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Abstract
The importance of reasoning about and refactoring programs is a
central tenet of functional programming. Yet our compilers and de-
velopment toolchains only provide rudimentary support for these
tasks. This paper introduces a programmatic and compiler-centric
interface that facilitates refactoring and equational reasoning. To
develop our ideas, we have implemented HERMIT, a toolkit en-
abling informal but systematic transformation of Haskell programs
from inside the Glasgow Haskell Compiler’s optimization pipeline.
With HERMIT, users can experiment with optimizations and equa-
tional reasoning, while the tedious heavy lifting of performing the
actual transformations is done for them.

HERMIT provides a transformation API that can be used to
build higher-level rewrite tools. One use-case is prototyping new
optimizations as clients of this API before being committed to
the GHC toolchain. We describe a HERMIT application—a read-
eval-print shell for performing transformations using HERMIT. We
also demonstrate using this shell to prototype an optimization on a
specific example, and report our initial experiences and remaining
challenges.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language Classifications—Applicative (functional) lan-
guages

General Terms Experimentation, Languages, Performance, Veri-
fication.

Keywords DSLs, Equational Reasoning, GHC, Optimization,
Strategic Programming

1. Introduction
We want to do equational reasoning on real Haskell programs.
There are many tools for formalizing symbolic mathematics (Har-
rison 2009; Paulson 1989; Bertot and Castéran 2004), but currently,
paper and pencil, or even text editors and LATEX, are the state of the
art when performing equational reasoning on real (GHC-extended)
Haskell in the Haskell community. Towards being able to mech-
anize such reasoning, we are developing the Haskell Equational
Reasoning Model-to-Implementation Tunnel (HERMIT), a toolkit
for transforming GHC Core programs.

This is the author’s version of the work. It is posted here by permission
of ACM for your personal use. Not for redistribution. The definitive ver-
sion was published in Haskell’12, September 13, 2012, Copenhagen, Denmark.
http://dx.doi.org/10.1145/2364506.2364508.

We aim to go further, and write tools that do equational reason-
ing on real Haskell programs. HERMIT is therefore designed as
a framework that provides highly specific transformations as a ser-
vice, as well as the general scripting capabilities of rewriting strate-
gies. Our motivation is the exploration and possible automation of
high-level program transformations, such as the worker/wrapper
transformation (Gill and Hutton 2009).

1.1 A Taste of HERMIT
Imagine you are sitting at your terminal wishing your Haskell
program would go faster. The optimization flag has been turned
on, and you know of an unimplemented transformation that could
help. What do you do? You could add a new optimization pass to
GHC, taking part in the dark art of tuning heuristics to allow it to
play well with others. Or you could experiment, using HERMIT.

As a first example we use the Fibonacci function, not because it
is interesting, but because it is so well known.

module Main where

fib :: Int → Int
fib n = if n < 2 then 1 else fib (n − 1) + fib (n − 2)

Compiling with -O2, and using Criterion (O’Sullivan) to aver-
age over 100 tests, we observe that fib 35 runs in 124.0ms± 2.6ms
on our development laptop.

To enable further optimization of fib, we want to try unrolling
the recursive calls. We want to do this without changing the source,
which is clear and concise. To do so, we fire up HERMIT, choosing
to use the command-line interface. HERMIT uses the GHC Plugins
mechanism (GHC Team 2012) to insert itself into the optimization
pipeline as a rather non-traditional compiler pass, capturing pro-
grams mid-compilation and allowing the user to manipulate them.

ghc -fplugin=HERMIT -fplugin-opt=HERMIT:main:Main Main.hs
[1 of 1] Compiling Main ( Main.hs, Main.o )
[...]
module main:Main where

fib :: Int -> Int
[...]
hermit>

GHC has compiled our program into its intermediate form,
called GHC Core, and HERMIT is asking for input. At this point
we can start exploring our captured program.
hermit> consider ’fib

rec fib = λ n �
case (<) N $fOrdInt n (I# 2) of wild
False �
(+) N $fNumInt
(fib ((-) N $fNumInt n (I# 1)))
(fib ((-) N $fNumInt n (I# 2)))

True � I# 1
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Figure 1. The HERMIT architecture.

