steadily 

throughout the period, shown in more detail for all waste types in Appendix 8. In contrast, 

after an initially small increase in costs between 2012 and 2019 (£2.15m) there is a 

sustained downwards trend from 2020 until 2050 (the overall reduction is £5.61m).  

Figure 5.18 shows the profiles of the savings made for all four scenarios over the backcast 

period (2012-2050).  It can be seen from Figure 5.18 shows savings in relation to gate fees 

are modest compared with overall costs. For example; the savings in 2050 across the four 

scenarios account for between 0.25% (ED) and 2.1% (CE). In general, savings for scenarios 

VM and ED peak between 2013 and 2020 before following an overall downwards trend 

between 2021 and 2050. 
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Figure 5.18: Gate fee savings (£m) across all scenarios (2012-2050) 

 

Scenario CE has a relatively constant level of savings across the period 2013 to 2040 with a 

spiked increase from £0.77m to £1.48m which is roughly maintained until 2050. The only 

scenario with an overall upwards trend in savings from gate fees is EC. This trend is steadily 

upwards (increasing from £0.97m in 2021 to £1.62m in 2050) after a brief period of 

fluctuation from 2013-2020.   

5.4.2.2 Calculating landfill tax impacts of scenarios      

Historically landfill tax has followed a linear profile as it has been set by HMRC on behalf 

of HM Treasury (see Figure 4.6, p.150). Indeed, the waste sector and business have known 

what the level of landfill tax would be for at least 2 years into the future under budgetary 

announcements in relation to the landfill tax escalator (HMRC, 2013). As seen in Figure 4.6 

landfill tax has been increasing on active waste since 1998/99 with a sustained increase of 

£8/t between 2007/08 and 2011/12 (with a further increase to £80/t introduced in April 

2014). Consequently, a choice was made across all scenarios to maintain this trend until 

2030.  
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Table 5.18: Summary of landfill tax rates (£/t) for controlled wastes streams across all 
scenarios and for key milestone years (2012, 2020, 2030, 2040 and 2050) 

Waste streams Year Scenarios 

Active LACW and C&I 
wastes  

(standard rate) 

 CE VM EC ED 

2012 64.00 64.00 64.00 64.00 

2020 104.00 120.00 128.00 80.00 

 2030 140.00 120.00 160.00 60.00 

 2040 140.00 120.00 160.00 60.00 

 2050 140.00 120.00 160.00 60.00 

Inactive C&I and  
C&D  

(low rate) 

 CE VM EC ED 

2012 2.50 2.50 2.50 2.50 

2020 3.00 3.00 3.00 2.50 

 2030 3.50 4.00 4.00 2.50 

 2040 4.00 4.50 6.00 2.50 

 2050 4.00 4.50 16.00 2.50 

Hazardous wastes 
(estimated) 

 CE VM EC ED 

2012 148.50 148.50 148.50 148.50 

 2020 158.50 161.00 180.50 148.50 

 2030 186.50 175.00 260.50 148.50 

 2040 214.50 194.00 340.50 148.50 

 2050 314.50 204.00 420.50 148.50 

  

Table 5.18 shows that active waste (covering the LACW and around 70% of C&I wastes) 

has seen an increase in tax rates across scenarios CE, VM and EC. However, under scenario 

ED after the initial increase to £80/t which lasted until 2020 there was a reduction in the rate 

of landfill tax to £60/t by 2030 which is maintained until the end of the period (2030 to 

2050). The rate of landfill tax for inert wastes (inactive C&I and C&D wastes) increases 

only marginally for CE and VM while remaining constant for ED. However, scenario EC 

sees a marked increase from £2.50/t to £16/t by the end of the backcast period. The baseline 

for tax on hazardous waste is estimated in the QM as 3 times the average gate fee (mean 

value of treatment, recovery and landfill multiplied by 3). The economic impacts of landfill 

tax rates on overall costs for the period are shown in Figure 5.19. Figure 5.19 shows the 

impact of differential rates of landfill tax for controlled waste streams on overall costs. The 

most significant point relates to the different points at which each scenario sees a reduction 

in overall costs associated with landfill tax rates. 
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Figure 5.19: Landfill tax costs (£m) for all scenarios (2012-2050) 

 

For example; Scenario ED sees a decrease beginning at 2014 which is sustained until 2030, 

whereas VM increases until 2019 before maintaining a downwards trajectory before 

reaching the lowest level of all scenarios in 2050 (£16.2m). The highest levels of costs 

associated with landfill tax are seen in scenario EC which peaks in 2024 at £62.9m.  

Figure 5.20: Landfill tax savings (£m) for all scenarios (2012-2050)  

 -

 10

 20

 30

 40

 50

 60

 70

La
n

d
fi

ll
 t

a
x

 c
o

st
s 

(£
m

)

CE VM EC ED

-0.5

 -

 0.5

 1.0

 1.5

 2.0

 2.5

La
n

d
fi

ll
 t

a
x

 s
a

v
in

g
s 

(£
m

/y
r)

CE VM EC ED



210 

 

 

Scenario CE takes the longest period of time to begin reducing costs from landfill tax (2012-

2029) after which it reduces to an equivalent level seen in scenario EC at 2050. Savings 

levels and profiles for the backcast period are shown in Figure 5.20. Similar to gate fees, 

landfill tax savings are modest when compared with overall costs. However, by 2050 these 

range between 0.75% (VM) and 0.95% (EC) with scenario ED witnessing an increase in 

landfill tax costs of £0.16m per year from 2041. The profile for each scenario shows EC and 

CE as generally increasing across the period. Scenario VM remains relatively constant 

within a range between £0.92m and £1.62m (2015 to 2050). Savings for scenario ED 

increase between 2012 and 2020 before declining markedly from 2021 to 2040 before 

becoming additional costs associated with landfill tax towards the end of the period.  

A full summary of costs and savings associated with landfill tax for the period 2012-2050 

for all scenarios is presented in Appendix 8. The baseline landfill tax costs for all scenarios 

are £34.9m. All scenarios see costs in 2050 considerably reduced (see Figure 5.20) with the 

lowest costs seen in scenario VM (£16.2m) and the highest costs for scenario ED (£27.3m). 

Savings across the period (cumulative) are significant across all scenarios ranging from 

£59.6m for EC to £7.65m for ED.   

5.4.2.3 Estimating the costs of additional infrastructure requirements 

The final element to calculate in order to determine the overall economic impact of each 

scenario relates to the potential level of additional infrastructure which would be required to 

deliver recycling, recovery and disposal rates associated with the scenarios. A range of 

literature sources were reviewed to give a range of values for infrastructure types based on 

scale and operation. Table 5.19 gives a summary of costs identified as well as showing 

operations by recycling and recovery (MBT and EfW) with landfill not accounted for as the 

existing capacity within the county would be adequate across all scenarios.  
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In order to calculate the estimated costs in Table 5.19 estimations were used from a 

government and waste sector report (APSRG, 2011) which estimated total required 

investment for a base case and high scenario profile (shown in Table 5.20).    

Table 5.19: Indicative infrastructure costs (£m) for future waste management capacity 

Operation Scale 
(kt/year) 

Estimated 
cost (£m) 

Number of facilities required by scenario Estimated 
investment 
cost (£m) CE VM EC ED 

Integrated facility < 150kt 13.51     - 

 150-350kt 43.75  1   43.75 

MRF < 50kt 6.15 1    6.15 

 50-100kt 12.30   1  12.30 

 > 100kt 18.45     - 

AD <15kt 2.05 1    2.05 

 15-50kt 6.15   1  6.15 

 50-75kt 9.25     - 

Composting < 25kt 3.08 1    3.08 

 25-75kt 9.25   1  9.25 

 > 75kt 12.33     - 

WEEE treatment < 5kt 0.80 1    0.80 

 5-25kt 3.08  1   3.08 

 > 25kt 6.18   1  6.18 

MBT < 50kt 6.15 1    6.15 

 50-150kt 18.45     - 

 > 150kt 24.60    1 24.60 

EfW < 200kt 156.50  1   156.50 

 200-350kt 251.54     - 

 350-500kt 350.50    1 350.50 

Sources: (after APSRG, 2011; WRAP, 2013d). 

This data was used to produce a mean value for recycling and residual treatment capacities 

(t/year) as well as an estimated value for investment per facility (£m). These figures were 

then adjusted according to the scale of the operation involved by means of a simple division 

or multiplication process depending on whether or not the scale of operation was smaller or 

larger than the mean capacity. As a result of this methodology it was possible to determine 

the level of additional capacity required (see Tables 5.19 and 5.20) according to any 

increase or decrease in recycling and recovery across the backcast period (2012-2050). For 

example; ED has recovery increasing by around 540kt thus estimating additional 

infrastructure requirement as 1 MBT operation of >150kt capacity and 1 EfW facility with a 
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capacity of between 350 and 500kt. Consequently, total additional investment for each 

scenario can be calculated as: £18.23m under scenario CE; £203.3m and £33.9m for VM 

and EC respectively; and £375.1m for scenario ED (2 facilities).  

Table 5.20: Calculations for mean recycling and recovery capacity (t) and mean investment 
(£m) per facility  

Calculations Base High 

Recycling facilities 130 210 

Residual facilities 20 40 

Recycling capacity (Mt) 6.60 10.60 

Residual capacity (Mt) 5.60 8.70 

Recycling investment (£bn) 0.80 1.27 

Residual investment (£bn) 4.03 6.26 

Mean recycling capacity (kt) 50.76 50.58 

Mean residual capacity (kt) 280.00 217.46 

Mean recycling investment (£m) 6.15 6.05 

Mean residual investment (£m) 201.50 156.50 

Source: (after APSRG, 2011). 

5.4.2.4 Summary of economic impacts 

In order to gain a final figure for economic impact from each scenario it is necessary to 

consider all three factors together. Table 5.21 shows the overall costs and savings associated 

with gate fees, landfill tax and costs of additional infrastructure in 2050.  

Table 5.21: Summary of economic impacts (£m) from gate fees, landfill taxes and additional 
infrastructure investment requirements 

Economic impacts CE VM EC ED 

Gate fees per annum (£m) 73.26 46.53 97.12 81.65 

Cumulative savings (£m) 35.57 30.28 42.02 30.36 

Landfill tax per annum (£m) 24.91 16.20 25.31 27.34 

Cumulative savings (£m) 45.14 42.80 59.63 7.65 

Infrastructure per annum (£m) 0.47 5.21 0.87 9.62 

Total economic cost per annum (£m) 98.64 67.94 123.30 118.61 

Total potential savings (£m) 80.71 73.08 101.65 38.01 

 

Table 5.21 shows that costs associated with scenario VM are the least (£67.9m) overall 

followed by CE (£98.6m), ED (£118.6m) and EC (£123.3m) as the scenario with the 
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greatest level of economic cost. It is also clear that additional infrastructure to meet the 

policy objectives of VM and ED are the most significant influencing factors for economic 

impacts. In terms of potential savings, scenario EC has the greatest potential (£101.7m) 

while scenario ED has the least (£38.0m).    

5.4.3 Impacts of scenarios on carbon emissions  

In order to produce an overall figure for carbon emissions associated with each scenario 

consideration was given to direct emissions associated with landfill of residual wastes as 

well as indirect emissions (avoided emissions in the form of recycling and recovery 

operations versus landfill disposal). The data reporting tool for LACW carbon emissions 

was utilised as the starting point for producing values for constituent materials within each 

controlled waste stream. Table 5.22 provides a summary of these carbon factors by 

kilograms of carbon dioxide per tonne saving versus landfill (kgCO2/t). The carbon factor of 

residual materials sent to landfill is 290kgCO2/t under this carbon model (DEFRA, 2013e).   

Table 5.22: Controlled waste streams (tonnes) by composition and showing carbon factors 
applied as kgCO2/t saved versus landfill 

Composition Controlled waste streams (tonnes) Carbon factor   
(kg CO2/t saving 
versus landfill) LACW C&I C&D Hazardous 

Organics 114,318 136,639 - - 352 

Paper/Card 77,084 309,453 - - 847 

Glass 22,558 90,533 - - 352 

Metals 14,608 136,207 131,538 - 5,014 

Plastics 33,939 38,603 10,523 - 1,122 

Textiles 9,614 50,866 10,523 - 4,133 

Wood 12,672 99,156 92,077 - 1,276 

WEEE 7,440 9,789 - - 1,134 

Hazardous 10,328 32,889 - 94,243 725 

Bulky 5,402 - - - 921 

Non-recyclable 31,764 50,723 - - 717 

Inert - - 276,230 - 10 

Concrete - - 776,076 - 9 

Plasterboard - - 18,415 - 139 

Residual - - - - -290 

Totals 339,727 954,859 1,315,382 94,243  

Source: (after DEFRA, 2013e). 
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It is possible to identify from Table 5.22 that certain materials represent a priority for 

diversion from landfill, namely: metals, plastics, textiles, wood and WEEE. In addition, for 

every tonne diverted from landfill disposal there is an additional net gain of 290kgCO2/t as 

these materials move out of the residual streams. 

The values in Table 5.22 can also be used to calculate a hypothetical maximum value for 

avoided carbon if all wastes were sent to recycling and recovery (see Table 5.23). 

Conversely, it is possible to calculate a hypothetical maximum if all wastes were sent to 

landfill as residual wastes.  

Table 5.23: Summary of carbon calculations for maximum values (tCO2e) of avoided and 
residual carbon if 100% of all controlled wastes were recycled or sent for disposal 

Calculations (annual) LACW C&I C&D Hazardous 

Total tonnage (t) 339,727 954,859 1,315,382 94,243 

Percentage share (%) 12.6 35.3 48.6 3.5 

Maximum avoided carbon (tCO2) 324,373 1,476,392 844,627 68,326 

Maximum residual carbon (tCO2) 98,521 276,909 381,461 27,330 

Theoretical carbon savings (tCO2) 422,984 1,753,300 1,226,088 95,657 

Percentage share (%) 12.1 50.1 35.1 2.7 

Sources: (after DEFRA, 2013e). 

 

From these two variables a theoretical value can be determined for the maximum carbon 

savings (tCO2e) which can be realised annually. The calculations of these maximum and 

minimum values as well as a value for theoretical annual carbon savings are summarised in 

Table 5.23. It can also be seen from Table 5.23 that the greatest potential carbon savings are 

to be found within the C&I waste stream which accounts for 35.3% of all tonnages but over 

half (50.1%) of all potential carbon savings.  

5.4.3.1 Calculating direct emissions  

Direct emissions from waste management operations within the calculations are those from 

landfilling of residual waste. The carbon model (DEFRA, 2013d) reports these as having a 

value of 290kgCO2/t. A carbon model was produced within the QM (see Figure 8.2) which 
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based calculations of CO2 on overall waste tonnages sent for a specific management route 

(e.g. recycling, recovery or disposal) multiplied by the carbon factor in Table 5.22 with the 

result divided by 1,000 to give an overall tonnage equivalence for direct emissions of CO2.  

 
Figure 5.21: Direct emissions performance (ktCO2e) of all scenarios (2012-2050) 

 
Figure 5.22: Cumulative direct emissions (MtCO2e) across all scenarios by 2050  

 

The performance of each scenario is captured in Figure 5.21 while the cumulative impact of 

scenarios is shown in Figure 5.22. As can be seen in Figure 5.21 direct emissions associated 
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with all four scenarios reduce significantly until 2022 at which point scenario ED begins to 

level off before marginally increasing from 2040. In contrast, scenarios CE, VM and EC all 

continue to show a sustained downwards trend until 2050. There is only a marginal variation 

in direct emissions between these 3 scenarios in 2050. However, when cumulative 

emissions are considered it becomes clearer which scenario performs better across the 

period. Figure 5.22 shows scenario VM has the lowest cumulative direct emissions of 

5.52MtCO2e whereas scenario ED has the highest cumulative value at 7.90MtCO2e. 

Scenarios CE and EC have similar levels at 5.85 and 5.98MtCO2e respectively by 2050.  

5.4.3.2 Calculating avoided emissions: savings versus landfill 

The manufacture of products and goods creates greenhouse gas emissions; actions which 

seek to re-use or recycle these products and goods avoid some of the emissions associated 

with replacing them, and those generated from landfill. Savings versus landfill is thus 

calculated as a value for savings from recycling and a value for savings from recovery 

operations in line with the carbon model (DEFRA, 2013d).  

Figure 5.23: Emissions savings performance (ktCO2e) of all scenarios (2012-2050) 
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Figure 5.23 shows the savings profiles for each scenario across the backcast period (2012-

2050). Figure 5.23 indicates a reversal of the position for scenario ED in 2050 compared 

with direct emissions; which in terms of recycling and recovery savings is the best 

performing scenario. Scenario EC is the next best performing scenario in 2050 with savings 

of 2.19MtCO2e. Overall performance is shown as cumulative totals in Figure 5.24. 

  
Figure 5.24: Cumulative savings (MtCO2e) for recycling and recovery operations across all 
scenarios (2012-2050) 

 

It can be seed form Figure 5.24 that scenario ED has become the best performing scenario 

because of the large increase in recovery operations (accounting for 19.3MtCO2e between 

2012 and 2050) which were described in Table 5.11. Scenario EC has the best performance 

for recycling (67.8MtCO2e) with ED as the worst performing scenario for recycling (61.9 

MtCO2e).  

5.4.3.3 Calculating changes from system variables and waste prevention 

The final stage in determining carbon impacts for scenarios relates to changes as a result of 

systems variables as well as from waste prevention initiatives (e.g. prevention and reuse). 

These savings are calculated using the values for reuse within the English carbon model 
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(DEFRA, 2013e) which are extrapolated in percentage terms for any materials without a 

value. Values used in the calculations are shown in Appendix 9. The changes to waste 

prevention profiles are shown in Figure 5.25.  

 
Figure 5.25: Carbon emissions savings (ktCO2e) from waste prevention across all scenarios 
(2012-2050). 

 

Figure 5.25 shows that by 2050 scenarios EC and CE are achieving annual savings of 19.3 

and 16.9ktCO2e from waste prevention initiatives. In contrast, scenario ED is characterised 

by low levels of annual savings throughout the period with no emissions savings being 

made from 2041 onwards. The second element to consider is the impact of changes to 

systems variables on carbon emissions. A number of key points are raised by Figure 5.26. 

After a period of flux between 2012 and 2020 there is a sustained upwards trend across 

scenarios CE, VM and EC until 2041. After this point scenario CE continues on an upwards 

trajectory while EC and VM show a sharp decline in emissions savings before resuming an 

upwards trajectory to 2050. Conversely, scenario ED sees a sustained downwards trajectory 

across the period (2012-2050). This downwards trend translates into an increase in 

emissions for scenario ED which by 2050 is at an annual rate of 15.5ktCO2e. 
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Figure 5.26: Carbon emissions savings (ktCO2e) from system variables changes across all 
scenarios (2012-2050). 

 

The overall impact of these two factors (e.g. waste prevention and systems variables 

changes) has a cumulative impact on carbon emissions which can be measured to 

differentiate performance by scenario.  

Figure 5.27: Cumulative savings (ktCO2e) for prevention and variables across all scenarios 
(2012-2050). 
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While the totals in Figure 5.27 are a magnitude lower than those for recycling and recovery 

(Figure 5.24), the cumulative impact is significant in terms of overall emissions reduction 

performances. There is a significantly greater variance between prevention totals compared 

with that for systems variables. Scenario EC has the largest cumulative savings (740ktCO2e) 

followed by CE (672ktCO2e) and VM (475ktCO2e) while scenario ED has the lowest 

savings associated with prevention (76.9ktCO2e). In terms of systems variables scenario CE 

is performs marginally better than VM and EC. In stark contrast, the cumulative impact 

from systems variables changes in scenario ED is to increase emissions by 456ktCO2e.         

5.4.3.4 Summary of carbon emissions impacts 

In determining the final level of carbon emissions impact from each scenario savings from 

recycling and recovery were added to those from prevention and systems variables before 

subtracting direct emissions values. This calculation is shown in Equation 5.1. 

 

Equation 5.1: 

 � = ( ��� + ��) − � �  � � �  

Where: S = savings; A = avoidance; rcy = recycling & recovery; and pv = prevention & 

variables. These calculations are summarised in Table 5.24. 

Table 5.24: Summary of cumulative carbon emissions impacts (MtCO2e) for all scenarios 

Impact  CE VM EC ED 

Recycling and recovery  72,720,606 77,032,854 78,658,308 81,177,796 

Prevention & variables 1,188,690 952,571 1,215,929 -379,048 

Direct emissions 5,854,891 5,518,379 5,975,704 7,900,515 

Carbon impact (savings)  68,054,405 72,467,047 73,898,534 72,898,233 

 

Table 5.24 shows, when Equation 5.1 is applied to the results from the previously described 

steps, that scenario EC is the best performing scenario for overall carbon emissions impact 
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with a cumulative saving versus landfill of 73.9MtCO2e. Scenario ED shows the second 

highest level of savings (72.9MtCO2e) but has the largest cumulative amount of direct 

emissions (8.28MtCO2e when the increase from prevention and variables is factored into the 

calculation). Scenario CE has the lowest level of carbon emissions savings for all scenarios. 

However, consideration must also be given to the level and scale of infrastructure 

development required under each scenario (see Table 5.19). Scenario CE has the lowest 

estimated need (<140kt across 5 facilities) compared with VM (575kt for 3 facilities 

including 1 small EfW plant), EC (>250kt across 4 facilities) and ED (>650kt for 2 facilities 

including 1 large EfW plant). Embodied carbon within these facilities is not calculated as 

part of the overall calculations as other variables would impact whether or not these 

facilities were commissioned. However, such embodied carbon is likely to be significant 

across the life cycle of facilities and may produce a different outcome in terms of overall 

carbon emissions performance as seen with economic calculations (see section 5.3.3.3.4). 

As an example; if a value of 300kgCO2/t of additional capacity per annum were taken as a 

constant value and operational life was estimated as being 2020 to 2050 (30 years) this 

would produce additional direct emissions for each scenario shown in Table 5.25. 

Table 5.25: Summary of potential direct emissions (MtCO2e) associated with infrastructure 
development for all scenarios in Northamptonshire (2012-2050). 

Calculation CE VM EC ED 

Additional capacity (kt) 140 575 250 650 

Annual emissions (ktCO2e) 42 173 75 195 

Direct emissions (MtCO2e) 1.26 5.18 2.25 5.85 

Total impact (MtCO2e) 66.79 67.29 71.65 67.05 

 

Under the example described above Table 5.25 shows EC would remain as the best 

performing scenario with VM overtaking scenario ED and scenario CE remaining as the 

worst performing scenario. Indeed, scenario CE would not improve its performance (above 

the next performer) until a value of 318kgCO2/t was reached and would not become the best 
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performer until a value of 1775kgCO2/t was reached (some 6 times higher than the initial 

example. Conversely, no change occurs in the ranked performance until a value of 

200kgCO2/t is introduced. By testing the performance in Table 5.24 in such a way it is 

possible to take forwards the performance rankings on carbon emissions savings as they are 

without accounting for infrastructure impacts. 

5.4.4 Summary of all impacts on scenario performance 

The results of the QM have been reported as three metrics: tonnages; economic costs; and 

carbon emissions savings. These outputs are brought together to quantify the performance of 

all scenarios across all three metrics in order to give an indication of the strengths and 

weaknesses of the scenarios in relation to one another. Table 5.26 provides a summary of all 

scenarios in terms of the three metrics.  

Table 5.26: Summary of cumulative performances by tonnages (Mt); economic cost (£m); 
and emission savings (MtCO2e) across all scenarios in Northamptonshire (2012-2050) 

Metrics CE VM EC ED 

Tonnages (Mt) 2.05 2.16 2.05 2.97 

Economic cost (£m) 98.64 67.94 123.30 118.61 

Emissions savings (MtCO2e) 68.05 72.47 73.90 72.90 

Performance matrix CE VM EC ED 

Tonnages (Mt) 1 3 1 4 

Economic cost (£m) 2 1 4 3 

Emissions savings (MtCO2e) 4 3 1 2 

Scores 7 7 6 9 

   

The results in Table 5.26 show scenario EC has the best overall rank score (6) and has the 

highest rank score in two categories (tonnages and emissions savings). Scenarios CE and 

VM have the same overall rank scores (7).  However, scenario CE is the second overall 

ranked by virtue of having an individual highest score (1 joint with EC for tonnages) and a 

second placed ranking for economic costs. Scenario VM is ranked first for economic costs 

but third in performance across the remaining two metrics (tonnages and emissions savings). 
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In contrast, scenario ED is the worst performer in two categories (tonnages and economic 

cost) but is the second best performer on carbon emissions (before consideration is given to 

direct emissions from new infrastructure provisioning). These performance rankings are 

taken forwards as meeting objective 1 and fulfilling the requirements of objective 2 in terms 

of producing coherent future scenarios through applying backcasting (see section 1.3). The 

quantitative results of the impact analysis and scenario development stages also provide the 

outputs for mapping system conditions within the GIS model in order to provide a 

visualisation of the scenario impacts in line with objectives 3 and 4. 

5.4 Chapter summary 

The backcasting methodology is the primary focus of the research (aimed at addressing 

objective 1 through the use of multiple stakeholders and baseline analysis) specifically 

dealing with objective 2. It also constitutes the main analytical approach for the overall 

GBFM model developed to meet objective 5, with the outputs from the baseline analysis, 

scenario development and impact analysis stages all utilised and represented using GIS 

techniques to meet the requirements of objectives 3 and 4. The baseline analysis has already 

been addressed in Chapter 4. 

The visioning process involved the generation of large amounts of original data 

(questionnaires; workshops; feedback and follow-up interviews). The timeframe for 

undertaking these activities was June 2011 to November 2012 (with overlaps for analysis). 

The workshop was probably the key piece of research which led to a continued dialogue 

with a number of industry and academic experts as well as a pool of additional stakeholders 

whom gave of their time tirelessly and provided a key source of encouragement throughout 

the process.  

The data collection phase, although extended, gave way to data analysis which initially used 

qualitative methods (such as STEEP analysis; thematic analysis and mind mapping software 
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packages) ultimately leading to the key development of futures tables and high level 

analysis matrices (see section 5.2.2.3). This marked the end of the first phase of the 

backcasting apart from triangulating the results with stakeholder feedback on the process 

(see section 5.2.3) and exploring secondary data from a national survey of waste 

professionals supplied by CIWM (see section 5.2.4). The feedback from stakeholders 

proved positive, emphasising the creativity, clarity and communicative nature of the 

visioning process to enhance strategic foresight at the organisational and individual levels. 

Survey data, showed the workshop and follow up data had gone much further than the 

survey in identifying where a zero waste future may be achieved. But there were similarities 

in terms of the aspirational nature of zero waste and concerns expressed by stakeholders and 

professionals alike over attainability and the ability of the sector to look beyond zero waste 

to landfill (ZW2L).  

The scenario development phase continued to utilise qualitative outputs but also began to 

draw in quantitative outputs from the development of a QM utilising baseline data to test the 

policy packages being put forwards (e.g. for waste prevention). Stakeholder participation 

was once again sought to provide additional quantitative data in the form of plausibility 

scoring. These matrices (drawing on the morphological fields utilised in GMA) were useful 

tools for assigning a weighting value to qualitative visioning results in order to provide 

analytical data (see table 5.4) which could be used to speed up the scenario development 

process and allowed prospective scenarios (Table 5.5) to be sent to stakeholders for final 

feedback. This ultimately generated narrative profiles within a morphological field which in 

turn was used to frame the qualitative scenario narratives (Tables 5.6 to 5.9).  

These scenario narratives and their policy packages could then be tested through the QM 

which compared results over the backcast period (2012-2050) with baseline metrics 

(tonnages, economics and carbon). The QM also allowed systems variables to be accounted 

for in a non-linear manner where each variable was assigned a relative impact on waste 
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generation (+ or -) depending on feedback from stakeholders (Table 5.11). In addition, 

waste prevention and reuse were assigned values according to stakeholder input (from the 

beginning of the visioning process) which increased the non-linearity of the modelling and 

allowed values to be produced which were non-predictive.  

The impact analysis ultimately found values for all three metrics which could be compared 

across the scenarios. In terms of tonnages; scenario CE marginally outperformed scenario 

EC (by 8,000 tonnes) with both receiving the same ranking for comparative purposes. For 

economic impacts scenario VM had considerably lower costs than any other scenario 

(£67.9m which was almost £31m less than the next best performer); with scenario EC 

having the highest potential savings of all scenarios. To close, carbon impacts (equating to 

savings) saw scenario EC as the best performer although it had the second highest direct 

emissions of all scenarios. When the individual results are placed in a performance matrix 

(Table 5.26) scenario EC is the best performing scenario. However, as described, all 

scenarios including the reference scenario had their advantages and disadvantages. Coupled 

with the goal of offering feasible alternate visions of the future then it can be stated the 

process achieved this and met the requirements of objective 2. 
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Chapter 6 Results: Waste system spatial analysis  

This chapter will present the results of the GIS stage of the research with a view to 

achieving objective 3 ‘future infrastructure capacity needs at the sub-regional level’ and 

objective 4 ‘embedding the backcasting output within a GIS environment’. The chapter will 

detail results from spatial analysis stages of the study utilising the methodological approach 

identified in section 3.5 (shown as a workflow in Figure 6.1).  

Figure 6.1: Spatial analysis methodology using GIS/AHP process (Results for 1, 2 and 3)17 

 

This approach builds on earlier research on siting waste infrastructure (DTZ/SLR, 2009a) as 

a specific systems assessment tool and addresses the research agenda on waste infrastructure 

provision (EA, 2011a) within the context of producing a backcasting model for zero waste 

futures in England. Specifically, section 1 will map the baseline waste system conditions 

                                                           
17 Stages 4,5 and 6 are covered in Chapter 7 
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(see Sections 3.2 and 4.3). Section 2 uses Saaty’s Analytical Hierarchy Process (AHP) 

(Saaty, 1980) to evaluate siting criteria to produce a problem formation hierarchy for 

suitability of waste infrastructure siting at the local scale (e.g. individual WPA level). 

Section 3 details results from the model development process and is validated against the 

spatial plan from the MWDF (NCC, 2012) shown as section 4. Chapter 7 will address the 

remaining stages of the GIS methodology (Figure 6.1) and synthesise these results with the 

backcasting results (Chapter 4 baseline analysis and Chapter 5 backcasting).   

6.1 Mapping waste system conditions 

6.1.1 Waste arisings within Northamptonshire for 2012 

Chapter 4 reported the results of the baseline waste management system conditions as well 

as mapping the main exogenous variables; this section expands on this in terms of mapping 

the spatial distribution of waste arisings and infrastructure.  

6.1.1.1 Spatial distribution of total waste arisings  

Results for controlled waste arisings are mapped according to per capita calculations where 

total tonnages data (see Table 4.11, Ch.4) was divided by overall population and 

subsequently multiplied by individual LSOA population (e.g. all residents category). This 

approach allowed a value to be produced as tonnes per annum (tpa) for each LSOA. The 

calculation is expressed in Equation 6.1 as: 

Equation 6.1: 

� �  � � = (  ���  � )  × � �  �  

The baseline results for total controlled waste arisings (tpa) by LSOA in 2012 are shown in 

Figures 6.2a through 6.2d. 
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Figure 6.2a-d: Total waste (tpa) baselines by waste stream within Northamptonshire by 
LSOA in 2012. 

 

The spatial distributions of all controlled wastes are shown in Figure 6.2a-d when Equation 

6.1 is applied to baseline tonnages within the case study area. Values across the 422 LSOAs 

a) b) a) b) 

c) d) 
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are classified into 8 categories (for all controlled wastes). In terms of LACW, Figure 6.2a 

shows 90.5% of LSOAs had a range between 600 to 1,250tpa. A further 32 LSOAs (7.58%) 

had annual LACW tonnages below 600tpa with the 8 remaining LSOAs (1.90%) having 

LACW tonnages above 1,250tpa. The mean value for annual LACW tonnages was 806tpa.  

The spatial distribution of C&I waste is shown in Figure 6.2b. C&I classification ranged 

between 1,750 and 3,500tpa. A total of 91.2% of LSOAs had values within this range. A 

further 31 LSOAs (7.35%) had C&I tonnages below 1,750tpa with only 6 LSOAs (1.42%) 

having C&I tonnages above 3,500tpa. The mean value for C&I tonnages was 2,263tpa.   

Figure 6.2c shows the spatial distribution of C&D waste. The classification of C&D wastes 

ranges between 2,500 to 4,500tpa with 85.6% of LSOAs having values within this range. A 

total of 49 LSOAs (11.6%) had C&D waste tonnages below 2,500tpa. In total 12 LSOAs 

(2.84%) had C&D tonnages above 4,500tpa. The mean value for C&D tonnages was 

3,117tpa.   

Finally, spatial distributions of hazardous waste are shown in Figure 6.2d. Hazardous waste 

(HzW) is classified in the range 175 to 350tpa with 90.1% of LSOAs having values within 

this range. A total of 37 LSOAs (8.77%) had HzW tonnages below 175tpa while 5 LSOAs 

(1.18%) had HzW tonnages above 350tpa. The mean value for HzW tonnages was 223tpa. 

6.1.2 Spatial distribution of existing waste infrastructure 

In order to meet the requirement for net self-sufficiency in waste infrastructure provision 

(NCC, 2012) it must first be determined where the existing facilities are located in relation 

to the potential catchment of materials. Figure 6.3 shows the location and permitted capacity 

of operational waste infrastructure within Northamptonshire in 2012. 

Figure 6.3 shows the concentration of operational waste facilities around the main urban 

centres. Total permitted capacity shown is almost 7.00Mtpa (EA, 2012a; 2012b). In terms of 

the scale of operations these range from <5ktpa to 800ktpa. Analysis of the 101 operational  
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Figure 6.3: Location and permitted capacity of operational waste facilities for 
Northamptonshire in 2012 (Source: after EA, 2010; 2012a; 2012b). 
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facilities shows: 20 facilities with a permitted capacity of <5ktpa; 39 facilities with 

permitted capacities between 5 and 50ktpa; 27 facilities with permitted capacities between 

50 and 200ktpa; 5 facilities with permitted capacities between 200 and 400ktpa; and 4 

facilities (all landfill sites) with permitted capacities between 400 and 800ktpa. 

It can also be seen that operational facilities, at the time of writing, were mainly situated in 

close proximity to the main road networks traversing the county (Motorways and A roads). 

Main results for proximity to communication and utility networks are presented in section 

6.4.2. A total of 34 facilities are located more than 2.25 miles (3.6km) from an urban centre 

(residential); meaning that the remaining 67 facilities (66.3%) are located in positions in 

relatively close proximity to urban residential and commercial premises (section 6.4.3 

analyses results for constraining factors on waste facility locating). 

6.1.3.1 Operational capacity by district 

Knowing where facilities are does not address the spatial question of what types of facility 

are in what location? Or indeed, are the facilities in a location the correct type of facility to 

manage the types of wastes produced in that location?  

The distribution of permitted facilities and operational capacities across the 7 WCAs18 is 

summarised in Table 6.1. In terms of received waste, the 7 WCAs managed a total of 

2.38Mt in 2012, ranging from 250kt (SNC) to 488kt (NBC). Prima facie this total figure 

seems inadequate to manage the estimated baseline total of 2.70Mt of controlled waste 

generated within the county (see Table 4.11). 

Given the amount of materials passing through the exemptions regime (up to 514kt – see 

Table 4.16) and the estimated levels of exempt materials (117kt) and aggregates recycling 

(729kt) within C&D estimations (see Table 4.4); it is possible to estimate the amount of 

                                                           
18 The 7 WCAs are: shown as CBC, DDC, ENC, KBC, NBC, SNC and WBC in Figure 6.8 (Corby, Kettering, 
Northampton & Wellingborough Borough Councils; and Daventry, East Northamptonshire & South Northamptonshire 
District Councils). 
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Table 6.1: Operational and permitted capacities (tonnes/tpa) for all facility types by WCA 
for Northamptonshire (2012) 

WCA Received waste 
(tonnes) 

Permitted capacity 
(tpa) 

Removed waste 
(tonnes) 

# of facilities 

CBC 269,199 1,580,000 186,650 12 

DDC 323,900 1,040,000 168,712 20 

ENC 416,866 1,260,000 112,645 15 
KBC 260,115 935,000 135,678 9 

NBC 487,635 1,152,665 372,514 19 

SNC 249,844 350,000 41,200 14 

WBC 373,675 680,000 79,119 12 

Totals 2,381,234 6,997,965 1,096,519 101 

Source: (EA, 2012a). 

 

material requiring active management within the range of 1.34 – 1.85Mt. This indicates a 

net surplus in operational capacity of approximately 850kt or that current capacity is broadly 

capable of managing levels of estimated waste arisings and a significant amount of imported 

materials. However, overall capacity must be disaggregated to determine if capacity is 

adequate by general material types (e.g. organic wastes). 

6.1.3.2 Operational capacity by facility type 

Any waste management system (WMS) within a typical WPA in England will have a range 

of facility types capable of managing multiple material types in terms of treatment 

operations. In addition such systems will have transfer facilities and final disposal sites 

(landfill or incineration) sufficient to meet the needs of the local area.  

6.1.3.2.1 Operational capacity for organic waste treatment 

A summary of operational and permitted organic waste treatment capacity for each WCA in 

2012 is shown in Table 6.2. Total operational organics waste treatment capacity of >250kt 

exists across 12 facilities and within 6 of Northamptonshire’s WCAs. CBC had no 

operational or permitted capacity at the time of writing (2013/14). NBC was the WCA with 

the highest received tonnage in 2012 (104kt) followed by ENC (92kt) which had the most 

permitted facilities (n=3).   
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Table 6.2: Operational and permitted organic waste treatment capacity by WCA in 
Northamptonshire (2012)  

WCA Received waste 
(tonnes) 

Permitted capacity 
(tpa) 

# of facilities 

CBC - - - 

DDC 23,004 55,000 2 

ENC 92,058 150,000 3 

KBC 11,808 30,000 2 

NBC 103,590 125,000 2 

SNC 19,874 75,000 2 

WBC 117 25,000 1 

Totals 250,450 460,000 12 

Source: (EA, 2012a). 

6.1.3.2.2 Operational capacity for other waste treatment 

Table 6.3 summarises operational and permitted capacities for all other waste treatment 

facilities by WCA in 2012. A total operational capacity of 345kt across 43 facilities existed 

in 2012. DDC was the WCA with the largest operational capacity (123kt) and number of 

facilities (n=14).  

Table 6.3: Operational capacity of all other waste treatment facilities by WCA in 
Northamptonshire (2012)  

WCA Received waste 
(tonnes) 

Permitted capacity 
(tpa) 

# of facilities 

CBC 75,628 355,000 8 

DDC 123,254 580,000 14 

ENC 46,105 80,000 5 

KBC 7 5,000 1 

NBC 90,508 360,000 8 

SNC 2,380 15,000 3 

WBC 6,963 45,000 4 

Totals 344,844 1,440,000 43 

Source: (EA, 2012a; 2012b). 

Total treatment capacity (e.g. organic and general treatment) is thus 1.90Mtpa with a total 

received tonnage in 2012 of 595kt. This material flow is managed at 55 specialist facilities 

across 12 different facility types.  
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6.1.3.2.3 Operational capacity for waste transfer facilities 

A summary of operational and permitted waste transfer facilities for each WCA in 2012 is 

shown in Table 6.4. Operational capacity totalled 644kt in 2012 and ranged from 11kt 

(DDC) to 236kt (NBC) with a total of 36 operational waste transfer facilities with a 

combined permitted capacity of 1.83Mtpa.  

Table 6.4: Operational capacities (tonnes/tpa) of waste transfer facilities by WCA in 
Northamptonshire (2012)  

WCA Received waste 
(tonnes) 

Permitted 
capacity (tpa) 

Removed waste 
(tonnes) 

# of facilities 

CBC 125,705 425,000 125,971 5 

DDC 10,905 85,000 11,485 4 

ENC 22,061 80,000 22,868 4 

KBC 126,930 250,000 132,342 3 

NBC 236,033 667,665 229,484 8 

SNC 51,018 110,000 38,446 6 

WBC 71,279 210,000 68,471 6 

Totals 643,931 1,827,665 629,069 36 

Source: (EA, 2012a; 2012b). 

6.1.3.2.3 Operational capacity for landfill facilities 

A summary of operational and permitted landfill capacity for each WCA in 2012 is shown 

in Table 6.5. The 12 operational facilities had a combined capacity of 1.02Mt in 2012.  

Table 6.5: Operational capacity (tonnes/tpa) of landfill facilities by WCA in 
Northamptonshire (2012)  

WCA Received waste 
(tonnes) 

Permitted capacity 
(tpa) 

# of facilities 

CBC 67,866 800,000 1 

DDC 166,737 320,000 2 

ENC 234,202 950,000 3 

KBC 116,272 650,000 3 

NBC - - - 

SNC 145,152 150,000 2 

WBC 294,020 400,000 1 

Totals 1,024,250 3,270,000 12 

Source: (EA, 2012a; 2012b).   
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The operational capacity of WBC was the largest at 294kt at one facility (Sidegate Lane) 

while the largest permitted capacity of 950kt existed at facilities (n=3) within ENC. No 

operational or permitted landfill sites are located within NBC given the urbanised nature of 

the WCA. 

6.1.3.3 Summary of waste infrastructure spatial distribution   

This section has shown the scale of the waste management system within Northamptonshire 

as a typical two-tier system in England. The 101 permitted facilities shown in Figures 6.3 

(as well as the detailed breakdown in Appendix 2) and summarised in Tables 6.1 to 6.5 

reports permitted capacity at almost 7.00Mt. Received waste (operational capacity) at all 

facility types is significant at 2.38Mt with a further 1.10Mt removed from permitted 

facilities for further processing or final disposal.  

Table 6.6: Summary of capacities by facility type in Northamptonshire (2012)  

Facility types Received 
waste (tonnes) 

Permitted 
capacity (tpa) 

Removed 
waste (tonnes) 

# of facilities 

Organic treatment 250,450 460,000 107,924 12 

Treatment 344,844 1,440,000 350,132 43 

Transfer 643,931 1,827,665 629,069 36 

Landfill 1,024,250 3,270,000 9,394 12 

Recovery 117,759                 -                     -    5 

Totals19 2,381,234 6,997,665 1,096,519 108 

Source: (after EA, 2012a; 2012b). 

However, Table 6.6 indicates a continued reliance on landfill within Northamptonshire in 

2012, managing some 1.02Mt by this means. In order to meet targets and local objectives on 

waste (NCC, 2012), there is a need for greater use of treatment in order to increase recycling 

and recovery rates and meet the goal of net self-sufficiency (NCC, 2012). Such an 

expansion on operational and permitted capacity requires a more complete assessment of 

waste facility siting and is addressed in section 6.2 by means of applying Saaty’s AHP 

process.   

                                                           
19 Total number of facilities is higher than the operational figure here as it includes 7 facilities which were in closure stage 
of their permit and were removing waste only (4 MRS; 2 ELV and 1 Vehicle depollution – see EA, 2012a). 
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6.2: Utilising AHP to frame the problem of waste facility siting 

The Analytical Hierarchy Process (AHP) is utilised to define the relative weightings of 

specific criteria on the site selection process. AHP is a widely used method in the academic 

literature for site identification and evaluation of various waste facility types (Sumathi et al. 

2008; Bastin and Longden, 2009). A stepwise approach was developed which was readily 

repeatable in order to reflect the iterations within the scenario development phase of the 

backcasting process. The approach used the three critical steps identified in the literature, 

namely: problem modelling; weights evaluation; and weights aggregation. Sensitivity 

analysis was further considered in terms of the specific scenarios developed and modelled 

with their ensuing impacts on the criteria weights (addressed in Chapter 7).  

6.2.1 The problem of siting waste facilities: Identifying relevant criteria 

The problem of siting waste facilities is widely acknowledged (Minehart and Neeman, 

2002; Bates et al. 2008; CIWM, 2013). When undertaking a modelling approach which 

looks at the wider systemic conditions, rather than single problem considerations, it is 

necessary to construct a model capable of addressing multiple situations. Moreover, if the 

single issue problem is considered as contributing to the wider systemic problem then 

approaches capable of isolating that set of criteria and incorporating them based on wider 

considerations are required.  

This research has developed a model based on industry and academically accepted site 

screening methodologies (SLR, 2006; Bates et al. 2008; Sumathi et al, 2008; DTZ/SLR, 

2009a; De Feo and De Gisi, 2010) which identify key criteria with input from stakeholders. 

The resulting output identifies a long list of opportunities and constraining criteria. Table 

6.7 shows a total of 5 opportunities groups and 4 constraining groups were identified for 

evaluation along with 19 individual opportunities criterion (3, 4, 3, 4 and 5 respectively for 

the 5 opportunities groups) and 22 individual constraining criterion (10, 6, 3 and 3 

respectively for the 4 constraints groups).  
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Table 6.7: List of opportunities and constraints groups with individual criterion identified  

Opportunities groups Opportunities Criterion Constraints groups Constraints Criterion 

Source of waste  Waste Arisings - C&I Environmental Groundwater - SPZ 

 Waste Arisings - LACW  Receptors Rivers 

 Waste Arisings - C&D  Lakes 

   Local Nature Reserve  

Existing waste site Forecast capacity gap  National Nature 
Reserve  

 Waste PPC sites   RAMSAR sites 

 Landfills Active/Closed  Site of Special 
Scientific Interest  

 Permitted sites  Special Protection 
Areas  

   Environmentally 
Sensitive Areas 

Socio-Economic Regeneration Zones  Ancient Woodland 

 Employment Conservation Agricultural Land – 
Grade 1 

 Deprivation Receptors Agricultural Land – 
Grade 2 

Heat /power networks Viability of decentralised 
energy 

 Historic Parks and 
Gardens 

 Gas Networks  Listed Buildings 

 Electricity Networks  Registered 
Battlefields 

 Households off gas grid  Scheduled Ancient 
Monuments 

Transport networks Rail / Stations / Sidings Human & Social 
Capital  

Urban - residential 
areas 

 Motorway Access Receptors Urban - workplaces 

 Access to A Roads  Population density 

 Access to B Roads Flood Risk  Historic flood extent 
 Navigable waterways  & Flood zones 
    Ground Stability Mining & quarry 

activities 

Sources: (after DTZ/SLR, 2009b; De Feo and De Gisi, 2010). 

6.2.1.1 Assigning typologies to opportunities criteria 

De Feo and De Gisi (2010) in their study of composting plant siting; suggest grouping 

criterion according to 3 specific parameters; excluding, preferential and penalising. The 

grouping of criterion and describes considerations for each criterion according to these 

typologies in terms of opportunities. Table 6.8 shows 19 criterions within the 5 

opportunities groupings. A total of 11 were considered as preferential criteria for 

consideration within the model while the remaining 8 were to be considered as penalizing 

criteria. No excluding criteria were identified for opportunities. 
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Table 6.8: Opportunities: grouping of criterion, descriptions and typologies considered  

Opportunities Criterion Description Typology 

Source of 
waste arisings 

Waste Arisings C&I Proximity to commercial and industrial operations 
are to be considered preferential, distance to 
minimise (m) 

Preferential 

 Waste Arisings 
MSW (LACW) 

Proximity to residential areas are to be considered 
preferential, distance to minimise beyond 
recognised buffer (m) 

Preferential 

 Waste Arisings 
C&D 

Proximity to construction and redevelopment sites 
are to be considered preferential, distance to 
minimise (m) 

Preferential 

Existing waste 
site 

Forecasted capacity 
gap 

Areas identified as potential shortfall in capacity 
should be considered as priority, overcapacity 
considered for other operations and colocation 

Penalizing 

 Waste PPC sites 
(Incineration) 

Represents a recognised demand and potential 
market for residual fractions to recover energy, 
distance to be minimised (m) 

Preferential 

 Landfills 
Active/Closed 

Potential for redevelopment as waste sites with 
waste management planning classification 

Preferential 

 Existing 
licensed/permitted 
WM sites 

Existing planning classification - potential to 
expand operations within boundary of site or using 
adjacent land 

Preferential 

Socio-
Economic 

Regeneration Zones Certain operation types to be considered (MRF; 
transfer) to provide employment and potential for 
host community status with incentives 

Preferential 

 Unemployment Certain operation types to be considered (MRF; 
transfer) to provide employment and potential for 
host community status with incentives 

Penalizing 

 Deprivation Certain operation types to be considered (MRF; 
transfer) to provide employment and potential for 
host community status with incentives 

Penalizing 

Heat and 
power 
networks 

Viability of 
decentralised 
energy 

Areas of new build housing and business 
parks/estates are considered preferential  

Preferential 

 Gas Networks Cost implications of connecting to grid AD, 
distance to be minimised (m) 

Penalizing 

 Electricity 
Networks 

Cost implications of connecting to grid for EfW 
(AD), distance to be minimised (m) 

Penalizing 

 Proportion of hhlds 
off gas grid 

Viability of AD with EfW technology for 
provision of energy  

Preferential 

Transport 
networks 

Rail / Stations / 
Sidings 

Economic considerations, distance to be 
minimised (m) 

Preferential 

 Motorway Access Economic considerations, distance to be 
minimised to motorway junctions (m) 

Penalizing 

 Access to A Roads Economic considerations, distance to be 
minimised (m) 

Penalizing 

 Access to B Roads Economic considerations, distance to be 
minimised (m) 

Penalizing 

  Navigable 
waterways /large 
rivers 

Potential of wharves and dock facilities on canals 
as well as marinas on navigable rivers, distance to 
be minimised (m) 

Preferential 

Source: (after De Feo and De Gisi, 2010). 
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6.2.1.2 Assigning typologies to constraints criteria 

A stated aim of policy on waste management is to protect the environment and human 

health from pollution and harm. For these reasons a significant amount of guidance exists 

relating to distances for siting infrastructure to sensitive receptors (Nathanail and Bardos, 

2005; EA, 2013). Table 6.9 shows the grouping of constraints criterion which is informed 

by such guidance and typologies identified in the academic literature (De Feo and De Gisi, 

2010).  

Table 6.9: Constraints: grouping of criterion, descriptions and typologies considered  

Constraints Criterion Description Typology 

Environmental 
Receptors 

Groundwater - 
Source 
Protection 
Zones 

Areas of licensed water abstraction not considered for 
development  

Exclusionary 

 Rivers Potential impact on aquatic environment of operations, 
beyond recognised buffer extent (m) 

Exclusionary 

 Lakes Potential impact on aquatic environment of operations, 
beyond recognised buffer extent (m) 

Exclusionary 

 Local Nature 
Reserve (LNR) 

Potential impact of operations degrading flora and 
fauna, distance to maximise (m) 

Penalizing 

 National Nature 
Reserve (NNR) 

Potential impact of operations degrading flora and 
fauna, distance to maximise (m) 

Penalizing 

 RAMSAR 
(Convention on 
Wetlands) 

Potential impact of operations degrading flora and 
fauna, distance to maximise (m) 

Penalizing 

 Site of Special 
Scientific 
Interest (SSSI) 

Potential impact of operations degrading flora and 
fauna, distance to maximise (m) 

Penalizing 

 Special 
Protection Areas 
(SPA) 

Potential impact of operations degrading flora and 
fauna, distance to maximise (m) 

Penalizing 

 Environmentally 
Sensitive Areas 

Potential impact of operations degrading flora and 
fauna, distance to maximise (m) 

Penalizing 

 Ancient 
Woodland 

Potential impact of operations degrading flora and 
fauna, distance to maximise (m) 

Penalizing 

Conservation 
Receptors 

Agricultural 
Land – Grade 1 

High value arable land not considered for 
development 

Exclusionary 

 Agricultural 
Land – Grade 2 

High value arable land not considered for 
development 

Exclusionary 

 Historic Parks 
and Gardens 

Potential impact of operations degrading amenity, 
distance to maximise (m) 

Penalizing 

 Listed Buildings Potential impact of operations degrading amenity, 
distance to maximise (m) 

Penalizing 

 Registered 
Battlefields 

Potential impact of operations degrading amenity, 
distance to maximise (m) 

Penalizing 

 Scheduled 
Ancient 
Monuments 

Potential impact of operations degrading amenity, 
distance to maximise (m) 

Penalizing 
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Table 6.9: (continued)  

Constraints Criterion Description Typology 

Human & 
Social Capital  

Urban - 
residential areas 

Distance to be maximised in line with guidance, 
buffering (m) 

Penalizing 

 Urban - 
workplaces 

Distance to be maximised in line with guidance, 
buffering (m) 

Penalizing 

 Population 
density 

Distance to be maximised in line with guidance, 
buffering (m) 

Penalizing 

Flood Risk & 
Mining 

Historic flood 
extent 

Areas within historic flood extent to be considered as 
limiting, distance to be maximised (m) 

Penalizing 

 Flood zones Areas classified as Flood Zones 3 and 2 not to be 
considered for development 

Exclusionary 

  Mining & 
quarry activities 

Areas of mining activity to be considered as 
excluding, quarry sites considered preferential 

Exclusionary 
/ Preferential 

Source: (after De Feo and De Gisi, 2010). 

