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Abstract: Location-based Services (LBS) have become very 

popular with the rapid development of Internet of Things 

(IoT) technology and the ubiquitous use of smartphones and 

social networks in our daily lives. Although users can enjoy 

a lot of flexibility and conveniences from the LBS in IoT, 

they may also lose their privacy. Untrusted or malicious LBS 

servers having all users’ information and thus can track users 

in various ways or release personal data to third parties. In 

this work, we first analyze the dummy-location selection 

(DLS) algorithm—an efficient location privacy preservation 

approach and design an attack algorithm for DLS (ADLS), an 

emerging IoT for testing security. For efficiently preserving 

user’s location privacy, we propose a novel dummy location 

privacy-preserving (DLP) algorithm, which considers both of 

the computational costs and various privacy requirements of 

different users. We conduct extensive simulation 

experiments to evaluate the efficiency of the proposed 

schemes. Evaluation results show that the ADLS algorithm 

has a high probability of identifying the user’s real location 

out from chosen dummy locations in the DLS algorithm. 

When compared with the DLS algorithm, the results show 

that our proposed DLP algorithm not only has a lower 

probability of revealing the user’s real location, but also can 

reduce the computational cost and efficiency (i.e., time, speed, 

accuracy, and  complexity) while providing the same 

privacy level as DLS algorithm. 
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1. INTRODUCTION 

In recent years, there has been a rapid development in mobile 

technology resulting in the immense popularity of a variety 

of mobile devices and social networks and contributions to 

the development of emerging IoT services [1-4]. Many of 

these developments rely on the utilization of location-based 

services (LBS) or LBS applications. Today’s smartphones 

have built in Global Positioning System (GPS) modules that 

have powerful computation ability to process users’ location 

information. Users can download many of LBS applications 

from various sites such as the Apple Store or Google Play 

Store. With the help of these applications, users can send their 

queries which include their identities, locations (e.g., got by 

the GPS module using localization techniques), interests, and 

other information (e.g., time, query range) to LBS server, for 

geting the required information such as the nearest shopping 

mall, supermarket, restaurant. However, while enjoying the 

convenience or entertainment from the LBS server, users are 

susceptible to the leakage of their sensitive information in IoT 

leading to the risks of loss of privacy. Based on a user’s LBS 

queries, an adversary not only can link their identity with 

locations and interests, but also infer more private 

information about the user. For example, if a user often 

reveals his/her location close to a hospital when requesting 

LBS in IoT, the location information could be used by an 

adversary to conjecture that the user may have some health 

problems. Since the untrusted LBS server has all the 

information about users such as where they are at what time, 

what kind of queries they submit, etc., the LBS server may 

use the information to track users in all kinds of ways or 

reveal users’ personal data to third parties. Therefore, it’s 

necessary to pay more attention to users’ location privacy, 

particularly for a data-driven IoT service that delivers the 

requirements for IoT and big data fusion. 

  As large amount of data from different sources are 

gathered and processed, the IoT may have significant impact 

on users’ privacy. Moreover, considering the increasing trend 

to collect more individual and personalized data in IoT, there 

are many problems regarding the impact on individuals’ 

privacy from a legal perspective [42]. The data handling or 

processing of Internet of Things (IoT) is greatly impacted by 

location information and in turn greatly impact location 

privacy. Since location information is a major component in 

effective inventory and supply chains, efficient transportation 

systems, context-aware mobile applications, and numerous 

other IoT systems [43]. Furthermore, privacy attacks and 

harmful consequences can occur when sensitive location 

information is concealed or controlled without users’ consent, 

which pose challenges for IoT security and privacy [44-46]. 

A large number of approaches [5-17] have been proposed 

to address the privacy preservation issue in location based 

services. Many of them are based on the cloaking technique, 

which employs the k-anonymity model to protect user’s 

location privacy. The k-anonymity model is an important 

technique to protect user’s location privacy in LBS, it can 

ensure that a user is identified with a probability of (only) 1/k. 

To achieve k-anonymity in LBS, a user first submits a query 
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to a centralized location anonymizer. Then, the location 

anonymizer enlarges the queried location into a bigger 

Cloaking Region (CR) for covering many other users (at least 

k-1) geographically distributed. Finally, the location 

anonymizer sends the query to the LBS server. However, 

since this technique relies heavily on the location anonymizer, 

there will be a single point of failure. Moreover, since all 

users’ queries must be processed by the location anonymizer, 

the location anonymizer may be a performance bottleneck. 

To address this problem, the “dummy location” has been 

proposed and used to protect user’s location privacy, which 

does not need any third party service. Dummy location is part 

of our emerging IoT service. Existing approaches [18-20] try 

to effectively generate dummy locations which cannot be 

distinguished by the LBS server. However, these approaches 

do not consider the side information [21], i.e., users’ query 

probability related to location and time, or information 

related to the semantics of the query such as the gender and 

social status of the user. If the side information is obtained by 

an adversary, incredible chosen dummy locations such as 

lakes, swamps etc. may be easily filtered out by the adversary. 

Therefore, these algorithms for dummy locations generation 

cannot effectively achieve k-anonymity. The authors in [22] 

proposed a dummy location selection (DLS) algorithm for 

location privacy preservation, which considers the side 

information that may be exploited by attackers. However, the 

computational cost (i.e., time complexity) of the DLS 

algorithm is very high. As a result, how to select dummy 

locations is still a challenge, particularly for a data-driven IoT 

service whereby more complexity can be involved with 

volume, velocity, variety, veracity and validity. Locations 

based service is one of the major application for a data-driven 

IoT service and it contains highly sensitive data which needs 

to be protected. LBS based cloud applications needs to collect, 

process, and analyze geo-position data or send the required 

geo-locations instantly for millions of users in real-time. LBS 

is useful for many cases include identifying location in an 

unfamiliar territory and finding local important places for 

socialization. However, LBS based applications also come 

with risk of revealing personal information and data that may 

be tracked. Despite personal identification information may 

be hidden in the LBS services, the geo-localised history of 

user requests can act as a quasi-identifier which then can be 

used to identify personal information about individuals data 

and their locations. Hence, we need efficient strategies to hide 

this quasi-identification which can only be handled by 

dummy LBS data. 

In this paper, we first analyze the performance of the well 

known DLS algorithm, which is an efficient location privacy 

preservation approach for a data-driven IoT service of users’ 

queries in LBS. Then, we design an attack algorithm for DLS 

(ADLS), whose goal is to identify the user’s real location out 

from the data-driven IoT service of chosen dummy locations 

in LBS. We also design a dummy location based privacy-

preserving (DLP) algorithm for location privacy preservation 

in LBS. Different from existing approaches, the DLP 

algorithm makes a tradeoff between computational cost (i.e., 

time complexity) and the privacy requirements of users. The 

main contributions of this research are as follows: 

 We analyze the performance of the DLS algorithm, and 

design an attack algorithm for DLS (ADLS), whose goal 

is to identify the user’s real location out from the data-

driven IoT service of chosen dummy locations.  