The consider command moves the focus onto the specified
function, and displays the function’s abstract syntax. This is HER-
MIT’s “compact” pretty printer for GHC Core. Core programs nec-
essarily contain a substantial amount of information, and in this
render engine HERMIT uses N as a placeholder for type arguments.
Notice that we refer to a Haskell syntactical name using the Tem-
plate Haskell convention of prefixing with a tick.

Next we want to unroll fib, to see if this improves performance.
Specifically, we want to inline all calls to fib (but nothing else) in
a bottom-up manner. HERMIT uses strategic programming as its
basis, so we build our command using two HERMIT strategies.
hermit> any-bu (inline ’fib)

rec fib = λ n �
case (<) N $fOrdInt n (I# 2) of wild
False �
(+) N $fNumInt
((λ n �

case (<) N $fOrdInt n (I# 2) of wild
False �
(+) N $fNumInt
(fib ((-) N $fNumInt n (I# 1)))
(fib ((-) N $fNumInt n (I# 2)))

True � I# 1)
((-) N $fNumInt n (I# 1)))

((λ n �
case (<) N $fOrdInt n (I# 2) of wild
False �
(+) N $fNumInt
(fib ((-) N $fNumInt n (I# 1)))
(fib ((-) N $fNumInt n (I# 2)))

True � I# 1)
((-) N $fNumInt n (I# 2)))

True � I# 1

Each inner instance of fib has been replaced with its definition,
effectively unrolling fib. There are many more simplifications that
can be done, such as β-reduction, but GHC is good at this. For
now, we just want to test this version; so we type resume and GHC
resumes compiling our program.

Now we time this new version. Again, taking the average over
100 tests using Criterion, we observe that the post-HERMIT fib 35
runs in about 76.7ms ± 3.6ms. We have modified GHC’s internal
representation of our program mid-compilation, improving it such
that the resulting program runs measurably faster. Furthermore, we
did not need to alter the original program to do so.

1.2 HERMIT Architecture and Contributions
HERMIT is a Haskell framework that provides tool support for
transforming GHC Core programs. Using HERMIT, we intend
to build tools for interactively performing equational reason-
ing, scripting equational reasoning, and, in general, constructing
program-level equivalences via transformation. Figure 1 gives a
pictorial representation of the principal HERMIT components.
Referring to Figure 1:

(1) HERMIT is connected to GHC via the recently implemented
GHC Plugins architecture. (§2)

(2) Our underlying rewrite engine is called KURE. We have con-
siderably reworked this library since Gill (2009), with much of
the development being driven by the needs of HERMIT. (§3)

(3) Using KURE, we have defined a complete set of congruence
combinators specifically for the GHC Core syntax. (§3.2.4)

(4) There are numerous primitive transformations over Core, using
KURE, or tunneling into GHC’s existing rewrite capabilities.
These transformations form the bulk of the HERMIT API. (§4)

(5) To manage rewrites, we have a HERMIT kernel, which operates
as an actor on the HERMIT users’ behalf, applying KURE
rewrites and transformations, and recording everything in a
virtual abstract syntax tree store. (§5.1)

(6) HERMIT has a read-eval-print loop (REPL) shell. (§5.2, 6)

(7) HERMIT also has a web-server interface. (§5)



This paper makes the following contributions:

• An improved design and implementation of the KURE strategic-
programming library. New features include the use of lenses for
navigation, a more reliable identity-detection mechanism based
on a new family of traversal combinators, and better integration
with existing Haskell infrastructure by making transformations
instances of well-known type classes. (§3)
• The first large case study of the GHC Plugins capability. HER-

MIT is designed from the ground up to be a server architecture
that provides access to the GHC internals. (§4)
• A case study of using the HERMIT shell to implement the

worker/wrapper reverse example (Gill and Hutton 2009). (§6)

2. HERMIT: A GHC Plugin
The Glasgow Haskell Compiler (GHC) recently added support for
plug-and-play optimization passes (GHC Team 2012). HERMIT
uses this mechanism to provide a highly customizable transforma-
tion system for GHC’s internal intermediate language, GHC Core.
GHC Core is an implementation of System F�

C (Sulzmann et al.
2007; Weirich et al. 2011a; Yorgey et al. 2012; Vytiniotis et al.
2012), which is the well-understood System F (Pierce 2002) ex-
tended with let-binding, constructors, and support for type coer-
cions via proofs of type equality. In System F�

C , types are explicitly
passed as arguments, but never returned.