Table 6.9 shows that of the 22 criterion within the 4 constraints groupings, a total of 6 were 

considered as exclusionary; with the remaining 16 considered as penalizing. The reasons for 

the penalizing considerations in relation to constraining criteria typically reflected localised 

considerations. For example; areas of mining activities can be varied and do not always 

include tunnelling operations. Quarry activities, particularly for limestone and ironstone 

extraction in Northamptonshire, have historically provided opportunities for waste 

management operations in the form of landfill (e.g. for waste materials or as restoration of 

disturbed land). Such considerations were applied to all constraint criterion identified and 

thus produced more penalizing categories. It can also be seen that exclusionary criteria are 

either focused on the protection of resources suitable for human consumption (such as 

potable water sources or agricultural crops) or are for factors designed to protect human 

health and wellbeing (e.g. flood zones) or areas of habitation and economic activity (e.g. 

areas of mining activity).      

6.2.1.3 Developing a problem formation hierarchy 

A problem formation hierarchy (PFH) was used to frame the goal (overall objective); group 

criteria; and individual criterion. The overall objective was to develop a suitability model 

for potential sites within the case study area and evaluate these against preferred locations 
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within the relevant planning framework (NCC, 2012). Figure 6.4 is a schematic of the 

opportunities PFH.  

Figure 6.4: Problem formation hierarchy (PFH) for site suitability looking at opportunities  

Figure 6.4, shows the overall goal is stated as ‘site suitability’ based on opportunities 

criteria. A total of 5 criteria groupings are then identified before being broken down into a 

further 19 individual criterion to be used in the analytical process. These individual 

criterions were chosen as being representative of local conditions and able to be applied at 

both macro and micro levels.  

Figure 6.5 is a schematic of the constraints PFH. Again, the individual criterions were 

chosen for their applicability in assessing siting options at the macro and micro scales. The 

constraints PFH, shown in Figure 6.5, first states the goal of ‘site suitability’ accounting for 

constraining criteria. A total of 4 criteria groupings are then identified before being broken 
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down into 22 individual criterions identified. These criterions were further evaluated in 

terms of their impact on site selection as being penalizing (i.e. providing a minimum or 

maximum distance for infrastructure siting) or specifically exclusionary.  

Figure 6.5: Problem formation hierarchy for site suitability looking at constraints  

6.2.2 Weights evaluation 

The next stage in the AHP process is to assign weightings to the criteria groupings and their 

constituent criterion. Stakeholders were asked to give preferences on the group criteria in 

the first instance in order to assign relative weightings to each group. Responses were 

collected via priority scale forms. An example of a completed form is shown in Figure 6.6. 

Overall Objective Group Criteria Criteria

Groundwater - Source Protection Zones

Rivers

Lakes

Local Nature Reserve (LNR)

National Nature Reserve (NNR)

Environmental receptors

RAMSAR (Convention on Wetlands)

Site of Special Scientific Interest (SSSI)

Special Protection Areas (SPA)

Environmentally Sensitive Areas

Ancient Woodland

Agri ultural La d – Grade 
Site suitability - Constraints

Agri ultural La d – Grade 

Historic Parks and Gardens

Conservation receptors

Listed Buildings

Registered Battlefields

Scheduled Ancient Monuments

Urban - residential areas

Human/Social Capital receptors Urban - workplaces

Population density

Historic flood extent

Flood risk & Ground Stability Flood zones

Mining activities
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Figure 6.6: Example of completed priority scale input matrix for AHP analysis of group 
criteria (Source: after De Feo and De Gisi, 2010). 

 
As can be seen in Figure 6.6 the AHP is applied to the criteria groupings identified 

following the structure of the PFH (section 6.3.1). Previous research at a regional scale has 

used the weightings for these macro factors with input from steering groups to determine 

weights for individual criterion (DTZ/SLR, 2009b). The potential for bias is evident from 

this process of evaluation and is avoided in this study through the use of stakeholder input at 

the micro scale (e.g. for individual criterion using AHP).   

6.2.2.1 Calculating the group criteria weightings 

To calculate the weights for each criterion it is first necessary to determine the weights from 

the stakeholder input process looking at the wider group criteria. The AHP software 

package developed by Goepel (2013) was used to enter results data from priority scale 

forms (Figure 6.6). Technical stakeholder (TS) and non-technical stakeholder (NTS) 

responses were entered separately to produce weightings which could be compared to give 

an overall weighted average. Figure 6.7 shows the pairwise comparison consolidated results 

for the 20 technical stakeholder responses. 

Priorit  S ale A al ti al Hierar h  Pro ess – AHP  - siti g of aste fa ilities i  the UK

1 8

2 6

3 9

4

5 7

Drawing up instructions:

Distribute the criteria among the 5 levels in order of decreasing preference

The criteria on the same level have the same preference

Warning: do not repeat the same criteria several times

Criteria

1) Source of waste arisings

2) Existing waste sites

3) Socio-Economic

4) Access to heat and power networks

5) Proximity and Access to transport networks

6) Environmental receptors

7) Conservation receptors

8) Human and social capital receptors

9) Flood risk and ground stability
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Figure 6.7: Screenshot of consolidated results of technical stakeholder (TS) responses 
(Source: Goepel, 2013)  

Consolidated results are produced in the summary sheet of the BPMSG software package 

providing an aggregated score (weight) in terms of the ‘normalized principal Eigenvector’. 

These scores are taken forwards as the overall group weighting criteria and used to calculate 

the weights of individual criterion for micro-scale site evaluation.  

Importantly, when considering the application of AHP, acknowledgement must be made as 

to the level of consistency within the results. The consistency ratio section shown in Figure 

6.7 highlights the recommended range as GCI (Geometric Consistency Index) in this case 

0.01 and CR (Consistency Ratio) in this case 0.0030. The figure 0.37 relates to the number 

of criteria chosen being a maximum value of 0.37 for (n=>4). This figure provides a 

measure of the level of inconsistency within the Eigenvector Method (EM or EVM) using a 

row geometric mean method (RGMM) prioritization procedure as is the case with the 

BPMSG spreadsheet package (Goepel, 2013). Finally the Eigenvalue is represented as 

lambda (9.035 in Figure 6.7) which is used to solve the EM problem with the power method 

algorithm (having a maximum of 12 iterations in this software).  
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Figure 6.8 shows the pairwise comparison consolidated results for the 20 non-technical 

stakeholder response. The results for consistency measures are GCI 0.009 and CR 0.0023 

each being significantly below the Saaty threshold of 0.1 (Saaty, 1980).  

Figure 6.8: Screenshot of consolidated results of non-technical stakeholder (NTS) responses 
(Source: Goepel, 2013) 

 

6.2.2.1.1 Analysing the stakeholder responses 

Tables 6.10 and 6.11 contain the results of the group criteria weighting calculations for both 

groups of respondents (TS and NTS respectively). These results are extracted from the 

BPMSG software package (Goepel, 2013) for further analysis of priorities given by 

participants. It can be seen that technical stakeholders (TS) gave priority to ‘socio-economic 

factors’ (16.48%) above all other opportunities groups. The next priority was in terms of 

‘source of waste arisings’ (13.40%). Perhaps most interestingly the other opportunities 

criteria groups: ‘existing waste sites’ (11.97%); ‘access to heat and power networks’ 
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Table 6.10: Results of the group criteria weighting calculations for technical stakeholders (TS - n=20) 

Criteria Source of 
waste 

arisings 

Existing 
waste 
sites 

Socio-
Economic 

Access to 
heat/power 
networks 

Proximity 
to 

transport 
networks 

Environmental 
receptors 

Conservation 
receptors 

Human/ 
social 
capital 

receptors 

Flood 
risk/ground 

stability 

Sub  
Total 

CR 

T
e
c
h
n
ic

a
l 
s
ta

k
e
h
o
ld

e
rs

  

T1 0.0430 0.2147 0.2147 0.0914 0.0914 0.0914 0.0146 0.0240 0.2147 1.00 0.0291 

T2 0.1024 0.0149 0.1024 0.0423 0.1024 0.2454 0.0423 0.1024 0.2454 1.00 0.0212 

T3 0.0935 0.2077 0.2198 0.0990 0.0935 0.2077 0.0214 0.0246 0.0326 1.00 0.0185 

T4 0.1203 0.0175 0.2573 0.2573 0.1203 0.1203 0.0316 0.0578 0.0175 1.00 0.0459 

T5 0.0538 0.1049 0.2243 0.2243 0.1049 0.0168 0.0300 0.2243 0.0168 1.00 0.0309 

T6 0.0194 0.2079 0.2079 0.0805 0.2079 0.0805 0.0805 0.0805 0.0348 1.00 0.0285 

T7 0.1242 0.2607 0.1242 0.0349 0.2607 0.1242 0.0181 0.0349 0.0181 1.00 0.0118 

T8 0.0449 0.0248 0.1008 0.2219 0.2219 0.2219 0.0157 0.0475 0.1008 1.00 0.0300 

T9 0.2716 0.1382 0.1382 0.0709 0.2716 0.0363 0.0185 0.0185 0.0363 1.00 0.0223 

T10 0.0881 0.0381 0.2131 0.2131 0.0381 0.0881 0.0199 0.0881 0.2131 1.00 0.0367 

T11 0.0496 0.1146 0.2547 0.2547 0.1146 0.1146 0.0238 0.0496 0.0238 1.00 0.0149 

T12 0.2215 0.1006 0.1006 0.0474 0.0474 0.2215 0.0148 0.2215 0.0248 1.00 0.0216 

T13 0.2145 0.0904 0.0418 0.0218 0.2145 0.0904 0.0904 0.2145 0.0218 1.00 0.0243 

T14 0.1382 0.2716 0.0709 0.0363 0.0185 0.2716 0.0185 0.1382 0.0363 1.00 0.0174 

T15 0.2243 0.0168 0.2243 0.2243 0.1049 0.1049 0.0168 0.0538 0.0300 1.00 0.0367 

T16 0.2147 0.0914 0.2147 0.0430 0.0914 0.2147 0.0146 0.0914 0.0240 1.00 0.0285 

T17 0.0199 0.2131 0.2131 0.0881 0.0381 0.2131 0.0881 0.0881 0.0381 1.00 0.0212 

T18 0.2147 0.0914 0.0914 0.0430 0.0240 0.2147 0.0146 0.0914 0.2147 1.00 0.0149 

T19 0.1024 0.0149 0.2454 0.1024 0.0423 0.2454 0.1024 0.1024 0.0423 1.00 0.0212 

T20 0.3183 0.1604 0.0356 0.1604 0.0756 0.0356 0.0179 0.1604 0.0356 1.00 0.1850 

 Total 2.6795 2.3946 3.2953 2.3572 2.2839 2.9592 0.6946 1.9138 1.4218 20.00  

 % 13.40 11.97 16.48 11.79 11.42 14.80 3.47 9.57 7.11 100.00  

 Stn Dev 0.08890 0.08583 0.07444 0.08365 0.07896 0.08050 0.02957 0.06507 0.07961   

Consolidated CR           0.0023 

Note: TS in this study are drawn from waste industry experts, academic disciplines related to waste and individuals involved in funded waste research   
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Table 6.11: Results of the group criteria weighting calculations for non-technical stakeholders (NTS - n=20) 

Criteria  Source of 
waste 

arisings 

Existing 
waste 
sites 

Socio-
Economic 

Access to 
heat/ 
power 

networks 

Proximity 
to 

transport 
networks 

Environmental 
receptors 

Conservation 
receptors 

Human/ 
social 
capital 

receptors 

Flood risk/ 
ground 
stability 

Sub 
Total 

CR 
N

o
n
-T

e
c
h
n
ic

a
l 
s
ta

k
e
h
o
ld

e
rs

  

NT1 0.0567 0.1285 0.0158 0.0567 0.0272 0.2650 0.0567 0.2650 0.1285 1.00 0.0284 

NT2 0.0706 0.1569 0.0191 0.0706 0.0191 0.3144 0.1569 0.1569 0.0355 1.00 0.0321 

NT3 0.1513 0.3120 0.1513 0.0626 0.0626 0.1513 0.0295 0.0169 0.0626 1.00 0.0256 

NT4 0.0329 0.0642 0.1337 0.0179 0.0179 0.2678 0.0642 0.1337 0.2678 1.00 0.0357 

NT5 0.0253 0.1049 0.0463 0.0153 0.1049 0.2466 0.1049 0.1049 0.2466 1.00 0.0218 

NT6 0.0363 0.0185 0.2716 0.0363 0.0185 0.2716 0.1382 0.0709 0.1382 1.00 0.0367 

NT7 0.1322 0.2675 0.0623 0.0623 0.0299 0.2675 0.1322 0.0163 0.0299 1.00 0.0319 

NT8 0.2685 0.1340 0.0608 0.0330 0.0179 0.1340 0.0190 0.2685 0.0644 1.00 0.0336 

NT9 0.0623 0.1322 0.2675 0.0623 0.0299 0.2675 0.0163 0.1322 0.0299 1.00 0.0319 

NT10 0.1157 0.1157 0.0262 0.0510 0.2546 0.1157 0.0155 0.0510 0.2546 1.00 0.0262 

NT11 0.0623 0.2675 0.0299 0.0163 0.1322 0.0623 0.2675 0.1322 0.0299 1.00 0.0319 

NT12 0.0795 0.0382 0.0382 0.0191 0.0191 0.2856 0.0795 0.2856 0.1551 1.00 0.0395 

NT13 0.0683 0.3129 0.1637 0.1547 0.0322 0.0645 0.0178 0.1547 0.0313 1.00 0.0363 

NT14 0.0460 0.2213 0.0996 0.0225 0.0225 0.2213 0.0996 0.2213 0.0460 1.00 0.0196 

NT15 0.1322 0.2675 0.0623 0.0299 0.0163 0.2675 0.0299 0.1322 0.0623 1.00 0.0319 

NT16 0.1337 0.2678 0.2678 0.0642 0.0179 0.1337 0.0329 0.0179 0.0642 1.00 0.0357 

NT17 0.1189 0.2358 0.0312 0.0312 0.0638 0.2358 0.0312 0.0161 0.2358 1.00 0.0264 

NT18 0.1049 0.2466 0.1049 0.0153 0.0253 0.1049 0.2466 0.0463 0.1049 1.00 0.0218 

NT19 0.1157 0.0510 0.2546 0.0155 0.0262 0.1157 0.0510 0.2546 0.1157 1.00 0.0262 

NT20 0.1006 0.2215 0.0474 0.0248 0.2215 0.1006 0.0148 0.2215 0.0474 1.00 0.0243 

 Total 1.9139 3.5645 2.1542 0.8614 1.1595 3.8931 1.6042 2.6986 2.1507 20.0  

 % 9.57 17.82 10.77 4.31 5.80 19.47 8.02 13.49 10.75 100.0  

 Stn Dev 0.05562 0.09466 0.09142 0.03283 0.06915 0.08365 0.07515 0.09273 0.08308   

Consolidated CR           0.0030 

Note: NTS in this study are composed of members of the general public and interest groups who have stated they have no active involvement or working knowledge of waste management 
companies or organisations 
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(11.79%); and ‘access to transport networks’ (11.42%) scored similarly. This position 

differs considerably for NTS (Table 6.11), assigning ‘existing waste sites’ (17.8%) by far 

the greatest priority. In this case ‘socio-economic factors’ (10.8%) and ‘source of waste 

arisings’ (9.57%) are preferred over the worst performing groups of ‘access to heat and 

power networks’ (5.80%) and ‘proximity to transport networks’ (4.31%).   

In terms of constraining criteria, TS prioritised ‘environmental receptors’ (14.8%) above 

‘human & social capital’ (9.57%) and ‘flood risk’ (7.11%) with the least priority given to 

‘conservation receptors’ (3.47%). For constraining criteria, NTS produced the same 

priority profile but assigned greater relative values to each: ‘environmental receptors’ 

(19.5%); ‘human & social capital’ (13.5%); ‘flood risk’ (10.8%); and ‘conservation 

receptors’ (8.02%). The last point to draw from Tables 6.10 and 6.11 relates to the priority 

assigned to opportunities in relation to constraints between the two participant groups. TS 

prioritised opportunities criteria (65.1%) over constraints criteria (35.0%). In contrast NTS 

only slightly prioritised constraints (51.7%) over opportunities (48.3%). The consolidated 

consistency ratios (CR) were 0.0023 for opportunities and 0.0030 for constraints criteria. 

6.2.2.2 Calculating the individual criterion weightings 

Pairwise comparison matrices were also generated for criterion within each grouping20. 

The second round of weighting using priority scale forms took the same format as that of 

the group criteria weighting (section 3.4.2).  

6.2.2.2.1 Opportunities criterion weighting 

Results of priority scale forms were entered into an individual AHP spreadsheet for each 

criteria grouping.  Technical stakeholder (TS) and non-technical stakeholder (NTS) 

responses were entered together at this stage as the OWA method had already been applied 

to group criteria. A random sample of 5 responses for each criteria group was used to 

                                                           
20 Pairwise comparison matrices are shown in  Appendix 10 
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address any potential bias. The results of opportunities criterion weighting is given in 

Tables 6.12. 

Table 6.12: Results of the random sample responses for opportunities criterion weighting  

Source of waste R1 R2 R3 R4 R5 Mean Weight 

C&I waste 0.2790 0.4545 0.3333 0.6000 0.6370 0.4608 5.29 

LACW waste 0.6491 0.4545 0.3333 0.2000 0.2583 0.3791 4.35 

C&D waste  0.0719 0.0909 0.3333 0.2000 0.1047 0.1602 1.84 

Totals 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 11.49 

CR 0.0677 0.0000 0.0000 0.0000 0.0402 0.0216 
 

Existing waste sites R1 R2 R3 R4 R5 Mean Weight 

Waste PPC sites (incineration) 0.0675 0.0675 0.0550 0.0963 0.0513 0.0675 1.01 

Landfills active/closed 0.3908 0.1509 0.1178 0.2495 0.2118 0.2242 3.34 

Permitted existing WM sites 0.3908 0.3908 0.5638 0.5579 0.2118 0.4230 6.30 

Forecast capacity gap 0.1509 0.3908 0.2634 0.0963 0.5252 0.2853 4.25 

Totals 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 14.90 

CR 0.0115 0.0115 0.0435 0.0212 0.0277 0.0231 
 

Socio-economic factors R1 R2 R3 R4 R5 Mean Weight 

Regeneration zones 0.6491 0.1488 0.7306 0.4737 0.1884 0.4381 5.97 

Employment 0.2790 0.7854 0.1884 0.4737 0.7306 0.4914 6.70 

Deprivation 0.0719 0.0658 0.0810 0.0526 0.0810 0.0705 0.96 

Totals 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 13.63 

CR 0.0677 0.0838 0.0677 0.0000 0.0677 0.0574 
 

Access to heat/power networks R1 R2 R3 R4 R5 Mean Weight 

Viability of decentralised energy 0.1250 0.2634 0.1509 0.5205 0.1178 0.2355 1.90 

Gas networks 0.3750 0.5638 0.3908 0.2010 0.2634 0.3588 2.89 

Electricity networks 0.3750 0.1178 0.0675 0.0776 0.0550 0.1386 1.12 

Households off gas grid 0.1250 0.0550 0.3908 0.2010 0.5638 0.2671 2.15 

Totals 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 8.05 

CR 0.0000 0.0435 0.0115 0.0169 0.0435 0.0231 
 

Access to transport networks R1 R2 R3 R4 R5 Mean Weight 

Rail stations and sidings 0.0857 0.1588 0.2461 0.5011 0.3638 0.2711 2.33 

Motorway access 0.2033 0.0753 0.0453 0.1038 0.0383 0.0932 0.80 

Access to A roads 0.4656 0.3638 0.1038 0.1038 0.3638 0.2801 2.41 

Access to B roads 0.2033 0.3638 0.1038 0.0453 0.1588 0.1750 1.51 

Navigable waterways/ large rivers 0.0421 0.0383 0.5011 0.2461 0.0753 0.1806 1.55 

Totals 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 8.61 

CR 0.0282 0.0232 0.0318 0.0318 0.0232 0.0276 
 

 

To determine individual criterion weighting, the mean was calculated and multiplied by the 

group criteria OWA value. Consistency was tested using the software calculations and is 

reported as CR in Table 6.12. All responses achieved a CR of below the 0.1 threshold.  
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6.2.2.2.2 Constraints criterion weighting 

The results of constraints criterion weighting is given in Table 6.13 and are once again 

based on a random sample of responses. 

Table 6.13: Results of the random sample responses for constraints criterion weighting 

Environmental receptors R1 R2 R3 R4 R5 Mean Weight 

SPZ - GW 0.2939 0.2505 0.2125 0.2407 0.2421 0.2480 3.67 

Lakes 0.1469 0.0519 0.1001 0.0436 0.1151 0.0915 1.35 

Rivers 0.1469 0.1230 0.2125 0.1095 0.2421 0.1668 2.47 

LNR 0.0619 0.0227 0.0224 0.0436 0.0524 0.0406 0.60 

NNR 0.0619 0.0519 0.0475 0.0436 0.0257 0.0461 0.68 

RAMSAR sites 0.0266 0.0519 0.0224 0.0436 0.0524 0.0394 0.58 

SSSI 0.0619 0.2505 0.2125 0.1041 0.1151 0.1488 2.20 

SPA 0.0266 0.0519 0.0475 0.0212 0.0144 0.0323 0.48 

ESA 0.0266 0.0227 0.1001 0.1095 0.0257 0.0569 0.84 

Ancient Woodland 0.1469 0.1230 0.0224 0.2407 0.1151 0.1296 1.92 

Totals 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 14.80 

CR 0.0220 0.0215 0.0216 0.0172 0.0283 0.0221 
 

Conservation receptors R1 R2 R3 R4 R5 Mean Weight 

Agricultural land - Grade 1 0.4576 0.3206 0.1131 0.3185 0.0943 0.2608 0.90 

Agricultural land - Grade 2 0.2392 0.1338 0.1131 0.1291 0.0943 0.1419 0.49 

Historic parks and gardens 0.1070 0.1338 0.3075 0.1291 0.2564 0.1868 0.65 

Listed buildings 0.1070 0.3206 0.3075 0.3185 0.2564 0.2620 0.91 

Registered battlefields 0.0447 0.0599 0.1131 0.0524 0.2564 0.1053 0.37 

Scheduled ancient monuments 0.0447 0.0313 0.0458 0.0524 0.0422 0.0433 0.15 

Totals 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 3.47 

CR 0.0325 0.0203 0.0080 0.0123 0.0062 0.0159 
 

Human & social capital receptors R1 R2 R3 R4 R5 Mean Weight 

Urban - residential 0.2583 0.2000 0.2583 0.4286 0.4286 0.3147 3.01 

Urban - workplace 0.1047 0.2000 0.1047 0.1429 0.1429 0.1390 1.33 

Population density 0.6370 0.6000 0.6370 0.4286 0.4286 0.5462 5.23 

Totals 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 9.57 

CR 0.0400 0.0000 0.0402 0.0000 0.0000 0.0160 
 

Flood risk & ground stability R1 R2 R3 R4 R5 Mean Weight 

Historic flood event 0.2583 0.2583 0.2583 0.2583 0.6370 0.3340 2.37 

Flood zones 0.6370 0.6370 0.6370 0.6370 0.2583 0.5612 3.99 

Mining activity 0.1047 0.1047 0.1047 0.1047 0.1047 0.1047 0.74 

Totals 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 7.11 

CR 0.0402 0.0402 0.0402 0.0402 0.0402 0.0402 
 

 

Consistency was tested using the software calculations and is reported as CR in Table 6.13. 

All responses achieved a CR of below the 0.1 threshold.  
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6.2.3 Weights aggregation 

The final stage of the AHP process is to aggregate the weights derived from the pairwise 

comparisons. The first step in this process is to produce the ordered weighted average 

(OWA) for group criteria shown in Table 6.14.  

Table 6.14: Final group weightings derived from stakeholder participation 

Criteria grouping TS (n=20) NTS (n=20) Mean 

Source of waste arisings 13.40 9.57 11.48 

Existing waste sites 11.97 17.82 14.90 

Socio-Economic 16.48 10.77 13.62 

Access to heat/power networks 11.79 4.31 8.05 

Proximity to transport networks 11.42 5.80 8.61 

Opportunities Weighted % 65.05 48.27 56.66 

Environmental receptors 14.80 19.47 17.13 

Conservation receptors 3.47 8.02 5.75 

Human/social capital receptors 9.57 13.49 11.53 

Flood risk/ground stability 7.11 10.75 8.93 

Constraints Weighted % 34.95 51.73 43.34 

 

The final OWA is taken from the mean weighting score in Table 6.14. By using these 

values it is possible to even out the potential bias from each participant group which 

produces some interesting results. One significant change has occurred in the OWA results 

compared with the previous TS results, in that ‘socio-economic factors’ (13.6%) are now 

the second opportunities priority compared to ‘existing waste sites’ (14.9%) which had 

scored much lower for TS (12.0%). No other group criteria have changed position in the 

OWA ranking and this noted change appears to be a result of averaging two groups as 

opposed to the ‘rank reversal phenomena’ previously identified as an underlying problem 

with applying AHP (Aguaron and Moreno-Jimenez, 2003; Tung et al. 2012). The final 

point to note from the OWA results in Table 6.14 relate to the overall weighting of 

opportunities versus constraints. The OWA results (56.7% versus 43.3%) reflect most 

closely the values assigned by TS. This appears to be an acceptable outcome thus avoiding 

excessively favouring one group over another. 
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6.2.3.1 Aggregated weights for opportunities criterion 

The final step is to calculate the weightings for each individual criterion (the last column in 

Tables 6.10 and 6.11). This aggregated weight is achieved by multiplying the mean value 

of responses by the OWA group criteria value. The results are summarised in Tables 6.15 

and 6.16 with subsequent analysis of the results.      

Table 6.15: Summary of opportunities criterion weights for GIS modelling  

Group weight Criterion and weight 

Source of waste 
arisings 

C&I waste 
arisings 

LACW waste 
arisings 

C&D waste 
arisings 

  

11.49 5.29 4.35 1.84   

Existing waste 
sites 

Waste PPC 
sites 

(incineration) 

Landfills 
active/closed 

Permitted 
WM sites 

Forecast 
capacity 

gap 

 

14.90 1.01 3.34 6.30 4.25  

Socio-Economic Regeneration 
zones 

Employment Deprivation   

13.63 5.97 6.70 0.96   

Access to 
heat/power 
networks 

Viability of 
decentralised 

energy 

Gas networks Electricity 
networks 

Households 
off gas grid 

 

8.05 1.90 2.89 1.12 2.15  

Proximity to 
transport networks 

Rail stations 
and sidings 

Motorway 
access 

Access to A 
roads 

Access to 
B roads 

Navigable 
waterways/ 
large rivers 

8.61 2.33 0.80 2.41 1.51 1.55 

 

The results in Table 6.15 show opportunities criterion weights. In terms of waste arisings, 

C&I waste (5.29%) achieved the highest priority ahead of LACW (4.35%). For existing 

sites; permitted waste management sites (6.30%) were assigned the highest priority. PPC 

sites (1.01%) achieved the lowest priority as many participants had strong views on 

incineration. Socio-economic factors weightings were relatively evenly spread between 

regeneration zones (5.97%) and employment (6.70%). Weightings were relatively evenly 

spread across criterion for both access to heat and power networks and proximity to 

transport networks.  
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6.2.3.2 Aggregated weights for constraints criterion 

As with opportunities criterion, weights were assigned through calculating the mean value 

and multiplying this by the OWA group criteria value.  

Table 6.16: Summary of constraints criterion weights for GIS modelling 

Group Environmental receptors Conservation 
receptors 

Human and 
Social capital 

Flood risk 

Weight 14.80 3.47 9.57 7.11 

C
ri

te
ri

o
n

 a
n

d
 w

ei
g

h
ts

 

SPZ - GW RAMSAR Agricultural 
land - grade 1 

Urban - 
residential 

Historic flood 
event 

3.67 0.58 0.90 3.01 2.37 

Lakes SSSI Agricultural 
land - grade 2 

Urban - 
workplace 

Flood zones 

1.35 2.20 0.49 1.33 3.99 

Rivers SPA Historic parks 
and gardens 

Population 
density 

Mining activity 

2.47 0.48 0.65 5.23 0.74 

LNR ESA Listed       
buildings 

  

0.60 0.84 0.91   

NNR Ancient 
woodland 

Registered 
battlefields 

  

0.68 1.92 0.37   

  Ancient 
monuments 

  

  0.15   

 

Table 6.16 shows some surprisingly mixed results. For environmental receptors; water 

related criterion, SSSI and ancient woodland are prioritised over all other criterion. There 

is an even distribution of weights across conservation criterion with the exception of 

ancient monuments (0.15%) being least prioritised. In terms of human and social capital 

weights reflect most guidance and academic literature by assigning the highest constraint 

values to population density (5.23%) and urban residential (3.01%). The final grouping of 

flood risk assigned significant weighting to flood zones (3.99%) and historic flood event 

(2.37%) with a low value for mining activity (0.74%).  
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6.3. GIS model development 

The development of the GIS model builds on the previous stages of spatial analysis and 

problem formation using AHP and has a number of key requirements:  

 Developing site selection criteria – constraints and opportunities (section 6.2) 

 Thematic maps – producing layer maps of criteria 

 GIS analysis of layer maps 

 Constraints and opportunities models – using aggregated weights (section 6.2.3) 

 Site suitability model – using aggregated weights (section 6.2.3) 

This section will present the results for each of these stages of model development. 

  

6.3.1 Site selection criteria 

Section 6.2 has outlined the key stages of developing criteria groupings for opportunities 

and constraints. All that remains for this step is to define the criteria in terms of their 

impact on suitability for each facility type. Table 6.17 sets out the key site selection criteria 

for each facility type currently in operation within the case study area but also includes 

consideration of large scale energy-from-waste (EfW) facilities which may come on-

stream during the backcast period.  

Analysis of the site selection criteria for each facility type in Table 6.17 shows typical land 

take for waste facilities is estimated as being between 0.5 and 5ha. Resource Recovery 

Parks (RRPs)21 by their nature are likely to be of considerable scale with up to 60ha 

indicated in the literature (DCC, 2011). In terms of land use, most facility types can be 

found in proximity to business and industrial areas. Certain activities (e.g. windrow 

composting and AD) are found mainly in rural locations or close to specific types of 

industrial activity. Operations which entail producing energy (e.g. incineration) are also  

                                                           
21 RRPs are generally associated with logistics and distribution activities in the UK. Such sites have been utilised 
internationally and designated as Eco-Industrial Parks (EIPs) (see Tudor et al. 2007 or Chertow, 2008 for detailed 
discussion of EIPs and underlying Industrial Symbiosis principles). 
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Table 6.17: Site selection criteria by facility type  

Facility type Land take 

(ha) 

Land use Access Vehicle type Common features Sensitive receptors 

HWRC 0.8 or > 
business or industrial but 
proximate to residential 

from primary roads 
space for queuing 

Cars and some 
HGV (low volume) 

often sited with WTS 250m from housing 

MRF 1 to 2 industrial but B2/B8 also 
primary roads no HGV 

restriction 
HGV (medium 

volume) 
needs storage space 100m or less 

WTS 0.5 or >  
industrial degraded or close 

to existing WM sites 
primary roads 

HGV (high 
volume) with 

smaller vans, etc. 
often sited with HWRC 

250m to housing, 
recreation and 
commercial 

Aggregates recycling 1.5 
industrial and employment 

areas 
primary roads no HGV 

restriction 
HGV (medium 

volume) 
needs storage space 

250m unless noise 
can be reduced 

Windrow composting 1 
Rural developments but 

some industrial types 
primary roads no HGV 

restriction 
HGV (medium 

volume) 
often sited with large 

WwTW 
250m 

In-Vessel Composting 1 to 1.5 industrial locations 
primary roads no HGV 

restriction 
HGV (medium 

volume) 

typically within building 
but storage required for 

final compost output 
250m 

AD  1 to 1.5 
suburban and rural 

developments 
primary roads no HGV 

restriction 
HGV (medium 

volume) 
often sited with MBT or 

at WwTW 
250m 

MBT  1.5 to 5 industrial locations 
primary roads no HGV 

restriction 
HGV (high 

volume) 

mixed municipal waste 
mainly treated but can 

take other biogenic 
250m from properties 

Resource Recovery Park up to 60 
Industrial, business or 

degraded land 

primary roads no HGV 
restrictions, potential of 

water and rail  

multi-modal (rail, 
water) but with 
road connection 

have been created in parts 
of England draws on EIP  

and IS principles 

sensitive to industrial 
park operations 

(250m) 

Incineration  3 to 5 
industrial locations with 

DH potential 

primary roads no HGV 
restriction but consider 

rail transfer 

HGV (very high 
volume) 

Requires IBA removal or 
further treatment 
(aggregates, etc.) 

250m from properties 

Pyrolysis & Gasification  1 to 4 
business or industrial 

proximate to residential for 
DH potential 

primary roads no HGV 
restriction but consider 

rail transfer 

HGV (medium 
volume) 

can include recycling of 
materials (storage) 

250m (less for 
smaller if part of DH) 

Autoclave  1 to 4 
business or industrial 

proximate to residential for 
DH potential 

primary roads no HGV 
restriction but consider 

rail transfer 

HGV (medium 
volume) 

sanitises waste materials 
(healthcare mainly) 

250m 

Sources: (ODPM, 2004; DCC, 2011; NCC, 2011) 
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suitable for siting in proximity to residential areas due to the potential for District Heating 

(DH) provisioning. Site access for most facility types is generally achieved through primary 

roads (though HWRCs are likely to make use of local roads in many urban and rural 

locations). All waste sites require no restriction on heavy goods vehicles (HGV) as all 

operations involve movement on and off site of bulked materials. Larger existing and 

proposed sites (e.g. gasification and RRPs) also have the potential to utilise other modal 

forms of transport (i.e. rail and water) depending on proximity and existing infrastructure. 

All sites are typically served by HGVs with volume of traffic largely determined by the size 

of individual operations and sites. Certain operations: WTS, MBT and incineration; are 

likely to have very high volumes of HGV movements, particularly in urban settings.  

A number of common features between waste facilities can be identified from Table 6.17. 

Colocation of facility types is common within England and the wider UK. Transfer 

operations (e.g. WTS and HWRC) are commonly found on sites, although the WTS 

operation would typically be for WCA/WDA or contractor usage as opposed to having 

public access. Composting operations are often located with operations dealing with organic 

fractions of waste streams (e.g. MBT or WwTW) as these can be sequential in character 

(e.g. the use of AD for the separated organic fraction from MBT). Storage space is another 

key consideration in terms of handling materials moving on and off site or for secondary 

operations such as windrow composting. In terms of proximity to sensitive receptors Table 

6.17 shows the recommendation for most facilities is to be sited at least 250m from 

residential properties. However, certain operations (MRF) are often located within urban 

locations and can be sited 100m or less from residential and commercial properties.  

6.3.2 Thematic map development and GIS analysis 

A total of 41 separate criterions were identified as requiring data collection and thematic 

map layer creation (19 opportunities and 22 constraints). In total 34 layers were developed 

from existing data sets supplied by various organisations and research institutes (as 
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identified in Table 3.5, Ch.3). A further 5 layers were developed as bespoke maps through 

utilisation of non-spatial data. Bespoke layers included: source of waste (all controlled 

waste streams and waste densities); navigable waterways; population density; existing 

facilities; and urban (residential and workplaces). A thematic map was not produced for 

mining activity as no deep mining activity exists within the county. Also, quarrying 

activities are covered within the MWDF as employment and development opportunities 

(NCC, 2012) and are captured within the plan covering SEL (NCC, 2009 - see section 

6.2.1.3).  

6.3.3 Delimiting areas of search through constraints mapping 

A key feature of defining the suitability of locations for waste infrastructure is consideration 

of wider impact through emissions to air, water and land. To account for this geographic 

buffering is applied. Table 6.18 sets out the key buffering distances applied to each 

constraints criterion. 

Table 6.18: Buffering distances used in the suitability analysis for constraining criteria 

Restriction Minimum 
buffer 

distance (m) 

Maximum 
buffer 

distance (m) 

Analysis 
buffer 

distance (m) 

Rivers 10 200 200 
Lakes 250 500 500 
SPZ - groundwater 50 250 250 
Flood risk zones/historic extent 50 200 200 
National Nature Reserves 50 200 200 
Local Nature Reserves 50 200 200 
ESA 200 200 200 
RAMSAR 200 500 500 
SSSI 200 500 500 
Ancient Woodland 50 200 200 
Monuments 250 250 250 
Battlefields 250 250 250 
Listed buildings / grounds and parks 250 250 250 
SPA 200 500 500 
Urban – Residential/workplaces 250 250 250 

Sources: (EA, 2012c; after Bastin and Longden, 2009; after Kara and Doratli, 2012). 
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As Table 6.18 shows there is significant variation in minimum and maximum distances 

within guidance and key literature. The maximum buffering distance from EA guidance in 

England was used to create buffers for constraining criteria as these values are closest to 

those identified for waste facilities in Table 6.17 (sensitive receptors). 

6.3.3.1 Thematic maps GIS analysis - constraints 

6.3.3.1.1 Land use map 

The land use map (Figure 6.9) displays the main land use types (11 categories under BH 

grouping) depicting both human and natural landscapes within Northamptonshire. This map 

is one of the fundamental maps for GIS analysis and underpins analysis of agricultural land 

classification (Grade 1 and 2). However, individual data layers (.shp file format) are 

available in the UK for land use classes such as rivers, lakes and ancient woodland. These 

data sets are used accordingly with conversion to raster format made at a 25m resolution 

(one pixel) for comparable analysis.  

The distribution of land use types shown in Figure 6.9 shows settlements, main areas of 

surface water, woodland, agricultural land classes (e.g. arable & horticulture; improved 

grassland and neutral grassland) and low productivity land (e.g. bare rock, rough grassland 

and acid grassland). 

The majority of the county (82.0%) is covered with agriculture & horticulture as well as 

improved grassland (136kha and 59kha respectively). Woodland and forest make up 6.28% 

of land use while built-up areas account for 7.07% of land use. These built up areas are sub-

divided into 3 classes: suburban (5.69%); urban (1.13%); and urban industrial (0.25%). 

Freshwater (rivers and lakes) accounts for 0.84% of land cover while the remainder (10.1%) 

is a mixture of other grassland types and bare rock. 
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Figure 6.9: Land cover map of Northamptonshire (25m resolution) (Source: CEH, 2010). 

6.3.3.1.2 Surface water map 

The surface water map (Figure 6.10) shows the main rivers, lakes and canals within 

Northamptonshire. Also, included are the locations of Source Protection Zones (SPZs) 

which are taken from geological data supplied by the British Geological Survey (BGS).  
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Figure 6.10: Surface water map (including Source Protection Zones – SPZs). 

 

The majority of Northamptonshire is drained by the River Nene which flows to the North 

Sea via Cambridgeshire. The upper Nene valley is marked and shows the position of a 

number of lakes (e.g. Stanwick Lakes) which are former gravel extraction sites; flooded and 

restored as nature reserves and leisure sites. The rivers within the south west of the county 
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primarily flow into the Thames river basin area; with a number of small rivers passing 

southwards into Buckinghamshire and Oxfordshire. The Grand Union Canal (GUC) runs 

almost north to south across the western part of the county. In terms of lakes, besides the 

former gravel pits there are a number of reservoirs to the north west of the county, including 

the significant water body of Pitsford Reservoir.    

6.3.3.1.3 Environmental receptors map 

The environmental receptors map (Figure 6.11) is a refinement of the previous land use map 

(Figure 6.9) based on data sets made available by Natural England and the Centre for 

Hydrology and Ecology (CEH). Northamptonshire contains a range of sites which are 

scientifically and civically important covering a total area of 13,346ha. There are: 7 country 

parks covering 585ha; 1 ESA site (Upper Thames tributaries) covering 1,238ha; 17 Local 

Nature Reserves covering 319ha; 2 National Nature Reserves (Collyweston Great Wood and 

Buckingham Thick Copse) covering 195ha; 1 RAMSAR convention site (Upper Nene 

Valley Gravel Pits) covering 1,358ha; 1 Special Protection Area (Upper Nene Valley Gravel 

Pits) covering 1,358ha; 58 SSSI sites covering 3,802ha; and 7,207ha of designated ancient 

woodland.  

It is of note that Upper Nene Valley Gravel Pits are designated under multiple schemes 

(RAMSAR convention on Wetlands; Special Protection Area; and SSSI). All areas 

identified are designated as penalizing (Table 6.9) which requires a minimum buffer (see 

Table 6.21) after which waste facilities are allowed to be sited.   

6.3.3.1.4 Conservation receptors map 

The conservation receptors map (Figure 6.12) shows data on registered battlefields; 

scheduled ancient monuments; historic parks and gardens; and listed buildings in 

Northamptonshire. All conservation receptors other than agricultural land (Grades 1 & 2) 
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are classified as penalizing and are thus subject to site by site assessment. There are two 

registered battlefields in Northamptonshire (Naseby and Delapre) which are nationally  

             
Figure 6.11: Environmental receptors map (including ESA and SSSI22). 

 

                                                           
22 ESA = Environmentally Sensitive Area; SSSI = Sites of Special Scientific Interest 
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Figure 6.12: Conservation receptors map (250m buffers are included for heritage sites – 
scheduled ancient monuments and historic parks & gardens; and listed buildings).  

 

significant heritage sites. Heritage sites within Northamptonshire total 38 (with 5 scheduled 

ancient monuments and 33 historic parks and gardens). Listed buildings are found 

throughout the county and do not exclude siting waste infrastructure. However, 

consideration is required as to the aesthetics of historic versus modern architectural styles.  
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Northamptonshire does not contain any agricultural land classified as Grade 1 but does 

contain substantial Grade 2 agricultural lands (ha). Much of this land use type is found 

within the river valleys of the Nene and Welland. Grade 3 agricultural lands has not been 

classified as a constraint within this analysis as there is no distinction made in the land cover 

map for Grade 3a and 3b (ALC, 2010). As such, Grade 3 would have excluded almost all 

land areas within the county. Grade 4 agricultural lands are not considered constraining for 

development in general (forming much of the ‘greenfield’ allocation within the SEL 

assessment) and are thus not considered as constraining criteria.  

6.3.3.1.5 Flood risk map 

The flood risk map (Figure 6.13) shows flood zones in terms of their risk definition (low, 

moderate and significant) as opposed to the EA classification as this would have put all 

zones within exclusionary typologies. Instead, only significant is considered exclusionary, 

while moderate and low are considered penalizing. Historic flood extent is also shown and 

is considered as penalizing given the infrequency of serious flood events recorded for the 

River Nene.   

As Figure 6.13 shows the majority of the rivers in Northamptonshire are in the significant 

risk category with smaller areas along the river courses with low and moderate levels of 

flood risk. These areas correspond with areas where rivers pass through urban centres such 

as Northampton, Wellingborough (River Nene), Kettering (River Welland) and Towcester. 

Areas such as Northampton and Wellingborough have had significant amounts of flood 

defences installed following the Easter flood event of 1998. Similarly, Kettering and 

Towcester have seen flood defences increased in order to protect new housing and 

commercial developments situated on flood plains. The historic flood event shown to the 

north east of the county (River Nene) corresponds with the broadest and most navigable 

stretch of the Nene within the county and thus represents the greatest extent for flood risk.  
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Figure 6.13: Flood risk map  

 

6.3.3.2 The constraints model  

The constraints model uses restriction values to produce a buffered output of areas 

unsuitable (excluded and penalizing) for siting waste facilities. The suitability model is 
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shown in Equation 6.2; where suitability (S) of a site is the sum of the weighted (wi) criteria 

(Cj) multiplied by the product of the restrictions (rj). 

Equation 6.2: 

=  ∑=1  ∏=1  

The constraints model is shown in Equation 6.3. 

Equation 6.3: 

∏=1  

Where the restrictions modelled are the individual criterion of the four constraints groups: 

(renvironmental * rconservation * rhuman capital * rflood risk). For example; the environmental group 

criterions are: 

(rspz * rrivers * rlakes * rlnr * rnnr * rramsar * rsssi * rspa * resa *rancient woodland) 

6.3.3.2.1 Individual constraints mapping 

Figure 6.14a through 6.14d show an example constraint from each group criteria. Appendix 

11a contains all output maps for each constraint criterion with weights and buffering 

applied. The constraining criteria are scored with a ‘boolean’ system; shown as ‘0’ on the 

maps meaning they are either excluded from further or analysis (e.g. for surface water 

layers) or must be considered as penalizing (e.g. conservation receptors). If a layer is 

characterised as penalizing this will be reconciled when the final suitability assessment is 

undertaken. Any areas of the maps scoring a ‘1’ are considered as options for siting of 

facilities. As can be seen from Figure 6.14 areas of constraint can be very limited (Figure 

6.14b) or extensive (Figure 6.14a). 
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Figure 6.14a-d: Indicative constraints maps (Rivers; Parks & Gdns; Urban; and historic 
flood event). 

a) b) 

c) d) 
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6.3.3.2.2 Combined constraints mapping  

Figure 6.15 shows the final constraints output map for Northamptonshire based on the 

constraints (restrictions) model expressed in Equation 6.4. In total 55.1% of land is 

classified as constrained within Northamptonshire (i.e. within the 4 constraints groups). 

        
Figure 6.15: Combined constraints map. 
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6.3.4 Identifying areas of search from opportunities modelling 

Thematic layers were developed which incorporated opportunities criterions were entered 

into the model builder tool in Esri’s ArcGIS10 for further evaluation and to produce a visual 

output. The final weights applied through weighted overlay analysis (WOA) to the 

opportunities criterions are shown in Table 6.19. 

Table 6.19: Opportunities criteria buffering distances (m) and weightings (%) used for 
analysis and final thematic layer map creation   

Criteria Analysis buffer 
distance (m) 

Weights 
applied (%) 

Final 
weights 

(%) 
Sources of waste (urban residential) 250 7.96 8.00 

Sources of waste (workplace) 250 10.21 10.00 

Sources of waste (SEL) 100 3.84 4.00 

Landfills (active) 250 4.54 5.00 

Landfills (historic) 250 4.54 4.00 

Operational facilities (& PPC sites) 250 16.68 17.00 

Regeneration (PDL) 100 9.96 10.00 

Employment 250 11.56 12.00 

Deprivation (IMD) 250 1.91 2.00 

Gas networks (& off grid) 250 10.85 11.00 

Electricity networks (& off grid) 250 3.96 4.00 

Proximity to rail 250 3.66 4.00 

Proximity to junctions 250 1.11 1.00 

Proximity to A roads 250 5.97 6.00 

Proximity to navigable waterways 250 1.78 2.00 

Sources: (EA, 2012c; after Bastin and Longden, 2009; after Kara and Doratli, 2012). 

Table 6.19 shows minimum distances of between 100 and 250m for the final buffering of 

opportunities criteria analysis. Weights applied are taken from the aggregated weights in 

Table 6.15 with a number of criteria combined to produce an overall weight (e.g. PPC sites 

weighting was split between active landfills and operational facilities as these data sets 

contained PC listings). The original weights in Table 6.15 were grossed up in order to make 

the weights out of 100 in order to produce weights which could be used with the ArcGIS 

weighted overlay spatial analyst application. Final weights are rounded to nearest whole 

number as the software does not accept decimals. 
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6.3.4.1 Identifying opportunities through thematic mapping 

6.3.4.1.1 Sources of waste 

The sources of waste map (Figure 6.16) shows the spatial distribution of the main areas of 

controlled waste generation within Northamptonshire, including: urban areas (residential - 

LACW but also commercial and construction wastes); business parks (workplaces - C&I 

waste generation with similar composition to LACW from many commercial premises); and 

SEL (would be phased C&D wastes initially followed by C&I and LACW depending on the 

development type). Facilities should be sited as close to these areas as possible.  

6.3.4.1.2 Existing waste sites 

The existing waste sites map (Figure 6.17) includes operational waste facilities (see Figure 

6.3) including 2 IPPC licensed sites; active landfills (with area calculated) including 9 IPPC 

licensed landfill sites; and historic landfill sites (with area calculated). Figure 6.17 shows the 

101 operational waste facilities discussed previously (see section 6.1.2). Landfill sites with 

active permitting status; cover 853ha across 46 locations. A total of 15 of these landfill sites 

are in closure status with a further 2 licenses surrendered. Historic landfill sites cover a total 

of 1,673ha covering 371 locations; some 207 of these sites are greater than 1.5ha in area. 

Most of these sites are capped and closed but represent a significant land bank with waste 

permitting history for planning purposes.  

6.3.4.1.3 Socio-economic factors 

A total of three thematic maps were produced for socio-economic factors including 

deprivation (IMD); employment; and regeneration areas (as PDL). IMD and employment 

are exogenous factors (i.e. outside of the waste system but impacting on it); whereas areas 

of regeneration as PDL have often been identified within local planning policy as sites 

suitable for industrial and waste management usage. IMD scores (Figure 6.18a) have been 

discussed previously (see section 4.7).  
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Figures 6.16 and 6.17: Sources of waste and existing waste sites maps
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Employment levels at LSOA level are shown in Figure 6.18b as absolute values (e.g. the 

actual numbers of people employed) (ONS, 2014). To expand, NOMIS reports labour 

market profiles data for LAs in England (ONS, 2014). This data is summarised for 

Northamptonshire in Table 6.20. 

Table 6.20: Labour market profile for Northamptonshire LAs in 2012 

Local Authority WAP EcA EcA (%) Em Em 
(%) 

UEm UEm23 
(%) 

Corby 35,706 29,600 82.9 26,922 75.4 3,049 10.3 

Daventry 51,742 40,100 77.5 38,444 74.3 2,165 5.4 

East Northants 55,844 47,300 84.7 42,832 76.7 3,075 6.5 

Kettering 60,950 52,600 86.3 48,516 79.6 3,682 7.0 

Northampton 146,402 118,000 80.6 107,898 73.7 9,676 8.2 

South Northants 59,558 53,900 90.5 52,947 88.9 1,563 2.9 

Wellingborough 48,553 36,900 76.0 33,501 69.0 3,395 9.2 

Northamptonshire 458,755 378,400 82.64 351,062 76.80 26,605 7.07 

Source: (ONS, 2014).  

   

As can be seen in Table 6.20 economically activity among working age population is high 

within Northamptonshire (82.6%). Numbers of people employed (as employees or self-

employed) is measured by ONS as percentage of working age population (76.8%) whereas 

the percentage unemployed is modelled as a percentage of economically active residents 

(7.07%). The LA of Northampton contains 31.9% of all WAP and 31.2% of all 

economically active residents in the county.  

Figures 6.18c-d shows areas of previously developed land (PDL) and their spatial 

distribution across Northamptonshire. There are a total of 42 sites identified covering 

307ha (HCA, 2009). Corby has the most significant amount of PDL in the county having 

been the site of significant industrial activity with the Corus steel works operating until the 

1990s. Much of this land requires remediation works and would thus be suitable for 

collocating multi-permitted waste facilities thus reducing costs (Bates et al. 2008).   

                                                           
23 WAP: working age population; EcA: economically active; Em: employed; UEm: unemployed 
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Figure 6.18a-d: Socio-economic factors maps a) IMD score b) employment map c) areas of 
regeneration – county level d) previously developed land (PDL) sites – LA level. 

a) b) 

c) d) 
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6.3.4.1.4 Proximity to transport networks  

The spatial pattern of facilities (Figure 6.17c) shows most waste sites have been located in 

close proximity to major roads (A roads). Figure 6.19a shows the road networks map for 

the study area.  There is an extensive network of major roads (Motorway and A roads) 

connecting the main urban centres as well as providing regional connection to other urban 

centres and areas of commerce in England and beyond. Motorway junctions and bypass 

roads have increasingly seen the location of business parks and large housing 

developments.  