 We propose an entropy-based DLP algorithm, which 

selects dummy locations in a greedy manner making a 

tradeoff between computational cost (i.e., time complexity) 

and the privacy requirements for the  data-driven IoT 

service in LBS. 

 We analyze the performance on privacy preservation of 

our proposed DLP algorithm against the colluding attack 

and inference attack. These attacks are aimed to test 

robustness of our data-driven IoT service. 

 We show our proof-of-concepts by using simulations. 

Simulation results demonstrate that the ADLS algorithm 

has a high probability of query recognition for the DLS 

algorithm. When compared with the DLS algorithm, the 

results show that the DLP algorithm can efficiently reduce 

the computational cost (i.e., time complexity) while 

providing the same privacy level as the DLS algorithm. 

Moreover, the DLP algorithm has a lower probability of 

query recognition (i.e., lower probability of losing users’ 

privacy) compared to the DLS algorithm. 

The remainder of this paper is organized as follows. 

Section 2 reviewses the related work. Section 3 introduces the 

preliminaries and the system model. Section 4 gives the 

detailed analysis on the DLS algorithm. Section 5 presents 

the ADLS algorithm for identifying the user real location and 

evaluate its performance. Section 6 presents the detailed 

descriptions on our DLP algorithm and simulation results. 

Section 7 gives the discussions and explains how our 

contributions are relevant to the data-driven IoT service. 

Section 8 concludes this paper. 

2. RELATED WORK 

In this section, we describe recent researches related to 

privacy protection methods in location based services of IoT. 

2.1 Privacy-preserving for IoT 

Several recent researches have been conducted for the 

privacy-preserving for the IoT based services [47-55]. In 

order to handle the massive amount of data, the most 

convincing solution is the federation of the IoT and cloud 

computing. Henze, et al. presented an user-driven privacy 

enforcement appraoch for cloud-based services in the IoT, 

which focuses on privacy preserving for individual end-users 

[47]. The authors in [48] proposed PAgIoT, a Privacy-

preserving Aggregation protocol suitable for IoT settings and 

enables multi-attribute aggregation for groups of entities 

while allowing for privacy-preserving value correlation. A 

lightweight privacy-preserving trust model had been 



  

designed for minimizing privacy loss in the presence of 

untrusted service providers, so that providers can be 

prevented from disclosing information to third parties for 

secondary uses [49]. A conditional privacy-preserving 

authentication with access linkability (CPAL) for roaming 

service, to provide universal secure roaming service and 

multilevel privacy preservation [50]. The authors in [51] 

estimated the cost of breaking public key crypto systems 

when the adversary is limited by the available resources and 

time and presentd the trade-off between the processing load 

for an IoT node versus the desired time span of privacy 

protection. Jin, et al., presented a framework for the 

realization of smart cities through the Internet of Things 

(IoT), which encompasses the complete urban information 

system and forms a transformational part of the existing 

cyber-physical system [52]. The authors in [53] proposed a 

privacy-by-design (PbD) framework that can guide software 

engineers to systematically assess the privacy capabilities of 

IoT applications and middleware platforms, thus the 

proposed PbD framework can also be used to design new IoT 

platforms. 

2.2 Location Anonymization Approach for LBS 

  Location anonymization approach is one of most important 

techniques to protect location privacy, which attempts to 

make user’s location indistinguishable from a certain number 

of other users. Commonly used techniques include spatial-

temporal cloaking and location obfuscation. k-anonymity is 

an important technique for location anonymization, which 

relies on a centralized location anonymizer to enlarge a user’s 

queried location into a bigger Cloaking Region (CR) for 

covering many other users. A personalized k-anonymity 

model is proposed in [23]. The model enables a user to have 

different privacy requirements in different contexts, and 

different users can require different levels of privacy in the 

same context. In the proposed model in [23], the trusted 

anonymization server runs an efficient message perturbation 

engine, which performs location anonymization considering 

the trade-off between location privacy and quality of service 

(QoS). A cloaking algorithm based on k-anonymity and l-

diversity has been proposed in [24]. When constructing a 

cloaking region, it ensures that a cloaking region has at least 

k vehicles (k-anonymity) and l road segments (l-diversity), 

which can effectively protect user’s location privacy. The 

authors in [25] studied the problem that how to protect the 

location privacy under various privacy threats, and proposed 

a location privacy framework uses k-anonymization and 

pseudo-anonymization methods to provide efficient location 

privacy preservation. A weighted adjacency graph based k-

anonymous cloaking technique is proposed in [26], which can 

support k-nearest neighbor queries without revealing private 

information of the query initiator. The algorithm in [26] not 

only can ensure user privacy protection, but also reduce 

bandwidth usages. The concept of mix zones is first proposed 

in [27]. A mix zone is referred to a spatial region in which 

none of users has registered any application callback. The 

authors in [28] allowed users to exchange their pseudonyms 

when they meet in a mix zone, which ensures a user avoid 

using a long-term pseudonym. Thus, the relationship between 

user pseudonyms and locations can be broken though 

exchanging pseudonyms. 

2.3 Policy or Cryptography Primitive based Approach 

Policy and cryptography primitive based approaches [29-

31] protect user privacy by using encryption techniques. The 

authors in [32] propose a privacy preserving framework 

(PLAM) for local-area mobile social networks. The PLAM 

framework not only employs a privacy-preserving request 

aggregation protocol with k-anonymity and l-diversity 

properties to keep user’s preference privacy without adopting 

a trusted anonymizer server when querying location-based 

service, but also integrates unlinkable pseudo-ID technique 

to achieve users’ identity privacy and location privacy. The 

PLAM framework can not only satisfy the desirable privacy 

requirements but also resist outside attacks on source 

authentication, data integrity and availability. For preserving 

user’s privacy, the authors in [33] proposed a dynamic 

pseudo-ID scheme, where different pseudo-IDs are adopted 

in different queries in order to unlink the correlation between 

user’s real identity and trajectory. In [34], the authors propose 

a fine-grained privacy preserving LBS framework (FINE) for 

mobile devices. The FINE framework not only employs a 

ciphertext-policy anonymous attribute based encryption 

technique to achieve fine-grained access control, location 

privacy, confidentiality of the LBS data and its access rule, 

and accurate LBS query result without involving any trusted 

third party, but also integrates the transformation key and 

proxy re-encryption to migrate most of computation intensive 

tasks from LBS provider and users to cloud server. In [35], 

the authors study the k nearest neighbor (kNN) queries where 

mobile users query the LBS provider about k nearest points 

of interests (POIs) on the basis of their current location, and 

then propose a solution built on the Paillier public-key 

cryptosystem for preserving the location privacy and data 

privacy in kNN queries of mobile users. The authors in [36] 

design a private block retrieval protocol, and propose a secure 

and efficient location based service system.  In the proposed 

system, users can retrieve information of interest associated 

with the current location without leaking their location 

information to the service provider. 