Figure 2 gives the Haskell syntax for GHC Core, presented
using some inlined type synonyms for clarity. Notice that the key
type, CoreExpr , is quite small (only 10 constructors). A module,
captured inside ModGuts , is (among other things) an ordered list
of bindings. Bindings come in two types: single non-recursive
bindings, and groups of mutually recursive bindings.

GHC accepts a plugin as a ModGuts → CoreM ModGuts
function, and HERMIT provides such a function. Choosing to have
HERMIT transform GHC Core, rather than some other representa-
tion, was a significant design decision. Other similar systems have
made different choices; for example, HaRe (Brown 2008; Li and
Thompson 2008) operates directly on Haskell syntax.

There are two major advantages to HERMIT’s approach. First,
GHC Core is a small language, having stripped away all of
Haskell’s syntactic sugar. This makes it much easier to work with,
as there are fewer cases to consider. Second, HERMIT inserts itself
inside the GHC optimization pipeline, allowing transformations to
be intermixed with GHC’s optimization passes, as desired. How-
ever, the primary disadvantage is that we cannot output Haskell
source code.

Using ideas from strategic programming, we have built a set of
abstractions for providing functions that operate over GHC Core.
This is the subject of the next section.

3. Strategic Rewriting
When modifying a data structure, it can be easy to express the
change you want to make, but tedious to route that change through
the structure to the point at which you want to make it. Lan-
guages such as Haskell support polymorphic combinators (higher-
order functions) to help with this. For example, map automates the
traversal of a list, saving the programmer from having to explic-
itly encode a recursive traversal for every function she wishes to
apply to every element in a list. However, while Haskell provides
a rich set of traversal combinators for standard data types, user-
defined data types lack this support. A programmer can define a set
of traversals for each data type, but this is time consuming. Ideally,
we want a single set of generic traversals that can be used on any
user-defined data type.

data ModGuts = ModGuts { :: [CoreBind ], ...}
data CoreBind = NonRec Id CoreExpr

| Rec [(Id ,CoreExpr)]

data CoreExpr = Var Id
| Lit Literal

| App CoreExpr CoreExpr

| Lam Id CoreExpr
| Let CoreBind CoreExpr

| Case CoreExpr Id Type [CoreAlt ]

| Cast CoreExpr Coercion
| Tick (Tickish Id) CoreExpr

| Type Type

| Coercion Coercion

type CoreAlt = (AltCon, [Id ],CoreExpr)

data AltCon = DataAlt DataCon

| LitAlt Literal
| DEFAULT

Figure 2. GHC Core.

This is a well-studied problem, and a variety of approaches
have been proposed (Hinze 2000; Lämmel and Peyton Jones 2003,
2004; Löh 2004; Visser 2005; Rodriguez et al. 2008; Yakushev
et al. 2009; Magalhães et al. 2010). This section describes one
such approach to the problem: the Kansas University Rewrite En-
gine (KURE), a Haskell-embedded domain-specific language for
strategic rewriting. The novel feature of KURE is the use of associ-
ated type synonyms (Kiselyov et al. 2010) to allow strongly typed
traversals over data structures containing nodes of different types.

An earlier version of KURE was presented by Gill (2009). Here
we summarize the KURE basics, and describe the new features of
our updated version.