Figure 6.19b shows the other primary modal transport networks within the case study area. 

Northamptonshire is served by rail with the West Coast Mainline, which spurs at Rugby 

picking up stations at Long Buckby and Northampton before re-joining just south of 

Northampton. The Midland railway connects the eastern towns of Corby, Kettering and 

Wellingborough. Navigable waterways include the Grand Union Canal; Upper Nene; and 

River Welland, with numerous wharves along the GUC and marinas on the Upper Nene.    

6.3.4.1.5 Proximity to heat and power networks 

The heat and power networks maps (Figure 6.20a-b) include consideration of where the 

primary and secondary gas grid locations; primary electricity grid locations; households off 

gas grid; and households off electricity grid. 

Areas with high numbers of households off grid connections coupled with proximity to 

main grid networks are considered most suitable for waste facilities capable of delivering 

heat/power (e.g. AD or EfW sites). Figures 6.20a and 6.20b show the locations of the main 

(primary and secondary) lines and networks for gas and electric utilities within the study 

area. The main gas lines follow a north-south axis in close proximity to the primary electric 

grid. However, the main electric grid has more lines connecting the main grid with large 

urban centres.    
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Figure 6.19a-b: Road networks and modal networks maps

a) b) 
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Figure 6.20a-b: Viability of decentralised energy maps (gas lines; electricity grids; households off gas and electric grids shown by LSOA).

a) b) 
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In terms of numbers of households off gas and electric grids Figure 6.20a shows LSOAs 

with the highest numbers are mainly located at the periphery of the study area as well as 

being proximate to primary gas lines. The picture is similar for electrical connectivity, 

although a number of LSOAs within the central portion of the study area (in areas between 

the main urban centres) have higher numbers off-grid. These areas of low connectivity are 

found proximate to main electricity lines potentially reducing any future connection costs.  

LSOAs with high numbers of household’s off-grid and with gas and electric grids passing 

through them will score highest as areas of opportunity.  

6.3.4.2 The opportunities model 

The opportunities model uses criteria weights values derived from the AHP process (see 

Section 6.2) to produce areas of opportunity (preferential and penalizing criteria) according 

to a weighted scale for siting facilities. The opportunities model is shown in Equation 6.4. 

Equation 6.4: 

∑=1   
Where the weights modelled are for individual criterion from the five opportunities groups: 

(wsources of waste * wexisting sites * wsocio-economic* wtransport* wheat&power). 

6.3.4.2.1 Individual opportunities mapping 

Figure 6.21a through 6.21d show an example opportunities map from the group criteria. 

Appendix 11b contains all output maps for each opportunity criterion with weights and 

buffering applied. 
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Figure 6.21a-d: Indicative opportunities maps: a) A roads; b) main sources of C&I waste: 
c) SEL; and d) navigable waterways. 

a) b) 

c) d) 
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6.3.4.2.2 Combined opportunities mapping 

Figure 6.22 shows the final opportunities output map for Northamptonshire based on the 

opportunities model expressed in Equation 6.5. In total 12,773ha (5.40%) of land is 

classified as highest suitability within Northamptonshire (i.e. within the 5 opportunities 

groups). A significant amount of land is classified as moderate suitability, mainly around 

the extent of the Northamptonshire Arc (Northamptonshire Observatory, 2010). 

6.3.5 Identifying areas of suitability 

Figure 6.23 shows the areas of suitability after Equation 3 is applied to both opportunities 

and constraints criteria. A total land area of 3,338ha was identified as being most suitable 

for waste facility siting in Northamptonshire using the suitability model developed. 

Of this land bank, some 2,842 ha were contained in 14 land parcels in sizes greater than 

65ha making them potentially suitable for all facility types identified in Table 6.17.  A 

further 415ha across 19 land parcels were identified ranging in size from 10 – 65ha. The 

remaining 81ha were identified across a further 23 land parcels ranging in size from 1 to 

10ha. Available land was concentrated in four main locations: around Corby (particularly 

to the north-east of the main residential area and are centred on the former Corus 

steelworks sites traversed by the A43 trunk road); Kettering (particularly to the west of the 

main residential area and town centre and extending from the smaller towns of Rothwell 

and Burton Latimer along the A14 corridor which by passes Kettering to the west and 

south), Wellingborough-Rushden (wrapping around the town of Wellingborough and 

extending towards the former shoe manufacturing centres of Irthlingborough, Finedon and 

Rushden traversed by the Midlands Railway; River Nene; and A45/A6 trunk roads)  and 

DIRFT (prime development sites adjacent to the existing logistics hub as well as the 

M1/M6 confluence and junctions; the A5 trunk road; Grand Union Canal and West Coast 

Mainline with a dedicated spur line for freight trains).  
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Figure 6.22: Combined opportunities map showing areas of suitability. 

 

One further area of high suitability is situated close to the Brackmills industrial estate on 

the southern fringe of Northampton as well as other locations to the south-west of the town 

in close proximity to the M1 junctions (15, 15a and 16).  
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The next step in the process is to differentiate the areas of highest suitability in terms of 

land parcels of appropriate scale. Figure 6.23 shows areas of high suitability subdivided 

into land parcels of 1-10ha; 10-65ha and >65ha with main residential areas excluded.   

               
Figure 6.23: Areas of highest suitability (land parcels of >1 ha; >10 ha; and >65 ha). 

DIRFT 

Corby 

Kettering 

Wellingborough 
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The process of excluding residential areas results in the removal of Northampton from the 

areas of highest suitability and further confines appropriate scale land parcels to locations 

in close proximity to existing industrial and business parks on the fringes of Corby, 

Kettering, Wellingborough and DIRFT (Figure 6.23). 

6.4 Suitability analysis of MWDF main sites   

The final stage in the GIS analysis is to evaluate the suitability of the proposed main sites 

within the MWDF (NCC, 2012) in terms of being within areas of highest suitability. This 

step is undertaken to determine the potential of these sites to expand operations in order to 

achieve higher recycling and recovery rates. Any expansion of such sites should meet the 

criteria outlined within the GIS modelling approach described in sections 6.2 and 6.3. In 

addition, areas for potential new sites should encompass the site selection criteria (Table 

6.17) which can be broken down into 3 spatial scales (land parcels between: 1 and 10ha; 10 

– 65ha; and greater than 65ha in proximity to modal networks).      

6.4.1 Main sites in areas of highest suitability 

There are 39 sites specified within the MWDF as main sites (and 59 non-main) for waste 

management to 2031 (NCC, 2012), Table 6.21 and 6.22 show sites of highest suitability. 

As Tables 6.21 and 6.22 show there are 12 sites (6 main and 6 non-main) which have 

scores of 5 (high suitability) through the site appraisal process. Of these sites, 5 are landfill 

sites (4 main and 1 non-main sites). 

A further 5 sites are aimed at treatment activities (treatment, composting and recycling) 

with the remaining 2 sites being transfer operations. A total of 9 sites out of 12 are located 

within CBC. This means that only 12 out of the total 98 sites within the MWDF (as main 

and non-main sites) achieved high suitability under the spatial appraisal methodology 

proposed. This suggests a limited scope for development of such infrastructure in light of 
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the potential environmental impact from such expansion of activities in areas susceptible to 

environmental degradation via pollution, noise, odour, loss of amenity or visual intrusion.     

Table 6.21: MWDF main sites by district (with facility type and secondary operations) in 
areas of highest suitability with penalizing considerations shown 

District Facility 
type 

Secondary operations Suitability 
value 

Penalizing 
considerations 

Mitigation 

CBC Landfill Recycling (Inert), Transfer 
Station 

5   

CBC Landfill Civic Amenity, Landfill 
Gas Energy Scheme 

5   

WBC Landfill Landfill Gas Energy 
Scheme, Composting 

5   

KBC Landfill 
(Inert) 

Recycling (Inert) 5   

CBC Recycling 
(Inert) 

Composting 5 Urban 
residential 

On existing 
IE location 

CBC Transfer 
Station 

Recycling 5 Urban 
residential 

On existing 
IE location 

Sources: (after EA, 2010; NCC, 2012). 

Table 6.22: MWDF non-main sites (with facility type and secondary operations) in areas of 
highest suitability with penalizing considerations shown 

District Facility type Suitability 
values 

Penalizing 
considerations 

Mitigation 

CBC Composting 5     

CBC Landfill Gas 5     

WBC Recycling 5 Urban residential On existing IE location  

CBC Recycling 5 Urban residential On existing IE location  

CBC Treatment 5 Urban residential On existing IE location  

CBC Waste Transfer 5 Urban residential On existing IE location  

Sources: (after EA, 2010; NCC, 2012). 

 

Figure 6.24 shows the location of main and non-main sites with a score of 5 (high 

suitability) in relation to land parcels identified as areas of highest suitability. The 12 sites 

identified are clustered around Corby, Kettering and Wellingborough with no sites from 

the MWDF being classified as high suitability within any other parts of the study area. As 

this pattern of site distribution serves only around half the population and main areas of 

waste generation it must be assessed as being unsuitable as a viable system of sites capable 
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of capturing the highest proportion of materials within the scope of the MWDF (NCC, 

2012; 2014). 

Figure 6.24: Assessment of land parcels with highest suitability against MWDF main sites. 

   

6.4.2 Main sites in areas of moderate suitability 

With so many sites failing to meet the assessment criteria, the remaining 33 main sites 

were assessed against areas of moderate suitability. A total of 16 sites were found to be in 

DIRFT 

Corby 

Kettering 

Wellingborough 

Northampton 
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areas of moderate suitability (6 landfill sites [2 in closure status as well as 1 closed MRS 

site] and 10 waste transfer/CA sites). This means that the remaining 17 MWDF main sites 

are in areas of low or least suitability for waste facility siting according to the modelling 

criteria (see Sections 6.4.3.2 and 6.4.4.2). Given the low number of facilities (n=22) 

identified in the site appraisal process as main sites for waste activities to 2031, a second 

tier of sites (n=59) are put forwards in the local plan (as non-main sites). The results for 

moderate suitability are presented in Table 6.23 and 6.24. 

Table 6.23: MWDF main sites by district (with facility type and secondary operations) in 
areas of moderate suitability with penalizing considerations shown  

District Facility type Secondary operations Suitability 
values 

Penalizing 
considerations 

DDC Civic Amenity   4 Urban residential 

KBC Civic Amenity   4 Urban residential 

NBC Civic Amenity    4 Urban residential 

SNC Civic Amenity    4 Historic flood 

DDC Civic Amenity    4 Urban residential 

NBC Integrated Waste Handling 
Facility Recycling 

Transfer Station Green 
Energy Centre 

4   

ENC Landfill Landfill Gas Energy 
Scheme 

4 SSSI 

DDC Landfill Landfill Gas Energy 
Scheme 

4   

KBC Landfill  Landfill Gas Energy 
Scheme 

4   

DDC Landfill (Inert) Recycling (Inert) 4   

DDC Landfill (Inert)  Recycling (Inert)  4   

ENC Landfill (Inert)/ Soil 
Storage 

Recycling (Inert) 4 Urban residential 

ENC Recycling Centre   4 Urban 
residential, listed 
bldng 

NBC Transfer Station  Recycling/Composting 4 Urban residential 

DDC Transfer Station  Materials Recycling 
Facility (MRF) 

4 Urban residential 

WBC Transfer Station (Inert)  Recycling (Inert)  4 Urban residential 

ENC Landfill / soil storage Recycling inert 3 SSSI 

Sources: (after EA, 2010; NCC, 2012). 

 

Table 6.23 shows that 16 main sites were scored as moderate suitability (with a further 

facility for hazardous waste treatment scored as low suitability). A total of 6 facilities were 
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landfill operations with a further 9 described as CA/transfer operations. One remaining site 

was described as a ‘recycling centre’. It is also shown that 6 sites are in DDC; 4 in ENC; 

and the remaining 6 sites are spread across NBC, KBC, WBC and SNC. Table 6.23 also 

shows that 12 sites had penalizing considerations including: proximity to urban residential, 

listed buildings and SSSI designated sites.   

Table 6.24: MWDF non-main sites by district (with facility type and material type) in areas 
of moderate suitability with penalizing considerations shown  

District Facility type Material 
type 

Suitability 
values 

Penalizing considerations 

DDC Composting Non-Inert 4  

ENC Composting  4  

DDC Landfill Inert 4  

ENC Recycling Non-Inert 4  

ENC Recycling Non-Inert 4  

DDC Recycling Non-Inert 4  

NBC Recycling  (MRF) Non-Inert 4  

WBC Treatment Non-Inert 4  

NBC Waste Transfer Non-Inert 4  

SNC Waste Transfer Non-Inert 4  

CBC Waste Transfer Non-Inert 4 Urban residential 

ENC Waste Transfer Non-Inert 4  

NBC Waste Transfer Non-Inert 4 Urban and historic flood 

KBC Waste Transfer Non-Inert 4  

WBC Waste Transfer Non-Inert 4  

DDC Waste Transfer Non-Inert 4 Listed bldngs 

Sources: (after EA, 2010; NCC, 2012). 

 

Table 6.24 shows a further 16 non-main sites as having a moderate suitability score of 4. A 

total of 8 of these are waste transfer operations, one is a landfill site and the remaining 7 

are treatment operations (treatment, recycling and composting). Similar to main sites DDC 

and ENC each have 4 sites located in their areas with NBC having a further 3 sites and the 

remaining 5 are spread across the other four Northamptonshire LAs. It can also be see that 

3 sites have penalizing considerations in terms of proximity to urban residential and listed 

buildings. While one site (waste transfer) has two penalizing factors (proximity to urban 
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residential and historic flood extent).  Figure 6.25 shows the spatial distribution of all 

facilities (n=44) with high and moderate scores (from Tables 6.20 through 6.24).  

Figure 6.25: Assessment of land parcels with moderate suitability against MWDF main 
sites and non-main sites.   

 

6.4.3 Spatial patterns of facilities 

A total of three spatial patterns are set out for testing; these are: 
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 Centralised – 4 large integrated sites; 

 Central core with outliers – 15 sites in close proximity to large and small urban 

centres (moderate/high suitability); 

 Dispersed – main sites (n=22) and non-main sites (n=22).    

Previous research (Bates et al. 2008) has identified different spatial patterns of facilities as 

being the most appropriate for managing non-municipal wastes in England. However, this 

approach viewed wastes as requiring separate management methods associated with a 

number of key barriers to achieving greater recycling and recovery of materials fractions. 

Such an approach was also developed with a view to coordinating efforts at the regional 

scale through Regional Development Agencies (RDAs) which are no longer applicable. In 

addition, planning reform under the NPPF (DCLG, 2012) also places a requirement on 

WPAs and individual LAs to cooperate when managing wastes moving across their 

jurisdictions (e.g. between waste facility types). To address these changes, the approach of 

this research seeks to determine if an optimal spatial pattern is achievable in order to 

account for changes to planning while still fulfilling requirements which will meet national 

obligations on waste targets and help transitioning England towards a zero waste economy. 

Figures 6.26, 6.27 and 6.28 show the spatial patterns of facilities under the three scenarios 

described. The spatial patterns are assessed against levels of waste generation (and 

accompanying recycling, recovery and disposal) associated with each scenario in 2050.  

6.4.3.1 Centralised pattern of waste facilities 

Figure 6.26 shows a viable pattern of facilities having two main integrated sites within 

areas of highest suitability (one in proximity to Corby and the other in close proximity to 

Wellingborough) with a further large integrated site in close proximity to Northampton. 

There would be a requirement for a further site (materials recycling) which could be 

located at a site of high suitability near DIRFT to access logistics and modal networks.  
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Figure 6.26: Centralised pattern of waste facilities (4 large integrated sites around 500ktpa 
capacity each). 

 

This would essentially be a centralised spatial pattern of large integrated facilities with 4 

main sites (existing waste operations and industrial site locations). This pattern assumes 

the presence of similar scale and type facilities in surrounding WPAs (e.g. one facility in 

close proximity to each of the urban centres of Milton Keynes, Bedford, Peterborough, 

Banbury, Rugby and Market Harborough). Such facilities would be more geographically 

proximate to rural areas of East Northamptonshire; South Northamptonshire and Daventry 
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District. This centralised spatial pattern would thus be able to service over 90% of the 

WPA population and cover around 95% of main waste generation locations. The 

centralised pattern would thus require the locating of a single site in an area of moderate 

suitability. In terms of the scenario profiles for future waste generation this spatial pattern 

would be most effective for scenarios CE and EC which show the largest overall 

reductions in waste generation (see Tables 5.16-5.19, section 5.4.1.4). Scenario CE also 

has the lowest increase in recycling (2.59%) and recovery (10.01%) which suggests 4 large 

integrated sites of 500kt capacity (65kt for LACW; 170kt for C&I wastes; 230kt for C&D 

wastes; and 15kt for hazardous wastes) would be required based on targets specified in the 

MWDF (NCC, 2012) (see Table 4.14). Scenario EC would also fit well with this spatial 

pattern of facilities as recycling has increased by 12.4% in 2050 while requirement for 

recovery capacity has declined by 33.4% (see Table 5.18).  

Scenario VM has a requirement for a 9.68% increase in recycling and a 17.74% increase in 

recovery by 2050 (see Table 5.17). Such an increase could be accommodated within a 

centralised pattern but the overall scenario aim of recycling and recovering as much 

materials as practicable suggests a greater role for minimising distances by which those 

materials move. Thus a pattern of facilities focused on minimising distances may be more 

appropriate for scenario VM. Scenario ED shows a significant increase in wastes generated 

and has recovery operations (mainly via ATT’s such as large scale EfW) increasing 

significantly (by 337%). This is also the scenario closest to being a reference scenario 

which fits best with an unchanging (albeit reduced number) pattern of facilities.     

. . .  Central core with outlier s pattern of waste facilities    

Figure 6.27 shows a spatial pattern which has a central core of large facilities 

(approximately 6 faciliites of ~250kt/annum) with a number of smaller outlier facilities (9 

facilities of ~50-60kt/annum capacity).  
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Figure 6.27: Central core with outlier’s pattern of waste facilities (15 large sites ranging 

between 50kt/annum and 250kt/annum capacity). 

 

This spatial pattern has the larger facilities located around the major urban centres (e.g. 

Northampton, Corby and Kettering) as the areas with the largest quantities of wastes 

generated. The distribution of the other facilities is to act as materials processing and 

transfer sites to integrated operations at the core sites. This approach represents and 

incremental change designed to keep pace with the increasing diversion of wastes from 

landfill (as seen under all scenarios). 
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The ‘central core with outlier’s’ spatial pattern is best matched with scenario VM which 

achieves a recycling and recovery rate in 2050 of 92.7% (79.2% recycling and 13.5% 

recovery) and converts to 2.00Mt of materials, the highest level for the three reducing 

scenarios. Considerations as to the distances moved and types of technologies required to 

manage such large amounts of materials drive the use of more dispersed sites which can 

significantly reduce the number of times materials require shipment and maximise the 

operational capacity of large sites which can accept bulked materials at a more controlled 

rate dependent on seasonal variations.  

6.4.3.3 Dispersed pattern of waste facilities 

This spatial pattern represents a continuation of current plan requirements with the 

omission of sites which did not achieve high or moderate suitability scores (e.g. 5 or 4 

respectively).  

The dispersed pattern in Figure 6.28 is focused on managing waste at the county level, a 

continuation of the approach put forwards in the MWDF (NCC, 2012). The difference lies 

in the number of facilities which reduces from 98 to 44 and thus requires operations to be 

changed at some sites (through secondary permitting) as well as the operational capacity of 

many sites to be increased in the range of 20-60%. Sites would be of differing scale with 

larger facilities existing close to the main urban centres (5 sites of 100ktpa capacity and 15 

sites of 50-75ktpa capacity). Smaller facilities would be numerous (n=24), typically 

between 5 and 50ktpa capacity and located close to sources of materials with former and 

operational landfill sites having secondary permits for waste activities (e.g. composting 

and recycling as well as landfill energy scheme permits for methane extraction). Scenario 

ED is proposed to have this pattern of facilities as the closest to current conditions 

prevailing. In terms of recycling and recovery facilities these would have to manage 

2.27Mt by 2050.  
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Figure 6.28: Dispersed pattern of waste facilities (44 existing sites ranging between 5-
100ktpa similar capacity). 

 

6.5 Chapter summary 

This chapter produced the preliminary spatial analysis results with GIS-AHP procedures in 

order to address objectives 3 and 4. This approach drew upon regional infrastructure 

assessment tool (DTZ/SLR, 2009a) in order to visualise the spatial distribution of waste 

facilities in the study region, assess these in terms of suitability and propose other spatial 
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patterns which could meet the requirements of radically different visions of the WMS by 

2050.  

The first stage was to map out the baseline conditions of the WMS (focusing on arisings 

and infrastructure types). This stage reported waste as separate streams (which were later 

presented as ‘all waste’ in section 7.1.1.1) and calculated values of each at the LSOA level 

before spatially projecting these findings (Figure 6.2a-d). The focus then shifted to 

infrastructure and the capacity of the existing system to manage both current and future 

levels of waste generation. This visualised operational capacity in terms of permitted 

(Figure 6.3) before disaggregating this overall capacity by facility types and found the case 

study area as constituting 108 active facilities with a permitted capacity of 7.00Mtpa but 

with a proven capacity of 2.38Mtpa.  

The next consideration was in terms of the proposed waste facilities plan as part of the 

MWDF (NCC, 2012) and whether the 98 facilities proposed as being suitable for use to 

2031 were in the right locations to optimally manage the wastes being produced or those 

expected under each scenario (see section 5.4.1.4). The plan indicated that assessment of 

suitability has been carried out previously (NCC, 2012) but the original format of the 

document hadn’t changed since it was first published in 2006, suggesting the assessments 

were at best out-of-date. The AHP process was used (Saaty, 1980) with stakeholder 

participation to be in keeping with the stakeholder approach applied within the backcasting 

methodology. Participants used the AHP to assign weightings (Figure 6.6) to opportunities 

and constraining criteria identified from the literature and assessed as locally relevant 

(Table 6.7). These criteria were also determined to be of three typologies: exclusionary, 

penalizing or preferential (see Tables 6.8 and 6.9). AHP results were analysed using 

Goepel’s spreadsheet tool (Goepel, 2013) for both opportunities and constraints groups as 

well as for individual criteria to calculate the weightings used in the GIS suitability 
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analyses. Group and individual criteria assessments for TS and NTS were finalised and 

evaluated in terms of consistency before finally being aggregated (Tables 6.15 and 6.16) 

showing existing waste sites as the highest weighted opportunity criteria and 

environmental receptors as the highest weighted constraining criteria.  

Determining the distances required for facility types to be separated from specific receptors 

established the analytical buffers for each criteria (see Tables 6.17 and 6.18). The 

individual criteria were then mapped as thematic layers for constraints (n=17) and 

opportunities (n=16). These thematic layers and their associated weights were utilised in 

the constraints and opportunities models to produce the individual (see sections 6.3.3.2.1 

and 6.3.4.2.1 and Appendix 11) and final combined constraints and opportunities maps 

(see Figure 6.15 and Figure 6.22).  

The final stage is to apply the areas of suitability analysis (Figure 6.23) to the MWDF local 

plan. The extraction tool (spatial analyst toolbox) was used in ArcGIS 10.1 to extract and 

then apply values from the suitability and constraints models (Appendix 12) to MWDF 

main and non-main sites. Only 12 sites of the total 98 were found to be in areas of high 

suitability (Figure 6.24) with a further 32 sites in areas of moderate suitability (Figure 

6.25). This meant the MWDF plan was found not to be fit-for-purpose and a range of 

spatial patterns were proposed utilising sites of high and moderate suitability only and 

reflecting the scenario narrative conditions and policy packages as well as the performance 

results for each scenario. 
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Abstract: 

The complex nature of waste management and planning requires a long-term strategic 

policy formation approach incorporating sustainable development principles. 

Consequently, the transition from a waste paradigm to valuing materials as resources is 

central for transitioning towards a ‘zero waste’ future. A need is identified, via 

infrastructure planning, to move beyond short-term forecasting and predictive methods 

previously used in waste research in order to overcome target-driven decision-making. 

The application of a participatory backcasting methodology: visioning, baseline 

assessment, scenario development and feasibility testing; produced transformative 

scenarios which are visualised using GIS reflecting the choices, ideas and beliefs of 

participants.  The structural governance (e.g. waste infrastructure planning and strategic 

waste policy) of an English county is used to evaluate the efficacy of waste management 

scenarios. A quantitative model was developed to test scenarios for three metrics 

(tonnages, economics and carbon). The final model utilises the synergy between 

backcasting and GIS to spatially and temporally analyse empirically quantified outputs.  

This structured approach produced three transformative scenarios and one reference 

scenario. Waste prevention and changes to systemic waste generation produced long-term 

tonnage reductions across the transformative scenarios. Costs of future waste management 

witnessed the reference scenario outperforming one of the transformative scenarios; while 

the highest emissions savings were attributable to the scenario most closely reflecting the 

notion of ‘deep sustainability’. In terms of waste infrastructure planning, a centralised 

pattern of large integrated facilities emphasising catchments rather than administrative 

boundary were most effective. All three transformative scenarios surpassed the 90% 

recycling and recovery level used as the zero waste benchmark.   

The research concludes that backcasting can offer a range of potential futures capable of 

achieving an arbitrary definition of zero waste. Further, these futures can be visualised and 

analysed via GIS; enhancing stakeholder engagement. Overall, the GIS-based Backcasting 

Framework Model (G-BFM) produced has the potential to benefit a range of stakeholders 

and practitioners and is strategically scalable. 

Keywords: waste paradigm; zero waste; backcasting; GIS; transformative scenarios; 

visualisation 
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Chapter 7 Synthesis results   

Chapter 7 brings together results from the backcasting methodology (specifically in terms 

of the visioning; scenario development and impact analysis stages) and the GIS spatial 

analysis method (Chapter 6) in order to visualise the backcasting outputs for stakeholder 

engagement in line with Objectives 4 and 5. Stages 1, 2 and 3 of Figure 7.1 were covered 

in Chapter 6, this chapter uses stages 4, 5 and 6 to synthesise all of the results. 

Figure 7.1: Methodology for synthesising backcasting with GIS (Results for Stages 4, 5 and 6). 

7.1 Mapping the visions 

In this section the future visions (Circular Economy – CE; Valorisation and Materials – 

VM; Economic Citizenship – EC; and Economic Destabilisation - ED) are presented 

spatially as GIS maps of controlled wastes and associated impacts under each scenario. 

These results are further disaggregated as tonnages, economic and carbon factors. A 
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selection of tables are also presented in order to depict the key milestone years (2020, 2030 

and 2040) with the full set of maps for milestone years presented in Appendix 12. 

7.1.1 Visualising the futures scenarios 

7.1.1.1 Spatial distribution of waste tonnages - baseline 

Total controlled waste is calculated for each LSOA by means of simple division of annual 

baseline tonnages (2012) by the population of each LSOA to give an overall tonnage for 

each waste type. These totals are summed to produce a value for all waste as tonnes per 

annum (tpa). The equation applied is presented as equation 7.1. 

Equation 7.1: All waste by LSOA tpa = ∑ [annual baseline tonnagesresident population ] 

Results are presented spatially in terms of ‘all wastes’ (controlled wastes) per annum (tpa) 

and as waste densities (t/ha) where all waste (t) within each LSOA is divided by the area, 

measured as hectares (ha), presented here as Equation 7.2. 

Equation 7.2: 

  Waste density by LSOA t/ha = ∑ [all waste by LSOA tpaarea ha ] 

 

Figure 7.2a shows the spatial distribution of all wastes across Northamptonshire LSOAs in 

2012 when equation 7.1 is used to calculate overall tonnages for the county against the 

resident population of each individual LSOA. In doing so, wastes produced across all 

economic sectors are tracked back to a per capita calculation in line with national scale 

data collection methodologies for England. This method of calculating LSOA tonnages is 

utilised in order to give an indication of where arisings were at the start of the backcast 

period and thus provide a metric by which the future end-point can be assessed as well as 
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the key milestone years identified. Figure 7.2a shows a stochastic pattern of distribution 

which may reflect the changing demographics of the county more so than any real  

   
Figure 7.2a: All wastes (tpa/LSOA) baseline assessment for Northamptonshire (2012) 
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differences in waste generation rates between LSOAs. For instance an LSOA with an 

increasing population would show a higher overall tonnage than an equivalent LSOA with 

a stable population. This happens within census data for areas of population growth as was 

seen with the creation of 15 new Northamptonshire LSOAs between 2001 and 2011 (ONS, 

2012). Figure 7.2b is a statistical summary of the spatial distribution of all wastes for the 

baseline (2012) in Northamptonshire using the geo-statistical analysis tool in ArcGIS 10.1.           

Figure 7.2b: Statistical summary of all wastes baseline assessment for Northamptonshire 
(2012) 

 

The statistical summary in Figure 7.2b shows the total number of LSOAs (n=422) 

separated as 10 columns with the y-axis representing frequency of LSOAs within each 

column. It can be seen that the minimum value for an LSOA was 3,889tpa with a 

maximum value of 12,912tpa. The mean value was 6,408tpa with 146 LSOAs situated in 

the column (5700-6600tpa) containing both the mean and median values. Further, 25% of 

all LSOAs (n=105/6) had a value below or equal to 5,608tpa with 75% of all LSOAs 

(n=316) having a value below or equal to 6,995tpa. At the upper end, 105 LSOAs had all 

wastes values of between 6,995 and 12,912tpa which cover the last 7 columns of Figure 

7.2b indicating a small number of LSOAs with the highest values.   



304 

 

The overall tonnage of all wastes by resident is calculated using Equation 7.3. 

Equation 7.3:  

Overall tonnage all wastes by resident = ∑ [Mean tpa × LSOA countresident population ] 

 or 

Overall tonnage all wastes by resident = ∑ [ ×, ] 

Thus: 

Overall tonnage all wastes by resident = 3.91tpa  

7.1.1.2 Spatial distribution of waste densities 

In order to assess the efficacy of the spatial plan the distribution of overall tonnages is only 

the starting point. It is necessary to take overall tonnage figures and divide by area to give 

‘density’ (as tonnes per hectare – t/ha) of all wastes within the county (see equation 7.2).  

Figure 7.3: Frequency distribution of waste density by LSOA for ‘all waste’ baseline 

 

Figure 7.3 shows the frequency distribution of waste density by LSOA for the baseline 

year. In total, 25 LSOAs (5.9%) had a waste density above 300tpa, with 42.4% of LSOAs 
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(179) having density values greater than 115t/ha.  Figure 7.4a shows the output map from 

these calculations (as tonnes per hectare – t/ha) utilising the GIS environment for the 

baseline year (2012) within Northamptonshire. 

Figure 7.4a: All controlled wastes density (t/ha) baseline assessment for Northamptonshire 
in 2012 

 

The spatial distribution of all wastes densities is highly concentrated on urban centres as 

areas of significant population within small geographic areas. The highest concentrations 
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Kettering 
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(190-300 and >300t/ha) are seen within the central areas of the main urban centres. 

Conversely, rural areas of Northamptonshire have typical density values of less than 50t/ha 

(147 LSOAs). Figure 7.4b provides a statistical summary of all wastes densities for the 

baseline year in Northamptonshire.     

Figure 7.4b: All controlled wastes density statistical summary for Northamptonshire 
(2012) 

 

The statistical summary (Figure 7.4b) shows 157 LSOAs with a density below or equal to 

56t/ha. Of this figure 105 LSOAs (25% or the 1st Quartile) had a density below or equal to 

22.9t/ha leaving 52 LSOAs in a range between 22.9 and 56.0t/ha. The mean value for all 

LSOAs (n=422) was 118t/ha with a minimum value of 0.82t/ha and a maximum of 

552t/ha. In total a further 105 LSOAs had densities between 180 and 55t/ha.  

7.1.1.3 Population changes 

Changes to the population are a significant factor across all scenarios representing a 

consistent figure to test the impacts on waste tonnages, economics and carbon. Table 7.1 

shows population increases across all four scenarios with scenario VM having the largest 

value (752k) in 2050, having peaked in 2040 with a value of 760k. By 2050, scenarios CE 

and EC have population levels close to those within scenario VM (748k and 747k 
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respectively). In contrast, scenario ED has a population of 705k in 2050 (1.92% overall 

increase). 

Table 7.1: Summary of population change under all scenarios in Northamptonshire  

Scenario Baseline 2020 2030 2040 2050 

CE 691,952 705,913 723,760 740,949 748,392 

VM 691,952 720,119 753,934 759,985 752,420 

EC 691,952 703,101 717,290 731,766 746,534 

ED 691,952 694,725 698,206 701,705 705,221 

Sources: (after ONS, 2012; WDF, 2014a). 

 

Scenario VM is characterised by rapid growth between 2012 and 2030 before slowing and 

then declining between 2040 and 2050 (-1.00%) with an overall change of 8.74%. Scenario 

CE has a similar profile to VM but at a reduced rate and does not decline. Overall change 

in population for scenario CE is 8.16%. In contrast scenarios EC and ED have stable 

population growth profiles throughout but scenario EC is four times greater than ED with 

overall change in populations being 7.89 and 1.92% respectively.    

7.1.2 Future waste tonnages 

In order to determine the relative impacts of the policy packages outlined in the qualitative 

scenarios (see section 5.3) on controlled wastes tonnages (all wastes), the resulting outputs 

are compared. The tonnage results from the QM for all wastes are shown in Table 7.2. 

Table 7.2: Summary of all wastes (tonnes) under all scenarios and for milestone years in 
Northamptonshire 

Year CE VM EC ED 

2012 2,704,209 2,704,209 2,704,209 2,704,209 

2020 2,579,723 2,600,235 2,619,395 2,702,281 

2030 2,420,734 2,464,766 2,476,237 2,765,413 

2040 2,233,714 2,286,881 2,241,123 2,833,484 

2050 2,046,030 2,160,436 2,054,132 2,901,793 

 



308 

 

Table 7.2 shows scenario CE outperforming scenario EC, VM and ED (respectively) in 

2050. Overall tonnages for each scenario in 2050 are presented spatially in Figure 7.5a-d.  

    

   
Figure 7.5a-d: Comparison of total waste generated (tpa) in 2050 across the four scenarios 
(a=CE; b=VM; c=EC; and d=ED). 

a) b) 

c) d) 
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Figure 7.5a-d spatially contrasts totals for waste generation (tpa/LSOA) under each of the 

four scenarios for 2050. It is clear that scenario CE and EC (Figure 7.5a and 7.5c) have the 

lowest levels of total waste generation (as tpa) followed by scenario VM (Figure 7.5b). In 

terms of performance, scenario ED (Figure 7.5d) shows an overall increase on the baseline 

(Figure 7.2a) and consequently represents the worst performing scenario for all waste 

tonnages. Statistical analyses of ‘all waste’ results are shown in Table 7.3. 

Table 7.3: Statistical summary of ‘all wastes’ (tpa/LSOA) under all scenarios for 
Northamptonshire in 2050 

Statistics CE VM EC ED 

Min value 2,942 3,107 2,954 4,173 
Max value 9,770 10,316 9,808 13,856 

Mean 4,848 5,120 4,868 6,876 
3rd Quartile 5,296 5,592 5,317 7,511 

Median 4,654 4,914 4,673 6,601 
1st Quartile 4,243 4,480 4,260 6,018 

 

The statistical summary (Table 7.3) shows scenario CE slightly outperforms EC in all 

categories. In particular the mean value is lower at 4,848tpa/LSOA compared with 

4,868tpa/LSOA. Table 7.4 also indicates that 75% of all LSOAs under scenario CE are 

generating below 5,296tpa. Statistically, scenario ED is the worst performing with the 

highest values recorded across the 6 descriptive categories with the mean value (6,876tpa) 

being 41.8% higher than the lowest mean value under scenario CE in 2050. Changes to the 

mean are a useful indiactor as to the preformance of each scenario across the period of the 

backcast. Table 7.4 shows the changes to all wastes mean values for all scenarios.  

Table 7.4: Mean values (tpa/LSOA) for all wastes under all scenarios in Northamptonshire  

Year CE VM EC ED 

2012 6,408 6,408 6,408 6,408 

2020 6,113 6,162 6,207 6,404 

2030 5,736 5,841 5,868 6,553 

2040 5,293 5,419 5,311 6,714 

2050 4,848 5,120 4,868 6,876 



310 

 

Table 7.4 shows that scenario CE has the lowest mean value throughout the period of the 

backcast (2012-2050) which contrasts with scenario ED which has the highest mean value 

across the same period. Scenario VM outperforms scenario EC between 2012 and 2030 

before scenario EC outperforms VM and maintains its position just behind CE until 2050. 

Equation 7.3 is once again applied to the outputs in order to calculate per capita values 

with Table 7.5 showing the results. 

Table 7.5: Average per capita values (tpa) for all wastes under all scenarios in 
Northamptonshire  

Year CE VM EC ED 

2012 3.91 3.91 3.91 3.91 

2020 3.65 3.61 3.73 3.89 

2030 3.34 3.27 3.45 3.96 

2040 3.01 3.01 3.06 4.04 

2050 2.73 2.87 2.75 4.11 

 

It can be seen that in 2050 scenario CE is once again the best performer in terms of per 

capita values (all wastes) with an average of 2.73tpa. This is closely followed by scenarios 

EC and VM (2.75 and 2.87tpa respectively) with scenario ED having the highest per capita 

value in 2050 (4.11tpa). However, scenario VM is the best performer between 2012 and 

2040 before being overtaken by scenarios CE and EC. In terms of overall change, scenario 

CE shows a 30.2% reduction on the baseline followed by a 29.7% reduction for EC and a 

26.6% reduction for VM. Scenario ED shows a small increase in overall per capita 

tonnages of 5.1% between 2012 and 2050. The performance of each scenario across the 

key milestones is briefly covered in section 7.3 with all comparison maps provided in 

Appendix 12.   
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7.2 Spatial distribution of economic impacts  

Economic impacts are measured as waste management costs (£pa) and savings from 

avoidance (£pa). The summary calculations are shown in Table 7.6 with detailed analysis 

provided subsequently as a series of GIS generated overlay maps.     

Table 7.6: Summary of the economic impacts of waste management (£pa) by LSOA for all 
scenarios in Northamptonshire 

Year Scenario Mean Costs 
(£pa/LSOA) 

Mean 
Savings 

(£pa/LSOA) 

Mean per 
capita costs 

(£pa) 

Mean per 
capita savings 

(£pa) 
2012 Baseline CE 207,295 - 126.42 - 

 
Baseline VM 218,542 - 133.28 - 

 
Baseline EC 208,246 - 127.00 - 

 
Baseline ED 228,979 - 139.65 - 

2020 CE 239,016 25,932 142.89 15.50 

 
VM 248,187 42,050 145.44 24.64 

 
EC 269,568 23,856 161.79 14.32 

 
ED 244,222 38,136 148.35 23.17 

2030 CE 253,764 61,183 147.96 35.67 

 
VM 208,505 84,621 116.71 47.36 

 
EC 288,961 84,524 170.00 49.73 

 
ED 246,386 72,191 148.92 43.63 

2040 CE 235,743 103,477 134.27 58.93 

 
VM 179,833 115,338 99.86 64.04 

 
EC 287,825 146,713 165.98 84.61 

 
ED 251,552 88,377 151.28 53.15 

2050 CE 220,477 180,389 124.32 101.72 

 
VM 151,066 162,458 84.73 91.12 

 
EC 276,288 227,768 156.18 128.75 

 
ED 281,335 90,158 168.35 53.95 

 

Table 7.6 shows that all scenarios start with a different baseline for economic costs as these 

totals reflect the different levels of waste infrastructure thought to be required for each 

scenario (see section 5.4.2.3). In addition, the mean LSOA and per capita values (£pa) 

show considerable variation as these are generated according to the different levels of gate 

fees and landfill charged under each scenario (see sections 5.4.2.1 and 5.4.2.2). In terms of 

mean costs by LSOA, all scenarios experience an increase between 2012 and 2020 with 

scenario ED having the least increase (6.7%). This increase continues between 2020 and 
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2030 apart from scenario VM which reduces by 16.0% to £208kpa (some £10kpa below its 

baseline value). All scenarios except ED see a reduction between 2030 and 2040 with 

LSOA costs for scenario VM reducing by 13.8%. Up until 2050 this trend is continued 

with VM reducing LSOA costs by 16.0% on 2040 levels. In addition, across the backcast 

period scenario VM is the only scenario to have seen an overall reduction in LSOA costs 

(30.9%). In contrast, scenario EC has the largest percentage increase (32.7%) on the 

baseline with scenario ED having the highest mean costs (£281k/LSOA pa). Mean costs 

per capita follow a similar pattern to LSOA costs with scenario VM having the lowest 

costs per capita in 2050 at £84.73pa (an overall reduction of 36.4% on the baseline). 

Savings by LSOA and per capita are closely correlated (as seen with mean costs) with the 

most significant savings seen by 2050 under scenario EC (£228kpa/LSOA and £128.75pa 

per capita) thus avoiding scenario EC becoming the most costly scenario because of policy 

packages designed to drive waste away from landfill and incineration via environmental 

taxes (e.g. the extant landfill tax and potential introduction of an incineration tax).     

7.2.1 Economic impact mapping by scenario 

7.2.1.1 Scenario CE 

It is important to examine the economic impact of policy packages on each scenario 

against the baseline calculations (see section 5.4.2). This evaluation defers density 

assessment in favour of LSOA and per capita calculations. A summary of economic 

impacts is given in Figure 7.6a for scenario CE followed by a visual assessment between 

the baseline and 2050 (Figure 7.6b-c).  

Figure 7.6a clearly shows the level of correlation between per capita and LSOA mean 

values for costs and savings. In addition, the cost profiles show a marked increase between 

2012 and 2030 before declining to the 2050 end point. LSOA costs in 2050 remain above 

the baseline whereas per capita costs in 2050 are below the baseline value. Savings profiles 
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show an exponential pattern of increase across the backcast period. Figures 7.6b-c shows 

the spatial distribution of costs at the LSOA scale for the baseline and for 2050.  

Figure 7.6a: Summary of economic impacts (£pa) by LSOA and per capita for scenario CE 

    
Figure 7.6b: Baseline costs (£kpa) by LSOA versus Figure 7.6c: scenario CE costs (£kpa) 
in 2050 for Northamptonshire 
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The spatial pattern of economic costs in both Figure 7.6b and 7.6c is stochastic. However, 

it is clear that a number of LSOAs have increased in value and moved into a new category 

(for example; the darker colours seen to the East of the county in Figure 7.6c). Figures 

7.6d-e show the statistical changes between baseline and 2050 for LSOA costs under 

scenario CE.  

 
Figure 7.6d: Frequency distribution of LSOA baseline costs (£000s) under scenario CE  

 
Figure 7.6e: Frequency distribution of LSOA costs (£000s) in 2050 for scenario CE  

 

Comparing Figure 7.6d with 7.6e it can be seen that the number of LSOAs within the 

higher categories has increased markedly with a corresponding reduction in numbers 
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within the lower value categories. For example; category >275k has increased from 25 to 

50 LSOAs whereas category <175k has changed from 83 to 47 LSOAs.   

7.2.1.2 Scenario VM 

The evaluation of scenario VM is undertaken across Figures 7.7a-e with results described 

after each individual Figure. Figure 7.7a shows the economic impact of scenario VM over 

the period of the backast. 

Figure 7.7a: Summary of economic impacts (£pa) by LSOA & per capita for scenario VM 

 

Once again the strong correlation between LSOA and per capita values is seen in Figure 

7.7a, although there is a greater variance between costs in the early period of the backcast 

as well as the beginning of a divergence between savings towards the end of the period. 

The cost profiles show an increase between 2012 and 2020 with a sustained linear decline 

after 2020 to the end of the period when both values are considerably below the baseline 

values. The savings profiles are closely matched until 2040 and exhibit an overall linear 

increase across the period. Figures 7.7b-c shows the spatial distribution of costs at the 

LSOA scale for the baseline and for 2050.  

 -

 20

 40

 60

 80

 100

 120

 140

 160

0

50

100

150

200

250

300

2012 2020 2030 2040 2050

M
e

a
n

 v
a

lu
e

s 
(£

p
a

/c
a

p
it

a
)

M
e

a
n

 v
a

lu
e

s 
(£

p
a

/L
S

O
A

)

Costs/LSOA Savings/LSOA Costs/cap Savings/cap



316 

 

    
Figure 7.7b: Baseline costs (£kpa) by LSOA versus Figure 7.7c: scenario VM costs (£kpa) 
in 2050 for Northamptonshire 

 

The most significant reductions in costs associated with the future WMS are witnessed 

under scenario VM (Figure 7.7c). The spatial pattern has gone from stochastic to almost 

uniform pattern as the majority of LSOAs have moved between categories with the bulk of 

LSOAs now classed as <175k.  

 
Figure 7.7d: Frequency distribution of LSOA baseline costs (£000s) under scenario VM  
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Figure 7.7e: Frequency distribution of LSOA costs (£000s) in 2050 for scenario VM  

 

The shift in LSOAs to the category <175k is most clearly demonstrated in Figures 7.7d-e. 

This category has increased in LSOA count from 49 to 346 between baseline and 2050. In 

total, 95.7% of all LSOAs under scenario VM in 2050 have costs below £205k pa.    

7.2.1.3 Scenario EC 

The evaluation of scenario EC is undertaken across Figures 7.8a-e with results described 

after each individual Figure. Figure 7.8a shows the economic impact of scenario EC over 

the period of the backcast. 

 
Figure 7.8a: Summary of economic impacts (£pa) by LSOA & per capita for scenario EC 
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Figure 7.8a shows the correlation between costs and savings at the LSOA and per capita 

levels. In terms of costs, scenario EC shows an upwards trend from 2012 to 2030. Costs 

per capita after 2030 slowly decline to 2050 but remain 23.0% higher than the baseline 

value (£156.18 in 2050/capita against £127.00/capita in 2012). At the LSOA level, costs 

marginally reduce from 2030 to 2050 (by £12.7k/LSOA) but remain significantly higher 

than the baseline (around £68k/LSOA). The profiles for savings at the LSOA and per 

capita levels display a significant linear increase throughout the period with a small 

divergence between per capita and LSOA from 2020 through to 2050. Figures 7.8b-c 

shows the spatial distribution of costs at the LSOA scale for the baseline and for 2050.     

   
Figure 7.8b: Baseline costs (£kpa) by LSOA versus Figure 7.8c: scenario EC costs (£kpa) 
in 2050 for Northamptonshire 

 

Figures 7.8b-c shows a large increase in costs between the baseline year (2012 - Figure 

7.8b) and the future end point (2050 – Figure 7.8c) under scenario EC. Costs have 

increased to such an extent by 2050 that a new category is applied (>325k), with 72 

b) C) 
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LSOAs moving into this category. The spatial pattern remains stochastic albeit with a 

greater emphasis on the upper categories.  

  
Figure 7.8d: Frequency distribution of LSOA baseline costs (£000s) under scenario EC  

Figure 7.8e: Frequency distribution of LSOA costs (£000s) in 2050 for scenario EC  
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78 LSOAs were in the highest categories (240k-275k and >275k) in 2012 which by 2050 

had become 320 LSOAs in the highest 3 categories.  
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7.2.1.4 Scenario ED 

The evaluation of scenario ED is undertaken across Figures 7.9a-e with results described 

after each individual Figure. Figure 7.9a shows the economic impact of scenario ED. 

Figure 7.9a: Summary of economic impacts (£pa) by LSOA & per capita for scenario EC 

   
Figure 7.9b: Baseline costs (£kpa) by LSOA versus Figure 7.9c: scenario ED costs (£kpa) 
in 2050 for Northamptonshire. 
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Figure 7.9a shows the strongest correlation between profiles for LSOA and per capita costs 

as well as for LSOA and per capita savings. In terms of costs, these increase slowly across 

the period to 2040 before increasingly more significantly between 2040 and 2050. Levels 

by 2050 are higher than those from the baseline, which were the highest starting points of 

all four scenarios. Comparing the spatial pattern between baseline (Figure 7.9b) and end 

point (Figure 7.9c) shows a considerable increase in costs per LSOA ( as a significant 

darkening of the colours) with the pattern becoming less stochastic.  

 
Figure 7.9d: Frequency distribution of LSOA baseline costs (£000s) under scenario ED  

 
Figure 7.9e: Frequency distribution of LSOA costs (£000s) in 2050 for scenario ED  
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A comparison of the frequency distribution for LSOAs between the baseline (Figure 7.9d) 

and 2050 (Figure 7.9e) shows a considerable increase in costs under scenario ED. By 2050, 

some 336 LSOAs have moved into the highest two categories (240k-275k and >275k) 

compared with 143 in 2012. In contrast, only 86 LSOAs remain within the lower 3 

categories in 2050 compared with 279 in 2012.     

7.2.2 Comparison of savings across scenarios 

A comparison of the savings across all scenarios is shown in Table 7.7 with overall savings 

(£m); mean savings per LSOA (£/LSOA); and mean per capita savings (£/capita).  

Table 7.7: Comparison of savings across all scenarios for milestone years and future end 
point in Northamptonshire 

Year Scenario Overall savings 
(£m) 

Mean LSOA 
savings (£/LSOA) 

Mean per capita 
savings (£/capita) 

2020 CE 10.94 25,932 15.50 

 
VM 17.75 42,050 24.64 

 
EC 10.07 23,856 14.32 

 
ED 16.09 38,136 23.17 

2030 CE 25.82 61,183 35.67 

 
VM 35.71 84,621 47.36 

 
EC 35.67 84,524 49.73 

 
ED 30.46 72,191 43.63 

2040 CE 43.67 103,477 58.93 

 
VM 48.67 115,338 64.04 

 
EC 61.91 146,713 84.61 

 
ED 37.29 88,377 53.15 

2050 CE 76.12 180,389 101.72 

 
VM 68.56 162,458 91.12 

 
EC 96.12 227,768 128.75 

 
ED 38.05 90,158 53.95 

 

With regards to savings, both LSOA and per capita savings have increased across the 

backcast period (Table 7.7). Savings at the LSOA level peak at £90kpa in 2050. By the end 



323 

 

of the period per capita saving reach £53.85pa.   The level of potential savings for each 

scenario are directly related to: amount of wastes directly avoided (through prevention 

initiatives and reuse); indirectly (changes to systems variables); and through diversion 

from landfill (e.g. recycling and recovery operations). Table 7.7 also shows considerable 

variation in performance across scenarios during the backcast period. In 2050, savings are 

greatest under scenario EC followed by scenario CE, VM and ED. However, these position 

change in each of the milestone years. For 2020, savings are most significant under 

scenario VM followed by ED, CE, and EC. By 2030, VM has the highest overall and mean 

LSOA savings with EC having the highest mean per capita savings and is second for 

overall and man LSOA savings. Scenarios ED and CE are third and fourth for all savings 

performance respectively in 2030. In 2040, the situation has once again changed, with EC 

being the highest performer across savings categories followed by VM, CE and ED.      

In order to compare overall savings, these are presented in Figure 7.10a-d (e.g. a=CE; 

b=VM; c=EC; and d=ED) for the end point of the backcast period (2050) with overlay 

maps for milestone years shown in Appendix 12. Figure 7.10a-d show savings 

performance at the LSOA level with 7 categories provided to illustrate the differences in 

performance; these categories are: 50-70k; 70-100k; 100-125k; 125-150k; 150-200k; 200-

250k; and >250k. Given the variation in savings and the 7 categories direct comparison is 

more difficult than for cost savings. However, using the colour scheme (darker colours 

represent higher savings) shows that scenario EC (Figure 7.10c) has the most significant 

savings at eh LSOA level. This compares starkly with scenario ED (Figure 7.10d) which 

has the least savings at the LSOA level. The contrast between scenarios CE (Figure 7.10a) 

and scenario VM (Figure 7.10b) is less stark. It is possible to determine that scenario CE 

outperforms VM through the more uniform dark colouring (showing 150-200k 

savings/LSOA) as well as the presence of the highest category (>250k) and the absence of 

the 70-100k category seen in Figure 7.10b.   
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Figure 7.10a-d: Savings (£k) by LSOA for all scenarios (a – CE; b – VM; c – EC; and d - 
ED) in Northamptonshire (2050). 