2.4 Dummy Location Selection for IoT 

Dummy location approach focuses on selecting dummy 

locations for users in order to protect users’ location privacy. 

In [20], the authors first study the behaviors of self-interested 

users in the LBS system from a game-theoretic perspective. 

The work then formulates two Bayesian game models in both 

static and timing-aware contexts, and analyzes the existence 

and properties of the Bayesian Nash Equilibrium for the two 

models. A Dummy-Location Selection (DLS) algorithm is 

proposed in [22] to achieve k-anonymity for users using LBS. 

The DLS algorithm selects dummy locations considering that 



  

the side information may be exploited by adversaries, which 

is based on the entropy metric [37]. To make sure that the 

selected dummy locations are spreaded as far as possible, the 

authors in [22] also propose an enhanced-DLS algorithm, 

which can enlarge the cloaking region while keeping similar 

privacy level as the DLS algorithm. The authors in [38] 

propose two dummy generation methods: circle-based and 

grid-based, which take into account privacy area 

requirements. In [39], the authors proposed two dummy 

based solutions to achieve k-anonymity for privacy-area 

aware users in LBS with considering that side information 

may be exploited by adversaries. 

However, most of these existing approaches have not 

considered the side information that may be exploited by 

attackers when selecting dummy locations in IoT. Even if 

some approaches have taken into acount the side information, 

but the computational costs (i.e., time complexities) of them 

are very high. Therefore, how to efficiently select dummy 

locations in IoT still remains a challenge, and our proposal 

will be presented between Section 3 and 6. 

3. PRELIMINARIES 

In this section, we describe the main basic concepts and the 

system model. 

3.1 Side Information   

As mentioned in previous section, the side information [21] 

may be query probability of users related to location and time, 

or information related to the semantics of the query such as 

the gender and social status of the user. In this paper, the side 

information is considered to be the query probability of users 

related to location, called query probability. A particular 

user’s query probability at a certain location can be denoted 

by the ratio of the number of current location queries to the 

number of total queries of all locations, as shown in Equation 

(1).  

 

  
i

number of  queries in location i
q

number of  queries in all locations
       (1) 

Generally, users can get two kinds of side information 

from a system: partial information and global information. 

Partial information denotes the information collected by 

other users, for example, a particular user may know the 

query probabilities related to some locations. Since the LBS 

server can receive the LBS queries of all users, the LBS 

server can obtain the global information (i.e., the query 

probabilities related to all locations). For a particular user, it’s 

necessary to design an optimal strategy to select dummy 

locations for protecting his/her location privacy under the 

condition of knowing the global information. In this paper, 

the LBS server is responsible for disseminating and updating 

the global side information so that users can get this 

information from a well-known place (e.g., local database of 

LBS application).  

3.2 Entropy-based Privacy Metric 

In this work, the degree of privacy is measured by the 

entropy. It can be seen as the uncertainty in identifying a 

user’s real location out from the chosen dummy locations 

[37]. When calculating the entropy, each dummy location 

should have a probability, which can be the history query 

probability of users related to location. We use pi to denote 

the historic query probability of users related to location i. 

According to the set of dummy locations and the historic 

query probabilities, we can define the entropy H of a user as 

in Equation (2). 

2
1

log
k

i i
i

H q q
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where 
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k
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i

q p p



  , is the normalized query probability of 

location i; and the sum of all pi is equal to 1. 

Since the greater the entropy the higher the uncertainty in 

identifying the user’s real location from the dummy locations 

set, our goal is to obtain enough entropy. In particular, when 

all of the k dummy locations have the same historical query 

probability, we can achieve the maximum entropy Hmax = log2 

k. 

3.3 System Model for IoT 

We design our system model based on the system 

architecture in [19]. The system mainly consists of two 

parties: the LBS server and LBS users with mobile devices. 

1) LBS server: The LBS server can be a service provider, 

which not only stores all kinds of service databases, but also 

can update the service data and provide users with various 

services. In our system, the LBS server is responsible to 

receive service queries from users, search for requested 

service data in the database, and reply with the search results 

back to the users. In addition, the LBS server is able to obtain 

the global information based on queries of all users at all 

locations, which can be the historical query probabilities of 

users related to all locations. Moreover, the LBS server is 

responsible for disseminating and updating the global side 

information so that users can get this information from a well-

known place (e.g., local database of LBS application).  

2) LBS users: The system typically consists of users who 

are equipped with mobile devices (e.g., smart phones or 

tablets), with built-in GPS modules that can be used to obtain 

user’s location data. Due to the rapid development of mobile 

devices and social networks, a variety of LBS applications 

can be accessible for users. If users want to get services from 

LBS servers, they need to send queries to LBS server, which 

include their identity, location information, interests, and the 

query range (e.g., 1000m). In order to protect user’s location 

privacy, user’s location information not only includes user’s 

real location, but also includes many other dummy locations. 



  

4. ANALYSIS OF THE DLS ALGORITHM 
4.1 Review the DLS Algorithm 

The main purpose of Dummy-Location Selection (DLS) 

algorithm [22] is to generate a set of realistic dummy 

locations to protect user’s location privacy. Given the degree 

of anonymity k, the DLS algorithm needs to select other k-1 

dummy locations based on the side information. The 

following shows the 5 steps how the DLS algorithm 

addresses this problem: 

(i) In the first step, a particular user needs to determine the 

degree of anonymity k.  

(ii)Then, the algorithm reads all of the obtained query 

probabilities and then sorts the query probabilities of all 

locations in ascending order.  

(iii) In the sorted list, the algorithm needs to choose 2k 

candidate locations, whose history query probabilities are 

similar to the user’s real location. In the 2k candidate 

locations, it randomly selects k –1 locations. Then, it derives 

m sets, each set contains k locations. For each set, one 

location is user’s real location and the other k−1 locations are 

randomly chosen from the 2k candidates. The entropy for the 

jth(j∈[1,m]) set can be calculated according to Equation (2) 

as shown in Section 3.  

  (iv) Finally, the algorithm has to determine an optimal 

location set with the biggest entropy to effectively achieve k-

anonymity for the user. 