3.1 Strategic Programming and Stratego
KURE is based on strategic programming (Visser 2005), a paradigm
for expressing transformations and traversals of tree-structured
data. Two key concepts are transformation rules, which are lo-
cal rewrites on a node in the tree, and transformation strategies,
which combine rules to make new rules (Visser 2004). Transfor-
mation rules can either succeed or fail when applied to a node.
Typically, a strategic programming language provides a selection
of rules and strategies as primitives, a means of defining new prim-
itive rewrites, and a means of defining new strategies and rules in
terms of existing strategies and rules.

As an example, we consider Stratego (Bravenboer et al. 2008),
the most widely used strategic rewrite system. Some representative
rules and strategies are given by the following grammar:

S ::= id | fail | S ;S | S <+ S | all (S)

Briefly, the semantics of these primitives are:

• id is the identity transformation that always succeeds;
• fail is the always failing transformation;
• s1 ; s2 is sequencing of transformations (requiring both to suc-

ceed);
• s1 <+ s2 is a “catch” (apply s1, and if it fails then apply s2

instead);
• all (s) applies s to all immediate child nodes (requiring all to

succeed).

all is the most interesting, as it exploits the tree-structure of the
data being transformed.



Using these combinators, new strategies can be defined. A clas-
sic example is try , which catches a failed transformation with the
identity transformation (and thus always succeeds):

try (s) = s <+ id

As another example, the following strategies perform pre-order
and post-order traversals (respectively), applying s to every node:

topdown (s) = s ; all (topdown (s))
bottomup (s) = all (bottomup (s)) ; s

3.2 The KURE Transformation Library
KURE provides the transformations of Stratego as strongly typed
Haskell combinators (Stratego is untyped). Much of the design of
KURE is also inspired by StrategyLib (Lämmel and Visser 2002),
another Haskell library for strategic programming. We overview
the differences between the two systems in §3.3.

The design of KURE emerged from the requirements that there
should be:

• a common traversal mechanism for both applying rewrites to
the tree and extracting information from the tree;
• support for maintaining a context while traversing the tree;
• support for working in an arbitrary monad.

A common traversal mechanism is useful as the same combina-
tors can be used for both tasks, cutting down the number of combi-
nators that KURE needs to provide, and that a user has to learn.

Maintaining a context allows transformations to depend on in-
formation from elsewhere in the tree. In HERMIT, the context is
the set of bindings in scope (and a few other things that won’t be
used in this paper):

data Context = Context (Map Id HermitBinding) ...

Having access to this context allows some transformations (in-
lining, for example) to be performed locally that would otherwise
need to traverse the tree to locate this information.

Having KURE support an arbitrary monad gives transforma-
tions access to any required external operations, such as fresh name
generation. For example, HERMIT uses the CoreM monad pro-
vided by GHC Plugins, combined with an error monad:

newtype HermitM a = HermitM (CoreM (Either String a))

These requirements lead to the following data type, which forms
the basis of KURE:

data Translate c m a b = Translate {apply :: c → a → m b}

The four type parameters are: the context, the underlying monad,
the node to be transformed, and the result. Allowing the result type
to differ from the node type allows a transformation to project
arbitrary information from a node. Rewriting a node is just the
special case when the result is a node of the same type. Indeed,
KURE provides a type synonym specifically for that case:

type Rewrite c m a = Translate c m a a

Typically, a KURE user will define synonyms for Translate
and Rewrite specialized to their context and monad. For example,
HERMIT defines the following synonyms:

type TranslateH a b = Translate Context HermitM a b
type RewriteH a = TranslateH a a

The KURE library exposes two primitive functions for building
primitive transformations, with rewrite just being a synonym for
translate at the more specialized type:

translate :: (c → a → m b)→ Translate c m a b
translate = Translate

rewrite :: (c → a → m a)→ Rewrite c m a
rewrite = translate

These functions are KURE’s method of allowing the user to define
custom transformation rules. For example, an inlining rewrite for
GHC Core could be written like so:

inline :: RewriteH CoreExpr
inline = rewrite $ λc e → case e of

Var v → case inlinable v c of
Right e′ → return e′

Left msg → fail msg
→ fail "inline failed: not a variable"

We omit the details of the inlinable function, which simply
looks up a variable in a context to determine if it is defined and
is safe to inline at this location (without name clashes).