 

c) d) 

a) b) 



325 

 

The difference between LSOA performances across scenarios can also be visualised by 

means of frequency distributions, shown in Figure 7.11.  

  

  

Figure 7.11: Frequency distribution of savings (£000s) by LSOA under all scenarios for 
Northamptonshire in 2050. 

 

Figure 7.11 shows the relative performance of each scenario for LSOA savings by means 

of the distribution of LSOA numbers across the 7 savings categories. Using the category 

150-200k as the assessment point scenario EC has 417 LSOAs within or above this level. 

This compares with 356 for CE; 252 for VM; and only 4 LSOAs in scenario ED.   

7.3 Spatial distribution of carbon impacts 

The third metric chosen for impact assessment of policy packages within each scenario 

was carbon (as tCO2e). Table 7.8 provides a summary of carbon emissions (from waste 

management operations); prevented emissions (avoided); and emissions densities (as 

tCO2e/ha).   
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Table 7.8: Summary of carbon emissions; prevented emissions (tCO2e); and emissions 
density (tCO2/ha) for the backcast period across all scenarios in Northamptonshire  

Year Scenario Emissions (avoided 
- direct) (tCO2e) 

Prevented 
emissions (tCO2e) 

Emissions density 
(tCO2/ha) 

2012 Baseline 1,534,827 - 66.7 

2020 CE 1,635,899 249,460 71.1 

 
VM 1,732,462 186,254 75.3 

 
EC 1,658,370 166,651 72.1 

 
ED 1,696,063 26,712 73.8 

2030 CE 1,720,305 474,457 74.8 

 
VM 1,871,114 435,045 81.4 

 
EC 1,902,133 409,452 82.7 

 
ED 1,927,201 -92,852 83.8 

2040 CE 1,761,436 830,797 76.6 

 
VM 1,913,158 765,424 83.2 

 
EC 1,998,661 882,511 86.9 

 
ED 2,056,211 -210,045 89.4 

2050 CE 1,869,865 1,188,690 81.3 

 
VM 2,036,514 952,396 88.6 

 
EC 2,148,692 1,215,354 93.4 

 
ED 2,084,260 -360,569 90.6 

 

Table 7.8 shows emissions from waste operations as 1.53MtCO2e in 2012 with all four 

scenarios showing an overall increase of avoided emissions (e.g. direct emissions from 

waste facility operations and avoided emissions as savings versus landfill disposal). 

Overall emissions performance by 2050 shows that scenario CE has the lowest value 

(1.87MtCO2e) followed by scenarios VM (2.04MtCO2e); ED (2.08MtCO2e); and EC 

(2.15MtCO2e). In terms of prevented emissions; associated with direct avoidance (from 

prevention and reuse); and indirect avoidance/accruing (from system variables changes); 

scenarios EC, CE and VM see large prevention values. In contrast, scenario ED has 

accrued additional emissions through little impact from prevention and reuse initiatives but 

in the main due to the impact of systems variables changes (see section 5.3.2).  The final 

measure of performance; emissions density (as tCO2e/ha); has implications for assessing 

the type and locations of infrastructure within each scenario (see section 7.2). Table 7.8 
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shows baseline emissions density as 66.7tCO2/ha, by 2050 all scenarios show an increase 

over the baseline with scenario CE showing the lowest level of increase (21.9%) from 66.7 

to 81.3tCO2/ha. Scenario EC has the highest increase over the period to 93.4tCO2/ha.       

7.3.1 Carbon impact mapping by scenario 

In order to determine the spatial distribution of carbon emissions it is first necessary to 

calculate the mean emissions based on overall emissions levels (Table 7.8). A summary by 

LSOA and per capita values is shown in Table 7.9. 

Table 7.9: Summary of LSOA and per capita emissions and prevention calculations (tCO2e) 

for all scenarios across the backast period (2012-2050) in Northamptonshire 

Year Scenario Mean 
emissions 

(tCO2e/LSOA) 

Mean 
prevention 

(tCO2e/LSOA) 

Per capita 
emissions 
(tCO2e) 

Per capita 
prevention 

(tCO2e) 

2012 Baseline 3,637 - 2.22 - 

2020 CE 3,877 591 2.32 0.35 

 
VM 4,105 441 2.41 0.26 

 
EC 3,930 395 2.36 0.24 

 
ED 4,019 63 2.44 0.04 

2030 CE 4,077 1,124 2.38 0.66 

 
VM 4,434 1,031 2.48 0.58 

 
EC 4,507 970 2.65 0.57 

 
ED 4,567 -220 2.76 -0.13 

2040 CE 4,174 1,969 2.38 1.12 

 
VM 4,534 1,814 2.52 1.01 

 
EC 4,736 2,091 2.73 1.21 

 
ED 4,873 -498 2.93 -0.30 

2050 CE 4,431 2,817 2.50 1.59 

 
VM 4,826 2,257 2.71 1.27 

 
EC 5,092 2,880 2.88 1.63 

 
ED 4,939 -854 2.96 -0.51 

 

Table 7.9 shows mean emissions have increased above the baseline value (3,637tCO2e) 

within a range from 794tCO2e (CE) to 1,455tCO2e (EC). Per capita emissions have 

increased in percentage terms by between 12.6% (2.50tCO2e/capita for CE) and 33.3% 

(2.96tCO2e/capita for ED). 
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7.3.1.1 Scenario CE 

Carbon emissions impacts for scenario CE are assessed through Figures 7.12a-e. The 

emissions and prevention impacts under scenario CE are shown in Figure 7.12a.   

 
Figure 7.12a: Summary of carbon emissions and prevention impacts (tCO2e) by LSOA & 
per capita for scenario CE. 

    
Figure 7.12b: Baseline emissions (tCO2e) by LSOA versus Figure 7.12c: scenario CE 
emissions (tCO2e) by LSOA in 2050 for Northamptonshire. 
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The profiles of LSOA and per capita carbon emissions under scenario CE in Figure 7.12a 

show a small increase across the backcast period (2012-2050). In contrast, the profiles for 

LSOA and per capita prevention show linear increases of greater magnitude with a more 

pronounced increase from 2030 as well as a small divergence between LSOA and per 

capita profiles. In terms of emissions scenario CE has the lowest levels of all scenarios and 

the second highest levels of prevention (see Table 7.8). Figures 7.12b-c shows the 

difference in spatial distribution of carbon emissions under scenario CE between the 

baseline and 2050.  The spatial pattern of baseline carbon emissions (Figure 7.12b) is 

somewhat random and remains stochastic in 2050 for scenario CE (Figure 7.12c). Increase 

in emissions values for LSOAs are generalised and occur in both rural and urban LSOAs.   

   
Figure 7.12d: Baseline distribution of emissions (tCO2e) by LSOA versus Figure 7.12e: 
Distribution of emissions (tCO2e) under scenario CE for Northamptonshire in 2050. 

 

In terms of the frequency distribution of emissions between LSOAs the change between 

the baseline and 2050 is shown in Figures 7.12d & 7.12e. Under scenario CE by 2050 there 

has been a major shift from the lower categories towards the highest. For example; 242 

LSOAs had emissions levels in the categories <3000 & 3000-3600 whereas in 2050 only 

56 LSOAs were in these categories. Conversely, 78 LSOAs were in the two highest 

categories in the baseline year compared with 227 LSOAs in 2050.    
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7.3.1.2 Scenario VM 

Carbon emissions impacts for scenario VM are assessed through Figures 7.13a-e. The 

emissions and prevention impacts under scenario VM are shown in Figure 7.13a.   

 
Figure 7.13a: Summary of carbon emissions and prevention impacts (tCO2e) by LSOA & 
per capita for scenario VM. 

    
Figure 7.13b: Baseline emissions (tCO2e) by LSOA versus Figure 7.12c: scenario VM 
emissions (tCO2e) by LSOA in 2050 for Northamptonshire 
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The profiles for LSOA and per capita emissions show steeper increase than seen with 

scenario CE. Profiles for prevention show shallow increases when compared with scenario 

CE. Both sets of profiles show relatively strong positive correlations with some divergence 

towards the end of the period for prevention. Figures 7.13b-c shows the difference in 

spatial distribution of carbon emissions under scenario VM between the baseline and 2050. 

The spatial pattern in 2050 for scenario VM is stochastic (Figure 7.13c) but shows signs of 

uniformity compared with the baseline (Figure 7.13b) and with scenario CE as greater 

numbers of LSOAs have increased their emissions levels than seen under scenario CE in 

2050. 

   
Figure 7.13d: Baseline distribution of emissions (tCO2e) by LSOA versus Figure 7.13e: 
Distribution of emissions (tCO2e) under scenario VM for Northamptonshire in 2050. 

 

The frequency distribution of LSOAs under the five emissions ranges once again shows a 

marked change over the baseline (Figure 7.13d) when scenario VM is considered. Under 

scenario VM in 2050 (Figure 7.13e) only 25 LSOAs remain in the bottom two ranges 

compared with 242 at the baseline. In addition, the shift to the highest ranges is more 

significant with 320 LSOAs in the top two ranges compared with the 78 LSOAs under 

baseline conditions.   

112

130

102

66

12

<3000 3000-3600 3600-4200 4200-5200 >5200

Emissions ranges (tCO2e)

d) Baseline

3

22

77

205

115

<3000 3000-3600 3600-4200 4200-5200 >5200

Emissions ranges (tCO2e)

e) VM 2050



332 

 

7.3.1.3 Scenario EC 

Carbon emissions impacts for scenario EC are assessed through Figures 7.14a-e. The 

emissions and prevention impacts are shown in Figure 7.14a.   

 
Figure 7.14a: Summary of carbon emissions and prevention impacts (tCO2e) by LSOA & 
per capita for scenario EC. 

    
Figure 7.14b: Baseline emissions (tCO2e) by LSOA versus Figure 7.12c: scenario EC 
emissions (tCO2e) by LSOA in 2050 for Northamptonshire. 
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The profiles for LSOA and per capita emissions (Figure 7.14a) show a similar rate of 

increase seen with scenario VM but the level of positive correlation is stronger under 

scenario EC. Profiles for prevention are very closely matched with those of scenario VM 

but reach higher absolute values by 2050 (5,092tCO2e LSOA emissions and 2.88tCO2e per 

capita emissions). Figures 7.14b-c shows the difference in spatial distribution of carbon 

emissions under scenario EC between the baseline and 2050. Scenario EC has the highest 

overall and mean emissions per LSOA of all scenarios. The spatial pattern for scenario EC 

in 2050 (Figure 7.14c) is more uniform than that of scenario VM with large swathes of the 

study area showing the darkest colours (highest values). Indeed, when compared with the 

baseline (Figure 7.14b) the constituent LSOAs seem almost fully transformed.    

  
Figure 7.14d: Baseline distribution of emissions (tCO2e) by LSOA versus Figure 7.14e: 
Distribution of emissions (tCO2e) under scenario EC for Northamptonshire in 2050. 

 

The frequency distribution of LSOAs under the five emissions ranges shows the greatest 

change of any scenario over the baseline (Figure 7.14d) when scenario EC is considered. 

By 2050, scenario EC (Figure 7.14e) has 10 LSOAs within the two lowest emission ranges 

compared with 242 in the baseline assessment. In contrast, the two upper ranges contain 

358 LSOAs (84.8% of the total number – n=422) compared with 78 (18.5%) under the 

baseline.     
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7.3.1.4 Scenario ED 

Carbon emissions impacts for scenario ED are assessed through Figures 7.15a-e. The 

emissions and prevention impacts are shown in Figure 7.15a.   

 
Figure 7.15a: Summary of carbon emissions and prevention impacts (tCO2e) by LSOA & 
per capita for scenario ED. 

    
Figure 7.15b: Baseline emissions (tCO2e) by LSOA versus Figure 7.12c: scenario EC 
emissions (tCO2e) by LSOA in 2050 for Northamptonshire. 
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The profiles for LSOA and per capita emissions (Figure 7.15a) are closely matched with 

scenario EC, although there is a period of plateauing between 204 and 2050 rather than an 

increase in emissions values under EC. Prevention profiles actually show a negative value 

and thus represent an additional increase in emissions associated with changes to systems 

variables (e.g. population and reductions in landfill tax). Scenario ED shows an additional 

increase of 361ktCO2e.  

Figures 7.15b-c shows the difference in spatial distribution of carbon emissions under 

scenario ED between the baseline and 2050. The spatial pattern under scenario ED (Figure 

7.15c) is closely matched with that of EC and is far more uniform than the stochastic 

pattern of the baseline year (Figure 7.15b). 

   
Figure 7.15d: Baseline distribution of emissions (tCO2e) by LSOA versus Figure 7.15e: 
Distribution of emissions (tCO2e) under scenario ED for Northamptonshire in 2050. 

 

The frequency distribution of LSOAs under the five emissions ranges shows a significant 

change over the baseline (Figure 7.15d) when scenario EC is considered. In total, under 

scenario ED (Figure 7.15e) 19 LSOAs are seen in the two lowest emissions ranges 

compared with a baseline count of 242. The two upper emissions ranges contain 337 

LSOAs in 2050 compared with a baseline count of 78.  
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7.3.2 Assessing carbon densities 

Carbon emissions densities are mapped in order to increase the robsutness of the site 

evaluation function of the G-BFM model. Figure 7.16 shows the spatial distribution of 

emissions densities (tCO2e/ha) under the baseline conditions in Northamptonshire.   

Figure 7.16: All emissions densities (tCO2e/ha) baseline assessment for Northamptonshire 
in 2012 

 

The highest carbon density values are once again found around the main urban centres (see 

Figure 7.4a on tonnage densities). The majority of the county (by land area) has a density 
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value of <25tCO2e/ha. The highest values (>175) are found within the central urban cores 

of the major population centres (e.g. Northampton and Kettering). Indeed, the highest 

baseline density value is 313.12tCO2e/ha. Table 7.10 shows a statistical summary of 

density calculations for the baseline year and the end-point (2050) under all scenarios for 

Northamptonshire.  

Table 7.10: Statistical summary of density calculations (tCO2e/ha) for the baseline year 
(2012) and all scenarios for Northamptonshire in 2050 

Year Scenario Min 
value 

Max 
value 

Mean 3rd 
Quartile 

Median 1st 
Quartile 

2012 Baseline 0.46 313.12 66.74 102.54 58.27 13.00 

2050 CE 0.56 381.47 81.30 124.92 70.99 15.84 

2050 VM 0.61 415.47 88.55 136.06 77.32 17.25 

2050 EC 0.65 438.36 93.43 143.55 81.57 18.20 

2050 ED 0.63 425.21 90.63 139.25 79.13 17.65 

   

Determining the performance of scenarios around waste densities is paradoxical. On the 

one hand, a lower density value overall may indicate a better overall performance as this is 

related to a lower overall level of emissions. On the other hand, LSOAs with a higher 

density value may represent a real opportunity for waste planners as these areas can be 

targeted with more resource to achieve a greater level of impact from interventions. At this 

stage the first option is considered with the second revisited in terms of planning for 

modifications within the physical system. Table 7.10 shows all density values in 2050 have 

increased above the baseline values. In 2050, scenario CE has the best performance in all 

categories, of particular note is the significantly lower value of the mean compared with 

other scenarios.   

At the LSOA level, the distribution of densities within the five ‘emissions density’ ranges 

(<25; 25-75; 75-125; 125-175; and >175) gives a further indication as to the performance 

of scenarios for the purposes of comparison. Figure 7.17a shows the baseline frequency 

distribution of LSOA count within these five ranges. 
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Figure 7.17a: Baseline frequency distribution emission densities (tCO2e/ha) for 
Northamptonshire 

 

Of note, in terms of the distribution (Figure 7.17a), is the concentration of LSOAs within 

the two lowest ranges (253) as well as within the mid-range (101). Relatively few (15.6%) 

of LSOAs are within the two upper density ranges. Figure 7.17b shows the frequency 

distribution of LSOA counts under all scenarios (CE, VM, EC and ED) in 2050 for 

comparison.  

It can be seen in Figure 7.17b that scenario CE has the least movement of LSOAs between 

value ranges. In particular, by 2050, scenario CE has increased its count to 43 within the 

highest range compared with scenarios VM (54); ED (64) and EC (68). There are similar 

values reported for each scenario within the three mid-ranges with a maximum variance of 

13 (range 75-125) and a minimum variance of 5 (range 125-175). There is only a small 

change within the lowest value range, which is expected as these LSOAs are likely to have 

the largest land areas (ha). Scenario CE reduced the count by 10 LSOAs in this range 

compared with 16 each for VM and ED, with scenario EC reducing the number of LSOAs 

in this rage by 17.   
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Figure 7.17b: Frequency distributions of LSOA count by emissions density under all 
scenarios for Northamptonshire in 2050. 

 

7.4 Evaluating optimal sites with density calculations 

The three spatial patterns identified in Chapter 6 (see section 6.4.3): ‘centralised’; ‘central 

core and outliers’ and ‘dispersed’, are utilised at this stage to assess whether the patterns 

are able to cope with tonnages identified in the impact analysis as well as the ability of 

such a spatial pattern to impact on carbon emissions densities.  

7.4.1 Assessing scenarios with spatial patterns  

The assignment of a scenario to a particular spatial pattern is undertaken based on the 

focus of the scenario in terms of overall sustainability; technological development and 

application; levels of waste generation; expected increases in recycling and recovery 

required; and levels of disposal (requirement for landfill sites). In terms of scenarios CE 
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and EC, these have previously been positioned as being best suited to a ‘centralised’ spatial 

pattern (see section 6.4.3) given levels of waste reduction and lower increases in recycling 

and recovery capacity. Of the two scenarios, CE is perhaps most suited to the centralised 

pattern as this represents a radical systems change in terms of the level of agreement 

between WPAs and the restructuring of the waste system away from WPA boundaries to a 

site specific focus on capacity to manage a range of material resources from a defined 

geographic location (e.g. buffer zones). In contrast, scenario EC may have been placed 

with the ‘central core’ pattern as this has a local focus in keeping with waste moving 

towards a community based resource approach. However, the strategic element of the 

narrative (Resource Strategy by 2020) elicits a strategic pattern of facilities.  

Scenario VM is a materials capture/technologically focused scenario and is best suited to 

the ‘central core with outlier’s’ pattern of facilities (see section 6.4.3.3). Scenario VM is an 

incrementally changing scenario which begins with addressing targets but then becomes 

oriented around maximising recycling and recovery. The spatial pattern of 15 facilities 

requires changes to the permits of a number of sites with operations requiring secondary 

permits for recycling or recovery processes (or both within a single larger site). Unlike the 

‘centralised’ pattern the use of more facilities reduces the distances materials are moved 

thus keeping in-line with planning policy centred on the WPA. Scenario ED is the 

reference scenario and thus reflects policy in the MWDF. Although, the number of sites is 

reduced from 98 to 44, thus requiring some changes to permitting and the use of secondary 

permits to expand operations where possible (particularly for recovery operations)..       

7.4.1.1 Centralised pattern and waste density 

Figure 7.18a shows the spatial distribution of the four integrated facilities with buffer 

zones identified to assess the catchment requirements of each facility in order to manage 

the highest proportion of the wastes generated. The baseline density is used for the 
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assessment as this represents the highest density of wastes under all scenarios (with the 

exception of scenario ED) across the backcast period.    

Figure 7.18a: Spatial distribution of centralised facilities in relation to highest waste 
densities (t/ha) in Northamptonshire during backcast period (2012-2050). 
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When consideration is given to the buffers (10, 15 and 20km rings) around the four 

facilities (Figure 7.18a) it can be seen that the first buffer (10km) encompasses the 

majority of the urban centres and high density LSOAs contained therein. A further buffer 

out to 15km shows most of the urban core of the county is covered by operations to this 

distance. Large rural areas to the East; South and North West are not covered at this scale 

including the town of Brackley (to the far south of the study area in Figure 7.18a). 

However, the assumption is made that neighbouring WPAs (e.g. Milton Keynes UA; 

Peterborough UA; and Warwickshire – including the urban centre of Rugby) will have 

similar agreements in place as part of the wider policy changes envisaged under scenarios 

CE and EC (particularly under a Resource Strategy, 2020 for scenario EC (see Table 5.12) 

or a greater focus on holistic and integrated resource management approach for scenario 

CE (see Table 5.10)). For example; administrative boundaries are removed in favour of 

location and ability to collect material resources. Indeed, the third buffer (20km) is 

included to illustrate where areas of cooperation may be envisaged between neighbouring 

WPAs (i.e. South East towards Bedford and Milton Keynes).   

This pattern of facilities also has a number of significant cost implications for waste 

operations. Firstly, collection schemes become more standardised and targeted at specific 

material types allowing optimal loading and minimal journeys. Secondly, bring schemes 

are significantly rolled out for outlying areas with incentive schemes (similar to those seen 

in Germany and Sweden – Rousso and Shah, 1994; Hage, 2007) reducing per capita costs 

through lower resource collection charges and revenues streams from returned packaging 

and other resources. Finally, additional costs of expanding four locations to become 

integrated sites (including the five additional facilities under CE and four under EC (see 

Table 5.23) is more cost-effective than building new integrated sites. These costs would 

also be minimised via achievement of economies-of-scale and modularisation (Anon, 

2011).    
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7.4.1.2 Centralised pattern and carbon density  

Figure 7.18b shows the centralised facilities spatial pattern against baseline ‘carbon 

denisties’ with buffers applied for (10, 15 and 20km).  

 
Figure 7.18b: Spatial distribution of centralised facilities in relation to carbon densities 
(tCO2/ha) in Northamptonshire during backcast period (2012-2050). 
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The baseline carbon density values (313.3tCO2e/ha maximum and 0.46tCO2e/ha minimum; 

and 66.74tCO2e/ha mean value) increase for both scenario CE and scenario EC (381.47, 

0.56 and 81.30 for scenario CE and 438.36, 0.65 and 93.43 for scenario EC) (see Table 

7.10). However, a more efficient and cost effective system has the potential to reduce 

levels of emissions through:  

 Reduced numbers of vehicle movements; 

 Increasing resource processing efficiencies (less embedded emissions); 

 Greater consumer awareness of waste production leading to reduction (including 

emissions); and 

 Increased energy efficiency through on-site biogas recovery (reducing emissions). 

Given these points and the increasing population a baseline assessment is considered a 

more appropriate point to assess the potential of integrating waste facilities onto a small 

number of sites. In terms of the differences in carbon densities at the LSOA level 

previously discussed; these suggest that any savings would be more significant for scenario 

EC as this scenario has the higher ‘density’ values hence there would be proportionally 

larger savings (carbon emissions) than under scenario CE. 

This assessment focuses on the spatial dimension of waste tonnages, monetary and carbon 

savings, so is used to determine the appropriateness of the spatial pattern rather than 

potential savings (which have been addressed in section 5.4).   

7.4.1.3 Central core and outliers pattern and waste density  

Scenario VM is identified as having this spatial pattern of facilities across the backcast 

period. Under this spatial pattern a total of 15 sites are identified, with urban centres as the 

main focus for larger sites with a number of smaller sites located in proximity to the 

smaller urban centres on the periphery of the study area. A 5km buffer is used under this 
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spatial pattern to indicate the localised nature of the operations and subsequent catchment 

requirements for waste tonnages.  

   
Figure 7.19a: Spatial distribution of central core with outliers facilities in relation to waste 
densities (t/ha) in Northamptonshire during backcast period (2012-2050). 
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Figure 7.19a shows the 5km buffer effectively covers the majority of the LSOAs with 

highest waste density levels as well as the majority of sites identified as generating most 

wastes (e.g. business parks, residential areas and central business areas (see Figures 4.9 

and 4.10)). Moving out to the 10km buffer this spatial pattern covers almost all of the 

highest waste density LSOAs and covers areas of future waste generation in terms of 

Strategic Employment Land around the main urban centres (see Figure 4.11). The 15km 

buffer encompasses over 95% of the study area with the remaining land parcels situated in 

proximity to urban centres beyond the administrative boundary (e.g. Market Harborough is 

adjacent to areas outside the 15km to the NW of the county). 

The focus of the scenario is maximum capture of materials through diversion from landfill 

towards a range of technological facilities capable of extracting multiple ‘waste’ fractions. 

An additional EfW facility is envisaged as well as an integrated facility (Table 5.23), both 

capable of locating to the east of Northampton (e.g. at the Great Billing former sewage 

treatment works with existing AD capacity). This location would minimise journey 

distances through its central location and proximity to modal transport networks (see 

Figures 6.19a-b). This would reduce transportation costs for materials collected at outlying 

facilities and maximise economies-of-scale for processing recyclate for value creation (e.g. 

monetary or energy). Indeed, scenario VM is identified as having the lowest overall 

economic costs (Table 5.25) of all scenarios even with the additional investment 

requirement.   

7.4.1.4 Central core and outliers pattern and carbon density  

The main assessment criteria in terms of carbon densities are to minimise the potential for 

creating further emissions and to achieve the maximum amount of emissions avoidance as 

possible. Scenario VM has the lowest level of direct emissions (Table 5.30) of all scenarios 

as well as a high level of overall emissions savings versus landfill (through maximising 
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recycling). The level of direct emissions associated with scenario VM suggests such a 

spatial pattern minimises additional emissions from operations and as such represents the 

optimum scenario for reducing direct emissions.                

   
Figure 7.19b: Spatial distribution of ‘central core with outliers’ facilities relative to carbon 
densities (tCO2/ha) in Northamptonshire during backcast period (2012-2050). 
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The buffering scales (5, 10 and 15km) produce the same coverage as that witnessed for 

waste densities, which suggests neighbouring WPAs take the same approach to facility 

locating with a view to minimising direct emissions. In spite of the incremental approach 

of adapting sites to achieve maximum diversion and minimum additional direct emissions 

the scenario achieves the ZWIA definition of zero waste but only through the inclusion of 

a significant use of EfW (which under certain definitions does not constitute a zero waste 

approach (Zaman and Lehman, 2013; 2014)).   

7.4.1.5 Dispersed pattern and waste density  

The dispersed pattern of facilities represents the reference case scenario and thus fits with 

scenario ED within this research. The key difference between proposed pattern and that 

found within the MWDF local plan (NCC, 2012) is the removal of all sites scoring below 

moderate levels of suitability (see section 6.4.3.3). This spatial pattern does not have any 

collaboration across boundaries and thus must cover the entire study area in terms of 

catchment zones (buffers).  

The dispersed pattern has a total of 44 sites, with nine locations being multiple permit sites 

(this reduces the number of physical locations shown in Figures 7.20a-b to 35). Figure 

7.20a shows the distribution in relation to waste densities and illustrates the catchment area 

of each facility in terms of three buffers (5, 10, and 15km). It can be seen that 5km 

buffering (with individual buffers dissolved using the geo-processing toolbox to provide a 

series of contiguous zones) that two large zones in the central and eastern study regions 

serve the bulk of the LSOAs with highest waste densities. Two smaller zones to the west 

and south are centred on higher density LSOAs away from the main areas of population, 

economic activity and waste generation.   

Buffering at 10km produces a continuous zone which services the majority of the study 

area but still has a number of LSOAs left unserved. These areas are minimised under the 
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15km buffer zone with the majority of the study area served at this distance from dispersed 

facilities. The entire study area can only be served with the addition of a 20km buffer (see 

Figure 7.18a) but this would impact on costs and emissions from the inefficient collection  

   
Figure 7.20a: Spatial distribution of dispersed facilities in relation to waste densities (t/ha) 
in Northamptonshire during backcast period (2012-2050). 
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of materials at these distances from the destination facilities. The inefficiency within the 

proposed WMS (e.g. multiple movements of materials between different facility types 

attracting additional gate fee charges) produces the lowest level of potential savings 

(£38.0m) for any scenario (see Table 5.25). In terms of costs this spatial pattern requires 

the addition of a large-scale MBT facility and a large-scale EfW facility (see Table 5.23) 

reflecting existing policy approaches around AD coupled with the waste sector focus on 

EfW capacity within the planning system (at the time of writing in late 2014). 

Scenario ED is the only scenario not to achieve the zero waste definition (ZWIA, 2009) 

and is the only scenario to see recycling rates decline. However, there is a major shift 

towards recovery (with 26.5% of all materials going towards this management method in 

the study area by 2050) as the emphasis within the sector is on moving waste up the ‘waste 

hierarchy’ with little to no consideration given to waste prevention.  

7.4.1.6 Dispersed pattern and carbon density  

Figure 7.20b shows the dispersed pattern of 44 sites has at least one facility type in close 

proximity to the main concentrations (tCO2/ha/LSOA) of carbon densities by LSOA in 

Northamptonshire. There is a significant cluster (n=12) in the central area around 

Northampton as well as a looser clustering (n=21) around the three urban centres of Corby, 

Kettering and Wellingborough/Rushden.  

Coverage of the buffer zones has the same profile as for waste densities. The outcome in 

terms of emissions is to produce the highest level of direct emissions (see Table 5.30). 

Conversely, the emphasis on diversion to recovery has the effect of producing the largest 

cumulative ‘savings versus landfill’ of any scenario (81.2mtCO2e). This dichotomy 

between direct (including an increase in emissions because of system variables changes) 

and avoided emissions produces the second highest performance of any scenario in terms 

of overall carbon impact (i.e. savings). The inefficiency of the collection system is directly 
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related to an approach which does not seek to collaborate with neighbouring WPAs. The 

inefficiency is, however, masked by the levels of avoided emissions by virtue of 

maximising recovery operations.     

   
Figure 7.20b: Spatial distribution of dispersed facilities in relation to carbon densities 
(tCO2/ha) in Northamptonshire during backcast period (2012-2050). 
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7.5 Chapter summary 

This chapter has brought together results from the backcasting methodology and combined 

them with GIS to address objectives 4 and 5. The output results from the previous 

backcasting stages and baseline GIS calculations were explored to synthesise the results 

and fully embed the backcasting outputs within a GIS environment. Through the use of 

equations 7.1 to 7.3 baseline tonnage values (‘all wastes’ represents all controlled wastes) 

are calculated as ‘all wastes’ tonnes per LSOA (t/LSOA); ‘all wastes’ density per hectare 

(t/ha); and ‘all waste’ per capita (t/cap). These values were geo-referenced to LSOA data 

(ONS, 2013) and represented as a series of baseline maps (see Tables 7.2a and 7.3a) and 

calculations (see section 7.1.1.3). This baseline was then compared with future waste 

calculations from the QM (see section 5.4.1.4) and was spatially represented as discrete 

mapping layers (Figure 7.2) before being analysed in terms of value changes for LSOAs 

and per capita to visualise the performance. The findings ranked scenario CE as the best 

performing scenario in terms of waste tonnages at LSOA and per capita levels (reduction 

and achieving > 90% recycling and recovery of remaining materials). 

The next stage was to determine the economic impacts and performance of scenarios based 

on QM results (Table 7.6). The economic impacts of overall costs were mapped for each 

scenario with geo-statistical analysis undertaken to quantify the visual outputs (see for 

example Figure 7.6a-e). This process was also undertaken on QM results for overall 

savings which were visually and statistically compared (see Figures 7.10 and 7.11). 

Scenario VM was the best performing scenario in terms of costs (overall, LSOA and per 

capita) with scenario EC having the best performance on potential savings.  

The same process was applied to carbon impacts based on emissions and prevention at the 

LSOA and per capita levels (see Table 7.9). Emissions were mapped in order to visualise 

change from the baseline with geo-statistical analysis used to quantify these visualisations. 
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In terms of carbon impact (overall savings calculated with equation 5.1); scenario EC had 

the best overall performance (Table 5.30). Carbon densities were also calculated and 

expressed statistically (Table 7.10) (performance maps are located in Appendix 12 as the 

visual changes are very subtle). Results were evaluated in terms of the arithmetic mean; 

this measure of performance showed scenario CE as having the lowest mean in 2050 and 

the least change from the baseline value. 

The final part of the chapter looked at synergies between the spatial assessment results for 

optimal infrastructure siting from Chapter 6 with the spatial patterns of infrastructure 

provision elicited from the narratives and policy packages of each scenario (see Tables 5.6 

to 5.9). This assessment was then compared with the density calculations for tonnages and 

carbon as well as considering the economic implications of the spatial pattern assigned to 

each scenario. Section 7.4.1 assigned a centralised spatial pattern of 4 large integrated 

facilities to scenarios CE and EC. A pattern referred to as ‘central core with outliers’ was 

evaluated for scenario VM before the reference ‘dispersed pattern’ was evaluated for 

scenario ED which was a continuation of the MWDF spatial plan which was adapted to 

have facilities which achieved high or moderate suitability within the spatial assessment 

tool.     
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Chapter 8: Discussion 

The purpose of this chapter is to discuss the research results in terms of the research aims 

and objectives previously outlined (section 1.3) and how far they go to addressing the 

research gap identified from the key literature. It will also bring together a discussion of 

problems encountered in developing the methodological framework (see Figure 5.1 for the 

overall backcasting framework and Figure 4.1 for the baseline analysis methodology) and 

discuss how these were overcome as well as the implications such adaptations have for 

further refinement and research.   

8.1 Introduction 

In order to develop any model of zero waste it must be recognised that no single accepted 

definition exists as to what ‘zero waste’ is or what the concept fully encompasses (TSE, 

2010; DEFRA, 2011a). Such a starting point has the potential to be viewed as undermining 

the foundations of the model. However, the purpose of including stakeholders within the 

backcasting process is to normatively determine their visions and interpretations of a zero 

waste future. Hence in this research zero waste is taken conceptually rather than as a literal 

interpretation.  

8.1.1 Contribution of the research  

The major importance of a method is encapsulated in its usefulness, particularly within the 

field of application but also for its ability to be applied across disciplines. This research has 

sought to expand the field of waste management research through the application of an 

integrated GIS-based backcasting model (GBFM) by means of:   

 Application of pluralistic backcasting (e.g. multiple scenarios) to other sectors and 

to integrated policies that cut across the different sectors (e.g. the synergy between 

waste and energy policy through infrastructure planning and provisioning) 
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 Relating backcasting studies to transformative studies encompassing political, 

economic, social and technological considerations (via the differing emphases 

within the policy packages developed in the zero waste and reference narratives)  

 Methodology development across all aspects of the method (in particular through 

synthesis with GIS to enhance the quantitative analyses of zero waste scenarios) 

 Improving the linkage between futures images development and feasibility analysis 

in backcasting studies (through the use of futures tables in combination with 

plausibility matrices based on morphological fields from GMA). 

By focusing on these aspects of methodological development a novel contribution has been 

made to the fields of waste management, futures studies (backcasting) and land-use 

planning (GIS-AHP).  

8.1.2 Critical evaluation of the research methodology  

One of the drivers for applying backcasting was to move beyond isolated department 

formed policy agendas to the development of issue-based policy making (e.g. zero waste or 

waste to resources), which requires enlisting actors across and beyond government 

institutions and which Doyle (2013) states is “reminiscent of collaborative governance 

ideas”. However, developing an inclusive participatory backcasting study of scale is time 

consuming and requires significant commitment of time and resource (Hickman and 

Bannister, 2007). This is a real weakness of so-called “second order backcasting” (Quist, 

2007) as it moves such studies from desktop deliverability (albeit with the challenges of 

undertaking Delphi or Hybrid-Delphi approaches within the research timescale) to long-

term studies, typically 3-5 years in duration, requiring teams of researchers and large 

numbers of participants (Robinson et al. 2011).  

This major limitation is addressed through scaling back the numbers of events requiring 

participant attendance but increasing the level of participant interaction (e.g. through 
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interviews, surveys and questionnaires) over a shorter timescale (around 15-18 months 

with iterative analysis and dissemination included). In addition, the selection of a key 

spatially and temporally explicit problem; such as waste infrastructure planning; allowed 

the strengths of MCDA methods (GIS and AHP) to be used in order to produce robust 

quantifiable results for inclusion within the scenario narratives. 

8.1.2.1 Qualitative methods: limitations and developments 

There are a number of key qualitative elements employed within a backcasting study of 

this type: visioning (which can be undertaken as an individual method termed a ‘backcast’ 

(van Vliet, 2011)) and scenario development (which looks at developing ‘pathways’ which 

are formed around policy packages which emphasise the differing goals of the visions). 

The participant workshop delivered a rich pool of ideas and visions from which to draw 

but could benefit from a more structured approach with more prior discussion to build 

from. This has been raised in a number of previous studies (Antadze, 2004; van Vliet, 

2011), however, little direction is given as a final definitive form of backcasting remains 

elusive. To overcome these limitations, follow-up interviews, questionnaires and one-to-

one discussions went some way to addressing these issues. Similarly, during the scenario 

development phase there is a risk of participants losing a sense of ownership (Doyle, 

2013), which must be addressed in order to maintain a sense of shared vision based on the 

desirability of the future visions. However, a key outcome was the change in participants 

own views based on the formation of scenario packages and the new ideas these 

combinations of policies yield.   

8.1.2.2 Quantitative methods: limitations and developments 

Although backcasting is essentially a qualitative methodology as depicted in the scenario 

narratives; the addition of detailed quantifiable data to the desirable future visions can add 

a greater sense of clarity to such visions without being prescriptive. Communication of the 
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process is vital for influencing policy and this dialogue must be rooted in recognisable 

information such as that derived from the baseline analysis. However, data limitations 

typical within waste management can create levels of uncertainty which must be addressed 

through assumptions made within the scenario modelling process. This weakness 

undermines traditional predictive methods (e.g. forecasting) when time horizons are 

extended (Robinson, 1982) and threatens to undermine the validity of outputs within the 

backasting scenarios. To overcome this, participant input is crucial in order to move 

beyond the scenarios being viewed as a form of sensitivity analysis (Morrissey and 

Browne, 2004).  

To facilitate this process of validation, the field of GMA was explored for a potential 

solution, as it had most recently been utilised within a normative forecasting study in 

England (DEFRA, 2011e). The morphological field used to display the characteristics of 

variables was used as a means of producing weightings for such variables based on their 

degree of impact (positive or negative) on levels of waste generation. Essentially, this 

approach builds on the earlier DEFRA (2011e) study, providing a means of quantifying 

variables impacts reflecting participants’ mental models.  

A further limitation of backcasting studies has been to find ways of visualising the outputs, 

beyond individual depictions of future conditions (Robinson et al. 2011). More recently, 

this has led to mapping with GIS forming a central core of the methodological approach 

(Haslauer et al. 2012). The use of GIS-based backcasting for land-use planning 

demonstrates the spatial and temporal nature of visions in a way previously absent. 

However, GIS has extensively been utilised with MCDA methods such as AHP to produce 

spatial snapshots of specific sets of system conditions under certain scenarios (Sumathi et 

al. 2008; De Feo and De Gisi, 2010). These studies are developed further in the context of 

waste infrastructure planning alongside an established infrastructure siting tool (DTZ/SLR, 
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2009a) to produce spatially accurate and temporally relevant attribute layered maps which 

reflect the variables weightings from the morphological fields and further described within 

the scenario narratives. 

The following sections of Chapter 8 provide a more detailed discussion of the results from 

the various stages of the GIS-based backcasting (GBFM) methodology developed (see 

Figure 3.1, p.94)              

8.2 Backcasting 

The backcasting framework applied in this research revisits and expands on Robinson’s 

(1990) original generic framework. The methodological framework uses four main steps 

with preliminary research undertaken around scope, extent, timeline, objective and 

variables to be included. Backcasting is approached from a systems perspective as a 

specific tool for assessing the efficacy of the current waste management system within a 

case study area of England. It goes further than providing an assessment; as one may 

suggest that backcasting; through the use of scenarios and visions of the future; is offering 

radically different pathways towards sustainable waste management which may not be 

perceived without taking such an approach. Pires et al (2011) suggested a range of systems 

assessment and systems engineering tools which could be of benefit to stakeholders and 

key decision-makers including ‘scenario development’ (SD) & ‘management information 

systems’ (MIS) (system assessment tools) and ‘forecasting models’ (FoM) (system 

engineering tools).  

This research identifies backcasting as linking assessment and engineering tools through 

the incorporation of the backcasting framework with a spatial planning approach utilising 

GIS and AHP (these will be discussed in section 8.2.2). Indeed, a stated objective of 

backcasting is to offer feasible visions of the future (Robinson, 1990; Dreborg, 1996; Shaw 
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et al. 2011) with such feasibility being tested by means of a quantitative model (QM) 

which explores the potential impact of each vision and pathway towards achieving such. 

Figure 8.1 provides an illustration of where a backcasting framework (BF) may potentially 

sit within the technology hub proposed by Chang et al (2009).  

Figure 8.1: The technology hub for solid waste management and the potential thought 
space (highlighted) for backcasting (Source: Chang et al. 2009 cited in Pires et al. 2011)  

 

For clarity, Figure 8.1 shows that BF sits at the periphery of system engineering tools 

(within the grey ring) and is surrounded by the range of system assessment tools currently 

applied in solid waste research (triangles around the inner ring).   

8.2.1 Defining the scope, objectives and variables  

The first stage in the backcasting process requires the identification of key systems 

variables for the waste management system (endogenous) and across social, economic and 

political systems (exogenous) which impact on the generation and management of wastes. 
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A total of 14 variables were identified (see Figure 5.11, section 5.3) as encompassing the 

critical factors with the greatest potential impact on transitioning towards a zero waste 

economy; with materials viewed as resources for new and existing economic processes and 

practices.  

Previous research within England has identified many of these exogenous variables: 

demographics, socio-economic considerations, commodity markets, economic output and 

economy structure (DEFRA, 2011b; EMF, 2011); while a detailed literature search 

identified key areas of waste policy: waste system trends; reuse & recycling capacities; 

recovery & EfW capacity; technological development & implementation; landfill and 

environmental taxes; system support and voluntary agreements (WRAP, 2013a; Cole et al. 

2014) as well as alignment with other sectoral policies such as those on energy security 

(e.g. through biogas production from AD within the AD Strategy and Action Plan) 

(DECC/DEFRA, 2011).  

Those factors identified were used as areas of discussion and lines of questioning within 

the pre- and post-workshop questionnaires (used from June 2011 to August 2012); 

preliminary interviews (June to September 2011); workshop session (26th September 2011) 

and follow-up interviews (November 2011 to February 2013).  

8.2.2 Baseline analysis       

Chapters 4 presents the results from the baseline analysis stage of the backcasting 

framework applied within the research. The baseline analysis is a critical step within the 

backcasting framework (Robinson, 1990; Hickman and Bannister, 2007) as it is used to 

bring together the qualitative results of the visioning stage and key policy areas identified 

in the scenario development stage within a quantitative model (QM) which is used to test 

the feasibility of both visions and scenario pathways based on specified policy packages. In 
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addition, baseline data is utilised to determine any existing and potential future capacity 

gap in part to address objective 3.   

8.2.2.1 Waste arisings   

Results reported in Table 4.11 give an overview controlled waste arisings within the case 

study area of 2.70Mt in 2012. These arisings disaggregate as 337kt for LACW (Figure 

4.2); 984kt of wastes from C&I sources (Table 4.1); 1.32Mt originating from C&D sources 

(Table 4.4); and 94kt of hazardous wastes (Table 4.5) separately reported but derived from 

household, commerce and industry sources (see Figure 4.2 and Tables 4.1, 4.2 and 4.4). 

These results proved comparable to levels reported within local minerals and waste 

planning documentation (NCC, 2013). This was an interesting outcome for a number of 

reasons.  

Firstly; LACW was expected to be broadly in line because of the continuity between 

sources (both are derived from Waste Data Flow reporting). Secondly; hazardous waste 

data is publicly available under the HWDI and is a legal requirement for WPAs to report 

on within planning documents. For this reason, there was alignment between the main data 

source utilised in the research and those for WPA reporting. Finally; C&I and C&D data 

used in the research was primarily derived from waste returns data reported under the WDI 

(EA, 2012a); exemptions reporting (EA, 2013a) and an estimation methodology derived 

from landfill tax returns (Gov.uk, 2013).  

Given the similarity in levels reported (C&I wastes in Table 4.1 were 3,000t above those 

reported by the WPA for 2008 (a 0.34% variance) in Table 4.2; while C&D waste in Table 

4.4 were 5,000t below WPA reporting levels for 2010 in Table 4.3 (a variance of 0.38%) it 

is reasonable to assume the methodologies for determining the overall arisings are 

comparable and thus represented a reliable base to take forwards for impact analysis 

modelling. 
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8.2.2.2 Waste movements     

Waste movements are defined as encompassing 3 materials flow processes in the research: 

imports, exports and internal movements (see section 4.2). The data used for determining 

these movements reports hazardous wastes separately from other waste types. These 

figures are reported separately for all categories before being combined to produce an 

overall value for material flows from each controlled waste stream. 

In total, Tables 4.6 and 4.7 showed waste imports to facilities in Northamptonshire were 

914kt with 16.2% of this total (148kt) reported as hazardous waste and the remaining 

95.9% from all other controlled waste streams. This high percentage of hazardous 

materials is reported as being caused through the location of a nationally significant 

hazardous waste treatment facility within the case study area. This level of import for 

hazardous waste would thus be expected to be much lower for planning areas without such 

facilities and implies the LA of East Northamptonshire acts as a host community thereby 

taking responsibility for a greater proportion of this waste type than might be expected 

other controlled wastes. 

In terms of waste exports, Tables 4.8 and 4.9 indicate the case study area sends a total of 

574kt of wastes for treatment to WPAs and other destinations. This total disaggregates as 

97kt (16.9%) of hazardous waste and 477kt (83.1%) of other controlled wastes are 

exported. Recovery operations are the most significant destination route, accounting for 

380kt of all material flows in 2012. A comparison between imports and exports shows the 

case study to be a net importer of wastes (340kt) primarily from adjacent WPAs. 

When consideration is given to the internal movement of wastes, Table 4.10 shows that 

56.5% of all waste removed (620kt) from facilities are managed at other facility types 

within the WPA. This demonstrates the varied nature of waste operations at the district 

level with factors such as level of urbanisation, population density and geographic area 
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(see section 4.7) all acting as barriers or drivers to the locating of facilities at this scale. An 

example can be seen with landfill operations as these are restricted to 8 sites throughout the 

county. This has the effect of requiring 178kt of materials to be moved between districts 

which are likely to increase the overall economic (costs) and environmental (carbon) 

impacts of waste management in the case study area. 

8.2.2.3 Composition of wastes streams 

In order to determine where improvements may be achieved within the existing waste 

system it is necessary to understand the types of materials being managed at waste 

facilities (e.g. materials imported and moved internally). Previous composition studies 

were scrutinised (NCC, 2007; DEFRA, 2009; BRE, 2009; DEFRA, 2010; WRAP, 2010; 

Head et al. 2013 unpublished) as well as waste returns data (EA, 2012a; 2012b) to identify 

key materials types which can be used as indicator categories for specific types of 

treatment operation. A total of 14 indicator categories were identified (see Figure 4.5) 

which could account for the main waste streams identified by the 20 EWC chapters (e.g. 

Chapter 17 for construction wastes).   

Further analysis of the data in Table 4.11 showed LACW and C&I waste to have the most 

categories (11 and 10 respectively). C&D waste had a total of 7 categories with two (inert 

and concrete) accounting for 80.0% of all wastes. Hazardous waste comes under a single 

indicator category but in reality originates within all waste streams (as shown in Table 4.5). 

Indeed, hazardous waste is reported under all EWC chapters in Table 4.5 with the most 

significant tonnages coming from Chapters 19, 16, 13 and 12 (e.g. chapter 19 wastes are 

those from waste water treatment whereas chapter 16 are those wastes which are otherwise 

not specified).  

Looking at waste tonnages within the indicator categories and across waste streams it is 

clear to see from Table 4.11 that certain materials are worthy of greater effort to capture 
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from specific waste streams. For example; paper and card mainly arises within the C&I 

waste stream (e.g. from packaging and paper processing operations) and is potentially 

easier to capture as the quantities involved are more economically viable; less prone to 

contamination with other materials; and visible within the work environment. Initiatives at 

the company level have produced case studies of large private enterprises achieving zero 

waste to landfill status (RICOH, 2009; EMF, 2012) thus representing empirical evidence to 

support estimations of the potential benefit from resource efficiency within the economy 

(OH, 2009; 2011; BIS, 2012). Such case studies are from diverse industrial and 

commercial sectors (e.g. electronic printing & copying and flooring) illustrating the 

applicability of such approaches across economic sectors as previous research had 

suggested (Phillips et al. 2006).    

8.2.2.4 Capturing materials 

In order to realise benefits associated with compositional characteristics an evaluation is 

required of the efficacy of current systems at capturing materials (e.g. for recycling, 

composting or energy recovery). As raised in section 4.3.2, overall reported diversion of all 

controlled wastes in the case study area is 66.8% (recycling and composting at 57.7% and 

recovery 9.2% shown in Table 4.12). There is, however, significant variation between 

waste streams with only 43.8% of hazardous waste captured. In addition, LACW averages 

at 51.6% overall recovery at the WPA level with marked variation at the district level 

(DEFRA, 2013d). Both C&D and C&I wastes have higher than 50% recycling (63.8 and 

57.3% respectively) with overall material capture rates being above the national 2020 

target of 70% for C&D wastes (74.4% in 2012) and capture rates for C&I reported as 

64.2% in 2012.  

However, a very significant amount of these materials; primarily inert materials from 

construction and demolition operations used as aggregate or classified as exempt from 
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permitting requirements (e.g. materials used for landfill engineering); are captured outside 

of the environmental permitting regime (NCC, 2012). It also suggests that overall capacity 

for treatment and recovery may not be enough to meet longer-term goals in line with 

national and European targets. Table 4.13 shows that according to waste returns data (EA, 

2012a; 2012b) only 713kt of materials were sent to permitted treatment and recovery 

facilities in the county with another 644kt of materials passing through transfer operations. 

This suggests that recycling and recovery from LACW, hazardous, most C&I and a small 

amount of C&D wastes are passing through treatment and recovery facilities within the 

permitting regime as active wastes with larger quantities (1.02Mt overall) being sent for 

disposal via landfill.  

According to these results the actual recycling and recovery rate for active wastes (e.g. 

those within the environmental permitting regime) were as low as 41.1% (34.3 and 6.8% 

respectively) in 2012. But this also suggests the maximum amount of infrastructure 

capacity required to meet current needs is 1.74Mt proven capacity (see Table 4.13), 

excluding transfer operations. This is at odds with projections within the planning literature 

which specifies a need for 1.93Mt of capacity in 2010/11 and 2.21Mt of capacity required 

by 2031 (NCC, 2012).  The principal reason for this discrepancy relates to the projection 

methodology used in the WPA calculations which forecast arisings for LACW and C&I 

waste to increase significantly (from 354kt to 468kt per annum for LACW and from 

1.06Mt to 1.12Mt per annum for C&I wastes) over this period (NCC, 2012). As such, the 

WPA is planning for a worst case scenario which may see them either investing in 

facilities which they cannot run at optimal capacity or putting contracts out to tender which 

may incur additional costs for the WPA if they cannot meet contractual arrangements for 

feedstock (this would be most pertinent to large EfW facilities which have historically 

been contracted over 25 year periods).     
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8.2.2.5 Evaluating the potential gap in capacity               

In order to determine any potential capacity gap it is necessary to start by assuming current 

levels of arisings will remain unchanged (a so-called base case scenario). In terms of the 

capacity gap derived from baseline calculations and targets set out in the planning 

literature (NCC, 2012; DEFRA, 2013a) Figures 4.6a-d showed that if 2012 levels of waste 

generation and rates for recycling, recovery and disposal were maintained then LACW 

targets would not be met from as early as 2015. Baseline C&I performance would achieve 

target rates until 2020 with hazardous performance missing targets for recycling and 

disposal throughout the period (2012-2030). Performance for C&D wastes is the only 

stream which would meet all targets (when recycling and recovery are considered together) 

across the entire period.  

Two considerations must be addressed from these findings in order to achieve the 

requirements of objective 1 (see section 1.4). Firstly, are waste arisings likely to remain 

static throughout the planning period? Secondly, is the amount of residual material sent for 

recovery via diversion from landfill likely to change? To address waste arisings, these have 

been in a state of flux for many years but the most recent data available would suggest 

these are declining across all waste streams in the case study area and for England since at 

least 2008 (see Figure 4.2 – LACW trends; Table 4.1 – C&I waste returns trends; and 

Table 4.4 – C&D returns and estimation trends). In terms of recovery rates and diversion 

of wastes from landfill, this too has been changing since the 1990’s (Curran and Williams, 

2011; Phillips et al. 2011). For example; recycling rates for LACW wastes in England have 

changed from around 9% in 1990 to an average of 43.2% in 2013 (Eunomia, 2012; 

DEFRA, 2014a). 