4.2 Preparations for Performance Analysis 

Table 1: Summary of key notations 

Notation Meaning 

N Number of all locations. 

k The privacy level requirement of user. 

P[N]  The historical query probabilities in all locations. 

m 
Number of randomly selecting k–1 locations from 

2k locations, i.e., m = C
k-1 

2k . 

Pi The historical query probability at location i. 

Lreal The real location of user. 

Pi[2k] 

The chosen 2k candidates at location i, where k 

candidates are left before Lreal and the other k 

candidates are right after Lreal in the sorted list. 

Ci[k]  The chosen optimal location set at location i. 

k’ 
The number of locations which have the same 

historical query probability as Lreal 
in Pi . 

Let the historical query probabilities of all locations P = 

[p1, p2,…,pN], the chosen 2k candidate locations at location i 

as Pi ={pi,1, pi,2,…, pi,2k}and the chosen 2k candidate locations 

at location j as Pj ={pj,1, pj,2,…, pj,2k}. Then, let Pii =Pi∪ {pi}, 

and Pij =Pii∩Pjj. Let M denote the size of set Pij. We define 

Pij as follows. 

(1) (2) ( ){ , ,..., }, 0

 , =0

M
ij

p p p M
P

M


 



       (3) 

Theorem 1: Under the condition of m = C
k-1 

2k , for i, j ∈ [1, 

N], Ci ≠Cj (i≠j), set P must satisfy the following conditions:  

(i)  i ≠ j, pi ≠ pj, i.e., each location has a unique historical 

query probability. 

(ii) 0 ≤ M ≤ 2k, i, j (i ≠ j), Pij ∩ Ci ≠ Ci or Pij ∩ Cj ≠ Cj; 

that is to say when 0 ≤ M ≤ 2k, i, j (i ≠ j), the chosen optimal 

location set at location i or location j is not included in the 

intersection of the chosen 2k candidate locations at location i 

and the chosen 2k candidate locations at location j.  

Proof:  

Adequacy:  

(1) We first prove that set P must satisfy condition (i). 

We assume that set P does not satisfy condition (i), and 

then  i, j ∈ [1, N], pi = pj (i ≠ j). Thus, Pi and Pj will be the 

same according to the step (ii) in DLS algorithm. 

When k' ≥ k + 1, although Ci may not be the same as Cj 

according to the step (iii) and (iv) in DLS algorithm, it is 

possible that Ci = Cj. However, according to our assumption 

that Ci cannot be the same as Cj. Thus, set P must satisfy 

condition (i). 

When k' ≤ k, Ci must be the same as Cj according to steps 

(iii) and (iv) in DLS algorithm. However, according to our 

assumption, Ci cannot be the same as Cj. Thus, set P must 

satisfy condition (i). 

(2) We then prove that set P must satisfy condition (ii) after 

satisfying the condition (i). 

We assume that set P satisfies condition (i), but does not 

satisfy condition (ii). Thus,  i, j ∈ [1, N], Pij ∩ Ci = Ci and 

Pij ∩ Cj = Cj. Since Ci and Cj both are the optimal location set 

in set Pij, i.e., Ci = Cj. However, according to our assumption, 

set Ci cannot be the same as set Cj. Thus, set P must satisfy 

condition (i) and condition (ii). 

Necessity: 

According to condition (i), we can get that for i ≠ j, Pi ≠ 

Pj. Then, we discuss the condition (ii) as follows. 
(1) 0 ≤ M ≤ 2k,  i ≠ j, Pij ∩ Ci ≠ Ci and Pij ∩ Cj ≠ Cj. For 

this situation, set Ci must include the location from set Pi-Pij, 

which does not belong to set Cj. Moreover, set Cj must also 

include the location from Pj-Pij, which does not belong to set 

Ci. Thus, for i ≠ j, Ci ≠ Cj. 

(2) 0 ≤ M ≤ 2k,  i ≠ j, Pij ∩ Ci ≠ Ci and Pij ∩ Cj = Cj. For this 

situation, set Ci must include the location from set Pi-Pij, 

which does not belong to set Cj. Therefore, for i ≠ j , Ci ≠ Cj.  

(3) 0 ≤ M ≤ 2k,  i ≠ j, Pij ∩ Ci = Ci and Pij ∩ Cj ≠ Cj. For 

this situation, set Cj must include the location from set Pj-Pij, 

which does not belong to set Ci. Thus, for i ≠ j, Ci ≠ Cj. 

Therefore, we can conclude that for i ≠ j, Ci ≠ Cj
 
when 

set P satisfies conditions (i) and (ii). 

4.3 Performance Analysis for DLS Algorithm 

Based on step (iii) in the DLS algorithm, we can see that 

the greater of value of m the higher the computational cost of 

the DLS algorithm is. We also can see that different values of 



  

m may result in different optimal location sets in DLS 

algorithm, and the DLS algorithm can obtain the optimal 

location set when m = C
k-1 

2k . We analyze the performance of 

the DLS algorithm when m = C
k-1 

2k as follows. 

(1)  i, j ∈ [1, N], pi = pj (i ≠ j) in set P. We assume that a 

particular user is at location i, and the number of locations 

whose query probabilities are the same as that of the user’s 

real location in the chosen candidate locations is denoted by 

k'. Since pi = pj, set Pi the user selects at location i is the same 

as set Pj the user selects at location j in DLS algorithm. We 

then discuss the performance of the DLS algorithm in the 

following situations. When 1 ≤ k' ≤ k-1, set Ci is the same as 

set Cj in DLS algorithm under the condition m = C
k-1 

2k . In this 

situation, although the LBS server can infer the probability 

for a user to submit a LBS query, the server cannot know the 

user’s real location. This is because there are other locations 

whose query probabilities are the same as that of the user’s 

real location. Moreover, the larger k' is, the better the 

performance of the DLS algorithm is. When k' ≥ k, Ci may be 

different from Cj. The reason is that randomly selecting k-1 

locations from the k' locations whose query probabilities are 

the same as pi may be the optimal location set. In this 

situation, since each location has the same query probability, 

the DLS algorithm achieves the best performance. 

(2) i, j ∈ [1, N], pi ≠ pj (i ≠ j) in set P. We assume that a 

particular user is at location i. Since pi ≠pj, set Pi the user 

selects at location i must be different from the set Pj user 

selects at location j. However, when M ≥ k-1, Ci may be the 

same as Cj, that is to say the chosen optimal location set at 

location i is likely to be the same as the chosen optimal 

location set at location j. In this situation, although the LBS 

server may try to infer which location is most likely to select 

this location set, the server may make a incorrect decision. 