3.2.1 Transformation Combinators
In KURE, transformation strategies are just combinators operat-
ing over the Translate data type. KURE’s approach to providing
strategies is to make Translate an instance of well-known struc-
tures such as Monad and Arrow , and then any monadic or arrow
combinator gives rise to a strategy. To be able to catch failures at
the Translate level, the underlying monad is required to support a
catch operation, which is expressed by the following type class:

class Monad m ⇒ MonadCatch m where
(<+ ) :: m a → m a → m a

KURE then derives Functor , Applicative , Monad , MonadCatch ,
Category , Arrow and ArrowApply instances for the Translate
type parametrized on that monad.

We omit the definitions as they are standard: the Monad family
of instances equates to applying the Reader monad transformer to
the underlying monad, and the Arrow family of instances equate to
applying the Reader arrow transformer to the Kleisli arrow induced
by the underlying monad. KURE also derives a Monoid instance
for Translate whenever the result type forms a Monoid .

Amongst the many combinators these instances provide, the
following correspond to the Stratego primitives (where id is from
the Category type class):

id :: Rewrite c m a
fail :: String → Translate c m a b
(≫) :: Translate c m a b → Translate c m b d →

Translate c m a d
(<+ ) :: Translate c m a b → Translate c m a b →

Translate c m a b

For clarity, all combinators in this section are presented with
their types specialized to Translate , but in the KURE library they
are generalized to arbitrary monads and arrows. We also omit
the MonadCatch class constraint as it is common to all of the
combinators described.

Defining new combinators is as straightforward as in Stratego,
for example:

tryR :: Rewrite c m a → Rewrite c m a
tryR r = r <+ id

Experience with HERMIT has shown that when defining new
transformations it is sometimes more convenient to work at the
level of the Translate monad, and sometimes more convenient to
work at the level of the underlying monad. By generalizing KURE’s
library of combinators to work on any monad, they are available
at both levels (as opposed to needing two sets of combinators).
Additionally, having access to do notation at the Translate level
has proved useful; in particular, the invocation of fail on a pattern
match failure enables a concise coding style. For example, a rewrite
that floats a local let-binding to the top level,

v = (let w = ew in ev) w = ew
... ⇒ v = ev

...



can be expressed succinctly as follows:
letFloatLetTop :: RewriteH CoreProgram
letFloatLetTop =

do NonRec v (Let (NonRec w ew) ev) : bds ← id
return (NonRec w ew : NonRec v ev : bds)

The use of existing Haskell structures is one of the key im-
provements over the previous version of KURE, which did not
make Translate an instance of these classes. One reason for this
was that the previous KURE had an identity-detection mechanism
whereby identity rewrites could be caught using various combina-
tors (Gill 2009). This is useful when building larger rewrites, as we
often want to detect not only whether a rewrite was applicable, but
whether it actually changed anything. However, the mechanism vi-
olated the arrow laws, and thus prevented an arrow instance. It was
also rather fragile, relying on the programmer to correctly use a
combinator called transparently to mark identity-preserving uses
of rewrite and translate .

The new version of KURE opts for a simpler approach. It
supports an (optional) convention whereby rewrites that do not
modify the term should fail (although there are exceptions, such
as id and tryR, for when the user does not wish to follow this
convention). It is then possible to define recursive rewrites that
continue until a fixed point is reached. For example, the repeatR
strategy repeatedly applies a rewrite until it fails, returning the
result before the failure:

repeatR :: Rewrite c m a → Rewrite c m a
repeatR r = r ≫ tryR (repeatR r)

In keeping with the convention, it requires at least one rewrite to
succeed, else it fails overall.

To support this convention further, KURE provides a variant
sequencing operator that succeeds if either rewrite succeeds, with
each rewrite defaulting to an identity rewrite in the case of failure:

(>+>) :: Rewrite c m a → Rewrite c m a → Rewrite c m a

This differs from tryR r1 ≫ tryR r2, which will always succeed.
As examples of the ease of constructing new strategies in this

setting, we define two combinators that sequence a list of rewrites:
orR :: [Rewrite c m a ]→ Rewrite c m a
orR = foldr (>+>) (fail "orR failed")

andR :: [Rewrite c m a ]→ Rewrite c m a
andR = foldr (≫) id

They differ in that orR succeeds if at least one rewrite succeeds,
whereas andR succeeds only if all the rewrites succeed.