Given initiatives from government on specific waste streams (e.g. halving waste to landfill 

– C&D sector) (WRAP, 2013a) as well as the policy emphasis on resource efficiency (BIS, 
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2012), industry initiatives around the circular economy (EMF, 2012) and European level 

emphasis on materials security issues (EC, 2011c; EEA, 2012) there is little doubt that 

recycling and recovery through specialised treatment operations is likely to continue for 

the foreseeable future (e.g. until at least 2020).  

It must therefore be concluded that planning policy which uses a worst case scenario 

approach is flawed and the resulting planning has the potential to leave a significant cost 

burden on LAs unless new models are considered which can offer a range of plausible 

options for waste planning in order to assist decision-makers and inform stakeholders. 

Indeed, the waste industry has started (in late 2014) to recognise the problem of over-

capacity for residual waste treatment (Eunomia, 2014) suggesting that by 2020 England 

would have excess incineration capacity and would face similar issues to European 

countries with significant over-capacity in this area.   

As previously raised, planning for sustainable wastes management faces a complex, 

dynamic and non-linear system open to the influences highlighted within chaos and 

systems theories (e.g. balancing and reinforcing feedbacks) (Gleick, 2008,p61; Meadows, 

2008,p30). As such, investment in large scale incineration may lack the flexibility to 

respond to radical changes around waste. Indeed, top-down approaches which seek to 

protect a waste management business model may produce a bifurcation point where radical 

change emerges (Capra, 1996, p136) and the resulting system is considerably altered with 

the potential to make some business models untenable.              

8.2.3 Visioning 

So how does an individual, group, organisation, sector or government deal with such 

complexity and potentially radical changes? Chapter 5 presents results on the use of a 

backcasting approach developed from Robinson’s generic framework (1990). Such a 

futures method is considered to have considerable advantages over traditional forecasting 
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approaches in terms of considering complex sustainability issues (Dreborg, 1996); such as 

those around planning for sustainable waste management (SERI, 2010b). This is further 

expanded within this study in terms of applying backcasting from a systems theory 

perspective; particularly in relation to testing the impact of each scenario within a QM 

which utilises three recognisable metrics, namely: tonnages of waste produced; economic 

implications of specific policy packages impacting on waste generation; and the 

environmental impacts in terms of carbon emissions (direct and avoided) and these may 

produce synergies between sectors within a resource paradigm.  

The backcasting approach taken (Figure 5.1) was preceded by defining the goal, scope, 

temporal extent and key variables (both endogenous and exogenous) to be considered. In 

addition, the baseline analysis forms an integral part of the backcasting approach with 

specific applications across the visioning, scenario development and feasibility testing 

stages. The overarching goal of the backcasting was to assess the feasibility of zero waste 

as a strategic policy approach within England. The scope of the study was a high growth 

area (Northamptonshire) within England which represents a two-tier WMS. The county 

council (which acts as the WPA) is under pressure to reduce costs across all services 

(including waste management) and respond more effectively to the problem of waste with 

particular regard to a number of variables, such as: a rapidly growing population; 

increasing numbers of households; diversifying economy and competing land use 

demands.  

The temporal extent of the backcast was out to 2050 from a 2012 baseline (as the last full 

year of data available for the analytical phases of the research) representing a 38 year time 

horizon. This extended period went significantly beyond the short-term EU targets (e.g. to 

2020) and medium-term targets of the Review of Waste Policy (DEFRA, 2011a); Waste 

Management Plan for England (DEFRA, 2013a); and Waste Prevention Plan for England 
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(DEFRA, 2013b). Such an extended period is considered as it allows a generational 

perspective to influence thoughts on norms, values and beliefs (Kok et al. 2011) and for 

capital stocks to turn over (Robinson, 1990; 2003). These are significant considerations as 

individuals are considered more likely to perceive future changes which have some 

connection to their lives (or those of their children). In addition, the drive in England 

towards the rapid introduction of incineration capacity; as a means of delivering on targets 

and thus dealing with the residual waste problem; is likely to entail a minimum 20-25 years 

for those stocks to turn over (e.g. for contracts to end with LAs).       

8.2.3.1 Results of the visioning exercise 

The visioning exercise comprised 3 elements: stakeholder identification and questionnaire 

development; stakeholder and experts workshop; analysis and continued stakeholder 

participation.  

8.2.3.1.1 Stakeholder identification and questionnaire development  

Figure 5.2 shows 17 key stakeholder groups were identified and approached based on the 

roles considered key within that group (e.g. Environmental Officer within a case study 

company or Regional Planning within the former East Midlands WTAB). Following a trial 

of the questionnaire with members of the supervisory team and external advisors which 

identified wording and structuring issues for amendment; a total of 115 questionnaires 

were sent to stakeholders from the 17 original groups, refined into 7 categories in Table 

5.1. A high response rate was achieved (54.8%) with most (n=5) categories being well 

represented (a response rate above 40%). Three categories were identified as being 

essential to continuing stakeholder dialogue (private sector; local government; and the 

general public) with these categories accounting for 60.9% of all questionnaires sent out 

and 58.7% of those returned.  In terms of the general public an equal selection was made 
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between male and female (50:50) with a broad range of ages between 18 and 70 being 

represented.  

Significant time and effort was required in dealing with queries relating to the 

questionnaire mainly around questions relating to future perceptions; these were addressed 

in a number of ways including: asking individuals to imagine themselves in similar role but 

20-30 years from now; or imagining their children’s perceptions of current practices in 

light of hypothetical solutions to waste or environmental issues. However, reflecting on 

this stage of the process would suggest that engagement in this way paid dividends when 

approaching the same individuals for further research purposes in terms of their familiarity 

with the type of questions being asked; or when assigning scores to factor choice within 

variable categories for plausibility results (see section 5.3.1).   

8.2.3.1.2 Backcasting workshop 

The backcasting workshop was held in September 2011 with 15 attendees from a range of 

disciplines and fields. The workshop was designed around three sessions (Figure 5.3) each 

designed to initiate discussion on arrange of issues around waste and resource management 

with an overarching theme of zero waste; based on the release in June of the Review of 

Waste in England (DEFRA, 2011a) and associated documents as well as earlier 

publications from The Scottish Executive (‘Zero Waste Plan’ - TSE, 2010) and Welsh 

Assembly Government (‘Towards a Zero Waste Wales’ – WAG, 2010).   

The sessions were captured through a range of media (audio recording; notation and 

photographic evidence) as an accurate record and evidence base for subsequent analysis. 

The sessions were held across a 5 hour period: 1.5 hours for open discussion forum; 1.5 

hours for brainstorming and 2 hours for identification of potential pathways and capturing 

individual visions of the future. All recordings were transcribed and sent to participants 

(n=25; 15 participants on the day and a further 10 whom submitted their views for 
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inclusion within the discussion) for validation along with a request for further feedback 

based on reflections (see section 5.2.3). Feedback was received from 11 participants (a 

response rate of 44%) which was utilised in the later analytical phases. Based on the 

feedback a series of semi-structured interviews (n=16) were undertaken in two blocks 

(October 2011 to February 2012 and September 2012 to February 2013) with participants 

from the workshop session (n=6) as well as stakeholders recruited after the workshop 

(n=10) to evaluate the plausibility of scenarios developed.      

8.2.3.1.3 Analytical phases 1 to 3   

Thematic analyses of the outputs from the questionnaires; workshop; feedback; and 

follow-up interviews were undertaken using mind mapping software (Mind Genius 4©). 

Figure 5.4 showed 77 key factors and characteristics identified within the first two sessions 

of the workshop, reduced from 168 when overlap, language, specificity and relevance to 

the topic were taken into account. The software allowed refinement of factors and speeded 

up the process of thematic categorisation through visual prompting and the ability to colour 

code individual factors or groups thereof. Such tools are especially effective when analysis 

is drawn out across an extended period as additional data is gathered and new outputs are 

generated (e.g. from interviews or through plausibility matrices).  

The third phase of analysis applied the STEEP method in order to group specific factors in 

order to identify contrasting characteristics to be embedded within different scenario 

narratives. Figure 5.5 showed the results of applying a STEEP method but also indicated 

the need for other groupings (e.g. monitoring and statements) as the individual factors and 

characteristics (e.g. realizing value at all stages of the life-cycle) were considered as either 

guiding principles to be reflected within a specific scenario or as a means of quantifying 

the impacts of all scenarios (e.g. the use of a carbon metric). In terms of analysing the input 

questionnaires and combing these with discussions from the potential pathway workshop 
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session (Figure 5.6), applying the STEEP method was more straightforward as questions 

were framed to elicit more structured responses. For example; the six factors within the 

environmental section were able to put detail to the previous monitoring section (Figure 

5.5) allowing quantifiable characteristics to be attached to specific scenarios (e.g. high 

levels of waste prevention for the deep sustainability scenario – ecological citizenship). 

However, certain contradictions were also raised around the types of factors which were 

beginning to form around outline scenarios. This problem has been addressed previously 

(DEFRA, 2011b) by means of stakeholder feedback on scenario drafts. This approach was 

utilised with stakeholders involved as well as through feedback from the supervisory team. 

Nevertheless, certain stakeholders insisted on contradictory factors being included within 

their visions as they felt this reflected a realistic take on government policy formation, both 

currently and in the future (Anonymous, 2011 - personal communications).                    

8.2.3.1.4 Developing a futures table  

Personal visions of the future for waste and resource management (n=15) were a key 

objective of the workshop session. These visions based on individual values and beliefs as 

well as reflecting their professional and expert backgrounds were a cornerstone of the 

backcasting process. Detailed accounts were given by a number of stakeholders on the day 

with further details provided ex-post through feedback on transcripts or within interviews. 

The development of the futures table (Table 5.2) represented the first bringing together of 

variables (drivers and trends) with broad themes (although Table 5.2 shows the actual 

names of the scenarios these were inserted as the final output) – more descriptive themes 

used for stakeholder feedback (e.g. deep sustainability; hierarchic power structures; 

blue/green circularity; policy drift). Table 5.2 shows the main drivers of change which 

broadly capture the exogenous variables previously identified (see section 8.2.1). The three 

key trends identified (economic, policy and social) encompass a further 11 factors (3, 4 and 
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4 respectively) which were considered to have the greatest potential impact on the WMS 

within the case study region and England.  

Development of the futures table is probably the most significant contribution towards 

Objective 2 as from this point forwards more structured analysis takes place of the actual 

themed scenarios as well as the process of testing these scenario frameworks with the first 

elements of the QM starting to take shape. In particular, the high level factors (Figure 5.7) 

represent direction for each individual scenario in terms of the policy/value matrix and thus 

represent the divergence points between the scenarios. One can argue, it is this step within 

the backcasting process which differentiates the scenarios as representing radical system 

changes or incremental changes (Robinson, 2003) which are likely to fall short of the zero 

waste aspiration.  

8.2.3.1.5 Triangulation: stakeholder evaluation and sector views 

Validation of the visioning outputs is a critical means of triangulating the qualitative 

results from the workshop, interviews, questionnaires, thematic analysis and futures table. 

Before these results could be taken forwards for the detailed scenario development and 

feasibility testing, it was necessary to collect and evaluate the thoughts of stakeholders 

involved in the visioning process and to reflect on areas of weakness or strengths. In 

addition, capturing the views of other waste professionals would be a good indicator as to 

the plausibility of the outputs generated.  

A short questionnaire survey was tested and trialled with the supervisory team before 

sending out. Stakeholders were asked to rate the process on a percentage scale (0-100) 

through the survey questions (questions n=3) with seven evaluation criteria. Figure 5.8 

showed the evaluation of visions produced with 6 of the 7 criteria scoring between 66 and 

90% with only one criterion (committed) scoring below 60%. Interestingly, the creative 

and communicative natures of the visioning process were identified as key strengths. 
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Stakeholders were then asked to rate the visioning process from the perspective of key 

decision-makers in their organisations. Figure 5.9 showed that respondents scored all 

aspects of the question between 65 and 82%. The weakest criterion was ‘concrete’ 

suggesting stakeholders felt there was a need to address the link between desirable futures 

and recognisable metrics. Similar issues have been found in the UK with backcasting 

studies undertaken on climate change (Anderson et al. 2008) and for transport networks 

(Banister and Hickman, 2006). The final question asked stakeholders to rate visioning (and 

backcasting) as a strategic foresight tool. Figure 5.10 showed the lowest scoring criterion 

(consensus) achieved a 67% rating while the highest scoring criterion was ‘creativity’ at 

more than 90%.  

Overall, stakeholders were very positive (75.0%; 76.1% and 78.2% aggregated responses 

to questions) about the use of visioning methods as part of a backcasting approach from the 

perspective of being: creative (rated as 1, 2 and 1) – most participants had never heard of 

backcasting but were familiar with forecasting and predictive methodologies with 

comments made on the flexibility of the approach compared to these. Many saw a real 

strength in the clarity of the method in terms of visualisation through the use of a wall with 

notes which built up through debate, discussion and their own interactions. This approach 

in terms of group interaction is commonly applied in The Natural Step (TNS) studies with 

diverse groups of participants (Holmberg, 1998; Hojer and Mattson, 2000).      

8.2.4 Scenario development and pathway formation 

The scenario development process within this research has two distinct phases: using 

plausibility matrices to capture stakeholder preferences numerically and iteratively 

formulating the scenario narratives based on visioning results (in particular, drawing on the 

futures table and high level factor matrix). 
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8.2.4.1 Plausibility matrices results 

Stakeholders were recruited from the pool of identified experts with technical knowledge 

of the waste sector (n=25) as well as an equal number of stakeholders with no direct 

involvement with the waste sector (n=25) in order to determine preferences for systems 

variables. Table 5.7 shows how individual stakeholder responses were recorded with 

descriptive statistics captured for analytical purposes. A likert scale was utilised, as this 

formed a simplistic range of choices for stakeholders (1-5) where a score of 1 represented 

the most favoured choice. This method of scoring was chosen for its simplicity for all 

stakeholders involved above more complex approaches such as general morphological 

analysis (GMA) (Ritchey, 1998). Although GMA is a powerful mathematically based tool 

for dealing with very large variable sets (Zwicky, 1969; Ritchey, 1991) it produces a 

predictive output and this is not in keeping with a normative/transformative scenario 

approach (Borjesson et al. 2006). Even though the plausibility matrix used contains a 

morphological field (14 variables x 5 choices) of 514 or in excess of 610m combinations, 

the purpose of the exercise is to capture a fixed number of responses (n=50) and for these 

to provide a relative weighting to each variable based on that limited number of inputs. 

However, a far larger set of stakeholder inputs (as seen with some of the large-scale 

backcasting studies using the Quest participatory backcasting software – Robinson et al. 

2011) may necessitate a more robust mathematical tool such as GMA. 

Table 5.8 presented the combined results of the plausibility matrices using the preference 

scale discussed. Individual scores (weightings) are given for each parameter impacting 

upon the group variable for technical stakeholders (TS), non-technical stakeholders (NTS) 

and a mean weighting which can be used to differentiate between parameters when making 

the final choice of parameter to include within each scenario. In total, each variable had 15 

alternative weightings from which to select the narrative detail. For example; the variable 
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demographics produced three weightings for ‘stable population growth’, the TS and mean 

scores represented the second highest weightings whereas the NTS weighting was the 

highest within that result set. Such results and combinations of results are useful for fine 

tuning the qualitative narratives and tended to generate debate among stakeholders when 

iterations were sent out for feedback. In total, 3 iterations were undertaken with feedback 

from stakeholders progressively diminishing as the choices became more focused (see 

Table 5.9 for indicative scenarios sent to stakeholders). Earlier work in analysing the 

workshop outputs, questionnaires and interviews (see Figures 5.5; 5.6; and 5.7) allowed the 

number of iterations to be minimised and thus speeded the process of finalising the 

scenario narratives and refinement of the futures table (see Table 5.2).     

8.2.4.1.1 Problems encountered and solutions found 

Scenario development was very time consuming and could have been improved with a 

more structured approach utilising dates for meeting multiple stakeholders (as seen with 

Delphi studies – Schmelev and Powell, 2006). However, this process of arranging large 

scale meetings invariably leads to delays and extends the time horizon within the data 

generation and collection phases. This would inevitably impact the staggered analytical 

phases required to capture and iteratively build on stakeholder perspectives and feedback 

on process results (e.g. workshop questionnaires or transcript sign-off). Large scale 

backcasting projects are able to absorb these delays within the research planning process 

(Hickman and Banister, 2007; van Vliet, 2011) but this can call into question the outcomes 

if the original data is far-removed from the results release date. It may thus be suggested 

that smaller scale projects (e.g. looking at a specific geographically limited area) can make 

use of a flexible approach to scheduling which allows overlap with non-critical pathways. 

The importance of identifying critical points and pathways within the research thus 

increases and should be considered at the earliest possible stage.   
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8.2.4.2 Narrative formation 

The results from the earlier stages of the scenario development process were captured by 

means of a morphological field (Figure 5.11) which allowed the first visualisation of the 

proposed scenarios. This was a key point in the research as it allowed ideas and disparate 

comments and suggestions from multiple stakeholders to crystalize and start to become a 

coherent storyline. Indeed, this was the point from which the scenarios were assigned their 

names (e.g. Circular Economy and Ecological Citizenship). Although not designed to elicit 

a perception as to the content, the names are indicative of a concept or general theme (e.g. 

circularity; valorisation; and destabilisation). More specifically, the name of the 

sustainability scenario was given a name ‘ecological citizenship’ which linked the concept 

of responsibility from society with a fundamental reconnecting with the environment from 

a deep-seated change in social, political and economic attitudes. The scenario narratives 

were thus collated and presented as a brief storyline with recognition of some of the key 

drivers. 

The storylines essentially draw on the 14 key variables and link these with insights on 

potential policy directions which could be taken given certain stimuli. For example; 

scenario CE raises the issue of policy alignment between energy and waste (at the time of 

writing this debate has focused on the growth in AD and how this can address part of the 

waste problem while providing a ‘renewable’ energy source for grid usage – ADBA, 

2012). Table 5.10 also suggests how policies may take time to change, particularly within 

the EU target dominated time-horizon to 2020 (NCC, 2012) and suggests areas (time 

periods between milestones) where the main policy approach may transition within the 

backcast period (e.g. the waste system achieves a long-term downwards trend in waste 

generation partly as a result of shifting to a materials-based policy approach). Table 8.1 is 

provided to show the levels of impact on waste generation rates by 2050.  
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Table 8.1: Impact of waste prevention, reuse and systems variables changes (%) on overall 
waste generation derived from QM for 2050 

Change factor (%) CE VM EC ED 

Systems Variables 5.74 7.29 3.59 -9.01 

Prevention 4.26 4.13 11.66 0.00 

Reuse 14.34 8.68 8.79 1.71 

Overall change 24.34 20.11 24.04 -7.31 

 

Scenario CE fundamentally changes waste to a resource management approach through 

integrated policy approaches (Table 5.10). Under CE, innovation takes place in terms of 

design for products and services to use fewer materials and remove built-in obsolescence 

but relies in the main on resource efficiency gains and levels of reuse (14.34% see Table 

8.1) to impact on levels of waste generation. Scenario CE is most closely linked with 

policy drivers: resource efficiency, design, secondary materials markets and resource 

management focus. These policy drivers impact on systems variables and cause a 5.74% 

reduction in waste generation by 2050. Waste prevention has the lowest impact on 

generation (4.26%) by 2050.   

This contrasts with the focus on recycling and recovery under scenario VM (Table 5.11) 

which was influenced by considerations around materials security; drawing on the Security 

First scenario within the GEO-4 Europe research programme (UNEP, 2007). Similar to 

scenario CE the materials scenario (VM) is a top-down approach relying on technological 

developments utilised and developed incrementally in response to changing waste 

governance shaped partly in consultation with the traditional waste sector. The focus on 

materials stifles efforts to prevent and reduce waste (4.13% prevention and 8.68% reuse) 

but does lead to much higher levels of recycling and recovery which exceed targets in the 

early period of the backcast. Scenario VM is most closely linked to economic drivers: 

economic growth, commodity prices and landfill tax levels. The impact of these drivers 
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and other variables has the largest impact on waste generation of the four scenarios (7.29% 

reduction).   

Scenario EC is the most optimistic scenario in terms of the degree of behaviour change 

which might be achieved (e.g. for individuals, business and organisations). The scenario 

narrative is influenced by the GEO-4 ‘sustainability scenario’ (UNEP, 2007); ‘Vision 

2050’ (WBCSD, 2010); and the ‘sustainability turn’ scenario within DEFRAs foresight 

study (DEFRA, 2011b). Waste prevention is most significant within scenario EC 

(including reuse) accounting for a reduction in all wastes by 20.45% (see Table 8.1) while 

systems variables changes account for a further reduction of 3.59%. Scenario EC is the 

only vision to include widespread use of landfill bans (e.g. on all recyclable materials) 

which is supported with a detailed Zero Waste Strategy from 2020 with similar goals to 

those for Wales and Scotland (WAG, 2010; TSE, 2010).  

In contrast to the other three scenarios, ED is the most pessimistic and is used as a 

reference scenario (Robinson, 1990; Dreborg, 1996; Quist and Vergragt, 2011; DEFRA, 

2011b). This vision of the future does not produce reduced waste generation.     

8.2.5 Quantitative model results 

The quantitative model (QM) (Figure 8.2) represents the mechanism used for measuring 

the different impacts of each scenario and ultimately whether or not a proposed scenario 

required any further iteration (Robinson, 1990; Robinson et al. 2011; Quist, 2006). These 

impacts are measured against 3 key metrics: tonnages (waste generation profiles for all 

controlled wastes as well as avoided tonnages from prevention and systems variables 

changes); economics (costs from sending residual tonnages to landfill as well as from gate 

fees charged at facilities for accepting wastes and savings from avoiding gate fees and 

landfill tax); and carbon (as savings versus landfill for materials sent for treatment and 

recovery and as avoided emissions from prevention and systems variables changes).  
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Figure 8.2: Quantitative Model (QM) structure and functions. 

 

8.2.5.1 Impact analysis – waste tonnages  

In determining the impact of each vision and scenario pathway Table 5.10 reaffirms the 

baseline levels of waste tonnages in the study area (2.70Mt) as well as the materials from 

each waste stream being managed by waste management method (e.g. recycling). The 

baseline values show 66.9% of all wastes were being recycled or recovered in 2012 with 

33.1% (896kt) being sent to landfill disposal. This level of overall performance masks the 

differences by waste stream but represents a holistic perspective on the WMS (see Seadon, 

2010). When LACW and C&I wastes are considered (e.g. the main waste streams 

containing active wastes specified in the landfill directive diversion targets), recycling 

accounted for 45.8 and 57.3% of the totals with recovery operations accounting for a 

further 5.81 and 6.88% respectively. In order to reach the specified ZW criteria (recycling 

or recovering at least 90% of all wastes – ZWIA, 2009) this would require LACW 

recycling and recovery to increase by a further 38.4% (equivalent to 130kt) and C&I 

wastes by a minimum of 25.8% (equivalent to 246kt).  

Such large scale change may be achieved through significant annual increases in recycling 

and recovery of materials (as envisaged and being delivered through the Welsh zero waste 
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plan - WAG, 2010; DEFRA, 2014a); or via reductions in overall generation (primarily 

through policy initiatives on prevention and reuse) coupled with sustained recycling and 

recovery. In addition, the impact of wider exogenous variables has the potential to 

significantly alter levels of waste generation (e.g. population change; economic growth and 

adopting new economic models). As outlined previously, scenarios CE and EC seek to 

significantly reduce generation of waste whereas scenario VM has a greater focus on 

maximising recycling and recovery in order to achieve the zero waste goal.  Scenario ED 

provides an indication of what could happen with a set of factors negatively impacting on 

waste generation coupled with little change to current policy approaches.  

8.2.5.1.1 The impact of systems variables 

Systems variables have the potential to impact on levels of waste generation on a 

considerable scale. For example; an economy which is in recession will suppress consumer 

demand and the production of good and services thus resulting in a downwards pressure on 

levels of waste generation. This pressure comes from the change to the physical production 

system (i.e. lower levels of production) and from the attitudes and behaviours of 

consumers (i.e. reduced demand for goods and services). Figure 5.12 showed that three 

scenarios (CE, VM and EC) all had profiles showing an overall reduction across the period 

which contrasted with the upwards profile of increasing generation compared when 

assessed against the index value (1.000 = no change). The cumulative change for systems 

variables across all scenarios was modest. Of the reducing scenarios; VM produced the 

largest cumulative impact (7.29%) with scenario EC producing the least cumulative impact 

(3.59%). In contrast, scenario ED had an increasing impact of 9.01% across the backcast 

period (2012-2050).   

Assigning values to exogenous and endogenous variables (+ or -) was achieved through the 

interview process (n=8) and in consultation with the supervisory team with the range of 
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values aggregated to produce a weighting for each scenario. The subjectivity of the 

interviewees and team members was overcome with aggregation as the goal was not to 

predict but to give an indicative value to be used in the QM as a means of testing the 

results. There were fourteen variables (7 exogenous and 7 endogenous) which produced a 

considerable variation (non-linearity) in systems variables values. In contrast, the values 

for prevention and reuse produced somewhat linear profiles (as seen in Figures 5.13 to 

5.15). For example; all scenarios were first calculated in terms of individual controlled 

waste streams where an individual target for prevention and reuse of 25% for C&D (see 

Table A12.9 in Appendices 12) wastes could be calculated across the period with 

consideration given to specific policy impacts. 

8.2.5.1.2 Problems encountered and solutions found 

A somewhat unexpected outcome occurred when final calculations were made within the 

QM in terms of applying the changes for systems variables and those for prevention 

initiatives. The decision was made to deduct the impacts of systems variables before 

prevention as these would impact at different magnitudes within a single year, whereas 

prevention impacts would be measured as a final year impact (determined by the relative 

change in overall arisings not attributable to recycling, recovery or disposal). The effect of 

this process saw a marginal reduction in the anticipated impact of combined variables 

changes and prevention. This variation was attributed to an issue with aggregation and it 

was discovered that a further step was required to account for the relative weightings of 

each controlled waste stream after aggregation. The full QM results for each scenario 

shown in Tables 5.12-5.15 have had the required adjustment accounted for.  

8.2.5.1.3 Assessing the impacts against zero waste criteria 

Table 8.2 shows the results for variables changes, waste prevention and reuse initiatives 

across the four scenarios.             
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Table 8.2: Summary of change factors (cumulative %) for systems variables, prevention 
and reuse as well as the total changes to waste generation across all scenarios by 2050       

Change factor CE VM EC ED 

Systems Variables 5.74% 7.29% 3.59% -9.01% 
Prevention 4.26% 4.13% 11.66% 0.00% 

Reuse 14.34% 8.68% 8.79% 1.71% 
Totals 24.34% 20.11% 24.04% -7.31% 

 

Table 8.2 summarises the overall change experienced under each scenario in waste 

generation (indicated in Figure 5.16 and Table 5.13). The three reducing scenarios show a 

very significant reduction in excess of 20% (with a maximum under CE of 24.3%), 

contrasting with a modest increase of 7.31% in waste generation under ED. However, the 

means of achieving the reductions vary considerably.  

Scenario CE achieves most of its reduction through reuse in keeping with the cradle-to-

cradle (C2C) principles (see Braungart and McDonough, 2002) which underpin the 

concept of developing circular economic model (EMF, 2011; 2012). Indeed, Table 5.13 

shows that high levels of recycling (78.2%) and recovery (13.3%) are a central feature of 

the scenario which ultimately succeeds in achieving the ZWIA definition, with 91.5% of 

all controlled wastes diverted from landfill and incineration without energy recovery 

compared with a baseline of 66.9% (recycling 57.7% and recovery 9.16%) of overall 

recovery with 33.2% of all wastes sent for disposal. 

Scenario VM achieves the majority of its reductions from a combination of reuse (8.68%) 

and systems variables changes (7.29%) as the emphasis is on capturing and realising a 

value from materials rather than prevention. This ‘valorisation’ approach shows an 

increase in recycling from the baseline (57.7%) to 79.2% by 2050. The scenario reaches 

the ZWIA definition through increasing overall recovery to 13.5% resulting in a total of 

92.7% of all controlled wastes diversion from final disposal.  
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Scenario EC emphasises sustainability and the reduction of environmental impacts from 

waste management with a significant emphasis of resource rather than waste. Most of the 

overall reduction is achieved through prevention initiatives (11.7%) as policies are focused 

around considerations of design, extending product lives, leasing models and changing 

consumption patterns. Reuse is also a significant factor as materials are circulated within 

the economy with a new Resource Strategy (Zero Waste England) introduced from 2020, 

incorporating many of the C2C principles, resource efficiency approaches and circular 

business models supported by government, industry and consumer choices. The 

‘sustainability approach’ replaces waste with resource as a definition for secondary 

materials with those materials requiring disposal being placed in cells designed and 

engineered for future accessibility as technologies come on stream. Under scenario EC 

recycling increases to 85.4% (the highest level of all scenarios) but sees recovery reduce to 

8.04% (the lowest level of all scenarios) reflecting the emphasis on diversion from 

incineration (even with energy recovery as this is a one-off final gain rather than the 

multiple benefit of recirculating materials through recycling). These performance figures 

mean that scenario EC achieves the ZWIA definition with the highest percentage of 

remaining controlled wastes (93.4%) being diverted from final disposal.  

The reference scenario ED witnesses an increase in waste generation linked to systems 

variables changes (9.01%) but is also impacted by a continuation of policies which 

maintain a role for reuse (1.71% reduction). This means there is an increase in generation 

of controlled wastes by 7.3%. During the backcast period recycling rates decline to 51.8% 

(an overall reduction of 5.9%) which is accompanied by a diversion from landfill of 

29.7%. The increase in waste generation and diversion from landfill are managed by means 

of recovery operations (including incineration via EfW) with a greater than threefold 

(310%) increase in materials destined for this management route. AD plays a significant 

role within this scenario as there is a continued emphasis on energy security and alignment 
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with waste policy (see DEFRA, 2011d; ADBA, 2012). This is the only scenario not to 

achieve the ZWIA definition, reaching 78.3% overall recovery of controlled wastes with a 

significant emphasis on incineration as a waste management method into the future.  

In terms of tonnages Figure 5.16 gives and overall comparison of the four scenarios 

showing the marginal difference between the three reducing scenarios with the increasing 

trend under the reference scenario (ED). The overall changes are attributable to either 

systems variables or waste prevention (prevention and reuse initiatives). Table 5.14 

compares these changes and shows scenarios CE and EC accounting for 657kt and 649kt 

reductions respectively with VM totalling 543kt reduction across the period (2012-2050). 

In contrast, scenario ED sees an overall increase of 270kt reaching an overall controlled 

wastes total of 2.90Mt. Thus overall performance for waste tonnages is comparable under 

scenarios CE and EC with scenario VM marginally above these (~110kt).        

8.2.5.1.4 Evaluating the tonnage results with the research objectives 

In this research objective 2 aimed to identify future zero waste scenarios utilising a 

backcasting approach. In addition, objective 5 was to propose a ‘fit-for-purpose’ model for 

holistic and sustainable waste management. In terms of objective 2; the policy packages 

(see Table 5.2 and Tables 5.7 to 5.10) developed for each scenario produced different 

outcomes when tested for impact within the QM (see Tables 5.13). These outcomes have 

been assessed against the ZWIA definition of zero waste (to achieve a 90% diversion of all 

wastes from landfill and incineration) (ZWIA, 2009). Three of the scenarios exceeded this 

level (achieving between 91.5 and 93.4% diversion of remaining controlled wastes 

compared with a 2012 baseline). The remaining scenario (ED) failed to achieve the defined 

level and also showed an overall increase in generation of controlled wastes, thus 

illustrating the capability of the QM to identify negative outcomes as well as positive.  
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In terms of objective 5; the QM was developed in spreadsheet format to make it an 

accessible tool for stakeholders and potential decision-makers and can be utilised as a 

model to test multiple scenarios and multiple variations and permutations. The model is 

also capable of scrutinising wastes/resources at the individual waste stream level as well as 

for metrics other than tonnages (e.g. carbon and economics). This degree of flexibility can 

account for subtle or more radical changes to variables capable of impacting WMS in 

England or elsewhere.     

8.2.5.2 Impact analysis – economics of waste/resource management 

Economic impacts associated with policy approaches in each scenario were calculated in 

terms of the monetary value for each factor as either incurred or avoided costs: 

 Gate fees (charged by all facilities for acceptance of materials)  

 Landfill tax (charged at different rates for active and inert wastes)1  

 Infrastructure provision (new facilities or expanding existing sites) 

8.2.5.2.1 Gate fees calculations and results 

It was necessary to produce a range of mean values for gate fees charged as the scale of 

facility and type of operation has implications for charging. WRAP have produced a guide 

since 2008 (WRAP, 2013c) which were used to produce the estimated values (see Table 

5.16) which were then applied to specific waste streams (see Table 5.17) reflecting the 

nature of that waste (e.g. active or inert). These figures were incorporated within the QM 

as an economic model which could be linked to tonnage data through factor values 

(£/tonne or £/kg where appropriate). 

In order to determine levels of gate fees across the backcast the focus of the scenario (e.g. 

sustainability focus within EC was represented as higher fees in order to incentivise 

                                                           
1 To simplify the model tax exempt materials (e.g. inert materials used for daily cover and road construction) are not 
estimated in order to provide an indicative value 
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diversion from landfill as a cost mechanism) and the system variables changes (see section 

8.2.5.1.1) were used to give an indication of where these should be set (Figure 5.17). 

Waste tonnage data (generated and avoided) is then used to produce an overall gate fee 

costs and savings value for each scenario across the backcast period (see Figures 5.18 and 

5.19). This approach allows a baseline to be determined (£52.1m) as well as final values in 

2050. Figure 5.18 shows an increase for three scenarios (CE, EC and ED) with a 

significant reduction (£5.6m) for scenario VM. The economic model is used to determine 

absolute values rather than relative values as the concern is with the amount of incurred 

costs (or level of potential savings) rather than the proportion of change which would 

merely reflect underlying tonnage calculations.   

These absolute values produce linear profiles for both costs (Figure 5.18) and savings 

(Figure 5.19) reinforcing the results from Table 5.20. Indeed, Figure 5.19 is useful to 

compare the cumulative savings (as the area between the series line and the x-axis) of 

scenarios. These ‘potential’ savings represent the avoidance of sending ‘prevented’ 

tonnages to landfill; these figures could therefore have been more significant if the 

calculation had been in relation to gate fees for specific facility types. The cumulative 

savings performance shows that scenario EC has the largest savings across the period 

(£40.2m) compared with CE (£35.6m). Scenarios ED and VM have the lowest savings 

with £30.4m and £30.3m respectively (see Table 5.20).   

8.2.5.2.2 Landfill tax calculations and results 

Landfill tax is relatively predictable as the historic record has shown (see Figure 4.7) and 

the degree of certainty provided to the waste sector through announcements on changes to 

the landfill tax escalator. However, scenarios which incorporate this variable have to 

recognise the previous success attributed to the fiscal instrument as the main driver of 

diversion from landfill in England (DEFRA, 2013a) at the time of writing (late 2014) and 
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over recent years. As part of this recognition, landfill tax must be viewed as being 

applicable for the duration of the backcast. Notwithstanding, the levels are liable to change 

according to the emphasis placed on diversion within future waste policy. Table 5.18 

summarises rates across scenarios for the milestone years of the backcast; with a number of 

factors are of note. The standard rate increases substantially under CE, VM and EC but 

decreases under ED after an initial period of increase (2012-2020). The low rate is a 

fraction of the standard rate, increasing marginally under CE and VM; remaining constant 

under ED and increasing more than sevenfold under EC.  

Estimations for hazardous waste are more difficult as no specific rate is set under the 

landfill tax regime. However, a baseline estimation (set at 3x the average gate fee to reflect 

the far higher cost of disposal associated with hazardous materials) was made to provide a 

comparison point for future costs. As can be seen, the rate remains constant under ED but 

increases in varying proportions under the remaining three; with scenario EC having the 

highest rate by 2050 (£420.50/tonne).  

Determining the overall costs and savings associated with landfill tax requires calculating 

the rates (Table 5.18) with the tonnages (see section 8.2.5.1.1) to provide a comparison. 

The profiles for costs (Figure 5.20) and savings (Figure 5.21) shows scenario EC with the 

worst overall cost performance across the period countered by the best overall savings 

performance. In cost terms, scenario ED has the lowest mean (£30.0m) compared with the 

highest mean under scenario EC (£47.0m). In contrast, these rankings are reversed for 

cumulative savings with EC having the highest (£59.6m) and ED the lowest (£7.7m).  

8.2.5.2.3 Additional infrastructure assessment: calculations and results 

It is only possible to provide estimation for costs of infrastructure as there are few reports 

and sources of data available given the commercially sensitive nature of the subject 
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materials. However, a 2011 report ‘Rubbish to Resource’ (APSRG, 2011) as well as a 

number of case studies on the WRAP website (WRAP, 2013c) were utilised to provide an 

indicative range of values. The number of facilities required by each scenario (Table 5.19) 

was calculated based on the change in tonnages sent to recycling or recovery operations by 

2050. Estimated costs are derived from calculations in Table 5.20 with the mean cost of 

recycling investment being £6.15m and mean residual investment being £201.5m (which 

produced a figure of ~£20bn for 150 facilities additional capacity for England by 2020). 

Additional infrastructure has a bearing on the spatial patterns proposed in Chapter 6 and 

will be revisited in section 8.3.   

8.2.5.2.4 Evaluating the economic results with the research objectives          

The overall economic performance of the scenarios is thus measured in terms of costs and 

savings derived from the three factors: gate fees; landfill tax and additional infrastructure. 

Table 5.21 shows that when all three factors are combined the total economic cost of each 

scenario can be calculated. By 2050, scenario VM has the lowest annual costs (£67.9m) 

compared with the highest annual costs under EC (£123.3m). Total costs for additional 

infrastructure are averaged across the period in order to spatially represent these as a 

mapping layer in GIS. Results for cumulative savings are also presented (as GIS map 

layers for milestone years) as annual savings; with performance assessed in Table 5.21 

over the entire period. In terms of potential savings scenario EC is the best performer as a 

result of the far higher levels of gate fees and landfill tax across the backcast period.  

The use of economic metrics (costs and savings) addresses the requirements of objective 5 

for the model to be ‘fit-for-purpose’ as there is considerable debate within the sector and 

across government (national and local) about the future costs of waste management 

(APSRG, 2011; DEFRA, 2013a; Eunomia, 2014). This scenario based approach allows 

potential policy choices (e.g. an extensive programme of EfW construction for England or 
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an AD strategy which seeks to commission and build hundreds of new facilities) to be 

assessed in order to determine if other approaches are more cost-effective in realising the 

same overarching goal of sustainable waste management. Indeed, the economic model can 

evaluate many multiples of scenarios (rather than 4) and could be combined with 

approaches such as CBA or LCA to make a business case for a specific policy approach.  

8.2.5.3 Impact analysis – carbon emissions from waste management  

Determining the carbon emissions from all controlled waste streams is undertaken in order 

to address objective 5 (see section 1.4) and is achieved through developing a carbon model 

within the overall QM (see Figure 8.2). The importance of compositional analysis comes to 

the fore with this assessment as carbon factors are calculated in terms of the individual 

fractions of waste streams (Turner et al. 2011; ZWS, 2012; DEFRA, 2013e). The carbon 

metrics applied in England (DEFRA, 2013carb) are used in the calculations in order to align 

results specifically with the study area; but other footprinting tools may be appropriate for 

different locations. Indeed, the Zero Waste Index (Zaman and Lehman, 2013) incorporates 

carbon emissions as one of the factors for calculating zero waste within city locations. The 

carbon factors (kgCO2/t) of the 15 compositional categories area shown in Table 5.22 with 

controlled waste streams broken down to indicate where emissions reductions policies can 

be targeted (e.g. for metals and textiles with the highest carbon factors). This theme of 

targeting policies continues in table 5.23 in terms of theoretical maximums for both 

avoidance and residuals which help identify the relative importance of waste streams. In 

this way, emissions from the C&I waste stream are most significant under both avoidance 

and residual considerations.  
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8.2.5.3.1 Direct emissions calculations and results 

The direct emissions used in the carbon model assess those emissions from landfill of 

residual wastes. The performance profiles for direct emissions (Figure 5.22) show a 

consistent downwards trend for scenarios (CE, VM and EC) with a similar performance 

over the period 2012-2030 for ED before marginally increasing to the end of the backcast 

period. This performance is measured from the baseline (2012). Scenario EC achieves the 

lowest direct emissions by 2050 (39ktCO2e) with ED having the highest (188ktCO2e). This 

pattern is repeated for cumulative emissions (Figure 5.23). The impact on direct emissions 

is predictable given the connection with landfill diversion policies for all scenarios and the 

impact this had on tonnages (see section 8.2.5.1).    

8.2.5.3.2 Savings versus landfill: emissions avoided by diversion 

Avoided emissions in this research context are those which are avoided through diverting 

materials from landfill and from the avoidance of emissions produced in replacing 

discarded items and services within the economy (including those from energy and water 

consumption). The next section will look at avoidance in terms of preventing the 

generation of waste or from reuse of materials.  

The key factor in terms of ‘savings versus landfill’ (DEFRA, 2013e) relates to the amount 

of materials which have been sent for recycling or recovery under each scenario. 

Consequently, the performance of each scenario moves relative to changes in recycling and 

recovery of materials with scenario CE seeing the least increase in avoided emissions as 

this scenario also witnessed the lowest increase in materials being recycled or recovered 

above the baseline (see Table 5.13). This logic holds in terms of scenario ED having the 

highest avoided emissions because of the significant increase (more than threefold) in 

materials being sent to recovery operations. This logic is also witnessed with emissions 
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profiles (Figure 5.24) and through calculating the cumulative savings versus landfill 

(Figure 5.25); which shows avoidance through recycling significantly higher under 

scenarios EC, VM and CE compared with ED countered by almost double the avoided 

quantity (19.3MtCO2e) from recovery under ED over EC. 

8.2.5.3.3 Avoided emissions: variables changes and prevention 

To finalise the determination of carbon impacts, avoidance of emissions through systems 

variables changes and/or prevention initiatives are accounted for in terms of the reuse 

values within the carbon metrics calculations (DEFRA, 2013e). The profiles for waste 

prevention (Figure 5.26) and variables changes (Figure 5.27) show emissions avoidance 

under both categories for scenarios CE, EC and VM. In contrast, scenario ED shows small 

amounts of avoidance from prevention initiatives (e.g. reuse) but a reversed impact for 

systems variables, in other words increased emissions from this category. These changes 

are shown with greater clarity in terms of cumulative savings (Figure 5.28). The results 

indicate the carbon model is capable of differentiating factors which impact emissions 

negatively and positively and may be useful in identifying types of feedback loops (e.g. 

balancing or reinforcing) under specific scenario conditions. 

8.2.5.3.4 Evaluating the carbon results with the research objectives          

Carbon impact is calculated as the final means of delivering objective 5 in relation to the 

policy connection between waste management and decarbonising the economy (CAT, 

2010). In so doing, decision-makers have a model which can generate results applicable 

across research disciplines (e.g. waste planning, economic development and climate 

change). In terms of overall carbon impacts for each scenario; savings versus landfill are 

summed with avoidance from prevention and systems variables before deducting direct 

emissions (Table 5.24). This shows that scenario EC is the best overall performer 
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compared with the worst performing scenario (CE). These calculations do not include 

carbon impacts from new infrastructure provision as the absence of reliable data precludes 

adding this to Equation 5.1 at the time of writing. However, as Table 5.25 shows the 

calculations taken forwards (from Table 5.24) can be considered indicative of the 

performance which might be anticipated if these were included. 

8.2.5.4 Evaluating impact: comparing scenario performances 

In order to test the scenarios produced and to make the QM developed as robust as 

possible, three separate metrics were utilised which are readily recognisable to decision-

makers and stakeholders within the waste and resource management fields (i.e. tonnages; 

economic costs and savings; and carbon emissions). Table 5.26 showed the final 

comparison of these three metrics coupled with a performance matrix to indicate where 

scenarios had advantages or disadvantages compared with the others. Although the results 

are reported as an overall ranking this does not necessarily make any one scenario the best 

choice for the future. Indeed, the purpose of backcasting is to show a range of possible 

future states (Robinson, 1990). This may seem non-committal prima facie but through the 

process of outlining policy packages (as scenario narratives) to testing the impact of these 

packages (via metrics) and ultimately determining if a scenario can meet the recognised 

definition of zero waste (ZWIA, 2009) under these conditions; the backcasting process is 

providing stakeholders and decision-makers with options. The purpose of these options is 

to illustrate the potential for the future of ‘waste’ to be considerably different from the 

current pathway, often considered as unsustainable.  

It is possible to say that three scenarios meet the ZWIA definition of zero waste and that by 

doing so waste generation will reduce considerably under a range of different 

circumstances. However, some of these circumstances (such as making the disposal of 

waste prohibitively expensive under scenario EC) can be counter-productive and the 
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reference scenario can be a more economically appealing option. On the other hand, a 

scenario based on principles of the circular economy may not deliver the levels of 

emissions savings expected.      

8.2.5.5 Problems encountered and solutions developed 

The availability of data was a profound problem in terms of waste streams (e.g. C&I and 

C&D wastes) and for determining the accuracy of economic & carbon calculations (e.g. 

infrastructure costs and embedded carbon as factor values). However, indicative results 

serve the requirements of the scenario process in terms of being non-predictive which 

ultimately reduces the need to rely on the quantitative output. Notwithstanding, the 

scenarios produced should be credible to audiences and to potential users (e.g. decision-

makers and key stakeholders within the resource management field). In addressing, the 

data gaps every effort was made to obtain data sets identified (e.g. waste returns data from 

the Environment Agency) which could be used as the basis for robust estimations 

methodologies (see sections 4.1.3 and section 4.3 for examples). As such, refinement of the 

QM with more accurate data as it becomes available can only to serve to increase the level 

of acceptability and robustness. This emphasis on data should also be tempered with the 

value of producing radical visions which challenge current ways of thinking and policy 

development about waste. To that extent, the indicative nature of some of the outputs based 

on estimated data, does not detract from the overall package produced in terms of 

visioning; baseline assessment of the system; scenario development and impact 

assessment. Indeed, these outputs are further enhanced through the use of GIS techniques 

as discussed in section 8.3.   
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8.3 GIS modelling results 

The GIS methodology developed within the research was designed to meet the requirement 

s of objective 3 ‘future infrastructure capacity needs at the sub-regional level’ and 

objective 4 ‘embedding the backcasting output within a GIS environment’. Chapter 6 

speaks to the first of these in terms of spatially assessing the baseline conditions of the 

WMS before applying a GIS-AHP site-evaluation process to future infrastructure 

assessment before running the opportunities and constraints models to determine the 

overall suitability of sites within the MWDF local plan for the study area.    

8.3.1 Baseline system mapping  

The baseline mapping of the WMS looks at the spatial distribution of arisings (by waste 

stream) and infrastructure (by facility type and capacity). Waste management facilities 

cover a range of operations from sorting through crushing and shredding to incineration 

and deposit in landfill. The scope of this study covers all facility types but recognises that 

diversion from landfill has been and remains a key policy focus in England (DETR, 2000; 

DEFRA, 2007a; 2013a). Section 4.7 contains a number of baseline maps for exogenous 

variables which have been discussed previously.   

8.3.1.1 Mapping arisings by waste stream 

In order to present the tonnage data (as well as data for economic and carbon metrics) these 

must be converted into spatially relevant formats (i.e. calculated and then geo-referenced). 

Arisings data were calculated for individual LSOAs (n=422) in the study area through the 

application of Equation 6.1. LSOA data layers were obtained from Ordnance Survey (OS) 

Open Source data sets with the geo-referenced data exported to excel spreadsheet format. 

Population data (Figure 4.9) was then extracted and entered into the spreadsheet so that 

resident numbers and density could be used to calculate per capita tonnages (t/cap) and 

waste densities (t/ha). The overall tonnage data for each waste stream could then be 
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calculated for each LSOA and the relevant column for each output calculated using excels 

formulas function. Figure 6.2 shows the spatial distribution of arisings by waste stream in 

2012.  

The baseline was calculated according to waste streams in order to provide the opportunity 

to differentiate impacts over the backcast period. However, the assessment tonnage metric 

of using ‘all wastes’ (all controlled wastes) was comparable to the economic and carbon 

metrics for visualising outputs (example output maps by waste stream are included as 

Figure A12.7 to A12.12 in Appendix 12 for indicative purposes).  

8.3.1.2 Spatial distribution of facilities in the study area  

Understanding where waste facilities are located as well as the scale and type of operation 

is a fundamental requirement to determine if a system can perform optimally. If this is 

found to be inadequate, the spatial data can be utilised to assess where additional capacity 

may be needed or whether a new spatial pattern may be more effective (e.g. for 

maximising throughput; minimising costs; and minimising environmental impacts). Figure 

6.3 showed the spatial distribution of all facilities which were operational (receiving 

wastes) in 2012. The proportional symbols used gave a good indication of the overall 

permitted capacity this was supported with subsequent analysis first by district (Table 6.1) 

showing the permitted annual capacity as well as number of facilities and actual 

throughput (received and removed wastes). A total of 101 operational facilities were 

spread across the 7 WCAs with an operational capacity of 2.38Mt in 2012.  

Operational capacity is then reported by facility type (see Tables 6.2 to 6.5) in order to 

identify gaps in overall capacity as well as for specific WCAs (e.g. no organic waste 

facilities in CBC). In terms of recycling (organic and other treatment) and recovery 

facilities Table 6.6 showed only 595kt operational capacity for recycling (55 sites) and 

118kt capacity for recovery (5 sites). Allowing for additional materials diverted from 
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transfer facilities and the use of secondary permits at a number of landfill facilities the 

713kt capacity (29.9% of all wastes received) would only be adequate to meet a 50% 

recycling target for LACW and C&I wastes (~640kt) within the study area. This suggests a 

significant need exists to enhance future operational capacities and/or provide additional 

sites with integrated facilities capable of managing large quantities of different materials. 

These findings indicate that scenarios with additional capacity are required to meet a zero 

waste target of 90% recycling and recovery of all remaining wastes. Section 5.4.1 indicated 

that the lowest tonnage scenario would require 1.87Mt recycling and recovery capacity in 

2050 for all waste types. The baseline assessment indicated that an additional 860kt of 

inert wastes were recovered at exempt sites and as aggregates (Table 4.3) which would 

equate to 1.57Mt recycled or recovered leaving a minimum additional requirement of 

300kt capacity by 2050 to achieve the zero waste definition (ZWIA, 2009). 

Notwithstanding the shortfall in capacity, the proposed MWDF local plan recommends 

reducing the number of operational facilities to 98 from 101 (NCC, 2012) and does not 

give any detailed indication as to how the operational capacities of the remaining sites will 

be expanded to meet the increased waste generation forecasts contained therein.   

8.3.2 Addressing the problem: applying GIS based AHP 

To begin to address the problem of the identified future infrastructure capacity gap, there 

first was a need to evaluate the proposed facilities within the MWDF. Previous research at 

the regional scale has highlighted the problem of inadequate infrastructure and the need for 

a robust modelling approach which can be applied at different scales (DTZ/LR, 2009a). 