The reason is that the optimal location sets chosen by the user 

in other locations are the same as that of the user’s real 

location. Moreover, the larger the number of locations whose 

chosen optimal location sets are the same as the that of user’s 

real location is, the better the performance of the DLS 

algorithm is. However, once there is no location whose 

chosen optimal location set is the same as other locations in 

set P, the DLS algorithm would have bad performance. 

5. ADLS ALGORITHM DESIGN 
In this section, we first introduce an attack model and related 

theories, then give detailed descriptions of ADLS algorithm 

and the performance evaluations. 

5.1 Attack Model 

In order to protect location privacy, the dummy location 

generation algorithm is used for generating some dummy 

locations. Thus, the users’ location information not only 

includes users’ real location, but also includes other chosen 

dummy locations [38]. The goal of the adversary is to obtain 

the user’s real location from the user’s location information. 

Since adversaries can compromise the LBS server and obtain 

all the information that the LBS server knows and holds. Thus, 

in this work, we assume that the LBS server is the adversary. 

Note that, LBS server is able to obtain global side information 

and monitor the current queries being sent from users. 

Furthermore, the LBS server can obtain the historic data of a 

particular user as well as the current situation and information. 

Additionally, the mechanisms used for location privacy 

protection in the system are also known by the LBS server. 

5.2 Related Theories 

Let set P = [p1, p2,…, pn], where 0 < pi < 1(1 ≤ i ≤ n). We 

define function H(P, pn+1 ) in Equation (4). 
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In Equation (4), function H(P, pn+1) varies with pn+1, where 

0< pn+1 <1. In order to get the maximum value of H(P, pn+1), 

we first calculate the derivative of function H(P, pn+1), 

denoted by function D(P, pn+1) as shown in Equation (5). 

Then, let function D(P, pn+1) be zero to get the value of pn+1 

as shown in Equation (6). Finally, we can get the extreme 

points of function H(P, pn+1). From Equation (6), we can 

know that function H(P, pn+1) has a unique extreme point.  
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When pn +1 < �̅�n+1, the value of function D(P, pn+1) is greater 

than zero, and the value of function H(P, pn+1) increases with 

the growth of pn+1. When pn+1 > �̅�n+1 the value of function 

D(P, pn+1)is less than zero, the value of function H(P, pn+1) 

decreases with the growth of pn+1. Thus, we have that the 

maximum point of function H(P, pn+1) is pn+1 = �̅�n+1. We can 

obtain the range of �̅�n+1 by Equation (7). From Equation (7), 

we can see that the value of pn+1 is not greater than the 



  

maximum of set P, and also not less than the minimum of set 

P. In our ADLS algorithm, we can use this property to select 

dummy locations. 
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5.3 The ADLS Algorithm  

The main goal of the ADLS algorithm is to identify the 

user’s real location out from the dummy locations obtained 

by the DLS algorithm. When obtaining a user’s LBS query, 

an adversary can adopt two methods to infer the user’s real 

location based on user’s location information. One method is 

to randomly choose one location from user’s location 

information as the user’s real location. By this method, the 

probability of successfully identifying the user’s real location 

is 1/k, and the probability remains stable. The other method 

is to analyze the dummy location generation algorithm, and 

then design an attack algorithm. By this method, the 

adversary can enhance the probability of successfully 

identifying the user’s real location by designing a good attack 

algorithm. In this paper, we adopt the latter method to infer 

user’s real location. Based on the analysis of the DLS 

algorithm in section 4, we know that once the history query 

probabilities of two locations are different in DLS algorithm, 

their chosen optimal dummy location sets must be different. 

In this paper, we use this property to infer the user’s real 

location out from the user’s location information. 

The ADLS algorithm first gets the anonymity degree k 

according to the user’s location information. Then, for the 

ith(1≤i≤k) location in user’s location information, the ADLS 

algorithm selects other k-1 dummy locations based on 

entropy in a greedy manner, and then obtains the dummy 

location set Ci. After obtaining the k dummy location sets, the 

ADLS algorithm sorts the probabilities of set Ci (1 ≤ i ≤ k) 

and the user’s dummy location set in ascending order. Then, 

for each dummy locations set Ci (1 ≤ i ≤ k), the ADLS 

algorithm calculates the variance between the set Ci and the 

user’s dummy location set, and determines the user’s real 

location based on the variance. For example, if the variance 

between the set Ci and the user’s dummy location is the 

smallest, the ADLS algorithm infers that the user’s real 

location is location i. The following shows how the ADLS 

algorithm works. 

  (i) In the first step, the LBS server needs to get the 

anonymity degree of a user based on the user’s location 

information. Let k denotes a user’s anonymity degree, set R 

denotes a user’s location information. 

(ii) LBS server reads all the query probabilities and then 

sorts query probabilities of all locations in ascending order. 

(iii) For each location in set R, the LBS server needs to 

selects 2k-2 candidate locations (denoted as set Dj), in which 

k-1 locations are left before the user’s real location and the 

other k-1 locations are right after the user’s real location in 

the sorted list. Then, the LBS server puts the user’s real 

location in Cj (j ∈ [1, k]). 

  (iv) Find the maximum and minimum from set Cj. Let pmax 

denote the maximum and pmin denote the minimum. Then, it 

finds two locations in set Dj, which is the maximum of the 

probability set being less than pmin, denoted by pmin-max, and 

the other is the minimum of the probability set being greater 

than pmax, denoted by pmax-min. Finally, it compares the entropy 

H(Cj, pmax-min) and H(Cj, pmin-max), and puts the location in set 

Cj, which achieves a larger entropy. 

(v) Repeat step (iv) until the size of set Cj is k. 

(vi) Finally, LBS server needs to determine which one is 

the user’s real location. Specifically, for a particular chosen 

set Cj , it computes the variance according to Formula (8). 
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where ri ∈ R, ci ∈ Cj. The ADLS algorithm then uses the 

locations with the least variance as the user’s real location:  

S = arg minSj            (9) 

 

Algorithm 1: Attack algorithm for DLS (ADLS) 

Input: Historical query probabilities of all locations denoted 

as P; a user’s location information R. 

Output: The optimal location. 