3.2.2 Lenses
Another feature new in this version of KURE is the use of lenses
(Foster et al. 2007). In our (specialized) setting, a lens is a tool
for directing a transformation to a specific descendant node. For
example, given a Lens from a node of type a to a descendant node
of type b, KURE provides combinators that allow us to apply a
Rewrite or Translate to that descendant:

focusR :: Lens c m a b → Rewrite c m b → Rewrite c m a
focusT :: Lens c m a b → Translate c m b r

→ Translate c m a r

Note that focusR is not a synonym for focusT , as the two
have different semantics: focusR rewrites the descendant node,
maintaining the structure of the rest of the tree; whereas focusT
transforms the descendant node into a result value, discarding the
rest of the tree.

We implement Lens as a subtype of Translate:
type Lens c m a b = Translate c m a ((c, b), (b → m a))

That is, as a translation from a term of type a to a triple: a term
of type b, the context for that term, and a monadic function that

converts a term of type b back to a term of type a . The focus
combinators can now be defined as follows:

focusR l r = rewrite $ λc a → do ((c′, b), k)← apply l c a
apply r c′ b >>= k

focusT l t = translate $ λc a → do ((c′, b), )← apply l c a
apply t c′ b

3.2.3 Tree Traversals
Notably absent from the discussion of KURE thus far have been
traversal combinators such as Stratego’s all strategy. This is be-
cause defining such combinators in a strongly typed setting is non-
trivial. Consider, the argument rewrite to all should operate on all
children of a node, which may have distinct types from each other
and the parent, and the result should be a rewrite that operates on
the parent. So what type should it have? A type:

allR :: Rewrite c m a → Rewrite c m a

would only work on children of the same type as the parent.
Whereas a type:

allR :: Rewrite c m a → Rewrite c m b

does not relate a and b at all, and so allR cannot use the argument
rewrite in any meaningful way. (Except in a language that provides
runtime type comparisons, which is the approach taken by Dolstra
(2001).) A detailed discussion of this problem and the development
of a solution can be found in Gill (2009). Here, we just summarize
the solution.

For each node that the KURE user wishes to traverse (hence-
forth referred to as traversable nodes), she is required to define a
so-called “generic” data type that is the sum type of all traversable
descendant nodes. Often, as is the case of HERMIT, a single data
type is the generic type for all traversable nodes. For example, the
sum type for GHC Core (Figure 2) is:

data Core = ModGutsCore ModGuts
| BindCore CoreBind
| ExprCore CoreExpr
| AltCore CoreAlt

KURE provides a type class Node , with an associated type
function (Kiselyov et al. 2010) Generic that specifies the corre-
sponding sum type. This type function is constrained to be idem-
potent (the sum type must itself be an instance of Node , and be its
own Generic), and there must be an injective function (and a cor-
responding retraction) between a node and its sum type. The class
also has a function to count the number of traversable children.

class Generic a∼Generic (Generic a)⇒ Node a where

type Generic a :: ∗
inject :: a → Generic a
retract :: Generic a → Maybe a

numChildren :: a → Int

Using inject and retract , KURE provides a number of combi-
nators that lift (and lower) translations and rewrites to (and from)
the sum type (see Figure 3). Notice that a failing retraction causes
the entire translation to fail.