The tool developed previously used an MCDA approach to identify areas of search by 

means of producing opportunities and constraints maps of a geographic area utilising 

LSOAs as the unit of analysis. It was decided to use Saaty’s AHP as a relatively intuitive 

method with outputs readily recognisable to stakeholders involved.  
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The literature states the need to identify locally specific criteria which can be grouped as 

opportunities or constraints for the siting of waste management sites (Sumathi et al. 2008; 

DTZ/SLR, 2009a; De Feo and De Gisi, 2010). In total 5 groups of opportunities and 4 

groups of constraints were identified (Table 6.7) these contained 19 individual 

opportunities criterion and 22 constraints. In order to refine the suitability model a 

typology approach was utilised drawing on previous findings with stakeholder groups (De 

Feo and De Gisi, 2010). Of the opportunities criterion, 11 were preferential and 8 

penalizing while the constraints produced 6 which were excluding and 16 penalizing (see 

Tables 6.8 and 6.9). This meant that extra weight could be given to preferential criterion 

but any analysis which registered an excluding criterion would be rejected. The reasons for 

assigning a criterion as penalizing related to economic considerations in terms of 

minimising costs (e.g. connecting to electricity and gas grids); suitability for certain waste 

management operations (e.g. types of facility capable of providing jobs to local 

community); and potential for provisioning of facilities tailored to addressing gaps in 

capacity. It can also be seen that the criterion identified as preferential are related to the 

existence of either physical capacity (e.g. existing waste sites or the presence of 

railway/waterway infrastructure) or specific localised conditions (e.g. areas of new 

development being favourable for certain technology types) acting as potentially 

facilitating factors for waste management infrastructure. At this stage a problem formation 

hierarchy (PFH) was drawn up which breaks down the goal/objective before reducing the 

problem in terms of scale (i.e. from groups to individual criteria) (see Figure 6.4 and 6.5).  

8.3.2.1 Capturing the data and analysing the results 

Stakeholders (n=40) completed priority scale forms (Figure 6.6) for macro-scale (group) 

criteria and micro-scale (individual) criterion. The AHP software developed by Goepel 

(2013) was an intuitive AHP tool in spreadsheet format which produced pairwise 
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comparison matrices and provided results in terms of Eigenvectors (percentage weights) as 

well as undertaking consistency testing to validate outputs (see Figures 6.7 and 6.8). The 

normalized principal Eigenvector values (weights) are taken forwards for final evaluation 

of all TS and NTS responses with a view to producing a final set of aggregated weights. 

8.3.2.1.1 Group criteria weighting 

Tables 6.10 and 6.11 report the results of TS and NTS with the consistency ratio (CR) 

shown for all stakeholders which should be less than 0.1 to satisfy the Saaty requirements 

(Saaty, 1980). Only one stakeholder (T20) did not meet the required CR but the 

consolidated CR was unaffected and thus the results were still counted. In terms of group 

criteria TS prioritised socio-economic factors within opportunities (16.48) and 

environmental receptors within constraints (14.80). In contrast, NTS prioritised existing 

waste sites (17.82) within opportunities but matched TS in prioritising environmental 

receptors (19.47) albeit with a greater weighting value. 

8.3.2.1.2 Individual criteria weighting 

The same pairwise comparison approach was utilised for individual criteria as with groups 

with one difference. Because the ordered weighted average (OWA) had already been 

established with groups there was no requirement to repeat this for individual criterion. 

Instead a random sample of TS and NTS were used to assign weightings (see Tables 6.12 

and 6.13) with consistency tested for each grouping. 

8.3.2.1.3 Aggregating weights 

To avoid bias in the final OWA weights for TS and NTS are averaged to produce a mean 

weighting which is taken forwards (Table 6.14). This produces a change in rankings for 

socio-economic factors compared with TS results but doesn’t appear to be produced by the 

‘rank reversal phenomena’ (see Tung et al. 2012). These aggregated weightings are then 
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applied to individual criterion for use in the GIS models (overall suitability; opportunities 

and constraints) (see Tables 6.15 and 6.16). The development and use of these weightings 

avoids the use of heuristic values within the suitability analysis and are readily repeatable 

with the steps outlined. The only alteration which is required comes when entering the 

values within the GIS software as the numbers must be rounded to whole numbers (see 

Table 6.19).  

8.3.3 GIS model development 

The results from the baseline mapping and AHP site evaluation process are the basis for 

the development of thematic maps and the final application of the models. The last 

remaining steps are: to define buffer distances from receptors and facilities; produce 

thematic layers; run the models to identify areas of search; and produce the final suitability 

maps.  

Site selection criteria for waste facilities are defined within waste planning literature and 

guidance from the Environment Agency (in England) (DCC, 2011; EA, 2012c). 

Considerations include: land take (ha); land use; access; vehicle types using sites; common 

features; and distances to receptors (Table 6.17). It can be seen that buffering distance 

recommended in terms of facility proximity to receptors typically ranges from 100-250m 

depending on adjacent land uses or the potential for nuisance (noise and visual intrusion). 

This contrasts with a range of 200-500m for constraints buffers (Table 6.18).  

8.3.3.1 Thematic map development and analysis 

A total of 39 thematic layer maps were produced as part of the analysis; 18 opportunities 

and 21 constraints. Data sources were available from a number of sources when the 

collection phase was undertaken (Feb 2011 to October 2011) but a number of layers had to 

be developed as bespoke. Since the end of the data collection and analysis stages (mid-

2012) a range of sources have increasingly become available which would have 
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considerably reduced development and analytical timescales particularly under the Geo 

Portal introduced in 2013 and bringing together a range of sources formatted for direct 

loading into GIS software packages. All maps produced were at a raster resolution of 25m 

meaning that each pixel within the frame was a square of 25x25m and all are projected 

using OSGB1936 (British National Grid).  

8.3.3.1.1 Constraints maps  

The purpose of producing thematic maps is to group recognisable land uses to confer as 

much information as possible when the actual data is presented in abstract. Land use maps 

are very accurate as they are often generated from satellite imagery which allows high 

resolution mapping. However, they can also be out-of-date as the CEH data (Figure 6.16) 

dates from 2007 being the last available dataset during the data collection phase (CEH, 

2010). It does provide a very good reference source for testing other data sets, particularly 

those of a bespoke nature. 

Constraints layers are shown thematically in four maps (Figures 6.10 to 6.13). The first 

thematic map is surface water; showing 3 layers (canals are part of the rivers layer) (Figure 

6.10). The spatial pattern of rivers is extensive throughout the study area with the River 

Nene as the major river, forming most of the drainage basin for the study area. A number 

of large bodies of water (e.g. Pitsford Reservoir) are in evidence, particularly within the 

upper Nene Valley. Derived from the BGS geological maps Source Protection Zones 

(SPZs) are shown to illustrate areas of significant potable water abstraction. The climatic 

conditions of the study area and proximity to wider East of England as well as presence of 

extensive aquifers means that future demand for potable water sources may increase and 

thus impact on potential siting of waste facilities as all three layers are exclusionary.  

Environmental receptors (Figure 6.11) are spread throughout the county and often exhibit 

multiple categorisations for the same site (e.g. SSSI and RAMSAR). A number of the sites 
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correspond with surface water features and as such would be picked up as excluded 

through the application of the constraints model. However, these layers are considered to 

be penalizing in nature and would be reconciled against individual sites in the final 

suitability assessment. 

Conservation receptors (Figure 6.12) are distributed throughout the study area and range 

from large areas (battlefields) to small plots (listed buildings). The 250m buffers are 

included in the map to illustrate the disproportionate impact some types of receptors exert 

on the assessment. Of further note, the study area does not contain any agricultural land 

classified as Grade 1 but does contain extensive areas of Grade 2 which is exclusionary. 

The rest of the receptors in this grouping are penalizing.  

The final category is flood risk (Figure 6.13) showing flood zones and historic flood event 

layers. Areas of significant risk are considered exclusionary with medium and low risk 

zones as well as historic extent areas (defined as a 1 in 100 year event) considered 

penalizing. These definitions are subjective and would depend on a particular policy focus. 

The debate around flooding in England has been subject to much debate after the winter 

floods of 2013/14 and so there is the scope within the modelling to alter weightings to 

reflect such concerns or to run the model in isolation (e.g. to consider riparian areas only in 

terms of flooding risk).  

8.3.3.1.2 The constraints model  

Essentially this is a restrictions model which finds the product of all restrictions (see 

Equation 6.4) to produce individual layer constraints maps (Figure 6.14a-d and Appendix 

11a) as well as a final combined constraint map (Figure 6.15). The constraint model is 

included in Appendix 11 to illustrate the specific steps taken.   
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The output maps generate a Boolean score (either scoring 0 = constrained; or 1 = 

unconstrained) for each pixel (raster resolution 25m). The outputs are simple to interpret 

(Figure 6.14 and 6.15) as the outcomes are deliberately categorical. The individual maps 

illustrate the difference between each individual layer in terms of coverage. Some layers 

are very extensive in their coverage (e.g. rivers) whereas others are isolated and confined 

(e.g. parks and gardens). The final combined layer provides a very stark comparison, 

showing that 51% of all land within the study area is constrained (excluded or penalizing 

to waste facility siting).  

8.3.3.1.3 Opportunities maps 

A total of 16 layers were created for the spatial assessment and suitability modelling with 

these presented as 9 maps. These layers included bespoke maps developed from discrete 

data (non-spatial) which had to be geo-referenced as previously described for constraints. 

A number (n=10) of these layers were identified as preferential (e.g. existing sites and 

navigable waterways) while the remainder (n=6) are classified as penalizing thus 

impacting on the final suitability assessment.  

Sources of waste included urban residential; workplaces; and SEL and accounted for 22% 

of the final weightings for opportunities (Table 6.19). These locations were considered to 

have the largest population densities; numbers of businesses on industrial estates and 

business parks; and areas of future development (which would generate multiple waste 

streams depending on the phase of construction). Facilities in close proximity to these 

locations (particularly large integrated sites) would benefit from reduced transportation 

requirements (costs and carbon emissions) including the potential exploitation of other 

modal transport networks (such as Greta Billing being close to the navigable section of the 

River Nene or the former Corby sewage works site being adjacent to railway sidings). The 

bulk of the locations identified as sources of waste are concentrated around the urban 



404 

 

centres of Northampton, Corby, Kettering and Wellingborough (Figure 6.16) making these 

locations strategically important and prime opportunity areas for major investment. 

The number of existing waste sites (Figure 6.17) includes 108 active sites accepting waste 

in the baseline year as well as in excess of 125 historic landfill sites distributed throughout 

the county but with concentrations around Corby (former steelworks sites) and the upper 

Nene Valley (gravel and limestone extraction sites).  

Socio-economic factors (Figure 6.18a-d) are presented as bespoke layers as these are 

generated from datasets produced as spreadsheets (HCA, 2009; DCLG, 2011). 

Employment and regeneration locations are considered preferential as areas accepting 

waste sites are likely to receive a financial benefit through employment and potentially as 

host communities. Deprivation is a more complicated factor and has been considered 

penalizing as perceptions of waste sites can be negative among the public and siting 

facilities in such areas can be perceived as negatively reflecting the location. However, the 

spatial distribution of regeneration sites (Figures 6.18c-d) is heavily focused around Corby 

which also has some of the worst IMD scores within the study area (Figure 6.18a). In 

addition, LSOAs around Corby can be seen to have low levels of employment and would 

thus benefit from any opportunity to create more jobs and generate growth. Socio-

economic factors account for 24% of final weights (Table 6.19).  

Proximity to transport networks is a critical factor in terms of minimising costs and carbon 

emissions which is reflected in the penalizing nature of road connections in terms of 

distances away from these (Figure 6.19a). On the other hand, other modal transport 

networks are considered preferential as the policy focus in England and within the EU has 

been to move waste away from road transportation wherever possible. The major urban 

centres benefit from multiple road connections (including 3 motorway junctions in close 

proximity to Northampton) as well as rail connections and potential for developing 
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navigable waterways (excluding Corby). Transport networks account for 13% of final 

weights within the suitability model. 

Proximity to energy grids (Figures 6.20a-b) is a key consideration for any scenario making 

extensive use of either EfW or AD. Coupled with this was an assessment by LSOA of the 

numbers of households without grid connection (both electricity and gas) which may act as 

potential end users of locally generated energy. For the strategic assessment only major gas 

and electricity lines were considered as this would minimise connectivity costs through 

avoiding the need for conversion equipment (i.e. pressurisation equipment for gas grid 

injection). A number of rural LSOAs were identified (in darker colours) as being potential 

hosting locations for such facility types. Distance from main lines was considered 

penalizing in terms of cost and was reflected in the opportunities modelling. Using such 

considerations and developing the bespoke layers provided some very useful data and 

insights for potential stand-alone assessments (which is raised in Chapter 9). Proximity to 

energy networks account for 15% of final weights. 

8.3.3.1.4 Opportunities model 

The opportunities model uses equation 6.5 and the weighted overlay tool within ArcGIS 

10.1 to calculate the final values for opportunities layers. The output in this case was not 

Boolean, but produced a 5 step valuation with 5 being most suitable and 1 being least. 

Figure 6.21a-d show the typical style of output maps for individual criteria with ringed 

‘buffers’ clearly visible in each delineating the suitability of each criteria. It is clear that the 

tool works equally well for layers utilising polylines and polygons (it worked for point 

source data which was also tested). The full set of maps is contained within Appendix 11b. 

The final step was to run the opportunities model for all variables to produce a combined 

opportunities map (Figure 6.22). A total of 5.40% of land within the study areas was found 

to be of high suitability with the bulk of this located around the eastern towns from Corby 
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in the north to Wellingborough in the south. The available land was also subdivided in 

terms of the size of parcels (1-10ha; 10-65ha and >65ha) in order to determine whether 

parcels could support single sites or larger integrated sites with multiple facilities (Figure 

6.23). A total of 14 parcels were >65ha with 19 further parcels ranging between 10-65ha. 

For land parcels of 1-10ha only 23 parcels were found which met this specified size. This 

meant that 56 locations covering 3,338ha met the criteria of highest suitability and were of 

the specified dimensions. The model is very restrictive for land around the PUA of 

Northampton reflecting the high demand for development land and the proximity of 

residential areas to any future waste sites. This issue could be addressed through locating 

operations on new build industrial parks (most likely in proximity to the major 

communication hubs along the M1). Such sites would benefit from on-site AD and EfW 

which have the potential to act as anchor tenants for high energy demand logistics 

operations (a feature of the M1 corridor close to junctions).    

8.3.4 Suitability analysis of MWDF sites 

The key criteria for undertaking the GIS assessment was to evaluate the MWDF local plan 

in order to determine if the sites chosen were fit for purpose and met the criteria of being 

located in areas of highest suitability. The results showed that of the 39 main sites and 59 

non-main sites within the plan only 12 met the criteria of highest suitability (see Table 6.20 

and 6.21). A total of 6 sites were from the main sites list and the same number was from 

the list of non-main sites (Figure 6.24). Of these sites, 6 had penalizing factors (2 main and 

4 non-main) in relation to proximity to urban residential locations. These were mitigated 

by already being located in established industrial estate locations. As a result, the 12 sites 

were considered unsuitable to deliver any meaningful system of facilities capable of 

managing future need in terms of waste/resource management.   
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The assessment was undertaken again with the model set to include areas of moderate 

suitability. This assessment produced a further 32 sites which met the moderate suitability 

threshold; a total of 16 from each list (see tables 6.22 and 6.23). These sites are dispersed 

throughout the study area with at least one in proximity to an urban centre (Figure 6.25). 

The assessment of the MWDF local plan for facilities to meet future waste management 

needs (NCC, 2012) has shown the majority of sites (n=54) are located in areas of low 

suitability. This would indicate these sites as being capable of continuing operations under 

current permits but when this spatial assessment approach is applied, would be unable to 

expand their operational capacities to meet the need for further diversion of wastes to 

treatment and recovery.  

The research thus proposes a range of spatial patterns which fit with the scenario narratives 

(see section 5.3) and the policy packages which they contain. Such spatial patterns have 

been proposed in the literature (Bates et al. 2008) but have not been described at the local 

scale addressing the system and materials holistically. A total of three spatial patterns are 

proposed: centralised; central core with outliers; and dispersed (see Figures 6.26 to 6.28).  

The centralised pattern is applied to scenarios CE and EC and represents a radical change 

from the current approach to management and planning based on the WPA administrative 

boundaries. This pattern assumes a similar approach is adopted by all WPAs within 

England based on geographical capture zones around large integrated facilities (n=4 for the 

study area). These are supported with incentive schemes for residents in outlying areas 

(through council tax and reward schemes) as well as extensive use of bring sites delivered 

by the private sector (as seen with many retail chains currently). This approach goes hand-

in-hand with prevention schemes and the impact of system changes which drive down 

generation rates. The focus of the pattern is thus capturing the maximum population 

(residents and businesses) in order to minimise transportation and costs through 
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economies-of scale. Although, based on assumptions, these are reflected in the scenarios 

which are centred on circularity and sustainability across society which generates 

significant behaviour change in terms of viewing wastes as resource.  

The central core with outlier’s pattern is applied to scenario VM and is an incremental 

change in keeping with policy measures emphasising recycling and recovery. The focus on 

capturing value is critical to this pattern but is restricted by having to deliver a service 

based on WPA boundaries. This requires more facilities but does allow larger sites to be 

located close to large urban centres to realise economies-of-scale. There is also a need to 

minimise transportation costs and emissions as the number of journeys is likely to be 

significantly higher than with scenarios CE and EC under a centralised pattern, as more 

materials are recycling and recovered under VM (see section 5.4.1).  

The dispersed pattern is used with scenario ED as a reference scenario as it uses those 

MWDF sites which meet the high and moderate suitability criteria (n=44). This pattern 

reflects the WPA boundaries and is an inefficient system producing higher costs than CE 

and VM as well as the highest levels of emissions. These spatial patterns are assessed 

further in Chapter 7 and are discussed subsequently (see section 8.4.3).                

8.4 Synthesising the results 

There were three stages covered in the chapter: mapping the visions; policy impacts; and 

impact analysis, which fulfilled the remaining requirements of the spatial analysis 

methodology (Figure 7.1).  

8.4.1 Visualising the scenarios 

To effectively evaluate the future visions the baseline values are revisited in order to 

produce overall values; LSOA values and per capita values (see equations 7.1 and 7.3). 

Figure 7.2a and 7.2b show the spatial distribution and frequency distribution of tonnages 
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by LSOA under equation 7.1. Assigning tonnage values to LSOAs is an effective means of 

identifying where tonnages are being generated without applying density considerations. 

They do not show a particular pattern but provide a platform to visually compare temporal 

changes. This data is supported within the software via geo-spatial analysis tools to 

statistically illustrate any temporal change (Figure 7.2b). Finally, per capita calculations 

(equation 7.3) provide a further means of assessing change across the period of the 

backcast, with results showing a baseline per capita value for all wastes as 3.91tpa. 

8.4.1.1 Developing a metric to evaluate the MWDF 

A means of providing visual comparison is required in order to assess spatial distribution 

of facilities using geo-processing tools (e.g. buffering). A metric which shows the density 

of wastes (as tonnes per hectare) was decided on and was calculated via equation 7.2. The 

frequency distribution (Figure 7.3) of these values differed considerably from LSOA 

calculations as these are a function of area rather than population. When presented as a 

mapping layer (Figure 7.4a) the results are striking. This visualisation allows tonnage (or 

other metrics) to be geographically defined within a specific location (e.g. densities are 

highest around major urban centres). By using the GIS environment the statistical 

summary can be extracted (Figure 7.4b) to illustrate where change occurs rather than 

relying solely on the visual representations. 

8.4.1.2 Population change 

The variable with most impact on ‘all wastes’ tonnage within these equations are therefore 

population as the area of the LSOAs is fixed. The QM modelled population change for all 

scenarios (Table 7.1) showing all scenarios increasing in population over the backcast 

period but at different rates and with different profiles (for example; population increase 

rapidly under VM until 2040 after which it reduces until 2050).  
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8.4.2 Policy impacts 

8.4.2.1 Future waste tonnage results 

The QM produced detailed tonnage figures for each controlled waste stream which were 

consolidated to produce ‘all waste’ values (Table 7.2). These results showed change 

against the baseline (2.70Mt) for each scenario with summary values being produced for 

milestone years to compare performances and the degree of impact each policy package 

(based on the narrative) had on waste tonnages. Three scenarios saw significant reductions 

in tonnages attributable to waste prevention initiatives and non-linear impacts from system 

variables changes. The reference case (ED) was the only scenario to witness an increase in 

tonnages attributable to systems variables changes. These performances were visually 

represented (Figure 5.5a-d) with the statistical summaries used to differentiate the detail of 

relative performances (Table 7.3). The consistency of tabular and visual results allowed 

comparison of performance across the backcast period (2012-2050) through applying 

equations 7.1 and 7.3 using mean values (see Tables 7.4 and 7.5). This process showed 

nuances within the performance of each scenario across the period rather than just 

comparing baseline and end-points making the results more robust and revealing 

significant detail which may have been missed with linear modelling approaches. 

8.4.2.2 Future economic impact results 

Economic impacts are first calculated within the QM with the results then geo-referenced 

(by LSOA) within the economic model before the final costs and relative savings are 

calculated for comparative purposes through mapping each scenario.  

Table 7.6 summarised the results from the economic model which presented results at the 

LSOA level. These were divided by population values (Table 7.1) to calculate the per 

capita costs and savings. Baseline economic values varied according to the amount of 
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additional investment required (which was averaged and added to each year of the period). 

This approach ultimately showed scenario VM as the best performer on costs and scenario 

EC as the best performer for potential savings. However, across the milestone years 

positons changed frequently between scenarios with the profiles for a number of the 

scenarios showing a rapid increase in costs for a short period followed by a sustained 

decline towards the end-point.  

8.4.2.3 Mapping the economic impacts 

8.4.2.3.1 Scenario comparison: costs 

Scenario CE had the lowest relative increase in costs between the baseline and 2050, the 

costs profiles (Figure 7.6a) show moderate increase to 2030 followed by steady decline to 

2050. In contrast, the savings profiles show an increasingly rapid increase across the entire 

period. Visually, the change between 2012 and 2050 (Figures 7.6b-c) are only discernible 

by a slight darkening in the overall spatial pattern. Indeed, comparing the frequency 

distributions (Figures 7.6d-e) shows modest movement of numbers towards the right hand 

side of the histogram (increase in values) with 173 LSOAs remaining in the lowest two 

categories. 

In contrast to scenario CE, the cost profiles (Figure 7.7a) of scenario VM show a short 

sharp rise to 2030 before a pronounced and steep decrease sets in and endures to the end-

point. The savings profiles show a sustained upwards trend rather than an exponential trend 

(for CE), achieving comparable levels with scenario CE in 2050. The visual change 

between the baseline and 2050 (Figures 7.7b-c) are the most striking of all scenarios with a 

significant shift towards uniformity across LSOAs occurring (e.g. with values of <175k). 

This change is vividly demonstrated in the frequency distribution of LSOAs (Figure 7.7d-

e) which shows a dramatic shift towards the left of the histogram (indicating a reduction in 

values).   
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Scenario EC has cost profiles (Figure 7.8a) very similar to scenario CE but very different 

from VM. These increase to 2030 then slightly decline to the end-point where they are 

considerably above VM and modestly above CE. Savings profiles are again more similar to 

CE over VM but end with values modestly above both. Visually, by 2050 scenario EC is 

very different from the baseline (much darker shading and the inclusion of a higher value 

category (Figures 7.8b-c). This is reinforced with the frequency distribution which has 

shifted considerably towards the right of the histogram (Figures 7.8d-e).  

Finally, the reference scenario (ED) has an increasing cost profile overall (Figure 7.9a) and 

a savings profile showing initial increases to 2030 before levelling off to 2050. Visually, 

there has been a significant darkening in the spatial pattern (Figures 7.9b-c) although there 

has not been the addition of a higher category as seen with scenario EC. There has been a 

strong shift to the right of the histogram (Figures 7.9d-e) in terms of frequency distribution.  

The economic cost performances of the scenarios therefore shows scenario VM to have 

outperformed all other scenarios with a very significant reduction in costs by the end of the 

period (some £69.5k/LSOA and £39.59/capita) lower than the next best performer 

(scenario CE).  

8.4.2.3.2 Scenario comparison: savings 

Comparing the savings performance relates to the tonnages avoided and therefore 

represents potential savings. The overall assessment does not include this category in 

comparing performance but it is another visual indicator of overall performance between 

scenarios. Table 7.7 showed a comparison between savings as overall, LSOA and per 

capita values for the end point and milestone years. The largest savings were in scenario 

VM in 2020 but this was overtaken in 2030 by scenario EC. By 2050, scenario EC has the 

largest savings followed by scenario CE. Visually, in 2050 the differences are stark in 

terms of the low levels of savings in scenario ED (Figure 7.10d) compared with the much 
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darker shading (Figure 7.10c) and higher value categories of scenario EC. When the 

frequency distributions are compared (Figure 7.11) the skewness of the histograms and 

different categories used indicates the movement (increase) since 2020. 

8.4.2.4 Mapping the carbon emissions impacts 

8.4.2.4.1 Scenario comparison: overall performance 

In terms of metrics used avoided emissions (savings versus landfill) and prevented 

emissions are used alongside carbon density calculations (Table 7.8). The baseline avoided 

emissions were 1.53MtCO2e and the baseline carbon density value was 66.7tCO2e/ha. 

Scenario CE is consistent in having the lowest avoided emissions across the backcast 

period. In contrast, scenario VM goes from highest avoided emissions in 2020 to second 

lowest in 2050. All scenarios maintain their relative emissions performance for the years 

2030 and 2040. In 2050, scenario EC has the highest avoided emissions overtaking 

scenario ED. This is an unusual outcome as scenario ED from 2030 onwards does not 

prevent emissions but adds to them and yet the density results demonstrate that scenario 

EC is significantly higher than all other scenarios. These results suggest emphasis on 

reducing emissions within EC considerably outperforms that of scenario CE which has the 

same spatial pattern of large integrated facilities.     

8.4.2.4.2 Scenario comparison: emissions and prevention 

Performance for mapping purposes is disaggregated to the LSOA and per capita levels in 

terms of emissions and prevention. Change relative to the baseline (Table 7.9) across the 

backcast period shows emissions increases in 2050 ranged from 794-1,455tCO2e/LSOA. 

Increases for emissions at the per capita level were in the range 0.28-0.74tCO2e.  

In detail, scenario CE emissions profiles (Figure 7.12a) show a moderate rate of increase 

across the period. Prevention profiles show a much more significant increase which 
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becomes exponential after 2030. Visually, the change from baseline to 2050 (Figure 7.12b-

c) is demonstrated through darkening of the LSOAs in the study area. This is supported by 

the change in frequency distributions (Figure 7.12d-e) showing a dramatic shift to the right 

of the histogram (indicative of increasing values). 

Scenario VM emissions profiles (Figure 7.13a) have a similar increasing trend to scenario 

CE albeit with emissions starting and finishing at much higher levels than those in CE. 

Prevention profiles show an overall increase but rather than exponential growth from 2030 

there is evidence of slowing after 2040. Visually, emissions in 2050 (Figure 7.13b-c) are 

significantly increased which is demonstrated by the numbers of LSOAs within the highest 

banding and the overall darkening of the shading.  Comparing the frequency distributions 

(Figure 7.13d-e) confirms the increase with a very significant shift to the right of the 

histogram with 320 LSOAs in the two highest bands compared with 227 under CE. 

The emissions profiles under scenario EC (Figure 7.14a) are similar to CE but with a 

steeper rate of increase and higher levels in 2050 than CE. Visually, the spatial distribution 

in 2050 (Figure 7.14b-c) are very similar to scenario VM but with still more LSOAs in the 

higher band than VM and significantly more than scenario CE. In terms of frequency 

distribution (Figure 7.14d-e) scenario EC sees nearly 85% of LSOAs shifted to the right of 

the histogram within the two highest bands. This is greater than VM and considerably 

more than seen for CE. 

The reference scenario (ED) has an emissions profile (Figure 7.15a) which begins with a 

relatively strong upwards trend before levelling off in 2040. The prevention profile moves 

into the negative part of the y-axis from 2020 indicating a further increase in emissions 

rather than preventing emissions. Visually, the output map (Figure 7.15b-c) has a very 

similar pattern to scenarios VM and EC. The frequency distribution (Figure 7.15d-e) shows 
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a strong shift to the right of the histogram indicating an increase for most LSOAs with 337 

within the two highest bands in 2050. 

The emissions performance shows scenario EC has outperformed the other scenarios by 

2050. In addition, it has outperformed all scenarios with the amount of emissions 

prevented as a consequence of waste prevention initiatives and system variables changes.  

8.4.2.4.3 Scenario comparison: carbon densities 

Carbon densities are distributed in a similar manner to waste tonnages as a function of area 

(Figure 7.16) with values ranging from 0.46-313.12tCO2e/ha. The mean LSOA value in 

2012 was 66.74tCO2e/ha (Table 7.10). Compared with the baseline all values in 2050 have 

increased. As an initial assessment scenario CE was considered to have performed better 

than the other scenarios as it had the lowest value. However, in terms of impact from waste 

operations under the spatial patterns proposed the higher the value the greater the 

opportunity to maximise reductions and avoidance through policy packages proposed in 

each scenario.  

The frequency distributions for the scenarios in 2050 are compared with the baseline 

(Figure 7.17a) to compare levels of change. Scenario EC has the greatest number of 

LSOAs increasing their density values (Figure 7.17b) with these changes being spread 

throughout the 5 density ranges. The numbers of LSOAs in the two highest ranges 

increased from 68 to 134 under scenario EC compared with a change from 68 to 104 under 

CE. This means that higher densities of emissions are concentrated around urban centres 

under scenarios EC, ED and VM which would be expected to increase the opportunity for 

achieving long-term savings under scenario EC which is focused on sustainability and thus 

minimising environmental impacts.  
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8.4.3 Assessing the overall scenario impacts 

In terms of addressing objective 4 and objective 5 (see section 1.3), the production of 

synthesised maps of waste tonnages, economic impacts and carbon emissions impacts has 

allowed the quantifiable results from the QM; which are shaped by the policy packages 

proposed by stakeholders throughout the backcasting process; to be expressed visually and 

the data analysed within a GIS environment to produce meaningful results on the 

feasibility of each scenario. These outputs demonstrate how backcasting can be embedded 

effectively with GIS to produce a model, thus achieving objective 4. However, to fully 

address objective 5, in terms of the model being fit-for-purpose, the proposed spatial 

patterns of facilities (see section 6.4.3) are evaluated against tonnage and carbon densities 

as well as cost implications which are based on the proposed spatial evaluation 

methodology for future infrastructure provision. These outputs, illustrated that current 

approaches to siting waste facilities may be out-of-date in England and thus do not produce 

a robust assessment when based on predictive modelling outputs.  

8.4.3.1 Spatial patterns and policy focus of scenarios              

8.4.3.1.1 Centralised pattern 

Scenario CE has a resource management focus which suggests a considerable degree of 

policy integration. The scenario extends policy approaches aimed at delivering a zero 

waste; green and decarbonised economy with significant scope for job creation within a 

‘green’ resource management sector. Energy policy alignment is also a key factor with 

large scale uptake of AD. In light of these diverse policy approaches a location centred 

approach to facility siting and capacity has been introduced for scenario CE. This pattern 

sees four large sites with integrated facilities at each managing upwards of 500kt per 

annum. By 2050, the scenario achieves the definition of zero waste (e.g. managing more 

than 90% of the remaining wastes via recycling and recovery operations).  
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In contrast, scenario EC is focused on sustainability and the protection of the environment. 

This is driven by perspectives, attitudes and behaviours changing around ‘waste’. This 

definition all but disappears from 2020 with the introduction of a Resource Management 

Strategy for England. A long-term approach has been taken in terms of education and 

awareness of sustainability principles which has fed through the educational system 

including at the business level (graduate driven) where design has a very high priority in 

terms of preventing wastage of valuable materials. There are similarities with CE in terms 

of cradle-to-cradle thinking but scenario EC goes further in terms of community ownership 

and representation in resource management facilities. This also pays dividends with 

supporting factors such as bring sites as individuals have a sense of responsibility to 

change their individual behaviours with recycling overall reaching 85% but for individual 

streams such as metals and paper/card packaging this is nearer to 97%.    

The integrated approach is rolled out across England with all WPAs agreeing to cooperate 

on a geographic catchment for resource management facilities thus taking a strategic 

approach. This is slightly different under EC as community ownership becomes an 

embedded policy which is reflected in a percentage share being set aside for community 

dividends particularly for host communities. The definitions of waste and end-of-waste 

criteria are overhauled to allow more far greater resource circulation which accelerates the 

transition to a circular model. In terms of waste tonnages and carbon emissions the 

centralised pattern (see Figure 7.18a and 7.18b) utilises a 20km catchment as standard 

which can be expanded or contracted depending on the urbanised or rural nature of these 

catchments in England. The study area is a good mix of rural and urban and thus indicative 

of the degree of coverage the ‘old’ WPA boundaries receive. In terms of waste and carbon 

densities the four catchments cover >88% of the land area; around 92% of the population; 

and >95% of the highest density LSOAs. 
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From a cost perspective, the economies of scale from these types of operations are 

significant. Initial investment is partly funded through the sale of land from former waste 

sites for redevelopment. Collection costs are kept to a minimum with urban collection 

systems the norm and the extensive financial benefits of bring schemes allows further roll-

out of incentive schemes to boost recycling and recovery. The reduced numbers of vehicle 

movement’s places downwards pressure on direct emissions which is emphasised under 

scenario EC with financial savings being invested in alternate fuels to power collection 

fleets.   

8.4.3.1.2 Central core with outliers pattern 

Scenario VM focuses on maximum capture of resource as valuable materials or energy as a 

last resort as a response to the materials security agenda. Landfill diversion is paramount as 

well as provision for future technologies within landfill operations by separating fractions 

within cells. In the early part of the period an additional EfW facility is utilised to increase 

recovery rates while other facilities are developed (including a large integrated facility 

close to Northampton). The spatial pattern tries to minimise distances materials travel (see 

Figures 7.19a and 7.19b). This scenario has the lowest overall economic costs which 

suggests this spatial pattern is both efficient and cost saving. 

A maximum buffer of 15km is applied around sites to cover the geographic extent of the 

WPA (~95% achieved at 15km) there is scope for cooperation between WPAs but this 

requires a complex formula for sharing the economic costs and benefits from mutual 

coverage. The outlying facilities have a bulking and sorting role where materials are 

transferred to the larger sites around the main urban centres. This scenario achieves the 

zero waste definition with 92.7% of remaining materials recycled or recovered by 2050. 
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8.4.3.1.3 Dispersed pattern 

The reference scenario (ED) does not achieve the zero waste definition (attaining a 

recycling and recovery rate of 78.3%. This is still well beyond the current targets of 

national and international legislation. The spatial pattern is inefficient and requires 

significant additional movements to cover the entire geographic extent of the study area 

putting pressure on emissions (see Figures 7.20a and 7.20b). Significant investment is also 

required to boost recovery (as the policy of moving towards large-scale ATT is continued) 

but there is still a significant reliance on landfill and large amounts of valuable materials 

are lost. This scenario is the closest to the MWDF local plan with many diverse facility 

types; no plan to integrate sites; increasing levels of waste generation; and no alignment of 

policies. In this scenario (ED) and for the MWDF local plan as it sands; under this spatial 

pattern; a zero waste future is not achievable.  

In the future a more ambitious and joined up approach is required which could focus on: 

materials and maximising the recovery of value (VM); resource management towards 

greening/decarbonising the economy (CE); or embedded sustainability with maximising 

emissions reduction and taking a strategic approach with community buy-in (EC).  

8.5 Summary       

This chapter has explored and discussed the research findings of the four results chapters: 

baseline analysis; backcasting – visions to pathways; waste system spatial analysis; and 

synthesis results – the G-BFM model. It has done this with a view to the identified gaps in 

the research (Chapter 2) and in order to address the research objectives and overall aim of 

the research. The scope of the study is Northamptonshire as a case study area of England 

with a temporal extent from 2012 to 2050 (backcast period). The goal was to envisage zero 
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waste futures and explore these as a fit-for-purpose model within a GIS environment. This 

summary will briefly outline how each section addresses the different objectives.  

The baseline analysis is a fundamental part of any backcasting exercise, but it can be 

argued, may also be a valuable stand-alone piece of research which can then be used to 

undertake a manner of different types of analyses (e.g. material flows or gap analysis). 

Within this research, objective 1 sought to ‘determine likely causes of variations in waste 

arisings’ within England using a case study approach. This baseline ascertained: the levels 

of ‘all wastes’ generated (2.70Mt); and the types of movements into, out of and within the 

WMS which can mask the true quantity of materials requiring management (net importing 

340kt). In addition, compositional analysis identified C&I wastes as an area to target 

approaches which could maximise capture rates for specific material fractions. Required 

capacity (all facility types) was estimated at considerably below that in the planning 

literature within the case study area (1.74Mt as opposed to 1.93Mt per annum). Finally, 

potential gaps were identified in capacity only if waste generation increased over the long-

term (as was the case under forecast modelling applied in planning literature) which is at 

odds with trends across all waste streams examined. For these reasons the key causes of 

waste variations were considered and identified to be taken forwards for consultation with 

stakeholders. 

The backcasting framework was applied to address objective 2 ‘identify potential future 

scenarios for zero waste’. This objective was addressed through stakeholder participation 

in the visioning exercise which included continuous stakeholder dialogue (input 

questionnaires, workshop, interviews, feedback and survey questionnaire) to produce a 

futures table which could be utilised and iterated within the scenario development stage. 

Scenario development and impact analysis are iterative processes which required 

stakeholder input alongside the development and testing of a QM. Mixed methodologies 
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(narratives and plausibility matrices on morphological fields) were undertaken to 

triangulate results with continued stakeholder dialogue. The final narratives and impact 

assessments found that three scenarios were able to achieve the recognised definition of 

zero waste (ZWIA, 2009) while the reference scenario was not; thus fulfilling objective 2.  

Objective 3 required the ‘future infrastructure capacity to be determined with GIS 

modelling’. This was the most technically challenging part of the research. It was 

undertaken via a GIS-AHP approach (recommended in the literature and refined here) with 

stakeholder participation (n=40) to produce weights for geographically relevant criteria for 

the WMS. Thematic layers were developed from available data sources or as bespoke 

layers with the final weights, developed in the AHP process, being applied to these layers 

to produce opportunities and constraints maps. These were combined to determine areas of 

suitability onto which the existing spatial plan for future infrastructure provision in the 

study area was tested as being fit-for-purpose. This proved not to be the case and a range of 

alternative spatial patterns were proposed to meet the requirements of the four scenarios 

developed.  

The model (G-BFM) was then finalised through synthesising the backcast results as GIS 

outputs and statistically analysed using the spatial-analyst tools available in ArcGIS 10.1. 

This included testing the impacts of policy packages in terms three metrics: tonnages; 

economic costs; and carbon emissions. Backcast results were tested against baseline values 

to determine trends; make visual comparisons; and produce spatial statistics to confirm the 

findings. These findings were then assessed for their applicability to the proposed spatial 

patterns in order to put forwards coherent visions of the zero waste futures which may be 

utilised by decision-makers and stakeholders as well as practitioners in the future as a 

modelling approach or as indicative visions of what the future WMS could be. In doing so 

it can be seen that objective 4 had been met in terms of embedding backcasting within a 
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GIS environment as a functioning model and that objective 5 was met in producing a fit-

for-purpose holistic model of zero waste in 2050. 
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Chapter 9: Concluding remarks 

The purpose of chapter 9 is to draw conclusions in terms of how far the research 

methodology and results have gone towards achieving the objectives and overall aim of the 

research (section 1.3). In addition, it explores the extent to which these findings address the 

research gaps identified (section 2.6). It will go on to draw conclusions as to the efficacy of 

sustainable waste management modelling; using a GIS-based backcasting approach; in 

terms of the research aim, based on results presented in Chapters 4 through 7. It will then 

make recommendations (see section 9.2) for policy development around zero waste futures 

before identifying areas for further research which have been raised throughout the 

research process (see section 9.3).  

The chapter concludes with a section on where future research may be explored based on 

the potential applications for the G-BFM model as well as in terms of potential 

methodological and theoretical developments around backcasting and the use of GIS as a 

visual support package for strategic foresight and stakeholder engagement through 

participation within the decision-making process on waste and resource planning in 

England. 

9.1 Conclusions    

9.1.1 The backcasting methodology 

Waste management, or more appropriately, resource management is a complex system 

which requires understanding from a range of perspectives (individuals, public sector 

organisations, NGOs, private sector enterprises and governance structures) and disciplines 

(science, social science and design) in order to identify and explore relationships, networks 

and connections which have the potential to reshape the economy and society at large. The 

production of a synthesised model (G-BFM) has the potential to be applied across 
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disciplines with the backcasting framework allowing detailed analysis and evaluation of a 

complex issue which can be enhanced through visualisation and spatial analysis utilising 

GIS tools and applications. 

It is something of an understatement to say waste is a human system failure. Indeed, the 

concept of waste is itself a social construct, as in nature wastes from one process 

(excretions from flora and fauna) are themselves feedstocks for another animal, plant or 

ecosystem. The question is: how do we go about changing perspectives? Do we continue to 

apply methods which are based on past situations and make predictions of the future based 

on this limited range of options? Prosaically; the answer is no.  

Then what are the alternatives? That too can be answered prosaically: ‘we do more of the 

same and make small adjustments to tweak the system’ or more poetically: ‘we offer 

radically new options based on a range of plausible choices’. Backcasting is one such 

method (Figure 3.2) which utilises stakeholder participation and feedback to help form 

narratives of future system conditions which offer a more desirable future state than 

currently exists. The process starts with a goal: how can we achieve zero waste by 2050 

within a geographically defined location? (Figure 3.3). Compare this with a predictive 

method which would say something like: from where we are today is it possible to attain 

zero waste in a 38 year time period with current policy considerations? The point is; the 

framing of the question determines the scale of the problem and as seen with the second 

question; can restrict the choices available, producing a state of ‘policy lock-in’ (Meadows, 

2008). Suck lock-in is reinforced through individual or collective mental models of a 

‘waste paradigm’. 

Current thinking in England (as well as a lot of other locations) is framed too often within 

the second mind-set; a waste paradigm (McDonough and Braungart, 2013). But why 

waste? Why not an inefficient economic activity that underutilises our capital investment? 
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Put simply, because the law and continued legislation makes one think of it as a waste 

problem. One of the issues with putting waste into the legislative arena is that it becomes 

politicised or in other words it takes on a 4-5 year shelf-life. Approaches developed are 

short-term; in keeping with the duration of a parliament (in England) and yet this becomes 

a point of considerable contention when arbitrary targets are imposed (at the European 

level) which require political will to deliver over an extended time horizon. Any delay 

causes uncertainty within the sector. This can cause investors to perceive greater risk and 

thus delay the delivery of scientifically sound infrastructure or even impact other economic 

sectors as they are forced to operate within the ‘waste paradigm’. However, a backcasting 

approach doesn’t require consideration of any of these issues (not in the first instance). It 

addresses uncertainty through its long-term nature and bases choices on values, beliefs and 

ideals (Robinson, 1990; Quist et al. 2011) which make it a normative approach based on 

desirability not expediency.  

So what does backcasting do and how can it offer anything new? Put simply; backcasting 

provides a clear vision of waste (resource) management in the future; requiring 

stakeholders to put forwards their ideas of the future based on their values, beliefs and 

ideals to produce desirable visions for zero waste. Backcasting for waste management is 

new to England; indeed it has seldom been utilised for waste elsewhere in the world (SERI, 

2010). The essence of backcasting in the researchers opinion is not only “the desirability of 

the future visions” (Dreborg, 1996) but also “the systemic and holistic approach it allows 

one to follow around a complex issue” rather than undertaking a study which excludes 

large parts of the overall problem (e.g. focusing on municipal waste which is only one 

symptom of the ‘waste’ problem). In this way, it can be concluded that backcasting sits 

most closely with systems thinking approaches, concerned as it is with the interactions, 

relationships and causal networks rather than the end problem.  
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One significant limitation had to be overcome to reach the research goal; as the method, 

over the last decade, is widely recognised to have shifted towards a participatory approach, 

so-called second order backcasting (Quist and Vergragt, 2011). This participatory approach 

utilises large numbers of stakeholders and researchers, as well as extending across longer 

time horizons than a PhD could accommodate (Davies et al. 2012). For this reason, 

Robinson’s original backcasting framework (Robinson, 1990), first-order backcasting, was 

revisited and revised (Figure 3.3) to fit with the limited available time via a limited but 

broad range of expert and non-expert stakeholders used for the various participatory 

elements (i.e. workshop, questionnaire and plausibility survey).             

9.1.2 Applying the backcasting method to waste 

As has been discussed, the backcasting method is one which lends itself to viewing 

problems over the long-term as well as having the ability to account for uncertainty over 

such timescales by means of producing a range of possible future scenarios (Quist, 2010). 

Importantly, for waste management, this allows full consideration to be given to all stages 

of the Waste Hierarchy, but in particular to accounting for the effects of waste prevention 

over the long-term. The four scenarios produced in this research (circular economy - CE, 

valorisation and materials - VM, ecological citizenship – EC and economic destabilisation 

- ED) offer different perspectives on the future WMS within a case study area of England 

(Table 5.2). It was found that three of the scenarios achieved the ZWIA definition of zero 

waste: achieving greater than 90% recycling and recovery of all wastes (e.g. that fraction 

which remained after waste prevention was accounted for). The fourth scenario (ED), 

generally termed a reference scenario, most closely resembles what is currently happening 

in terms of the continuation of policy packages. But an important conclusion can be drawn 

here, when the reference scenario (ED) was run alongside the other scenarios it achieved 

considerable improvements in recycling and recovery rates, well in excess of the targets 
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outlined in the most recent WMPE (DEFRA, 2013a)2. Thus, by framing a policy package 

around a specific scenario, even a reference case, this can have unintended consequences 

as the non-linear nature of the model is not predictable.  

The baseline analysis (Figure 4.1) proved to be a critical aspect of the research; as it was 

the data collected here, from primary and secondary sources, as well as the generation of 

new data through validated calculations methodologies (e.g. for C&D wastes) to address 

data gaps, which allowed a comprehensive quantitative model (QM) to be developed (see 

Chapter 5). It can thus be concluded that time spent on collecting baseline data and 

addressing existing data gaps is a fundamental requirement in order to reflect the system 

holistically (i.e. for all controlled wastes rather than making assumptions based on data for 

a single waste stream). In addition, the collation of materials requires a robust database 

which when linked to spreadsheet based formulae can generate new outputs as new data 

becomes available. This also allows the outputs to be updated which would be beneficial to 

decision-makers and practitioners alike. The baseline results also addressed objective 1 in 

terms of identifying likely causes of variation in waste generation, these included: 

downwards trends in all waste streams examined; the significant movements of waste 

materials with the study area being a net importer; concentrations of material types within 

waste streams; overestimation of required capacity in planning literature; and a capacity 

gap only if wastes are predicted to increase (Chapter 4).        

The visioning exercise (see section 5.2) was a stakeholder driven process which was 

framed around zero waste and how this future might come about. A two-tier strategy was 

developed to make the visioning workshop effective. Firstly, identified stakeholders were 

sent input questionnaires which allowed a wide range of views and ideas to be captured 

prior to the workshop event. Secondly, the workshop format used meant numbers could be 

                                                           
2 The reference scenario achieved a combined recovery rate of 78.3% equating to 2.27Mt of materials 
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restricted to enable all participants to express their thoughts and ideas with a high degree of 

facilitation. It may be concluded from the approach taken; that a series of workshops 

would have negated the need for input questionnaires and the use of more facilitation 

would have allowed greater numbers of participants. These are valid points, however, the 

single workshop was time consuming to organise and potential participants requested 

information on the backcasting method prior to the event as most were unaware of the 

method. Organising and undertaking follow-up work (i.e. transcribing and validation work) 

would have extended the time horizon of the data collection phase beyond a manageable 

duration. In brief, the results from input questionnaires, workshop, stakeholder survey, 

interviews and continued dialogue produced more than enough materials to develop futures 

tables (Table 5.2), a critical point within the research plan. These futures table and 

policy/value matrix (Figure 5.7) bring together the various elements to produce a first view 

of the scenarios and act as an iteration point between scenario development and previously 

collected data. 

The scenario development stage (section 5.3) is undertaken iteratively with considerations 

over feasibility of the produced scenarios (tested through impact assessments). At this 

point, policy packages derived from the stakeholders are put forwards to form narratives. It 

was decided to add a further quantitative dimension to the research through asking 

stakeholders (participants from the workshop and those stakeholders previously identified) 

to score variables within a morphological field in order to determine plausibility of policy 

packages (see Figure 5.11). Having recently been applied in England, a number of the 

stakeholders were familiar with morphological fields and the process. This produced 

greater engagement with the process and offered insights which may not otherwise have 

been garnered.  
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The proposed policy packages are tested within the QM (section 5.4) in terms of three 

metrics: waste tonnages; economics of waste management; and carbon emissions from 

waste management. While the results in Chapter 5 show the final outputs in terms of 

testing the fully formed scenarios; the testing of scenarios allowed stakeholders to 

feedback on proposed scenarios (see Table 5.5) which were invaluable for QM 

development. Ultimately, a final set of four complete scenarios (see Tables 5.6 to 5.9) were 

produced around four visions of the future (focussing on 3 different approaches and with a 

reference scenario). The production of the visions addressed objective 2; showing that the 

backcasting approach applied could produce a range of plausible future visions of zero 

waste by 2050.     

Backcasting is thus an overarching framework allowing a mixed methodology approach to 

a complex problem which is versatile enough to be streamlined in places and added to in 

others in order to produce the overarching goal; plausible visions of the future. However, 

the methodology is inherently visual which has seldom been considered in the literature 

(Haslauer et al. 2012). The second stage of the research was structured around visualising 

the results (scenarios) through addressing the issue of waste infrastructure provisioning in 

England using the case study areas standing plan and an adaptation of a regional 

infrastructure assessment tool to test the validity of the results. The outcome of this 

approach was designed to address objective 3, to which end it was successful; which also 

went some way towards addressing the requirements of objective 4 as backcasting outputs 

were presented and spatially analysed using a GIS environment. It was discovered that a 

synergy existed between objectives (3 and 5) which resulted in these being met in their 

entirety after evaluating optimal site patterns with scenario requirements (see section 7.4).   
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9.1.2 Embedding backcasting with a GIS environment 

In 2009, responding to long-standing concerns over finding an effective means of planning 

for waste infrastructure, a regional scale assessment tool was launched (DTZ/SLR, 2009a) 

which produced visualisations (GIS based thematic layer maps) of areas of opportunity and 

constraint for the potential siting of waste infrastructure to meet future needs (assessed to 

be greater numbers of recycling and recovery facilities for residual waste fractions). This 

model was based on an MCA approach assigning relative weights to LSOA units of 

assessment, applicable to England because of the stability of census data associated with 

LSOAs. This methodology was evaluated for application to a single WPA (the case study 

area). The MCA approach used in this research was GIS-AHP with stakeholder 

participation to assign weights to variables used in the site appraisal approach. These 

utilised thematic layers based on opportunities and constraints criteria developed in the 

AHP process, with these assigned weights to produce opportunity and constraint maps 

which when combined produced a suitability assessment of potential locations which could 

be used for waste facilities. Applying these results to the local plan found that most 

proposed sites did not meet the suitability criteria. This meant the plan was not fit-for-

purpose and alternative patterns were put forwards for testing against the policy packages 

and narratives of the four scenarios. This approach meant that objective 3 had only 

partially been met through the modelling approach. However, it can be concluded that 

current plans are subject to challenge if the data used is not kept up-to-date. Indeed, the 

suitability appraisals found only 13% of proposed sites were in areas of high suitability. 

This suggests a different approach may be required to producing waste planning data in 

line with planning guidance from government. 

To fully address objective 3, and test whether backcasting could be effectively embedded 

within a GIS environment (objective 4) in order to produce a fit-for-purpose holistic model 
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of zero waste by 2050 (objective 5 and overarching research aim), the backcasting output 

had to be converted to an appropriate format to be projected with GIS software packages 

(in this case ArcGIS 10.1). The QM was once again a useful and versatile tool in this 

process as there was a need to convert metric results to a geo-referenced format (spatial 

identification data for projecting with British National Grid OSGB1936). LSOAs have this 

data embedded within them so the conversion was achieved through calculating the metrics 

at LSOA and per capita levels. It also became apparent that adding a ‘density’ value would 

be the most useful value for completing objective 3. Results were presented for baseline, 

milestone years and end-point (2050) with visualisations (GIS thematic layers) for baseline 

and end-point comparisons (Appendix 12 contains mapping outputs for milestone years). 