1: Sort the elements in P and R in ascending order;  

2: k  user’s anonymity degree 

3: for (i=1; i k; i++) do  

4:   Set Ci ←read one location L from set R which isn’t read 

before; 

5:   Choose k-1 locations left before and k-1 locations right 

after location L in the sorted list as candidate location 

set iD ; 

6:   for (j=1; j k; j++) do 

7:       pmax←max(Ci); 

8:       pmin ←min(Ci); 

9:     Find one location from set Di, which is the maximum 

of the probability set being less than pmin in set Di, 

denoted as pmin-max ; 

10:     Find one location from set Di, which is the 

minimum of the probability set being greater than 

pmax in set Di, denoted as pmax-min; 

11:     if H(Ci , pmax-min) > H(Ci , pmin-max ) then 

12:        Ci←Ci∪{pmax-min}, Di←Di\{pmax-min}; 

13:     else 

14:        Ci←Ci∪{pmin-max}, Di←Di \{pmin-max}; 

15:     end 



  

16:  end for 

17:  Sort the elements in Ci in ascending order; 

18:  2

1

( )
k

i i i

i

S r c



   

19: end for 

20: return arg min Si 

5.4 Performance Evaluation 

  In this subsection, we evaluate the effectiveness of our 

proposed ADLS algorithm through simulation experiments. 

5.4.1 Simulation Environment 

In this set of simulations, the service area of LBS provider 

is divided into n n  cells with equal size. We assume that 

each cell has already had a historical query probability based 

on the users’ previous queries. For measuring the probability 

of query recognition, which denotes the probability for the 

proposed ADLS algorithm to successfully identify a user’s 

real location from the chosen dummy locations, we use the 

DLS algorithm to generate dummy locations and submit 1000 

queries in the simulations. 

  In our simulations, k is related to k-anonymity and denotes 

the anonymity degree. Given the value of k, m denotes the 

number of cases that randomly choose k-1 cells from 2k cells, 

whose maximum value is 𝑪𝟐𝒌
𝒌−𝟏 . For evaluating the ADLS 

algorithm, the following four scenarios are considered in our 

simulations: 

 Scenario-1: The value of m varies from 100 to 1000. 

 Scenario-1.1: The value of k varies from 5 to 7. 

 Scenario-1.2: The value of k varies from 10 to 14. 

 Scenario-2: The value of k varies from 5 to 15, and the 

values of m are set to be 1  104, 5  104 and1  105, 

respectively. 

5.4.2 Numeric Results 

For evaluating the effectiveness of the proposed ADLS 

algorithm, we have conducted extensive simulations. We 

have evaluated the performance of the ADLS algorithm in 

terms of probability of query recognition under different 

scenarios with different values of k and m. Based on the 

analysis of the DLS Algorithm in Section 4, we can see that 

if a user’s chosen optimal location set at location i is different 

from that of location j (i and j denote two different locations), 

the ADLS Algorithm with high probability to infer the user’s 

real location from the dummy locations generated by DLS 

Algorithm. 

Simulation Results Under Scenario-1.1: We explore the 

relationship between m and the probability of query 

recognition. From Figure 1, we can see that the probability of 

query recognition generally increase with the growth of m. 

The reason is that larger m leads to the chosen dummy 

location in DLS algorithm to be closer to the optimal dummy 

location set, which enables the ADLS algorithm to identify 

the user’s real location with high probability. Figure 1 also 

shows that greater k leads to lower probability of query 

recognition while lower k results in higher probability of 

query recognition and this can be explained as follows. First, 

the maximum of m is 𝑪𝟐𝒌
𝒌−𝟏, and  𝑪𝟐𝒌

𝒌−𝟏 exponentially increases 

with the growth of k. Second, for a given value of m, smaller 

anonymity degree k results in that the value of m is more close 

to the maximum one. Therefore, the user’s chosen dummy 

locations are more likely to be close to the optimal dummy 

locations. 

 
Fig.1: The probability of query recognition achieved with different 

anonymity degrees k under Scenario-1.1. 

Simulation Results Under Scenario-1.2: In this set of 

simulations, we explore the relationship between m and the 

probability of query recognition when m and k become 

greater. Comparing with the results of Scenario-1.1, we 

observe that although the value of m and the value of k 

become greater, the probability of query recognition does not 

be improved. The reason is that when the value of k becomes 

greater, the higher probability of query recognition can be 

obtained only with greater value of m. Moreover, a small 

difference in the anonymity degree k will lead to a great 

difference in the value of m when achieving the same 

probability of query recognition in the ADLS algorithm. 

 
Fig.2: The probability of query recognition achieved in different 

anonymity degree k under Scenario-1.2. 

Simulation Results Under Scenario-2: Figure 3 shows 

the relationship between k and the probability of query 

recognition.Generally, for a given value of m, the probability 



  

of query recognition will be influenced by the value of k. The 

results show that the greater the value of k is, the lower the 

probability of query recognition is. Furthermore, greater m 

leads to higher probability of query recognition while lower 

k results in lower probability of query recognition when k≥8. 

Moreover, different values of m have almost the same 

probability of query recognition when k≤7. The reason is that 

the smaller k makes the value of m to be close to the 

maximum value. Therefore, the user can select the optimal 

location set with higher probability. 

 

Fig.3: The probabilities of query recognition under Scenario-2. 

6. DLP ALGORITHM DESIGN AND ANALYSIS 
In this section, we give the detailed descriptions for the DLP 

algorithm, and present the performance evaluations. 

6.1 DLP Algorithm Description 

The basic idea of Dummy Location Privacy-preserving 

(DLP) algorithm is to select the optimal dummy locations 

considering that the adversary may exploit some side 

information, and make different choice for different privacy 

requirements of different users. We adopt a greedy approach 

to search a large database to find an optimal set of dummy 

locations. For achieving k-anonymity, we successively select 

k-1 other locations from all locations in the location map, 

which must make sure that the current entropy is the biggest. 

For example, if the DLP algorithm has already chosen i 

locations (where i < k), when choosing the (i+1)th location, it 

must ensure that Hi+1 is the largest for all residual locations. 

Hi+1 is defined in Equation (10). 
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where pj denotes the users’ historical query probability at 

location j. The following shows how the proposed DLP 

algorithm works. 

(i) First, a user needs to set a proper anonymity degree k, 

which is closely related to the user’s requirement on location 

privacy. Although a bigger k leads to higher anonymity 

degree, it also causes a higher overhead due to the cost for 

selecting dummy locations. 

(ii) At the beginning, the DLP algorithm needs to read all 

the obtained query probabilities from the LBS server and then 

sort the query probabilities in ascending order. Let p denote 

the query probability of the user’s real location. For the sorted 

list, the DLP algorithm calculates the number of locations 

which have the same query probability as p, which is denoted 

by �̅�. If �̅� is large enough, it puts half of them before and 

the other half of them after the real location. 

(iii) If �̅� ≥ k, DLP algorithm selects k-1 locations which 

have the same query probability as p from the sorted list. 

Then, it outputs the chosen k-1 dummy location and the user’s 

real location. 

(iv) If k/4 ≤ �̅� ≤ k, the algorithm selects �̅�-1 locations 

which have the same query probability as p from the sorted 

list. We use set C to denote the �̅�-1 dummy locations and the 

user real location. In the sorted list, the algorithm selects k-�̅� 

locations left before and other k-�̅� locations right after the 

real location as 2(k- �̅�)) candidate locations, whose query 

probabilities are different from p. Let set S denotes the 2(k-�̅�) 

candidates. The reason for choosing 2(k-�̅�) candidates for 

dummy locations is to make sure to get large enough entropy. 

Otherwise, it goes to Step (vii). 

(v) To achieve k-anonymity, it needs to successively select 

residual k-�̅� locations from set S. For the ith (�̅�< i ≤ k) dummy 

location, it must ensure that the Hi is maximum for all 

residual locations in set S. 

(vi) When the size of C is k, DLP outputs the set C. 

(vii) If �̅�< k/4, the DLP chooses 2k-ε locations left before 

and other 2k-ω locations right after the real location as 4k-ω-

ε candidates from the sorted list. We use set 𝑆̅ to denote the 

4k-ω-ε candidates. Both ω and ε are set by users based on 

their privacy requirements. Generally, ω is smaller than ε. Let 

set 𝐶̅ denote a user’s real location. It randomly selects one 

location as a dummy location from set S, and put this location 

into set 𝐶̅. 

(viii) For achieving k-anonymity, the successively selects 

residual k-2 locations from set 𝑆̅. For the ith (2 < i ≤ k) dummy 

location, it must ensure that Hi is the largest for all residual 

locations in set 𝑆̅. 

  (ix)When the size of 𝐶̅ is k, DLP outputs the set 𝐶̅. 
 

Algorithm 2: Dummy Location Privacy-preserving (DLP) 

Input: The set of historical query probabilities P; users’ real 

location. 

Output: The optimal set of dummy locations, C. 

1: Sort P in ascending order; 

2: H ← select the locations which have the same query 

probability as users’ real location from sorted P; 

3: if (size (H)  k) then 



  

4:    C ← randomly select k locations including the user 

real location from H; 

5: else if (k/4 < size(H) < k ) then 

6:    k
__

← size(H), C←H;  

7:    S← choose 2(k-k
__

) candidate locations whose query 

probabilities are similar to the user’s real location; 

8:    for (j = 1; j k-k
__

; j ++) do 

9:        Choose one location l from set S, such that H(C, 

q) is the maximum in set S; 

10:       C← C ∪ {l}, S ← S \{l}; 

11:   end for 

12: else  

13:    S ← choose 4k-ω-ε candidate locations whose query 

probabilities are similar to the user’s real location; 

14:    Randomly choose location i from S; 

15:    C← H ∪ {i}; 

16:    for ( j = 1; j k-2; j + +) do 

17:        Choose one location h from S, which makes 

sure that H(C, q) is the maximum in set S; 

18:        C ← C ∪ {h}, S ← S \{h}; 

19:    end for 

20: end if 

21: return the optimal set of dummy locations, C . 

6.2 Security Analysis 

This subsection shows that how to resist the colluding 

attacks and inference attacks to protect user’s location 

privacy through the proposed DLP algorithm. 

1) Resistance to the Colluding Attack: To obtain user’s 

location privacy, passive attackers may collude with other 

users or with the LBS provider for various purposes. 

Definition 1: A scheme can resist the colluding attack if 

the probability of successfully identifying a user’s real 

location from the user’s location information does not 

increase with the growth of the size of the colluding group. 

Theorem 1: The DLP algorithm can resist the colluding 

attack. 

Proof: A colluding attack happens among a set of users 

who want to identify a user’s real location out from the 

submitted k locations. In our scheme, each user protects 

her/his location privacy by selecting other dummy locations. 

When an attacker first compromises a user UA, he/she will 

obtain the user’s location information including k locations. 

Since the k locations have similar historical query 

probabilities, the attacker has no clue about the user’s real 

location and only randomly guesses the user’s real location 

out from the intercepted k locations. Thus, the probability of 

successfully identifying the user’s real location is 1/k. Then, 

the attacker intercepts the LBS query of user UB, and obtains 

the user’s location information. However, the probability of 

successfully identifying a user’s real location remains stable 

in our scheme. The reason is that there are no correlations 

between the selected dummy locations of users UA and UB. 

Therefore, the attacker can only identify each user’s real 

location randomly from the intercepted k dummy locations. 

Similarly, when a colluding group has more members involve, 

the attacker can only randomly guess each user’s real location 

from the intercepted k dummy locations. This implies that the 

probability of successfully identifying the user’s real location 

out from the chosen dummy locations remains stable (i.e., 

1/k)in our scheme. 

In an extreme case that the passive adversary compromise 

the LBS server and get all information the LBS server has, 

he/she can turn to be an active adversary. For an active 

adversary, he/she can perform the inference attack. 

2)Resistance to the Inference Attack: In this part of 

analysis, we assume that the LBS provider is an active 

attacker. The LBS provider knows a user’s historical query 

probabilities of all locations, the historical queries and the 

current queries of users. 

Definition 2: A scheme can resist the inference attack if 

attackers cannot successfully identify the user’s real location 

from user’s location information. 

Theorem 2: DLP scheme can resist the inference attack.  

Proof: In the DLP scheme, since the chosen k locations 

have similar historical query probabilities, although the LBS 

provider knows the historical query probabilities of all 

locations, he/she cannot determine which one is the user’s 

real location in the k locations. Even then he/she tries to 

reverse the algorithm, but he/she will also be failed. The 

reasons are explained in the follows. Let us recall the step (3) 

to step (11) of the DLP scheme mentioned in Section 6.1. In 

these steps, since the DLP scheme can guarantee that there 

are enough locations whose historical query probabilities are 

as same as that of the user’s real location in the chosen 

dummy locations, thus the LBS server still cannot obtain the 

user’s real location by reversing the algorithm. Furthermore, 

let us recall the step (13) to step (18) of the DLP scheme. In 

these steps, since step (13) and step (14) of DLP can ensure 

the uncertainty of the selection, the LBS server also cannot 

obtain the real location by running our algorithm several 

times. 

6.3 Performance Evaluation 

For evaluating the performance of DLP algorithm, we have 

conducted extensive simulations in this subsection. 

6.3.1 Simulation Environment 

Similar to Section 5.4, we divide the location map into

n n  cells with equal size. Each cell has a query probability 

based on the query history. We conduct simulations on the 

following three scenarios to evaluate the performance of the 

DLP algorithm. 

 Scenario A: Let user be located in a cell such that there are 

many (more than k) cells that have the same historical 

query probability as the user’s current location. In this 

scenario, the chosen dummy locations have the same query 

probability as that of the user’s real location. 