These results ultimately allowed scenarios to be ranked in terms of their performances on 

the three metrics. This is done to show where strengths and weaknesses lie rather than 

choosing any one scenario over another. By using this multiple metric approach it was 

possible to demonstrate the effectiveness of the visualisations at communicating results but 

also to ascertain where the changes had occurred through the generation of spatial statistics 

(at the LSOA level). Effectively; through the production of the visualisations and spatial 

statistical data; objective 4 was demonstrated as being met; as the results from this stage 

came from the GIS calculations and were thus an extension of the backcasting results. 

The spatial patterns proposed in the spatial appraisal approach were then evaluated with 

the scenario narratives and policy packages to determine which could deliver these. These 

results were assessed against density calculations and potential cost implications. It was 

found that scenario ED under the dispersed pattern was closest to the local plan and that 

this pattern was the most inefficient in terms of producing highest carbon emissions and 

the second highest economic costs. This was coupled with scenario ED not meeting the 

zero waste definition and producing higher waste tonnages (increase over the baseline) 

than any other scenario. This meant objective 3 was met with the assessment that all three 
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visions of the future were capable of outperforming the WMS conditions set out in the 

local plan. 

Overall, the production of the backcasting methodology and embedding this within a GIS 

environment, created a model which was versatile enough to realise the research objectives 

proposed. Also, through assessing the incumbent planning approach to future infrastructure 

provisioning, the model proved to be fit-for-purpose as it could be used by practitioners to 

keep such planning considerations up-to-date in line with planning guidance (DCLG, 

2012) and offer a range of visions of the future WMS at a local scale which has not been 

proposed previously; thus meeting objective 5 and offering real value in terms of flexibility 

across geographic scales. There are areas of the model which would benefit from revision 

particularly in terms of the functions within GIS which could be used to produce a more 

detailed assessment of local and wider resource management considerations (e.g. scaling 

up to the regional and national levels).   

The aim of the research was to use a case study area within the East Midlands of England; 

namely Northamptonshire; to: “produce a holistic multi-criteria model for moving towards 

zero waste, by 2050”. It has achieved this overall aim through applying methods designed 

to achieve specific objectives capable of delivering this overarching goal. Specifically, a 

backcasting approach with its systems thinking focus has allowed multiple variables, 

factors and criteria (e.g. waste generation; materials movements; population; economic 

growth; emissions from management practices; and fiscal approaches) to be brought 

together within a mixed methodology model (i.e. the iterative nature of the scenario 

narrative development and QM feasibility assessments). This model was framed around the 

concept of zero waste with a defined end-point of 2050 within which the future visions had 

to perform and ultimately deliver on the zero waste ambition (i.e. greater than 90% 

recycling and recovery of remaining wastes). Importantly, the model has gone further than 
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merely assessing future desired states by means of producing visualisations of the changes 

to the WMS between the baseline and end-point within a GIS environment. The additional 

layer of spatial analysis allows robust findings based on a defined unit of assessment 

(LSOA) as well as in terms of relevant metrics (tonnages, economics and carbon) and 

through an evaluation of the proposed physical structure of the WMS with those put 

forwards to optimally deliver the future scenarios (CE, VM, EC and ED). The overarching 

GIS based backcasting framework model (G-BFM) can thus be said to deliver the aim as it 

can deliver on objectives and produce coherent, supported and validated outputs defining 

different zero waste visions.  

Of particular value for stakeholders, practitioners and researchers are the assessed visions 

in terms of the different policy approaches available to drive down waste generation in 

England (particularly impacted by waste prevention and changes to behaviour within 

society which have a downwards pressure on waste generation rates). The flexibility of the 

QM provides an additional capacity to change the magnitude of impacts from single or 

multiple variables, thus allowing more radical visions to be tested (e.g. a theoretical impact 

of 50% waste prevention through changes to the definition and criteria for end-of-waste). 

In addition, these visions can be projected in a manner readily recognisable to a broad 

range of stakeholders (e.g. thematic layer maps; opportunities and constraints maps; and 

overall suitability maps) as well as providing a robust means of evaluating systems 

changes and planning considerations for the future (e.g. under a circular economy model; a 

focus on materials and their value; or a deep sustainability model of development).        

9.2 Recommendations 

Based on the outcomes form the modelling process, a set of recommendations for decision-

makers; based on the range of options outlined in the scenarios and potential impacts 

identified for the policy packages contained therein; are proposed.   
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There are three main considerations which must be addressed when developing new 

projects and strategies to deliver zero waste based on circular economy, materials value 

chain and sustainability models in the future.  

1. Such models must be able to embed the waste hierarchy and thus consider 

prevention as a critical tool in:  

a. changing definitions of waste – fundamentally shifting to a materials 

specific approach where ‘clean’ materials meeting specified protocols do 

not come under the scope of waste legislation (e.g. secondary raw materials, 

by-products or non-toxicity) 

b. designing out obsolescence – design components for multiple uses 

(upcycling) and extending the operational life before allowing ease of 

disassembly for maximum value recovery  

c. being more resource efficient - extending beyond materials to include water, 

energy and hidden wastes (in the workplace and as individuals; and  

d. raising awareness of choices which produce waste - lifestyles, physical 

capacity, and willingness of participants (see ISB model – Timlett and 

Williams, 2011)  

2. There must be greater focus on the business models which will drive any resource 

management futures such as circular economy (Greyson, 2007); materials value 

chains (Deloitte, 2011) or sustainability (Robinson et al. 2011).  

3. A significant need exists to address the psychology of ‘waste’ in terms of altering 

mental models which approaches such as backcasting are able to deliver via ‘social 

learning’ (Robinson, 2003); which can be facilitated through the visualisation of 

outcomes.        
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9.2.1 Recommendations to implement G-BFM model 

Drawing on these considerations and conclusions from the previous section, a number of 

recommendations can be made in terms of applying the methodology produced in order to 

move towards zero waste futures, at the regional scale building towards the country level.  

1. There is an overarching need to introduce the G-BFM model at the regional scale 

(East Midlands) in order to bring together a range of appropriate stakeholders to 

form partnerships; similar to the REC model of the 1990’s and early 2000’s or  

through facilitation by bodies which replaced EMDA and GOEM (e.g. East 

Midlands Councils). These stakeholders could include:  

a. WPAs – current legal responsibility for their geographic areas with scope to 

shift towards collaboration based on facility location with catchment (see 

logistics)   

b. resource companies – traditional waste companies embedding new business 

models  

c. logistics – expertise in efficient movement of ‘secondary’ materials  

d. champions – high profile individuals with recognised track record (e.g. 

Dame Ellen MacArthur) 

e. academia/researchers – undertake research requirements in line with 

research agenda  

f. steering group – to deliver the overarching goal  

This could be achieved over a 1-3 year timescale at minimal cost - £2k per meeting 

(50 delegates), with 2 meetings per year (3 years), with a maximum cost of £12k.  

2. At a practical level, backcasting may be used to drive LAs towards a circular 

economy/zero waste future, through: 
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a. Capacity building (up to 6 months depending on numbers of stakeholders). 

Costs would be around £25 per attendee with additional costs covered by 

organisation, envisaged as 4 sessions of 25-50 delegates, with costs between 

£2.5 and £5k.   

b. Structural training on the methodology (delivered as a package to LAs and 

stakeholder organisations in-house for setting a goal [e.g. continuing 

previous work with Derbyshire on zero waste plans] and using the G-BFM 

techniques and methods – over 6 months). Costs would be for 1 week 

intensive sessions at stakeholder sites at a fixed cost of £1k per facilitator (1 

facilitator per 25 delegates). Estimated costs would range from: £26k (1 

facilitator) to a maximum of £78k (3 facilitators).  

c. Delivering participatory workshops and follow-up work (either single 

workshops or a series which builds numbers of participants – over 12 

months). These would be organised with local stakeholders invited by 

hosting organisation with costs charged per workshop (max 18 in 12 

months) rather than number of attendees (£500/facilitator). Total estimated 

cost £9k.  

d. Setting out the scenarios and producing visualisations with a GIS 

environment (over 6 months). Desk based work with a fixed cost of £10k 

for reports and presentations.  

e. Proposing new regional zero waste strategies and waste management 

frameworks for LAs to meet the requirements of new Local Waste Plans 

and keeping these updated (at 3 year point then ongoing monitoring every 

12 months with new data added to QM). Costs of strategy launches covered 

by LA with additional retention costs until trained staff come on-stream 

£2k. 
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3. In order to monitor progress, it is recommended to utilise the GIS outputs and to a 

review procedure in place (every 12 months at the LA scale for low-level review 

and every 3 years for high-level review with regional stakeholders). This can be 

delivered at a resource stream or sector level (e.g. C&I sectors which have 

implemented resource efficiency approaches). The cost implications of continuous 

monitoring are minimal if rolled in to duties of an existing planning officer (one 

each at local and regional scales) and is estimated as an additional £10k per year.  

4. Once consolidated at a regional scale a move towards developing the model at the 

national scale. For example; by undertaking a feasibility assessment using scenarios 

of implementing a zero waste/circular economy strategy for England. This may be 

achieved over the medium-term, 3-7 years with a view to introducing such a 

strategy in 2025 (e.g. Scotland’s interim target for Zero Waste Plan). The costs of 

undertaking a zero waste strategy feasibility assessment could be minimised 

through joint tripartite research collaborations between universities; government 

departments/regulators; and private ‘resource’ sector entities (perhaps including 

funded PhDs) on a matched funding basis with bids for EU funding streams (e.g. 

Horizon 2020). The total estimated cost over 6 years would be £250-300k.    

Through undertaking such an approach it would be possible to build capacity and expand 

the case study approach to a regional scale for a cost of between £61.5k and £126k. To 

produce the national scale assessment would cost between £250k and £300k on a tripartite 

basis, which gives an overall delivery cost of between £311.5k and £426k over a 7 year 

period. Training key stakeholders at the LA level (or organisational scale if utilising groups 

of companies such as the CE 100) would allow scaling up with a view towards 

implementing new regionalised zero waste strategies. These strategies can be monitored 

and reviewed through up-to-date performance outputs allowing adaption for 
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implementation according to the pace of progress towards the overall goal; such as 

transitional stages from county to region to national.  

9.3 Further research 

As part of the requirements under Article 28 of the WFD (2008/98/EC) the government in 

England had to produce a plan for future waste management and for waste prevention. 

These set out a number of a number of priority areas for future action:  

 Business – emphasis on prevention and efficiency to reduce costs, embed behaviour 

change and reduce pressure on scarce resources 

 Consumers and communities – lifestyle choices to drive demand-side behaviour 

change   

 Government and the public sector – providing a long-term clear policy framework  

To achieve such change new business models are recommended (Figure 9.1) which focus 

on the dynamics of the system (reinforcing and balancing feedback loops). 

 

Figure 9.1: Business model formed around waste prevention (Source: DEFRA, 2013e).  
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In order to deliver the recommendations in section 9.2, an approach adopting the 4E’s of 

behaviour change (DEFRA, 2013e) is required in order to develop partnerships of 

universities, LAs, LEPs, businesses, local stakeholders and government bodies, bringing 

together the three main stakeholder groups identified. These partnerships would have:  

1. Access to funding streams from European development mechanisms (e.g. European 

Development Fund; Horizon 2020); and  

2. The potential to bid for research council funding; government delivery body 

funding (such as Innovate UK) or other funding streams which may become 

available in the future.  

In doing so, these funds would be used to deliver the G-BFM model in the manner 

described (section 9.2). The structure of the approach would also reflect the priority 

materials (food waste, textiles, paper & card, WEEE and bulky items) and sectors 

(construction & demolition and chemical & healthcare wastes). To deliver projects focused 

on these priority areas and the overarching goal of prevention within the zero waste 

agenda, specific proposal to facilitate change include: 

1. WRAP support: promote transition through locally specific models such as 

Business Improvement Districts (BIDs) or REC’s to deliver a framework of 

monitoring and review.  

2. Resource management sector companies: actively transforming operations and 

business models could provide funds and training facilities. 

3. Recruitment of ‘champions’ and figureheads: for compelling message delivery on 

business, economic and social benefits of transitioning to more sustainable futures.  

4. Initiatives in research extended to include doctoral and post-doctoral researchers: 

funded through a mix of company stipends; scholarship awards; research council 

programmes; or direct university funding for inter-disciplinary research.  
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By utilising a broad range of stakeholders and addressing multiple research areas a number 

of examples of spin-off projects are identified to look at:  

1. Heat-demand mapping with GIS: supporting modelling for infrastructure 

provisioning;  

2. Multi-sector backcasts (waste, energy and water): exploring complex overlapping 

policy areas with systems thinking approaches;  

3. Multi-disciplinary backcasts: potentially bringing large organisations (e.g. NHS) 

together with subject specialists (resources) to address social, economic and 

environmental impacts of large organisations.  

Indeed, the UK has a history of applying scenario based approaches to such complex 

problems (as seen with climate change modelling and long-term transport policy 

formation). Thus, bringing together interdisciplinary teams to address such issues may 

offer considerable inhibiting barriers but the potential for catalysing change through open-

minded discourse provides scope for real optimism for the future. 
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Footnotes 

Volume 1: 

1 The devolved administrations also include Gibraltar but this is beyond the scope of the research 
which focuses on England in relation to the United Kingdom geographic area (DEFRA, 2013a). 
 
2 Article 28 of the revised Waste Framework Directive requires that Member States ensure that 
their competent authorities establish one or more waste management plans covering all of their 
territory. 

 
3 Reporting to the EU is for the UK as a whole under the Eurostat data reporting scheme (see 
Eurostat, 2012). 
 
4 This MWDF is to be replaced with a Minerals and Waste Local Plan (MWLP) to meet the 
requirements under the WMPE (DEFRA, 2013a) and NPPF (DCLG, 2012)  
 
5 See Chapter 4 for a more detailed macro-scale baseline assessment of waste arisings.  
 
6 Waste Planning Authorities have a statutory requirement to show how a minimum of 10 years 
waste management capacity can be delivered within their administrative area under PPS10 (DCLG, 
2013). Under the duty-to-cooperate brought in with the NPPF (DCLG, 2012) WPAs must have 
consideration for all areas which they interact with (import/export of wastes) which means Local 
Plans typically run from 2012 to 2026/31 and must also be kept up-to-date.  
 
7 The MWDF is proposed to be replaced with a Minerals and Waste Local Plan (MWLP) which at 
the time of writing had just finished its consultation process and was being schedule for 
introduction in 2015. However, delays have held  this back and so the MWDF is still the applicable 
document set. 
 
8 According to waste returns data hazardous waste primarily originates from industrial processes 
(EA, 2012b). Thus modelling this waste stream has been aligned with C&I waste in this research.  
 
9 C&D waste is shown as recycling only but this merely reflects the link between estimations 
methodologies previously used for aggregates and exempt sites 

 
10 C&D recycling and recovery performance is shown ‘stacked’ in order to make a visual 
comparison with the C&D recycling/recovery target 
 
11 Standard rate landfill tax is applied to ‘active’ waste. This comprises heterogeneous wastes from 
municipal, commercial and some industrial sources  

 
12 LSOAs are a robust unit of assessment as change between Census taking is limited (prior to the 
2011 census the last changes were in 2004) whereas using ‘wards’ is more subjective given the 
frequent political boundary changes  
 
13 Codes are defined as: B1 – Office and Light Industry; B2 – General Industry; B8 – Storage and 
Distribution (see NCC, 2009) 
 
14 IMD was calculated for 2010 based on 2004 LSOA classification and covered 407 LSOAs (see 
DCLG, 2011). In contrast the 2011 census had 422 LSOAs within Northamptonshire. 
 
15 District abbreviations are: CBC - Corby Borough Council; KBC - Kettering Borough Council; 
BCW – Borough Council of Wellingborough; NBC – Northampton Borough Council 
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16 The horizontal axis represents values/behaviour; and the vertical axis represents waste policy 

 
17 Stages 4,5 and 6 are covered in Chapter 7 
18 The 7 WCAs are: shown as CBC, DDC, ENC, KBC, NBC, SNC and WBC in Figure 6.8 (Corby, 
Kettering, Northampton & Wellingborough Borough Councils; and Daventry, East 
Northamptonshire & South Northamptonshire District Councils). 
 
19 Total number of facilities is higher than the operational figure here as it includes 7 facilities 
which were in closure stage of their permit and were removing waste only (4 MRS; 2 ELV and 1 
Vehicle depollution – see EA, 2012a). 
 
20 Pairwise comparison matrices are shown in Appendix 10 

 
21 RRPs are generally associated with logistics and distribution activities in the UK. Such sites have 
been utilised internationally and designated as Eco-Industrial Parks (EIPs) (see Tudor et al. 2007 or 
Chertow, 2008 for detailed discussion of EIPs and underlying Industrial Symbiosis principles). 
 
22 ESA = Environmentally Sensitive Area; SSSI = Sites of Special Scientific Interest 
 
23 WAP: working age population; EcA: economically active; Em: employed; UEm: unemployed 

 

 

Volume 2: 

1 To simplify the model tax exempt materials (e.g. inert materials used for daily cover and road 
construction) are not estimated in order to provide an indicative value 

 
2 The reference scenario achieved a combined recovery rate of 78.3% equating to 2.27Mt of 
materials 
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Appendices 

Appendix 1: Composition of waste streams and calculations 

Compositional analyses are carried out infrequently as a consequence of the cost and time 

involved in undertaking such studies. To overcome this limitation a number of sources 

were utilised to address identified gaps within the data.   Table A1.1 to A1.3 provide 

breakdowns for LACW, C&I and C&D waste arisings by tonnage, percentage and 

indicator category. 

Table A1.1: LACW compositional analysis for Northamptonshire derived from national and 
localised studies (2012) 

LACW fractions LACW Indicator 
category 

Indicator 
% 

Fractions 
% 

Category 
(t) 

Fraction  
(t) 

Conversion 
Factor 

Food waste Organics 33.65% 17.84% 114,318 60,607 0.530 

Garden waste   14.08% - 47,834 0.418 

Other organic   1.73% - 5,877 0.514 

Paper Paper/Card 22.69% 16.65% 77,084 56,565 0.734 

Card   6.04% - 20,520 0.266 

Glass Glass 6.64% 6.64% 22,558 22,558  

Metals Metals 4.30% 4.30% 14,608 14,608  

Plastics Plastics 9.99% 9.99% 33,939 33,939  

Textiles Textiles 2.83% 2.83% 9,614 9,614  

Wood Wood 3.73% 3.73% 12,672 12,672  

WEEE WEEE 2.19% 2.19% 7,440 7,440  

Hazardous Hazardous waste 3.04% 0.53% 10,328 1,801 0.174 

Sanitary   2.51% - 8,527 0.826 

Furniture Bulky waste 1.59% 1.34% 5,402 4,552 0.843 

Mattresses   0.25% - 849 0.157 

Non-combustible Non-recyclables 9.35% 2.82% 31,764 9,580 0.302 

Other wastes   2.32% - 7,882 0.248 

Fines   1.66% - 5,639 0.178 

Combustible   2.37% - 8,052 0.254 

Soil   0.18% - 612 0.193 

Totals  100.00% 100.00% 339,727 339,727  

Sources: (after DEFRA, 2009; NCC, 2007a; 2007b; EA, 2012a; 2012b) 

 

The data sources for LACW included: Municipal Waste Composition – Review of 

Municipal Waste Component Analyses undertaken for DEFRA by Resource Futures 

(DEFRA, 2009); the last compositional analyses of municipal waste undertaken for 
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Northamptonshire County Council by Entec UK (NCC, 2007a; 2007b); and the waste 

returns databases held by the Environment Agency (EA, 2012a; 2012b). 

Table A1.2: C&I compositional analysis for Northamptonshire derived from SOC classification 
with pro-rata LACW composition applied for mixed ordinary wastes (2012) 

C&I national reporting categories 
(SOC) 

C&I Indicator 
category 

Indicator % Fractions % Category (t) 

Animal & Vegetable wastes Organics 14.31% 14.31% 136,639 

Mixed ordinary wastes (non-metallic)  65.52% 65.52% 625,663 

Pro rata MSW (100% of 65.52%) Paper/Card 49.46% 49.46 309,453 

 Glass 14.47% 14.47 90,533 

 Plastics 21.77% 21.77 136,207 

 Wood 6.17% 6.17 38,603 

 Textiles 8.13% 8.13 50,866 

Metallic wastes Metals 10.38% 10.38% 99,156 

Discarded equipment WEEE 1.03% 1.03% 9,789 

Chemical wastes Hazardous waste 3.44% 3.44% 32,889 

Common sludge’s    - 

Mineral wastes Non-recyclables 5.31% 4.46% 50,723 

None Wastes   0.01% - 

Healthcare wastes   0.85% - 

Totals   100.00% 954,850 

Sources: (DEFRA, 2010; DEFRA, 2009; EA, 2012a; 2012b) 

 

Key data sources for C&I waste composition included the last national scale survey carried 

out for DEFRA by Jacobs Engineering Ltd (DEFRA, 2010) and waste returns databases 

held by the Environment Agency (EA, 2012a; 2012b). 

Table A1.3: C&D compositional analysis for Northamptonshire derived from national and local 
studies (2012) 

C&D national reporting categories C&D Indicator category Fractions % Category (t) 

Concrete Inert (Concrete) 59.00% 776,076 

Inert Inert 21.00% 276,230 

Metals Metals 10.00% 131,538 

Timber Wood 7.00% 92,077 

Plasterboard Inert (Plasterboard) 1.40% 18,415 

Insulation Textiles 0.80% 10,523 

Plastics Plastics 0.80% 10,523 

Totals  100.00% 1,315,382 

Sources: (BRE, 2009; WRAP, 2010; EA, 2012a; Monier et al. 2011) 
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Given the low level of risk attached to most C&D wastes studies are relatively scarce when 

compared with other waste streams (e.g. municipal waste). To address this data gap a 

number of regional (BRE, 2009); national (WRAP, 2010); and international (Monier et al. 

2011) studies were collated with waste returns data (EA, 2012a) to provide an indication of 

key categories and significant waste fractions. 

The main issue addressed through collating the available data sources, related to defining 

indicator categories in order to determine the types of facilities most applicable for each 

category. Hence, the compositional analyses (for each controlled waste) were used as part 

of the subsequent infrastructure assessment to identify areas of under or over-capacity. 

Table A1.4 summarises the tonnage data by controlled waste stream and overall values for 

indicator categories.   

Table A1.4: Summary of tonnages by controlled waste stream and overall indicator category for 
Northamptonshire (2012)  

(tonnes) Controlled waste streams  

Indicator category MSW C&I C&D Hazardous Sub-totals 

Organics 114,318 136,639 - - 250,957 

Paper/Card 77,084 309,453 - - 386,537 

Glass 22,558 90,533 - - 113,091 

Metals 14,608 136,207 131,538 - 282,353 

Plastics 33,939 38,603 10,523 - 83,065 

Textiles 9,614 50,866 10,523 - 71,004 

Wood 12,672 99,156 92,077 - 203,904 

WEEE 7,440 9,789 - - 17,229 

Hazardous 10,328 32,889 - 94,243 137,460 

Bulky 5,402 - - - 5,402 

Non-recyclable 31,764 50,723 - - 82,488 

Inert - - 276,230 - 276,230 

Concrete - - 776,076 - 776,076 

Plasterboard - - 18,415 - 18,415 

Baseline tonnages 339,727 954,859 1,315,382 94,243 2,704,212 

Sources: (after NCC, 2007a; 2007b; BRE, 2009; WRAP, 2010; Monier et al. 2011; DEFRA, 2009; 
2010; EA, 2012a; 2012b) 
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Appendix 2: Infrastructure provision for Northamptonshire in 2012 

The following tables are provided to indicate the overall throughput of facilities within 

Northamptonshire for the baseline year of 2012. Tables A2.1 to A2.4 show the breakdown 

of large facility types while  

Table A2.5 gives a breakdown of operational bring sites within the county.   

The final sets of tables (A2.6 to A2.9) are presented to show the performance and type of 

collection system in operation within the seven WCAs and the WDA. 

The policy focus in England on diversion from landfill over the last decade has seen most 

Local Authority areas in England significantly increase provision (whether LA owned or 

merchant operated) of alternative treatment facilities. These are typically more specialised 

and are suitable for specific waste fractions (e.g. green garden waste to open-windrow 

composting). 

Table A9.1: Treatment capacity by facility type for Northamptonshire in 2012 

Treatment type Facility type # facilities Throughput Permitted 

Anaerobic Digestion SR2010 No16: On-farm anaerobic 
digestion 

1 2,600 75,000 

 A23 : Biological Treatment Facility 2 61,860 75,000 

Biological Treatment S0819 : Sewage sludge treatment 1 54,228 250,000 

Car Breaker A19a : ELV Facility 3 133 5,000 

 A19 : Metal Recycling Site (Vehicle 
Dismantler) 

1 0 5,000 

Chemical Treatment A21 : Chemical Treatment Facility 1 1 5,000 

Composting A22 : Composting Facility 6 107,055 164,998 

 S0817 : Composting in closed vessels 1 24,707 75,000 

MRF A15 : Material Recycling Treatment 
Facility 

3 60,611 99,999 

 S0814 : Materials Recycling Facility 1 36,737 73,080 

Metal Recycling A20 : Metal Recycling Site (mixed 
MRS's) 

7 38,110 145,000 

 S0821 : Metal recycling site 1 1,878 5,000 

Physical Treatment A16 : Physical Treatment Facility 8 71,976 489,998 

Physico-Chemical 
Treatment 

A17 : Physico-Chemical Treatment 6 69,891 479,997 

WEEE Treatment S0823 : WEEE treatment 6 65,634 150,000 

Totals  48 595,421 2,098,072 

Source: (EA, 2012a; 2012b) 
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Northamptonshire is typical of this trend and in addition to the facilities listed in Table 

A2.1 a number of applications are transiting through planning within the county which will 

potentially see an additional 0.36Mt of permitted treatment capacity by 2015.      

Table A2.2: Transfer capacity by facility type for Northamptonshire in 2012 

Transfer (WTS) Facility type # facilities Throughput Permitted 

Non-Hazardous WTS 
& Treatment 

S0803 : HCI Waste TS + treatment 3 33,563 90,000 

Non-Hazardous WTS A11 : HCI  Waste TS 17 308,072 649,994 

Hazardous WTS A9 : Hazardous WTS 4 244,818 307,665 

Clinical WTS A12 : Clinical Waste Transfer Station 2 600 30,000 

CA Site S0813 : Non-hazardous & hazardous 
HWA Site 

10 56,878 229,000 

Totals  36 643,931 1,306,659 

Source: (EA, 2012a; 2012b) 

Overall throughput to operational capacity is significant at 0.64Mt and is largely directed 

to sites licensed for non-hazardous and hazardous transfer operations. Such licensing is not 

prescriptive and sites licensed for hazardous waste will mainly handle non-hazardous 

wastes. Permitted transfer capacity has reduced by around 0.50Mt since 2010. This has 

largely been as a result of 9 non-hazardous WTS closing or being relicensed as hazardous 

WTS (n=2).   

Table A2.3: Recovery capacity by operation and permit type for Northamptonshire in 2012 

Recovery operation Permit type # facilities Throughput Permitted 

Deposit of waste to 
land (recovery) 

A25 : Deposit of waste to land as a 
recovery operation 

1 22,441 n/a 

Construction SR2010 No7: Use of waste in 
construction <50,000 tpa 

1 5,098 n/a 

Construction SR2010 No8: Use of waste in 
construction <100,000 tpa 

2 58,799 n/a 

Reclamation SR2010 No9: Use of waste for 
reclamation etc. <50,000 tpa 

1 31,421 n/a 

Totals  5 117,759 n/a 

Source: (EA, 2012a; 2012b) 

These recovery operations have been licensed since 2010 and do not come under the 

environmental permitting regulations. These operations are dealt with by means of 

exemptions licensing and are often absent from other reporting regimes which indicates 
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that a significant quantity of inert materials are likely to be treated via this route and thus 

significantly under-reported. 

Table A2.4: Landfill capacity by facility type for Northamptonshire in 2012 

Landfill Facility type # facilities Throughput Permitted 

Non-Hazardous 
(SNRHW) Landfill 

L02 : Non Hazardous (SNRHW) LF 1 67,866 800,000 

Non-Hazardous 
Landfill 

L04 : Non Hazardous LF 3 357,947 880,000 

Inert Landfill L05 : Inert LF 7 597,098 1,339,000 

Hazardous Restricted L06 : Hazardous Restricted LF 1 1,338 249,999 

Totals  12 1,024,250 3,268,999 

Source: (EA, 2012a; 2012b) 

Landfill capacity has reduced significantly since 2010 when there were a further 3 

operational landfill sites in the county (1 inert and 2 non-hazardous) with a combined 

permitted capacity of 0.80Mt.  

Performance of Local Authorities (collection of waste) 

While the bulk of waste materials pass through the facilities shown previously the waste 

system also includes other assets which reflect policy priorities of individual WCAs.  

Table A2.5: Tonnes of material collected at bring sites in Northamptonshire (2011/12) 

Period of reporting Bring site Recycling 

(tonnes) 

Bring site Reuse 

(tonnes) 

Total bring site 

recycling and reuse 

(tonnes) 

Apr 11 to Jun 11 1,654 1 1,655 

Jul 11 to Sep 11 1,366 1 1,367 

Oct 11 to Dec 11 759 - 759 

Jan 12 to Mar 12 735 0 735 

Total for year 4,513 2 4,515 

Source: (WDF, 2013) 

Table A2.5 shows the total tonnages of materials collected at bring across 

Northamptonshire in the reporting year 2011/12. While the overall tonnage is low this still 

represents a material fraction which may otherwise have been sent for final disposal to 

landfill or for energy recovery outside the county. Material fractions which pass through 
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such sites are often more valuable materials such as textiles, plastics, cans, batteries and 

glass which are readily recyclable and are potentially less prone to contaminants as 

receptacles are typically segregated. 

The following tables show the structure of the LACW collection system in 

Northamptonshire for the baseline year (2012) as well as illustrating the performance of 

those systems in terms of material fractions collected and fate of residual wastes.  

Table A2.6: Summary of LACW collection systems and services offered for dry 
recyclables by district 

WCA Co-mingled Frequency Number of households 4 or > 

recyclables 

(households)2 

Kb Box Wheeled Other Kb Box Wheeled Other 

CBC Yes n/a 2 weekly n/a - 26,692 - 26,692 

DDC No Weekly n/a n/a 32,970 - - 32,970 

ENC Yes n/a n/a n/a - 35,732 1,498 37,230 

KBC Yes 2 weekly 2 weekly n/a 41,038 432 - 41,470 

NBC1 Yes Weekly n/a 2 weekly 80,000 - 12,310 92,310 

SNC Yes Weekly Weekly n/a 35,530 920 - 36,070 

WBC1 Yes n/a 2 weekly n/a - 33,350 - 33,350 

Totals     189,538 97,126 13,808 300,092 

Source: (WDF, 2013) Notes: 1NBC and WBC send 100% of collected materials to MRFs 2Total dwelling stock is 300,990 

 

Table A2.7: Summary of LACW organic waste collection frequency and service with number of 
households serviced by district 

WCA Households Kitchen Waste with 

Garden Waste 

Frequency 

CBC 26,692 No 2 weekly 

DDC 32,970 No 2 weekly 

ENC 37,230 No 2 weekly 

KBC 41,470 No 2 weekly 

NBC 66,153 Yes Weekly 

SNC 33,770 Yes Weekly 

WBC 33,350 No 2 weekly 

Total 271,635   

Source: (WDF, 2013) 
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     Table A2.8: Performance summary of material collected (tonnes) through kerbside schemes for Northamptonshire in 2012 (Source: WDF, 2013)   

Material collection class SNC KBC ENC DDC BCW CBC NBC NCC Total waste 

sent for 

recycling 

(tonnes) 

Aerosols - - - - - - - 11 11 

Aluminium cans 276 - 129 - 174 18 163 - 759 

Automotive batteries 4 - - - - - - 144 148 

Bric-a-brac - - - - - - 0 - 0 

Brown glass - - 29 - 34 - - - 63 

Card 53 - 1,387 - 760 - - 2,288 4,488 

Cardboard beverage packaging 3 2 - - 2 - 2 6 15 

Clear glass - - 81 - 88 - - - 169 

Green garden waste only 460 - 2,288 4,630 4,454 4,052 13,802 13,686 43,372 

Green glass - - 110 - 85 - - - 195 

HDPE [2] - - 206 - - - - - 206 

Mattresses - 6 - - - - - - 6 

Mineral Oil 12 - 2 - - - - 109 123 

Mixed cans - 562 91 620 - 204 - 1 1,477 

Mixed glass 2,460 2,414 1,390 2,146 457 1,350 1,591 451 12,259 

Mixed paper and card - - 1,158 2,593 3,637 933 3,176 49 11,547 

Mixed plastic bottles - 10 95 - - 88 19 54 266 

Mixed tyres - - - - - - - 96 96 

Other compostable waste 10,822 10,083 - 2,977 - - - - 23,882 

Other materials - - - - - - 13,095 3 13,098 

OTHER PLASTICS [7] - - - - - 16 - 60 75 

Other scrap metal 111 - 20 16 - - 28 3,771 3,947 

Paint - - - - - - - 289 289 

Paper 2,663 2,862 2,720 667 167 2,810 - 557 12,447 

PET [1] - - - - - - - 219 219 
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     Table A2.8: (continued) (Source: WDF, 2013)   

Material collection class SNC KBC ENC DDC BCW CBC NBC NCC Total waste 

sent for 

recycling 

(tonnes) 

Plasterboard - - - - - - - 862 862 

Plastics 551 643 318 414 1,132 276 321 728 4,383 

Post-consumer, non-automotive 
batteries 

- - 0 - - - - - 0 

Rubble 418 - - - - - - 11,588 12,006 

Soil 151 - - - - - - - 151 

Steel cans 276 - 295 - 275 54 162 - 1,061 

Textiles & footwear 195 130 42 28 144 - 296 551 1,386 

Video tapes, DVDs and CDs 15 - - - - - - 13 28 

Waste food only - - - 320 - - 642 - 961 

WEEE - Cathode Ray Tubes - - 25 - - - - 1,639 1,664 

WEEE - Fluorescent tubes and 
other light bulbs 

- - 0 - - - - 5 5 

WEEE - Fridges & Freezers - - 19 - - - 20 575 615 

WEEE - Large Domestic App 56 - 15 - - - 18 574 662 

WEEE - Small Domestic App - - 18 - - - - 1,574 1,592 

Wood - - - - - 81 - - 81 

Wood for composting - - - - - - - 919 919 

Total by LA 18,528 16,712 10,437 14,410 11,407 9,883 33,335 40,820 155,532 
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 Table A2.9: Performance summary of residual waste collection for Northamptonshire in 2012 (Source: WDF, 2013)    

Collection method specified SNC KBC ENC DDC BCW CBC NBC Total 

residual 

waste 

(tonnes) 

WDA 

collected 

residual 

(tonnes) 

Asbestos Waste separately collected - - - - - - 0 3 3 

Civic amenity sites waste : Household - - - - - - - 28,432 28,432 

Civic amenity sites waste : Non Household - - - - - - - 504 504 

Collected household waste : Bulky Waste 100 - - 48 113 143 126 529 - 

Collected household waste : Other 44 48 2,215 39 41 32 110 2,529 0 

Collected household waste : Regular Collection 17,179 18,738 12,572 15,871 15,263 12,999 42,055 134,682 5 

Collected household waste : Street Cleaning 848 183 926 2,189 988 431 3,028 8,594 - 

Collected non-household waste : C&I 1,454 1,186 427 1,089 - 400 1,772 6,329 0 

Separately collected healthcare waste 4 96 107 9 - 5 14 234 - 

Clearance of fly-tipped materials 106 138 131 130 503 278 703 1,988 0 

Total by collection method 19,735 20,389 16,378 19,375 16,908 14,288 47,807 183,825 28,944 
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Appendix 3: Example input questionnaire for backcasting workshop 

Input questionnaire:  

Backcasting workshop on desirable future states for the UK waste sector in 2050; from a zero 

waste perspective. 

 
1. Please give an indication of your thoughts on potential and/or desirable states for the UK 

waste sector in 2050. For example; should England follow the targets set by Scotland with 
a recycling rate of 70%? 
 

2. What level of impact (in percentage terms) do you ascribe to waste prevention and reuse, 
on waste arisings and composition, in your vision? 
    

3. In what ways do you feel a zero waste vision should inform policy during the period 2011 
– 2050? 
 

4. What are the key barriers to achieving your vision? 
 

5. Can you suggest ways of overcoming identified barriers? 
 

6. What are the potential drivers for delivering your vision?  
 

7. How may potential drivers be facilitated by policy development? And in what ways may 
these translate into practice?  
 

8. In what ways do you perceive a need for radical change or an incremental approach to 
achieving sustainable waste/resource management?  
 

9. What implications are there in your vision for the UK waste/resource sector, as it currently 
exists, in terms of infrastructure and policy requirements? 
 

10. Are there any wider implications for the UK economy as a whole as a result of your 
vision? 

 

 

 

 

 

Thank you for your time. All ideas and thoughts will be collated to produce a scoping report to be 
utilised in the actual workshop event. A copy of both this scoping report and key findings of the 
event will be supplied in due course; while your thoughts, ideas and opinions may be further sought 
during follow-up interviews. Individuals will be contacted directly and permission requested, 
alternatively willingness to be interviewed latterly and permission for this may be provided by 
signing below. 
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I hereby give my consent to be approached in order to participate in an interview process as follow-
up to this workshop. 

 

Signed: 

 

My contact details are: 

E-mail: 

Phone: 

 

   

Thank you for your participation. 

 

Nicholas Head  (Researcher).  
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Consent Form 

 

For participation in the study of: 

Backcasting workshop on determining desirable future states for the waste sector in 

progressing towards zero waste by 2050 

(Details of the workshop are contained within the attached information documentation) 

 

 

Please initial the boxes 

I have read the information documentation sheet and understand what is 
involved 

  

   
I understand that the information I give will remain confidential and that 
my data will be destroyed after the study has finished 

  

   
I understand that I can withdraw from the workshop at any time  
 

  

   
I am willing for the workshop to be recorded by agreed means (i.e. 
audio tape) 

  

   
I am willing to participate in this project 
 

  

 

Signed: ……………………………………………      Date: …………………………………. 

 

 

Alternatively consent may be given over the telephone (on the contact details provided previously)
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Appendix 4: CIWM survey data for waste professionals 

Survey questions were sent out to waste professionals (n=500) with two questions included relating 

to zero waste for the CIWM 2012 annual survey. The results of the primary category coding to 

Question 1 “What is ‘zero waste’?” are presented in Figure A4.1. 

Figure A4.1: Number of survey respondents to Question 1 by primary category coding (Source: 
CIWM, 2012) 

Figure A4.2: Number of survey respondents to Question 1 by secondary category coding (Source: 
CIWM, 2012). 
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This question was sub-divided into Parts A and B requiring respondents to indicate 

whether or not in their opinion the sector was capable of delivering a zero waste concept, 

followed by asking respondents to explain their choices. Table A4.1 summarises the 

answers to Part A.  

Table A4.1: Summary of responses to Part A of the secondary survey question: “Is the sector 
capable of delivering such a concept as ‘zero waste’?”  

Response Number of 

responses 

Percentage (%) 

No 124 55.86 

Yes 98 44.14 

Total 222 100.00 

Source: (CIWM, 2012) 

To gain a comprehensive assessment of views from the waste sector Part B of question 2 

was analysed to qualitatively determine reasoning behind the answer given in Part A. 

Figure A4.3: Number of survey respondents answering No by primary category coding (Source: 
CIWM, 2012) 
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As with answers to question 1, responses to Part B were coded as primary and secondary 

categories, however this coding was undertaken in terms of whether respondents answered 

Yes or No. Figure A4.3 illustrates the primary category coding. 
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Appendix 5: Example of individual response to plausibility matrix within morphological field 

Table A5.1: Stakeholder response matrix showing individual responses 
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Appendix 6: Scenario narratives in morphological fields 

Table A6.1: Qualitative scenario choices for Circular Economy  

 

 

 

Option Demographics
Socio-Economic 

Situation

Consumption 

patterns + EB

Economic 

output

Economy 

structure

Corporate Eco-

Behaviour

Commodity 

Markets
Energy System Waste System

EfW Capacities / 

Technologies

Sytsem Support 

+ Intervention

Development of 

Landfill Tax

Voluntary 

Improvements

Recycle & Reuse 

Capacity

1

Stable 

Population 

Growth

Growing 

affluence

Good attitudes, 

wasteful 

behaviour

Steady growth
Continued shift 

to services

Uncoordinated 

approaches

Closed markets 

and 

protectionism

Slow shift to 

renewables 

Slow increase in 

recycling and 

recovery rates

Small-scale EfW
Stable 

legislation

Gradual tax 

increases

Stable support 

and 

participation

MSW dominates 

development

2
Population 

boom

Income re-

distribution

Strong increase in 

sustainable 

consumption

Rapid per capita 

growth

Resurgence of 

British 

manufacturing

Low level of 

concern and 

efficiency

Open markets 

and stable 

supplies

Increase in AD 

and associated 

EfW

Decreasing 

trend in waste 

arisings over 

long-term

Large scale EfW
Push for 

deregulation

Hammering of 

landfill

Increase in 

policy driven 

measures

Coordinated 

expansion

3

Rapidly ageing 

population, 

stagnation

Inequality 

reigns

Steady buying 

power, conscious 

choices

Bust-boom cycle

Centre of 

excellence 

(quality based 

production)

Sustainability / 

resource efficiency 

drive

High prices and 

strong volatility

Large increase 

in ATT 

(centralised)

Low impact of 

waste 

prevention 

policies

De-coupled fuel 

production and 

consumption

More 

legislation, 

more 

standardisation

Landfill 

reduction and 

Incineration tax

Decrease in 

policy measures 

/ industry 

responses

High-Tech focus 

on C&I wastes

4

Increasing 

population 

balances ageing

Poorer society

Low consumption 

and high 

environmental 

consciousness

Double dip 

recession 

(cycle)

Balancing 

(growth of green 

economy)

Economic 

competitiveness 

depends on CE 

approach (behind 

curve)

Steadily 

increasing 

prices

Mergers 

between energy 

and waste 

companies

High impact of 

waste 

prevention 

policies

Large % 

increase in 

centralised AD 

(biogas 

production)

Zero Waste 

England 

(Resource 

Management 

Strategy, 2020)

Sophisticated 

materials based 

approach

No policy but 

strong industry 

response to 

consumer 

demands

Low-Tech 

uncoordinated 

and diverse

5

Decreasing 

population 

growth 

Income squeeze 

continues

High consumption 

and low 

environmentally 

conscious 

behaviour

Triple dip 

recession 

(cycle)

Product design 

and 

stewardship 

focus

Economic 

competitiveness 

depends on CE 

approach (ahead 

of curve)

Reversal of 

super-cycle

Market reform 

for smaller 

producer entry

Shift to 

materials based 

approach 

Large % 

increase in on-

farm AD 

(decentralised)

Secondary 

materials 

markets flourish 

(replace virgin 

materials)

Decrease in 

landfill tax 

Industry lead on 

C&I and C&D

Holistic and 

integrated 

approach to 

resource 

management
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Table A6.2: Qualitative scenario choices for Valorisation and Materials 

 

 

 

Option Demographics
Socio-Economic 

Situation

Consumption 

patterns + EB

Economic 

output

Economy 

structure

Corporate Eco-

Behaviour

Commodity 

Markets
Energy System Waste System

EfW Capacities / 

Technologies

Sytsem Support 

+ Intervention

Development of 

Landfill Tax

Voluntary 

Improvements

Recycle & Reuse 

Capacity

1

Stable 

Population 

Growth

Growing 

affluence

Good attitudes, 

wasteful 

behaviour

Steady growth
Continued shift 

to services

Uncoordinated 

approaches

Closed markets 

and 

protectionism

Slow shift to 

renewables 

Slow increase in 

recycling and 

recovery rates

Small-scale EfW
Stable 

legislation

Gradual tax 

increases

Stable support 

and 

participation

MSW dominates 

development

2
Population 

boom

Income re-

distribution

Strong increase in 

sustainable 

consumption

Rapid per capita 

growth

Resurgence of 

British 

manufacturing

Low level of 

concern and 

efficiency

Open markets 

and stable 

supplies

Increase in AD 

and associated 

EfW

Decreasing 

trend in waste 

arisings over 

long-term

Large scale EfW
Push for 

deregulation

Hammering of 

landfill

Increase in 

policy driven 

measures

Coordinated 

expansion

3

Rapidly ageing 

population, 

stagnation

Inequality 

reigns

Steady buying 

power, conscious 

choices

Bust-boom cycle

Centre of 

excellence 

(quality based 

production)

Sustainability / 

resource efficiency 

drive

High prices and 

strong volatility

Large increase 

in ATT 

(centralised)

Low impact of 

waste 

prevention 

policies

De-coupled fuel 

production and 

consumption

More 

legislation, 

more 

standardisation

Landfill 

reduction and 

Incineration tax

Decrease in 

policy measures 

/ industry 

responses

High-Tech focus 

on C&I wastes

4

Increasing 

population 

balances ageing

Poorer society

Low consumption 

and high 

environmental 

consciousness

Double dip 

recession 

(cycle)

Balancing 

(growth of green 

economy)

Economic 

competitiveness 

depends on CE 

approach (behind 

curve)

Steadily 

increasing 

prices

Mergers 

between energy 

and waste 

companies

High impact of 

waste 

prevention 

policies

Large % 

increase in 

centralised AD 

(biogas 

production)

Zero Waste 

England 

(Resource 

Management 

Strategy, 2020)

Sophisticated 

materials based 

approach

No policy but 

strong industry 

response to 

consumer 

demands

Low-Tech 

uncoordinated 

and diverse

5

Decreasing 

population 

growth 

Income squeeze 

continues

High consumption 

and low 

environmentally 

conscious 

behaviour

Triple dip 

recession 

(cycle)

Product design 

and 

stewardship 

focus

Economic 

competitiveness 

depends on CE 

approach (ahead 

of curve)

Reversal of 

super-cycle

Market reform 

for smaller 

producer entry

Shift to 

materials based 

approach 

Large % 

increase in on-

farm AD 

(decentralised)

Secondary 

materials 

markets flourish 

(replace virgin 

materials)

Decrease in 

landfill tax 

Industry lead on 

C&I and C&D

Holistic and 

integrated 

approach to 

resource 

management
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Table A6.3: Qualitative scenario choices for Ecological Citizenship 

 

 

 

Option Demographics
Socio-Economic 

Situation

Consumption 

patterns + EB

Economic 

output

Economy 

structure

Corporate Eco-

Behaviour

Commodity 

Markets
Energy System Waste System

EfW Capacities / 

Technologies

Sytsem Support 

+ Intervention

Development of 

Landfill Tax

Voluntary 

Improvements

Recycle & Reuse 

Capacity

1

Stable 

Population 

Growth

Growing 

affluence

Good attitudes, 

wasteful 

behaviour

Steady growth
Continued shift 

to services

Uncoordinated 

approaches

Closed markets 

and 

protectionism

Slow shift to 

renewables 

Slow increase in 

recycling and 

recovery rates

Small-scale EfW
Stable 

legislation

Gradual tax 

increases

Stable support 

and 

participation

MSW dominates 

development

2
Population 

boom

Income re-

distribution

Strong increase in 

sustainable 

consumption

Rapid per capita 

growth

Resurgence of 

British 

manufacturing

Low level of 

concern and 

efficiency

Open markets 

and stable 

supplies

Increase in AD 

and associated 

EfW

Decreasing 

trend in waste 

arisings over 

long-term

Large scale EfW
Push for 

deregulation

Hammering of 

landfill

Increase in 

policy driven 

measures

Coordinated 

expansion

3

Rapidly ageing 

population, 

stagnation

Inequality 

reigns

Steady buying 

power, conscious 

choices

Bust-boom cycle

Centre of 

excellence 

(quality based 

production)

Sustainability / 

resource efficiency 

drive

High prices and 

strong volatility

Large increase 

in ATT 

(centralised)

Low impact of 

waste 

prevention 

policies

De-coupled fuel 

production and 

consumption

More 

legislation, 

more 

standardisation

Landfill 

reduction and 

Incineration tax

Decrease in 

policy measures 

/ industry 

responses

High-Tech focus 

on C&I wastes

4

Increasing 

population 

balances ageing

Poorer society

Low consumption 

and high 

environmental 

consciousness

Double dip 

recession 

(cycle)

Balancing 

(growth of green 

economy)

Economic 

competitiveness 

depends on CE 

approach (behind 

curve)

Steadily 

increasing 

prices

Mergers 

between energy 

and waste 

companies

High impact of 

waste 

prevention 

policies

Large % 

increase in 

centralised AD 

(biogas 

production)

Zero Waste 

England 

(Resource 

Management 

Strategy, 2020)

Sophisticated 

materials based 

approach

No policy but 

strong industry 

response to 

consumer 

demands

Low-Tech 

uncoordinated 

and diverse

5

Decreasing 

population 

growth 

Income squeeze 

continues

High consumption 

and low 

environmentally 

conscious 

behaviour

Triple dip 

recession 

(cycle)

Product design 

and 

stewardship 

focus

Economic 

competitiveness 

depends on CE 

approach (ahead 

of curve)

Reversal of 

super-cycle

Market reform 

for smaller 

producer entry

Shift to 

materials based 

approach 

Large % 

increase in on-

farm AD 

(decentralised)

Secondary 

materials 

markets flourish 

(replace virgin 

materials)

Decrease in 

landfill tax 

Industry lead on 

C&I and C&D

Holistic and 

integrated 

approach to 

resource 

management
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Table A6.4: Qualitative scenario choices for Economic Destabilisation 

Note: EB = Environmental Behaviour 

 

Option Demographics
Socio-Economic 

Situation

Consumption 

patterns + EB

Economic 

output

Economy 

structure

Corporate Eco-

Behaviour

Commodity 

Markets
Energy System Waste System

EfW Capacities / 

Technologies

Sytsem Support 

+ Intervention

Development of 

Landfill Tax

Voluntary 

Improvements

Recycle & Reuse 

Capacity

1

Stable 

Population 

Growth

Growing 

affluence

Good attitudes, 

wasteful 

behaviour

Steady growth
Continued shift 

to services

Uncoordinated 

approaches

Closed markets 

and 

protectionism

Slow shift to 

renewables 

Slow increase in 

recycling and 

recovery rates

Small-scale EfW
Stable 

legislation

Gradual tax 

increases

Stable support 

and 

participation

MSW dominates 

development

2
Population 

boom

Income re-

distribution

Strong increase in 

sustainable 

consumption

Rapid per capita 

growth

Resurgence of 

British 

manufacturing

Low level of 

concern and 

efficiency

Open markets 

and stable 

supplies

Increase in AD 

and associated 

EfW

Decreasing 

trend in waste 

arisings over 

long-term

Large scale EfW
Push for 

deregulation

Hammering of 

landfill

Increase in 

policy driven 

measures

Coordinated 

expansion

3

Rapidly ageing 

population, 

stagnation

Inequality 

reigns

Steady buying 

power, conscious 

choices

Bust-boom cycle

Centre of 

excellence 

(quality based 

production)

Sustainability / 

resource efficiency 

drive

High prices and 

strong volatility

Large increase 

in ATT 

(centralised)

Low impact of 

waste 

prevention 

policies

De-coupled fuel 

production and 

consumption

More 

legislation, 

more 

standardisation

Landfill 

reduction and 

Incineration tax

Decrease in 

policy measures 

/ industry 

responses

High-Tech focus 

on C&I wastes

4

Increasing 

population 

balances ageing

Poorer society

Low consumption 

and high 

environmental 

consciousness

Double dip 

recession 

(cycle)

Balancing 

(growth of green 

economy)

Economic 

competitiveness 

depends on CE 

approach (behind 

curve)

Steadily 

increasing 

prices

Mergers 

between energy 

and waste 

companies

High impact of 

waste 

prevention 

policies

Large % 

increase in 

centralised AD 

(biogas 

production)

Zero Waste 

England 

(Resource 

Management 

Strategy, 2020)

Sophisticated 

materials based 

approach

No policy but 

strong industry 

response to 

consumer 

demands

Low-Tech 

uncoordinated 

and diverse

5

Decreasing 

population 

growth 

Income squeeze 

continues

High consumption 

and low 

environmentally 

conscious 

behaviour

Triple dip 

recession 

(cycle)

Product design 

and 

stewardship 

focus

Economic 

competitiveness 

depends on CE 

approach (ahead 

of curve)