 Scenario B: Let user be located in a cell such that the 

number of cells that have the same historical query 



  

probability as that of the user’s current location is slightly 

less than k but greater than one quarter of k. In this scenario, 

it can guarantee that there are enough locations have the 

same query probability as that of the user’s real location in 

the chosen dummy locations. 

 Scenario C: Let user be located in a cell such that there are 

a few (i.e., less than one quarter of k) cells have same 

historical query probability as that of the user’s current 

location. In this scenario, there are few locations that have 

the same query probability as that of the user’s real location 

in the chosen dummy locations. 

6.3.2 Simulation Results 

For evaluating the effectiveness of our proposed DLP 

algorithm, we have conducted extensive simulations.We 

have compared the performance of two algorithms in terms 

of the running time and the privacy level under various 

anonymity degree requirements of users. We also compare 

the probability of query recognition under Scenario C. 

 

Fig.4: Entropy and running times under Scenario A 

 
Fig.5: Entropy and running times under Scenario B 

 
Fig.6: Entropy and running times under Scenario C 

Figure 4, Figure 5 and Figure 6 illustrate the results for 

DLS algorithm and DLP algorithm, respectively. The results 

show the running time and the privacy level in terms of 

entropy under different scenarios. In Figure 4, the DLP 

algorithm and the DLS algorithm have the same entropy, but 

there are large differences in the running times. Moreover, 

the running time of DLS algorithm rapidly increases with the 

growth of the value of k (i.e., anonymity degree), but the 

running time of DLP algorithm varies little. The reason is that 

the DLS algorithm adopts enumeration method to select k 

dummy locations which make the entropy is largest while the 

DLP algorithm adopts greedy method to successively select 

k dummy locations. The computational complexity of the 

DLS algorithm increases with the growth of the value of k, 

but the computational complexity of the DLP algorithm 

almost remains stable. From Figure 5 and Figure 6, we can 

see that Scenario B and Scenario C have the similar trend on 

results as Scenario A. We also note that the largest entropy 

appears in Scenario A, whereas the smallest entropy appears 

in Scenario C for both the DLS and DLP algorithms. This is 

because that there are more than k locations whose historical 

query probabilities are the same as that of the user’s real 

location in Scenario A, but there are only enough or few 

locations whose historical query probabilities are the same as 

that of the user’s real location in Scenario B or C. Moreover, 

we can obtain the maximum entropy Hmax = log2 k under 

Scenario A. Thus, the DLS and DLP algorithms can achieve 

larger entropy in Scenario A than that in Scenario B or C. 

Figure 7 illustrates the probability of query recognition in 

the different schemes. The simulation results show that the 

DLP algorithm has lower probability of query recognition 

than the DLS algorithm under the same attack. Moreover, the 

probability of query recognition does not vary much with the 

anonymity degree k in the DLP algorithm compared with the 

DLS algorithm. Furthermore, although the probability of 

query recognition of the DLS algorithm decreased with the 

growth of the value of k, the probability of query recognition 



  

is still higher than that of the DLP algorithm. In particular, 

when the number of cases for randomly selecting k-1 cells 

from 2k cells achieves the maximum C
k-1 

2k , the probability of 

query recognition can be near 100% for the DLS algorithm. 

Therefore, the DLP algorithm has a better performance on 

probability of query recognition than DLS algorithm. 

 

Fig.7: The probability of query recognition for Scenario C 

7. DISCUSSION 

Two topics, our contributions in the data-driven IoT service 

and the extension of this work, are presented for discussion. 

7.1 Our contributions in data-driven IoT services 

  The data-driven IoT services take consideration for big 

data and IoT fusion which have become increasing important 

for security. Our contributions are summed up as follows. 

The DLP algorithm can satisfy velocity since the rate of data 

processing is fast and efficient, with a better performance 

than the competing DLS algorithm as demonstrated in 

Section 6.3. The DLP algorithm has been tested with three 

different user scenarios and results are consistent and 

accurate. Experiments with ADLS also support the 

consistency and accuracy of probability of query recognition. 

Thus, our work also satisfies veracity for data-driven IoT 

services. Finally, the cases presented in our paper illustrate 

that the DLP can be useful to protect the users’ privacy and 

validate results with the users’ real locations. Hence, validity 

for data-driven IoT services has been demonstrated in our 

theoretical development supported by simulation results. 

7.2 Extension of Our Work 

Multi-layered security proposed by Chang et al. [40] has 

demonstrated that penetration testing and ethical hacking of 

injecting 10,000 known viruses and Trojans in 2013 can be 

blocked and isolated, with 99.9% success rate. Multi-layered 

security can be blended with ADLS as an emerging IoT 

service to ensure that hacking by malicious files injections 

can be minimized. Experiments demonstrated by Chang and 

Ramachandran [41] have demonstrated that when 10 

petabytes of data has been undergone for penetration ethical 

tests, multi-layered security can block and kill 99.9% of 

known 2013 vulnerability. In addition, locations can be 

pointed back to the Data Center hosting secure mobile 

services, so that anyone who plan to track users, the only 

locations shown are the central server for mobile services 

without revealing the exact users’ locations. 

8. CONCLUSION 

In this paper, we first theoretically analyze the performance 

of the Dummy-Location selection (DLS) algorithm, which is 

an efficient approach to protect users’ location privacy in 

LBS for IoT. Then, we design an Attack algorithm for DLS 

algorithm (ADLS), whose goal is to identify the user’s real 

location from chosen dummy locations generated by DLS 

algorithm. For efficiently preserving users’ location privacy, 

we also propose a new Dummy Location Privacy-preserving 

(DLP) algorithm, which takes into account the equilibrium 

between the computational cost (i.e., time complexity) and 

the privacy requirements of users. Based on the obtained side 

information and the entropy metric, DLP algorithm greedily 

selects dummy locations to achieve the optimal privacy level 

of k-anonymity. We also analyze the security performance of 

the proposed DLP algorithm against potential attacks in the 

data-driven IoT service. Finally, we evaluate the performance 

of our DLP algorithm and ADLS algorithm by conducting 

extensive simulation experiments under various scenarios. 

Our simulation results show that our ADLS algorithm has 

high probability of identifying the user real location from the 

dummy locations generated by DLS algorithm. Moreover, 

comparing with the DLS algorithm, our DLP algorithm has 

lower probability of revealing the user real location under the 

same attack, and can reduce the computational cost (i.e., time 

complexity) when providing same privacy level as the DLS 

algorithm. We explain our contributions for the data-driven 

IoT service and justify that our work can make greater 

impacts while blending with multi-layered security to prevent 

attacks and preserve location privacy. 
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