Reversal of 

super-cycle

Market reform 

for smaller 

producer entry

Shift to 

materials based 

approach 

Large % 

increase in on-

farm AD 

(decentralised)

Secondary 

materials 

markets flourish 

(replace virgin 

materials)

Decrease in 

landfill tax 

Industry lead on 

C&I and C&D

Holistic and 

integrated 

approach to 

resource 

management
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Appendix 7: Factor values for system variables impacts 

Table A7.1: Cumulative impact calculations used in the quantitative model for CE scenario 

Year Cumulative impact of 

exogenous variables 

Cumulative impact of 

endogenous variables 

Year Aggregated cumulative 

impact of variables 

 LACW C&I C&D LACW C&I C&D  LACW C&I C&D 

2012 0.9954 0.9970 0.9950 0.9996 0.9996 0.9995 2012 0.9975 0.9983 0.9973 

2013 0.9954 0.9970 0.9950 0.9996 0.9996 0.9995 2013 0.9975 0.9983 0.9973 

2014 0.9968 0.9991 0.9964 0.9996 0.9996 0.9995 2014 0.9982 0.9993 0.9980 

2015 0.9984 1.0007 0.9980 0.9996 0.9996 0.9995 2015 0.9990 1.0001 0.9988 

2016 0.9984 1.0007 0.9980 0.9996 0.9996 0.9994 2016 0.9990 1.0001 0.9987 

2017 0.9984 1.0007 0.9980 0.9996 0.9996 0.9994 2017 0.9990 1.0001 0.9987 

2018 1.0020 1.0043 1.0016 0.9994 0.9994 0.9994 2018 1.0007 1.0019 1.0005 

2019 1.0020 1.0043 1.0016 0.9994 0.9994 0.9994 2019 1.0007 1.0019 1.0005 

2020 1.0009 1.0032 1.0009 0.9994 0.9994 0.9994 2020 1.0002 1.0013 1.0002 

2021 0.9988 1.0007 0.9992 0.9994 0.9994 0.9994 2021 0.9991 1.0001 0.9993 

2022 0.9983 1.0001 0.9987 0.9994 0.9994 0.9994 2022 0.9988 0.9998 0.9991 

2023 0.9977 0.9996 0.9981 0.9994 0.9994 0.9994 2023 0.9986 0.9995 0.9988 

2024 0.9974 0.9993 0.9978 0.9994 0.9994 0.9994 2024 0.9984 0.9993 0.9986 

2025 0.9966 0.9976 0.9974 0.9994 0.9994 0.9994 2025 0.9980 0.9985 0.9984 

2026 0.9970 0.9980 0.9978 0.9991 0.9991 0.9989 2026 0.9980 0.9985 0.9984 

2027 0.9966 0.9976 0.9974 0.9991 0.9991 0.9989 2027 0.9979 0.9984 0.9982 

2028 0.9972 0.9982 0.9980 0.9991 0.9991 0.9989 2028 0.9981 0.9986 0.9984 

2029 0.9974 0.9984 0.9981 0.9991 0.9991 0.9989 2029 0.9982 0.9987 0.9985 

2030 0.9977 0.9987 0.9985 0.9991 0.9991 0.9989 2030 0.9984 0.9989 0.9987 

2031 0.9980 0.9988 0.9984 0.9981 0.9981 0.9979 2031 0.9981 0.9984 0.9982 

2032 0.9980 0.9988 0.9984 0.9978 0.9978 0.9976 2032 0.9979 0.9983 0.9980 

2033 0.9977 0.9984 0.9980 0.9978 0.9978 0.9976 2033 0.9977 0.9981 0.9978 

2034 0.9982 0.9989 0.9986 0.9978 0.9978 0.9976 2034 0.9980 0.9983 0.9981 

2035 0.9977 0.9984 0.9980 0.9974 0.9974 0.9972 2035 0.9975 0.9979 0.9976 

2036 0.9973 0.9980 0.9977 0.9974 0.9974 0.9972 2036 0.9974 0.9977 0.9974 

2037 0.9970 0.9977 0.9973 0.9974 0.9974 0.9972 2037 0.9972 0.9975 0.9973 

2038 0.9968 0.9975 0.9971 0.9974 0.9974 0.9972 2038 0.9971 0.9974 0.9972 

2039 0.9970 0.9977 0.9973 0.9974 0.9974 0.9972 2039 0.9972 0.9975 0.9973 

2040 0.9973 0.9980 0.9977 0.9974 0.9974 0.9972 2040 0.9974 0.9977 0.9974 

2041 0.9963 0.9970 0.9968 0.9970 0.9970 0.9969 2041 0.9966 0.9970 0.9968 

2042 0.9968 0.9975 0.9973 0.9970 0.9970 0.9969 2042 0.9969 0.9973 0.9971 

2043 0.9970 0.9977 0.9975 0.9970 0.9970 0.9969 2043 0.9970 0.9974 0.9972 

2044 0.9973 0.9980 0.9979 0.9970 0.9970 0.9969 2044 0.9972 0.9975 0.9974 

2045 0.9977 0.9984 0.9982 0.9970 0.9970 0.9969 2045 0.9974 0.9977 0.9975 

2046 0.9973 0.9980 0.9979 0.9967 0.9967 0.9965 2046 0.9970 0.9974 0.9972 

2047 0.9970 0.9977 0.9975 0.9967 0.9967 0.9965 2047 0.9968 0.9972 0.9970 

2048 0.9968 0.9975 0.9973 0.9967 0.9967 0.9965 2048 0.9967 0.9971 0.9969 

2049 0.9963 0.9970 0.9968 0.9967 0.9967 0.9965 2049 0.9965 0.9968 0.9966 

2050 0.9959 0.9966 0.9964 0.9967 0.9967 0.9965 2050 0.9963 0.9966 0.9965 
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Table A7.2: Cumulative impact calculations used in the quantitative model for VM scenario 

Year Cumulative impact of 

exogenous variables 

Cumulative impact of 

endogenous variables 

Year Aggregated cumulative impact 

of variables 

 
MSW C&I C&D MSW C&I C&D 

 
MSW C&I C&D 

2012 0.9954 0.9970 0.9950 0.9994 0.9995 0.9994 2012 0.9974 0.9982 0.9972 

2013 0.9954 0.9970 0.9950 0.9994 0.9995 0.9994 2013 0.9974 0.9982 0.9972 

2014 0.9968 0.9991 0.9964 0.9994 0.9995 0.9994 2014 0.9981 0.9993 0.9979 

2015 0.9984 1.0007 0.9980 0.9994 0.9995 0.9994 2015 0.9989 1.0001 0.9987 

2016 0.9984 1.0007 0.9980 0.9996 0.9996 0.9994 2016 0.9990 1.0002 0.9987 

2017 0.9984 1.0007 0.9980 0.9992 0.9993 0.9989 2017 0.9988 1.0000 0.9984 

2018 1.0020 1.0043 1.0016 0.9992 0.9993 0.9989 2018 1.0006 1.0018 1.0002 

2019 1.0020 1.0043 1.0016 0.9992 0.9993 0.9989 2019 1.0006 1.0018 1.0002 

2020 1.0009 1.0032 1.0009 0.9983 0.9980 0.9961 2020 0.9996 1.0006 0.9985 

2021 0.9988 1.0007 0.9992 0.9983 0.9980 0.9961 2021 0.9985 0.9994 0.9976 

2022 0.9983 1.0001 0.9987 0.9983 0.9980 0.9961 2022 0.9983 0.9991 0.9974 

2023 0.9977 0.9996 0.9981 0.9983 0.9980 0.9961 2023 0.9980 0.9988 0.9971 

2024 0.9974 0.9993 0.9978 0.9983 0.9980 0.9961 2024 0.9978 0.9986 0.9969 

2025 0.9966 0.9976 0.9974 0.9983 0.9980 0.9961 2025 0.9975 0.9978 0.9968 

2026 0.9970 0.9980 0.9978 0.9983 0.9980 0.9961 2026 0.9976 0.9980 0.9969 

2027 0.9966 0.9976 0.9974 0.9983 0.9980 0.9961 2027 0.9975 0.9978 0.9968 

2028 0.9972 0.9982 0.9980 0.9983 0.9980 0.9961 2028 0.9977 0.9981 0.9970 

2029 0.9974 0.9984 0.9981 0.9983 0.9980 0.9961 2029 0.9978 0.9982 0.9971 

2030 0.9977 0.9987 0.9985 0.9983 0.9980 0.9961 2030 0.9980 0.9984 0.9973 

2031 0.9980 0.9988 0.9984 0.9981 0.9979 0.9959 2031 0.9981 0.9983 0.9971 

2032 0.9980 0.9988 0.9984 0.9981 0.9979 0.9959 2032 0.9981 0.9983 0.9971 

2033 0.9977 0.9984 0.9980 0.9981 0.9979 0.9959 2033 0.9979 0.9981 0.9970 

2034 0.9982 0.9989 0.9986 0.9981 0.9979 0.9959 2034 0.9982 0.9984 0.9972 

2035 0.9977 0.9984 0.9980 0.9981 0.9979 0.9959 2035 0.9979 0.9981 0.9970 

2036 0.9973 0.9980 0.9977 0.9981 0.9979 0.9959 2036 0.9977 0.9979 0.9968 

2037 0.9970 0.9977 0.9973 0.9981 0.9979 0.9959 2037 0.9975 0.9978 0.9966 

2038 0.9968 0.9975 0.9971 0.9981 0.9979 0.9959 2038 0.9974 0.9977 0.9965 

2039 0.9970 0.9977 0.9973 0.9981 0.9979 0.9959 2039 0.9975 0.9978 0.9966 

2040 0.9973 0.9980 0.9977 0.9981 0.9979 0.9959 2040 0.9977 0.9979 0.9968 

2041 0.9963 0.9970 0.9968 0.9979 0.9977 0.9957 2041 0.9971 0.9973 0.9963 

2042 0.9968 0.9975 0.9973 0.9979 0.9977 0.9957 2042 0.9974 0.9976 0.9965 

2043 0.9970 0.9977 0.9975 0.9979 0.9977 0.9957 2043 0.9974 0.9977 0.9966 

2044 0.9973 0.9980 0.9979 0.9979 0.9977 0.9957 2044 0.9976 0.9979 0.9968 

2045 0.9977 0.9984 0.9982 0.9979 0.9977 0.9957 2045 0.9978 0.9980 0.9970 

2046 0.9973 0.9980 0.9979 0.9979 0.9977 0.9957 2046 0.9976 0.9979 0.9968 

2047 0.9970 0.9977 0.9975 0.9979 0.9977 0.9957 2047 0.9974 0.9977 0.9966 

2048 0.9968 0.9975 0.9973 0.9979 0.9977 0.9957 2048 0.9974 0.9976 0.9965 

2049 0.9963 0.9970 0.9968 0.9979 0.9977 0.9957 2049 0.9971 0.9973 0.9963 

2050 0.9959 0.9966 0.9964 0.9979 0.9977 0.9957 2050 0.9969 0.9971 0.9961 
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Table A7.3: Cumulative impact calculations used in the quantitative model for EC scenario 

Year Cumulative impact of 

exogenous variables 

Cumulative impact of 

endogenous variables 

Year Aggregated cumulative impact 

of variables 

 MSW C&I C&D MSW C&I C&D  MSW C&I C&D 

2012 0.9954 0.9970 0.9950 0.9998 0.9998 0.9997 2012 0.9976 0.9984 0.9973 

2013 0.9954 0.9970 0.9950 0.9998 0.9998 0.9997 2013 0.9976 0.9984 0.9973 

2014 0.9968 0.9991 0.9964 0.9998 0.9998 0.9997 2014 0.9983 0.9995 0.9980 

2015 0.9984 1.0007 0.9980 0.9998 0.9998 0.9997 2015 0.9991 1.0003 0.9988 

2016 0.9984 1.0007 0.9980 0.9998 0.9998 0.9997 2016 0.9991 1.0003 0.9988 

2017 0.9984 1.0007 0.9980 0.9998 0.9998 0.9997 2017 0.9991 1.0003 0.9988 

2018 1.0020 1.0043 1.0016 0.9998 0.9998 0.9997 2018 1.0009 1.0020 1.0006 

2019 1.0020 1.0043 1.0016 0.9998 0.9998 0.9997 2019 1.0009 1.0020 1.0006 

2020 1.0009 1.0032 1.0009 0.9998 0.9998 0.9997 2020 1.0003 1.0015 1.0003 

2021 0.9988 1.0007 0.9992 0.9997 0.9996 0.9996 2021 0.9993 1.0002 0.9994 

2022 0.9983 1.0001 0.9987 0.9997 0.9996 0.9996 2022 0.9990 0.9999 0.9991 

2023 0.9977 0.9996 0.9981 0.9997 0.9996 0.9996 2023 0.9987 0.9996 0.9989 

2024 0.9974 0.9993 0.9978 0.9997 0.9996 0.9996 2024 0.9985 0.9994 0.9987 

2025 0.9966 0.9976 0.9974 0.9995 0.9994 0.9996 2025 0.9981 0.9985 0.9985 

2026 0.9970 0.9980 0.9978 0.9995 0.9994 0.9996 2026 0.9982 0.9987 0.9987 

2027 0.9966 0.9976 0.9974 0.9995 0.9994 0.9996 2027 0.9981 0.9985 0.9985 

2028 0.9972 0.9982 0.9980 0.9995 0.9994 0.9996 2028 0.9983 0.9988 0.9988 

2029 0.9974 0.9984 0.9981 0.9995 0.9994 0.9996 2029 0.9984 0.9989 0.9989 

2030 0.9977 0.9987 0.9985 0.9995 0.9994 0.9996 2030 0.9986 0.9991 0.9990 

2031 0.9980 0.9988 0.9984 0.9995 0.9994 0.9996 2031 0.9988 0.9991 0.9990 

2032 0.9980 0.9988 0.9984 0.9995 0.9994 0.9996 2032 0.9988 0.9991 0.9990 

2033 0.9977 0.9984 0.9980 0.9995 0.9994 0.9996 2033 0.9986 0.9989 0.9988 

2034 0.9982 0.9989 0.9986 0.9995 0.9994 0.9996 2034 0.9988 0.9992 0.9991 

2035 0.9977 0.9984 0.9980 0.9995 0.9994 0.9996 2035 0.9986 0.9989 0.9988 

2036 0.9973 0.9980 0.9977 0.9995 0.9994 0.9996 2036 0.9984 0.9987 0.9986 

2037 0.9970 0.9977 0.9973 0.9995 0.9994 0.9996 2037 0.9982 0.9985 0.9985 

2038 0.9968 0.9975 0.9971 0.9995 0.9994 0.9996 2038 0.9981 0.9984 0.9984 

2039 0.9970 0.9977 0.9973 0.9995 0.9994 0.9996 2039 0.9982 0.9985 0.9985 

2040 0.9973 0.9980 0.9977 0.9995 0.9994 0.9996 2040 0.9984 0.9987 0.9986 

2041 0.9963 0.9970 0.9968 0.9995 0.9994 0.9996 2041 0.9979 0.9982 0.9982 

2042 0.9968 0.9975 0.9973 0.9995 0.9994 0.9996 2042 0.9981 0.9984 0.9985 

2043 0.9970 0.9977 0.9975 0.9995 0.9994 0.9996 2043 0.9982 0.9985 0.9985 

2044 0.9973 0.9980 0.9979 0.9995 0.9994 0.9996 2044 0.9984 0.9987 0.9987 

2045 0.9977 0.9984 0.9982 0.9995 0.9994 0.9996 2045 0.9986 0.9989 0.9989 

2046 0.9973 0.9980 0.9979 0.9995 0.9994 0.9996 2046 0.9984 0.9987 0.9987 

2047 0.9970 0.9977 0.9975 0.9995 0.9994 0.9996 2047 0.9982 0.9985 0.9985 

2048 0.9968 0.9975 0.9973 0.9995 0.9994 0.9996 2048 0.9981 0.9984 0.9985 

2049 0.9963 0.9970 0.9968 0.9995 0.9994 0.9996 2049 0.9979 0.9982 0.9982 

2050 0.9959 0.9966 0.9964 0.9995 0.9994 0.9996 2050 0.9977 0.9980 0.9980 
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Table A7.4: Cumulative impact calculations used in the quantitative model for ED scenario 

Year Cumulative impact of 

exogenous variables 

Cumulative impact of 

endogenous variables 

Year Aggregated cumulative impact 

of variables 

 MSW C&I C&D MSW C&I C&D  MSW C&I C&D 

2012 0.9990 1.0009 0.9990 1.0001 1.0001 1.0002 2012 0.9995 1.0005 0.9996 

2013 0.9990 1.0009 0.9990 1.0001 1.0001 1.0002 2013 0.9995 1.0005 0.9996 

2014 1.0004 1.0030 1.0005 1.0001 1.0001 1.0002 2014 1.0003 1.0016 1.0003 

2015 1.0020 1.0046 1.0021 1.0003 1.0003 1.0002 2015 1.0011 1.0024 1.0011 

2016 1.0020 1.0046 1.0021 1.0003 1.0003 1.0002 2016 1.0011 1.0024 1.0011 

2017 1.0020 1.0046 1.0021 1.0003 1.0003 1.0002 2017 1.0011 1.0024 1.0011 

2018 1.0020 1.0046 1.0021 1.0003 1.0003 1.0002 2018 1.0011 1.0024 1.0011 

2019 1.0020 1.0046 1.0021 1.0003 1.0003 1.0002 2019 1.0011 1.0024 1.0011 

2020 1.0020 1.0046 1.0021 1.0005 1.0005 1.0005 2020 1.0013 1.0026 1.0013 

2021 1.0034 1.0060 1.0035 1.0005 1.0005 1.0005 2021 1.0020 1.0033 1.0020 

2022 1.0034 1.0060 1.0035 1.0005 1.0005 1.0005 2022 1.0020 1.0033 1.0020 

2023 1.0034 1.0060 1.0035 1.0005 1.0005 1.0005 2023 1.0020 1.0033 1.0020 

2024 1.0034 1.0060 1.0035 1.0005 1.0005 1.0005 2024 1.0020 1.0033 1.0020 

2025 1.0034 1.0064 1.0035 1.0005 1.0005 1.0005 2025 1.0020 1.0035 1.0020 

2026 1.0045 1.0075 1.0049 1.0005 1.0005 1.0005 2026 1.0025 1.0040 1.0027 

2027 1.0045 1.0075 1.0049 1.0005 1.0005 1.0005 2027 1.0025 1.0040 1.0027 

2028 1.0045 1.0075 1.0049 1.0005 1.0005 1.0005 2028 1.0025 1.0040 1.0027 

2029 1.0045 1.0075 1.0049 1.0005 1.0005 1.0005 2029 1.0025 1.0040 1.0027 

2030 1.0045 1.0075 1.0049 1.0005 1.0005 1.0005 2030 1.0025 1.0040 1.0027 

2031 1.0061 1.0088 1.0061 1.0005 1.0005 1.0005 2031 1.0033 1.0046 1.0033 

2032 1.0061 1.0088 1.0061 1.0005 1.0005 1.0005 2032 1.0033 1.0046 1.0033 

2033 1.0061 1.0088 1.0061 1.0006 1.0006 1.0005 2033 1.0033 1.0047 1.0033 

2034 1.0061 1.0088 1.0061 1.0006 1.0006 1.0005 2034 1.0033 1.0047 1.0033 

2035 1.0070 1.0096 1.0070 1.0006 1.0006 1.0005 2035 1.0038 1.0051 1.0038 

2036 1.0070 1.0096 1.0070 1.0006 1.0006 1.0005 2036 1.0038 1.0051 1.0038 

2037 1.0070 1.0096 1.0070 1.0006 1.0006 1.0005 2037 1.0038 1.0051 1.0038 

2038 1.0070 1.0096 1.0070 1.0006 1.0006 1.0005 2038 1.0038 1.0051 1.0038 

2039 1.0070 1.0096 1.0070 1.0006 1.0006 1.0005 2039 1.0038 1.0051 1.0038 

2040 1.0070 1.0096 1.0070 1.0006 1.0006 1.0005 2040 1.0038 1.0051 1.0038 

2041 1.0055 1.0075 1.0055 1.0006 1.0006 1.0005 2041 1.0031 1.0041 1.0030 

2042 1.0055 1.0075 1.0055 1.0006 1.0006 1.0005 2042 1.0031 1.0041 1.0030 

2043 1.0055 1.0075 1.0055 1.0006 1.0006 1.0005 2043 1.0031 1.0041 1.0030 

2044 1.0055 1.0075 1.0055 1.0006 1.0006 1.0005 2044 1.0031 1.0041 1.0030 

2045 1.0055 1.0075 1.0055 1.0006 1.0006 1.0005 2045 1.0031 1.0041 1.0030 

2046 1.0055 1.0075 1.0055 1.0006 1.0006 1.0005 2046 1.0031 1.0041 1.0030 

2047 1.0055 1.0075 1.0055 1.0006 1.0006 1.0005 2047 1.0031 1.0041 1.0030 

2048 1.0055 1.0075 1.0055 1.0006 1.0006 1.0005 2048 1.0031 1.0041 1.0030 

2049 1.0055 1.0075 1.0055 1.0006 1.0006 1.0005 2049 1.0031 1.0041 1.0030 

2050 1.0055 1.0075 1.0055 1.0006 1.0006 1.0005 2050 1.0031 1.0041 1.0030 

Note: Highlighted rows are those shown in Table 5.11 (page 199) 
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Appendix 8: Waste stream calculations for gate fees  

Table A8.1: LACW gate fees costs and savings calculations  

Year CE costs 
(£M) 

CE 
savings 
(£M) 

VM costs 
(£M) 

VM 
savings 
(£M) 

EC costs 
(£M) 

EC 
savings 
(£M) 

ED costs 
(£M) 

ED 
savings 
(£M) 

2012 9.44 - 9.44 - 9.44 - 9.44 - 
2013 9.45 0.07 9.44 0.13 9.44 0.04 9.60 0.29 
2014 9.48 0.15 9.45 0.15 9.47 0.09 9.70 0.19 
2015 9.52 0.16 9.47 0.17 9.53 0.21 9.92 0.39 
2016 9.64 0.15 9.60 0.28 9.66 0.10 10.12 0.46 
2017 9.79 0.18 9.72 0.21 9.80 0.18 10.31 0.43 
2018 9.93 0.16 9.86 0.23 9.96 0.16 10.53 0.49 
2019 10.08 0.19 10.02 0.34 10.14 0.17 10.82 0.61 
2020 10.24 0.21 10.02 0.21 10.40 0.14 11.14 0.67 
2021 10.39 0.21 10.03 0.22 10.63 0.19 11.39 0.17 
2022 10.54 0.21 10.04 0.22 10.87 0.19 11.65 0.17 
2023 10.69 0.21 10.04 0.22 11.12 0.19 11.90 0.18 
2024 10.83 0.21 10.05 0.21 11.36 0.20 12.17 0.18 
2025 10.97 0.21 10.05 0.21 11.61 0.20 12.44 0.18 
2026 11.12 0.21 10.05 0.21 11.86 0.20 12.72 0.19 
2027 11.26 0.21 10.05 0.21 12.12 0.20 13.00 0.19 
2028 11.41 0.21 10.05 0.21 12.38 0.21 13.29 0.19 
2029 11.57 0.22 10.05 0.20 12.65 0.21 13.59 0.20 
2030 11.72 0.22 10.05 0.20 12.93 0.22 13.68 0.20 
2031 11.89 0.26 10.01 0.15 13.18 0.17 13.73 0.13 
2032 12.06 0.26 9.97 0.15 13.44 0.17 13.78 0.13 
2033 12.22 0.26 9.93 0.15 13.70 0.17 13.83 0.13 
2034 12.40 0.26 9.90 0.15 13.97 0.18 13.89 0.13 
2035 12.56 0.26 9.86 0.14 14.24 0.18 13.94 0.14 
2036 12.73 0.26 9.82 0.14 14.52 0.18 14.00 0.14 
2037 12.90 0.26 9.78 0.14 14.80 0.18 14.05 0.14 
2038 13.07 0.26 9.73 0.14 15.08 0.18 14.11 0.14 
2039 13.24 0.26 9.69 0.13 15.36 0.19 14.17 0.14 
2040 13.41 0.26 9.65 0.13 15.66 0.19 14.44 0.14 
2041 13.64 0.36 9.60 0.13 15.87 0.04 14.68 0.12 
2042 13.87 0.36 9.56 0.13 16.08 0.04 14.93 0.12 
2043 14.10 0.36 9.52 0.13 16.30 0.04 15.19 0.12 
2044 14.34 0.37 9.48 0.13 16.52 0.05 15.45 0.12 
2045 14.58 0.37 9.44 0.13 16.75 0.05 15.71 0.13 
2046 14.83 0.37 9.40 0.13 16.98 0.05 15.98 0.13 
2047 15.07 0.37 9.35 0.12 17.21 0.05 16.25 0.13 
2048 15.31 0.37 9.31 0.12 17.44 0.05 16.53 0.13 
2049 15.55 0.36 9.26 0.12 17.67 0.04 16.81 0.13 
2050 15.79 0.36 9.22 0.11 17.89 0.04 17.10 0.14 
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Table A8.2: C&I gate fees costs and savings calculations 

Year CE costs 
(£M) 

CE 
savings 
(£M) 

VM 
costs 
(£M) 

VM 
savings 
(£M) 

EC costs 
(£M) 

EC 
savings 
(£M) 

ED costs 
(£M) 

ED 
savings 
(£M) 

2012 27.98 - 27.98 - 27.98 - 27.98 - 
2013 28.03 0.31 27.99 0.32 27.96 0.13 28.29 0.42 
2014 28.14 0.36 28.27 0.73 28.07 0.32 28.65 0.43 
2015 28.24 0.33 28.48 0.56 28.17 0.33 29.11 0.58 
2016 28.64 0.28 28.92 0.52 28.60 0.43 29.36 0.49 
2017 29.01 0.24 29.38 0.58 29.04 0.43 29.74 0.77 
2018 29.43 0.27 29.90 0.61 29.48 0.37 30.11 0.77 
2019 29.90 0.32 30.47 0.69 29.99 0.50 30.53 0.90 
2020 30.32 0.27 30.61 0.76 30.74 0.40 31.21 1.31 
2021 30.68 0.20 30.63 0.49 31.47 0.49 31.99 0.71 
2022 31.03 0.20 30.65 0.48 32.22 0.50 32.78 0.72 
2023 31.38 0.20 30.65 0.48 32.98 0.50 33.59 0.73 
2024 31.72 0.20 30.65 0.47 33.74 0.51 34.42 0.74 
2025 32.05 0.18 30.62 0.45 34.49 0.50 35.26 0.76 
2026 32.38 0.18 30.59 0.45 35.27 0.51 36.15 0.78 
2027 32.70 0.18 30.56 0.44 36.05 0.51 37.05 0.80 
2028 33.04 0.19 30.54 0.44 36.86 0.53 37.97 0.81 
2029 33.38 0.19 30.51 0.44 37.70 0.54 38.90 0.83 
2030 33.73 0.20 30.50 0.44 38.56 0.55 39.27 0.83 
2031 34.11 0.30 30.33 0.22 39.49 0.62 39.47 0.44 
2032 34.49 0.29 30.17 0.21 40.45 0.63 39.67 0.44 
2033 34.86 0.29 30.00 0.21 41.42 0.64 39.87 0.44 
2034 35.25 0.30 29.85 0.21 42.42 0.66 40.07 0.44 
2035 35.63 0.29 29.68 0.20 43.44 0.66 40.28 0.45 
2036 36.00 0.29 29.51 0.20 44.47 0.67 40.50 0.46 
2037 36.37 0.29 29.34 0.19 45.52 0.67 40.72 0.46 
2038 36.74 0.28 29.16 0.19 46.59 0.68 40.94 0.46 
2039 37.12 0.29 28.99 0.19 47.68 0.70 41.15 0.46 
2040 37.51 0.29 28.82 0.19 48.81 0.72 41.99 0.47 
2041 38.19 0.98 28.86 0.52 49.90 0.82 42.66 0.07 
2042 38.90 0.99 28.90 0.52 51.02 0.85 43.34 0.07 
2043 39.61 0.99 28.95 0.52 52.18 0.87 44.03 0.07 
2044 40.34 1.00 28.99 0.52 53.37 0.89 44.72 0.07 
2045 41.09 1.01 29.05 0.52 54.59 0.92 45.43 0.07 
2046 41.83 1.01 29.09 0.51 55.83 0.92 46.15 0.07 
2047 42.57 1.01 29.12 0.50 57.09 0.93 46.89 0.07 
2048 43.32 1.01 29.15 0.49 58.37 0.94 47.63 0.07 
2049 44.06 1.00 29.18 0.48 59.67 0.94 48.38 0.07 
2050 44.80 1.00 29.19 0.47 60.98 0.94 49.15 0.07 
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Table A8.3: C&D gate fees costs and savings calculations 

Year 
CE costs 

(£M) 

CE 
savings 
(£M) 

VM 
costs 
(£M) 

VM 
savings 
(£M) 

EC costs 
(£M) 

EC 
savings 
(£M) 

ED costs 
(£M) 

ED 
savings 
(£M) 

2012 9.46 - 9.46 - 9.46 - 9.46 - 
2013 9.18 0.33 9.35 0.12 9.38 0.09 9.37 0.10 
2014 8.89 0.34 9.18 0.19 9.33 0.04 9.27 0.12 
2015 8.61 0.34 9.00 0.22 9.25 0.10 9.16 0.15 
2016 8.41 0.34 8.93 0.19 9.26 0.10 9.00 0.15 
2017 8.31 0.22 8.81 0.25 9.27 0.10 8.84 0.14 
2018 8.25 0.19 8.65 0.31 9.30 0.09 8.68 0.14 
2019 8.19 0.19 8.49 0.32 9.35 0.06 8.52 0.14 
2020 8.17 0.13 8.16 0.35 9.56 -0.03 8.39 0.11 
2021 8.06 0.23 7.96 0.18 9.55 0.25 8.39 0.11 
2022 7.95 0.23 7.76 0.18 9.54 0.26 8.39 0.11 
2023 7.84 0.23 7.57 0.18 9.51 0.26 8.39 0.12 
2024 7.72 0.24 7.37 0.18 9.49 0.27 8.39 0.12 
2025 7.60 0.24 7.18 0.17 9.45 0.28 8.38 0.12 
2026 7.47 0.24 6.99 0.17 9.41 0.28 8.38 0.12 
2027 7.34 0.24 6.81 0.17 9.37 0.28 8.38 0.12 
2028 7.21 0.24 6.62 0.17 9.32 0.29 8.38 0.12 
2029 7.08 0.24 6.44 0.17 9.27 0.29 8.37 0.12 
2030 6.95 0.25 6.27 0.16 9.22 0.30 8.24 0.12 
2031 6.87 0.18 6.10 0.15 9.22 0.22 8.18 0.06 
2032 6.78 0.18 5.94 0.15 9.22 0.23 8.11 0.06 
2033 6.70 0.18 5.78 0.15 9.21 0.23 8.04 0.06 
2034 6.61 0.18 5.62 0.14 9.21 0.24 7.97 0.06 
2035 6.52 0.18 5.47 0.14 9.20 0.24 7.90 0.06 
2036 6.42 0.19 5.31 0.14 9.18 0.25 7.84 0.06 
2037 6.33 0.19 5.16 0.14 9.16 0.25 7.77 0.06 
2038 6.23 0.19 5.01 0.14 9.13 0.25 7.71 0.06 
2039 6.13 0.19 4.86 0.14 9.10 0.26 7.64 0.06 
2040 6.02 0.19 4.71 0.13 9.06 0.26 7.69 0.06 
2041 5.98 0.11 4.59 0.11 9.00 0.29 7.77 0.03 
2042 5.93 0.11 4.47 0.11 8.94 0.30 7.84 0.03 
2043 5.88 0.11 4.35 0.10 8.87 0.30 7.91 0.03 
2044 5.84 0.11 4.23 0.10 8.80 0.31 7.99 0.03 
2045 5.79 0.12 4.12 0.10 8.72 0.31 8.06 0.03 
2046 5.74 0.11 4.00 0.10 8.64 0.32 8.14 0.03 
2047 5.69 0.11 3.89 0.10 8.54 0.32 8.21 0.03 
2048 5.63 0.12 3.78 0.10 8.45 0.33 8.29 0.03 
2049 5.58 0.11 3.67 0.10 8.34 0.33 8.36 0.03 
2050 5.52 0.11 3.56 0.10 8.22 0.34 8.44 0.03 
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Table A8.4: Hazardous waste gate fees costs and savings calculations 

Year CE costs 
(£M) 

CE 
savings 
(£M) 

VM 
costs 
(£M) 

VM 
savings 
(£M) 

EC costs 
(£M) 

EC 
savings 
(£M) 

ED costs 
(£M) 

ED 
savings 
(£M) 

2012 5.26 - 5.26 - 5.26 - 5.26 - 
2013 5.25 0.03 5.25 0.02 5.25 0.02 5.26 0.01 
2014 5.24 0.04 5.26 0.05 5.26 0.03 5.27 0.02 
2015 5.24 0.04 5.27 0.04 5.26 0.03 5.29 0.02 
2016 5.29 0.05 5.33 0.05 5.32 0.03 5.28 0.02 
2017 5.35 0.04 5.39 0.05 5.38 0.03 5.26 0.02 
2018 5.41 0.05 5.46 0.04 5.45 0.03 5.25 0.02 
2019 5.47 0.03 5.53 0.02 5.51 0.00 5.24 0.02 
2020 5.53 0.03 5.51 0.03 5.63 0.01 5.23 0.01 
2021 5.59 0.04 5.48 0.01 5.75 0.04 5.30 0.01 
2022 5.65 0.04 5.44 0.01 5.86 0.04 5.37 0.01 
2023 5.71 0.04 5.41 0.01 5.98 0.04 5.45 0.01 
2024 5.77 0.04 5.38 0.01 6.10 0.04 5.52 0.01 
2025 5.82 0.04 5.34 0.01 6.21 0.04 5.60 0.01 
2026 5.87 0.04 5.30 0.01 6.33 0.04 5.68 0.01 
2027 5.93 0.04 5.26 0.01 6.45 0.04 5.76 0.01 
2028 5.98 0.04 5.23 0.01 6.57 0.04 5.85 0.01 
2029 6.04 0.04 5.19 0.01 6.70 0.04 5.93 0.01 
2030 6.10 0.04 5.16 0.01 6.83 0.05 5.93 0.01 
2031 6.15 0.02 5.12 0.02 6.96 0.07 5.93 0.01 
2032 6.20 0.02 5.09 0.02 7.09 0.07 5.93 0.01 
2033 6.25 0.02 5.06 0.02 7.23 0.07 5.93 0.01 
2034 6.31 0.02 5.03 0.02 7.37 0.07 5.93 0.01 
2035 6.36 0.02 4.99 0.01 7.51 0.07 5.93 0.01 
2036 6.41 0.02 4.96 0.01 7.65 0.07 5.94 0.01 
2037 6.46 0.02 4.93 0.01 7.80 0.07 5.94 0.01 
2038 6.51 0.02 4.89 0.01 7.94 0.07 5.94 0.01 
2039 6.56 0.02 4.86 0.01 8.09 0.07 5.95 0.01 
2040 6.61 0.02 4.83 0.01 8.24 0.08 6.04 0.01 
2041 6.66 0.04 4.80 0.07 8.41 0.25 6.13 0.02 
2042 6.71 0.04 4.77 0.07 8.57 0.26 6.21 0.03 
2043 6.77 0.04 4.75 0.07 8.74 0.26 6.30 0.03 
2044 6.82 0.04 4.72 0.07 8.92 0.27 6.39 0.03 
2045 6.88 0.04 4.70 0.07 9.10 0.27 6.49 0.03 
2046 6.94 0.04 4.67 0.07 9.28 0.28 6.58 0.03 
2047 6.99 0.04 4.65 0.07 9.46 0.28 6.67 0.03 
2048 7.05 0.04 4.62 0.06 9.65 0.29 6.77 0.03 
2049 7.10 0.04 4.60 0.06 9.84 0.29 6.87 0.03 
2050 7.15 0.04 4.57 0.06 10.03 0.29 6.97 0.03 
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Appendix 9: Carbon emissions for system variables & waste prevention 

Table A9.1: Carbon emissions savings from waste prevention (tCO2e)  

Year 
CE Prevention 

(tCO2) 
VM Prevention 

(tCO2) 
EC Prevention 

(tCO2) 
ED Prevention 

(tCO2) 

2012 - - - - 
2013 21,593 12,315 13,465 3,745 
2014 18,737 12,258 14,410 3,745 
2015 20,181 13,211 13,349 3,748 
2016 26,525 19,079 15,497 7,502 
2017 24,159 18,969 14,881 6,943 
2018 19,263 14,112 10,051 4,310 
2019 19,167 15,649 13,739 3,754 
2020 19,059 15,579 16,112 3,758 
2021 14,219 11,462 14,459 - 
2022 14,128 11,408 14,388 - 
2023 14,033 11,352 14,314 - 
2024 13,937 11,294 14,238 - 
2025 13,837 11,230 14,154 - 
2026 13,736 11,169 14,073 - 
2027 13,634 11,105 13,990 - 
2028 13,536 11,045 13,911 - 
2029 13,441 10,987 13,835 - 
2030 13,348 10,930 13,761 - 
2031 19,586 17,217 29,598 3,887 
2032 19,432 17,093 29,314 3,899 
2033 19,276 16,968 29,028 3,911 
2034 19,126 16,848 28,753 3,924 
2035 18,969 16,724 28,472 3,938 
2036 18,810 16,599 28,189 3,952 
2037 18,649 16,471 27,904 3,966 
2038 18,488 16,343 27,620 3,980 
2039 18,330 16,218 27,341 3,994 
2040 18,177 16,096 27,070 4,008 
2041 18,335 7,731 21,497 - 
2042 18,171 7,679 21,236 - 
2043 18,011 7,629 20,981 - 
2044 17,855 7,581 20,733 - 
2045 17,704 7,534 20,493 - 
2046 17,548 7,486 20,254 - 
2047 17,391 7,437 20,014 - 
2048 17,233 7,388 19,777 - 
2049 17,072 7,337 19,538 - 
2050 16,910 7,285 19,300 - 

Cumulative 671,609 474,819 739,739 76,962 
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Table A9.2: Carbon emissions savings from systems variables changes (tCO2e)  

Year CE Variables 
(tCO2) 

VM Variables 
(tCO2) 

EC Variables 
(tCO2) 

ED Variables 
(tCO2) 

2012 - - - - 
2013 8,147 8,322 7,747 -          436 
2014 17,531 11,226 12,817 -       1,823 
2015 12,218 8,118 9,697 -       5,132 
2016 12,191 7,889 9,661 -       5,137 
2017 14,244 12,903 9,622 -       2,958 
2018 7,712 6,134 2,870 -       2,959 
2019 3,467 1,861 -1,391 -       5,143 
2020 5,266 8,804 4,700 -       5,681 
2021 9,385 12,951 9,116 -       8,444 
2022 6,151 11,775 7,965 -    10,660 
2023 7,105 12,710 8,928 -    10,691 
2024 7,724 13,305 9,550 -    10,722 
2025 9,784 15,346 11,966 -    11,167 
2026 9,804 14,614 11,255 -    13,479 
2027 10,396 15,181 11,850 -    13,528 
2028 9,394 14,138 10,825 -    13,576 
2029 9,036 13,746 10,454 -    13,624 
2030 8,369 13,042 9,769 -    13,673 
2031 9,966 13,223 9,655 -    16,288 
2032 16,596 16,157 19,730 -    14,066 
2033 17,094 16,673 20,175 -    14,253 
2034 16,054 15,634 19,064 -    14,299 
2035 17,457 16,453 19,811 -    16,143 
2036 17,928 16,950 20,233 -    16,202 
2037 18,387 17,437 20,642 -    16,261 
2038 18,539 17,613 20,741 -    16,320 
2039 18,099 17,187 20,247 -    16,380 
2040 17,376 16,474 19,471 -    16,439 
2041 19,479 18,338 20,942 -    12,676 
2042 18,465 10,763 12,502 -    15,090 
2043 18,031 10,419 12,133 -    15,146 
2044 17,324 9,791 11,490 -    15,202 
2045 16,630 9,170 10,859 -    15,259 
2046 17,609 9,702 11,344 -    15,316 
2047 18,016 10,227 11,819 -    15,373 
2048 18,140 10,461 12,011 -    15,430 
2049 18,798 11,256 12,737 -    15,487 
2050 19,171 11,759 13,180 -    15,545 

Cumulative 517,080 477,753 476,190 -  456,010 
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Appendix 10: Pairwise comparison matrices and calculations 

This section provides examples of data generation using pairwise comparisons. Weights 

were calculated with feedback from 5 stakeholders (randomly selected). The mean was 

taken of 5 results and multiplied by group criteria weighting to give an individual value for 

each criterion in the group. A value of greater than 0.1 in the CI calculations (alternatively 

>10% as CR in the software) requires the criterion to be revisited.  

           
Figure A10.1: Example pairwise comparison matrix and CR for Environmental Receptors criterion 

Table A5.1: Calculations for the individual Environmental Receptor criterion 

Criterion T1 T2 T3 NT1 NT2 Mean Weight 

SPZ - GW 0.2939 0.2505 0.2125 0.2407 0.2421 0.2480 3.6697 

Lakes 0.1469 0.0519 0.1001 0.0436 0.1151 0.0915 1.3543 

Rivers 0.1469 0.1230 0.2125 0.1095 0.2421 0.1668 2.4689 

LNR 0.0619 0.0227 0.0224 0.0436 0.0524 0.0406 0.6006 

NNR 0.0619 0.0519 0.0475 0.0436 0.0257 0.0461 0.6825 

RAMSAR sites 0.0266 0.0519 0.0224 0.0436 0.0524 0.0394 0.5824 

SSSI 0.0619 0.2505 0.2125 0.1041 0.1151 0.1488 2.2027 

SPA 0.0266 0.0519 0.0475 0.0212 0.0144 0.0323 0.4782 

ESA 0.0266 0.0227 0.1001 0.1095 0.0257 0.0569 0.8425 

Ancient Woodland 0.1469 0.1230 0.0224 0.2407 0.1151 0.1296 1.9183 

Totals 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 14.80 

CI 0.0220 0.0215 0.0216 0.0172 0.0283 0.0221 
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The output in Figure A10.1 shows the results box and pairwise matrix used to generate the 

relevant weights for individual criterion (represented by the normalized principal 

Eigenvector). The calculations for all weights in the Environmental Receptors group are 

shown in Table A10.1. All criteria including the Mean were found to be below 0.1.  

Figure A10.2: Example pairwise comparison matrix and CR for Conservation Receptors criterion 

Table A10.2: Calculations for the individual Conservation Receptor criterion 

Criterion T4 T5 NT3 NT4 NT5 Mean Weight 

Agricultural land - Grade 1 0.4576 0.3206 0.1131 0.3185 0.0943 0.2608 0.9050 

Agricultural land - Grade 2 0.2392 0.1338 0.1131 0.1291 0.0943 0.1419 0.4924 

Historic parks and gardens 0.1070 0.1338 0.3075 0.1291 0.2564 0.1868 0.6481 

Listed buildings 0.1070 0.3206 0.3075 0.3185 0.2564 0.2620 0.9091 

Registered battlefields 0.0447 0.0599 0.1131 0.0524 0.2564 0.1053 0.3653 

Ancient monuments 0.0447 0.0313 0.0458 0.0524 0.0422 0.0433 0.1501 

Totals 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 3.47 

CR 0.0325 0.0203 0.0080 0.0123 0.0062 0.0159   

 

The output in Figure A10.2 shows the results box and pairwise matrix used to generate the 

relevant weights for individual Conservation Receptor criterion. The calculations for all 

weights in the Conservation Receptors group are shown in Table A10.2. All criteria 

including the Mean were found to be well below the CR threshold.  
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Figure A10.3: Example pairwise comparison matrix and CR for Human & Social Capital 
Receptors criterion 

Table A10.3: Calculations for the individual Human & Social Capital Receptor criterion 

Criterion T6 T7 T8 NT6 NT7 Mean Weight 

Urban - residential 0.2583 0.2000 0.2583 0.4286 0.4286 0.3147 3.0121 

Urban - workplace 0.1047 0.2000 0.1047 0.1429 0.1429 0.1390 1.3306 

Population density 0.6370 0.6000 0.6370 0.4286 0.4286 0.5462 5.2274 

Totals 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 9.57 

CI 0.0402 0.0000 0.0402 0.0000 0.0000 0.0160 
 

 

The output in Figure A10.3 shows the results box and pairwise matrix used to generate the 

relevant weights for individual Human & Social Capital Receptor criterion. The 

calculations for all weights in the Human & Social Capital Receptor group are shown in 

Table A10.3. All criteria including the Mean were found to be well below this threshold. 

 

The output in Figure A10.4 shows the results box and pairwise matrix used to generate the 

relevant weights for individual Flood Risk & Ground Stability criterion. The calculations 

for all weights in the Flood Risk & Ground Stability group are shown in Table A5.4. All 

criteria including the Mean were found to be well below this threshold.   
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Figure A10.4: Example pairwise comparison matrix and CR for Flood Risk & Ground Stability 
criterion 

Table A10.4: Calculations for the individual Flood Risk & Ground Stability criterion 

Criterion T9 T10 NT8 NT9 NT10 Mean Weight 

Historic flood event 0.2583 0.2583 0.2583 0.2583 0.6370 0.3340 2.37 

Flood zones 0.6370 0.6370 0.6370 0.6370 0.2583 0.5612 3.99 

Mining activity 0.1047 0.1047 0.1047 0.1047 0.1047 0.1047 0.74 

Totals 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 7.11 

CI 0.0402 0.0402 0.0402 0.0402 0.0402 0.0402 
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Appendix 11: Constraints and Opportunities layer maps  

Individual constraints map layers are presented as Boolean results (0 = constraining pixel 

25m raster resolution 1 = non-constraining pixel). These layer maps represent Appendix 

11a (constraints) and use the constraints model: 

∏ �=1  

There are a total of 16 individual layer maps which are presented on Disc 1. 

 

Individual opportunities map layers are presented as a scale classification 1-5 where 5 is 

the highest suitability. These layers represent Appendix 11b (page 288) opportunities and 

use the opportunities model:  

∑ �=1 �   
There are a total of 17 individual layer maps which are presented on Disc 1. 

These maps are then combined using the suitability model: 

� =  ∑ �=1 �  ∏ �=1  

This identifies areas of suitability according to the criteria set out within the AHP process 

which are subsequently reclassified to identify areas of search by land parcel size.  

The models are illustrated in Figures A11.1 to 11.4. 
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Figure A11.1: Individual variable calculations using Model Builder 

Figure A11.2: Final raster calculations for constraints variables in Model Builder 
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Figure A11.3: Individual opportunities variables calculation in Model Builder 

Figure A11.4: Final opportunities weighted overlay calculations in Model Builder 

 

 

 

 



509 

 

Appendix 12: Backcasting maps through GIS analysis 

 

Appendix 12 is contained entirely on Disc 1 and encompasses: 

 Waste tonnages maps – all scenarios 

o Figures A12.1 to A12.12 

 Economic costs and savings for milestone years – all scenarios 

o Figures A12.13 to A12.18 

 Carbon emissions performance maps – all scenarios 

o Figures A12.19 to A12.21 
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2 

 

Figure A11.1: Ancient woodland Boolean raster constraints layer 
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Figure A11.2: Country parks Boolean raster constraints layer 
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Figure A11.3: Environmentally Sensitive Areas (ESA) Boolean raster constraints layer 
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Figure A11.4: Lakes Boolean raster constraints layer 
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Figure A11.5: Rivers Boolean raster constraints layer 
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Figure A11.6: Historic flood extent Boolean raster constraints layer 
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Figure A11.7: Listed buildings Boolean raster constraints layer 
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Figure A11.8: Local Nature Reserve (LNR) Boolean raster constraints layer 
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Figure A11.9: National Nature Reserve (NNR) Boolean raster constraints layer 
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Figure A11.10: Parks and gardens Boolean raster constraints layer 



12 

 

 
Figure A11.11: RAMSAR sites Boolean raster constraints layer 
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Figure A11.12: Registered battlefields Boolean raster constraints layer 
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Figure A11.13: Special Protection Area (SPA) Boolean raster constraints layer 
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Figure A11.14: Source Protection Zones (SPZ) Boolean raster constraints layer 



16 

 

 
Figure A11.15: Sites of Special Scientific Interest (SSSI) Boolean raster constraints layer 
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Figure A11.16: Urban centres Boolean raster constraints layer 
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Figure A11.17: A road proximity (distance to minimise) opportunities layer 
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Figure A11.18: Motorway junctions proximity (distance to minimise) opportunities layer 
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Figure A11.19: Navigable waterways proximity (distance to minimise) opportunities layer 
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Figure A11.20: Rail proximity (distance to minimise) opportunities layer 
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Figure A11.21: Sources of C&I waste (business parks) opportunities layer 
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Figure A11.22: Sources of LACW (e.g. domestic dwellings) opportunities layer 
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Figure A11.23: Operational waste facility proximity (distance to minimise) opportunities 

layer 
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Figure A11.24: Operational landfill proximity (distance to minimise) opportunities layer 
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Figure A11.25: Historic landfill proximity (distance to minimise) opportunities layer 
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Figure A11.26: Electricity network proximity (distance to minimise) opportunities layer 
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Figure A11.27: Gas network proximity (distance to minimise) opportunities layer 
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Figure A11.28: LSOA employment (job creation potential) opportunities layer 
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Figure A11.29: Areas of deprivation (potential economic benefit) opportunities layer 
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Figure A11.30: Off electricity grid (numbers of households) opportunities layer 
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Figure A11.31: Off gas grid (numbers of households) opportunities layer 
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Figure A11.32: Regeneration potential (Previously Developed Land) opportunities layer 
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Figure A11.33: Strategic Employment Land proximity (future growth and development) 

opportunities layer 
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Waste tonnages maps – all scenarios 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   

   

Figure A12.1: All waste tonnages under all scenarios in 2050 

 



   

   

Figure A12.2: All waste tonnages (density) under all scenarios in 2050 

 



 

    

    

Figure A12.3: LACW tonnages under all scenarios in 2050 

 



 

   

   

Figure A12.4: C&I waste tonnages under all scenarios in 2050 

 



    

   

Figure A12.5: C&D waste tonnages under all scenarios in 2050 

 

 



   

   

Figure A12.6: Hazardous waste tonnages under all scenarios in 2050 

 

 



   

   

Figure A12.7:  LACW tonnages performance under CE for milestone years 

 



   

   

Figure A12.8:  C&I tonnages performance under CE for milestone years 

 



   

   

Figure A12.9:  C&D tonnages performance under CE for milestone years 

 



   

   

Figure A12.10:  Hazardous waste tonnages performance under CE for milestone years 
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Economic costs and savings for milestone years – all scenarios 

 

 

 

 

 

 

 

 

 



  

   
Figure A12.11: Economic costs across the backcast period (2012-2050) under scenario CE in 

Northamptonshire 



  

   
Figure A12.12: Economic costs across the backcast period (2012-2050) under scenario VM 

in Northamptonshire. 



  

   
Figure A12.13: Economic costs across the backcast period (2012-2050) under scenario EC in 

Northamptonshire. 



    

   
Figure A12.14: Economic costs across the backcast period (2012-2050) under scenario ED in 

Northamptonshire. 

 

 



   

   
Figure A12.15: Economic savings across the backcast period (2012-2050) under scenario CE in 

Northamptonshire 

 



    

   
Figure A12.16: Economic savings across the backcast period (2012-2050) under scenario VM in 

Northamptonshire 

 



  

   
Figure A12.17: Economic savings across the backcast period (2012-2050) under scenario EC in 

Northamptonshire 



  

   
Figure A12.18: Economic savings across the backcast period (2012-2050) under scenario ED in 

Northamptonshire 
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Carbon emissions maps for milestone years – all scenarios 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   

   

Figure A12.19:  Total avoided emissions for all scenarios in 2050 

 

 



   

   

Figure A12.20:  Emissions savings versus landfill for all scenarios in 2050 

 

 



    

   

Figure A12.21:  Waste prevention avoided emissions for all scenarios in 2050 

 

 