The KURE user is required to define instances of Node for each
traversable node in her data type, but this is straightforward. For
example, the instances for CoreBind are:

instance Node CoreBind where
type Generic CoreBind = Core

inject = BindCore
retract (BindCore bnd) = Just bnd
retract = Nothing

numChildren (NonRec ) = 1
numChildren (Rec defs) = length defs



injectT :: Node a ⇒ Translate c m a (Generic a)

injectT = arr inject

retractT :: Node a ⇒ Translate c m (Generic a) a

retractT = translate (λ → maybe (fail "...") return ◦ retract)

extractT :: Node a ⇒
Translate c m (Generic a) b → Translate c m a b

extractT t = injectT ≫ t

promoteT :: Node a ⇒
Translate c m a b → Translate c m (Generic a) b

promoteT t = retractT ≫ t

extractR :: Node a ⇒ Rewrite c m (Generic a)→ Rewrite c m a

extractR r = injectT ≫ r ≫ retractT

promoteR :: Node a ⇒ Rewrite c m a → Rewrite c m (Generic a)

promoteR r = retractT ≫ r ≫ injectT

Figure 3. Lifting and lowering combinators.

We can now give a sensible type signature to allR:
allR :: Node a ⇒ Rewrite c m (Generic a)→ Rewrite c m a

That is, given a rewrite that can be applied to any traversable
descendant of a , then we have a rewrite over a .

We now have a type, but what about the definition? First we
introduce another type class Walker , which contains a function
that constructs a Lens to each traversable child (indexed by an Int):

class Node a ⇒Walker c m a where
childL :: Int → Lens c m a (Generic a)

The KURE user is required to provide this instance for each
traversable node. Definitions of childL are often quite verbose,
but fit a standard pattern. Unfortunately they cannot be generated
automatically, as the user must specify how to update the context.
However, KURE does provide a family of combinators to facilitate
writing these instances.

Using childL, it is possible to define allR. Therefore, KURE
provides allR as a Walker class method with a default definition
(which can be overwritten in situations where that definition would
be inefficient, such as when there is a list of children). The full
definition of the Walker class, and some auxiliary functions, is
shown in Figure 4. Notice that Walker provides a combinator
anyR, which is similar to allR except that it succeeds if the rewrite
succeeds on any child. Also notice the allT combinator, which
applies a Translate to all children and combines the results in
a monoid. A monoid is appropriate because we have an arbitrary
number of results to combine together into a single value.

We can now define traversals such as topdown and bottomup
from Stratego. KURE provides two variants of each strategy, de-
pending on whether we want the rewrite to succeed everywhere,
which is the behavior in Stratego, or merely anywhere, which is
often more useful in the context of HERMIT.

alltdR r = r ≫ allR (alltdR r)
anytdR r = r >+> anyR (anytdR r)

allbuR r = allR (allbuR r) ≫ r
anybuR r = anyR (anybuR r) >+> r

A related strategy is a variant of anytdR that prunes at each
success (i.e. it does not descend below any node at which the
rewrite succeeds):

prunetdR r = r <+ anyR (prunetdR r)

As a final traversal example, the following strategy repeatedly
applies a rewrite, starting with the innermost term and working
outwards, until a fixed point is reached:

innermostR r = anybuR (r ≫ tryR (innermostR r))

class Node a ⇒Walker c m a where
childL :: Int → Lens c m a (Generic a)

allT :: Monoid b ⇒
Translate c m (Generic a) b → Translate c m a b

allT t = do n ← arr numChildren
mconcat [childT i t | i ← [0 . . (n − 1)]]

allR :: Rewrite c m (Generic a)→ Rewrite c m a
allR r = do n ← arr numChildren

andR [childR i r | i ← [0 . . (n − 1)]]

anyR :: Rewrite c m (Generic a)→ Rewrite c m a

anyR r = do n ← arr numChildren

orR [childR i r | i ← [0 . . (n − 1)]]

childT :: Walker c m a ⇒
Int → Translate c m (Generic a) b → Translate c m a b

childT n = focusT (childL n)

childR :: Walker c m a ⇒
Int → Rewrite c m (Generic a)→ Rewrite c m a

childR n = focusR (childL n)

Figure 4. The Walker class and interrelated functions.

3.2.4 Congruence Combinators
When traversing a tree, the context has to be updated accordingly.
What that context is, and how exactly it should be updated, depends
on the data type being traversed and the transformations that the
user wants to be able to define. However, updating the context ex-
plicitly in the definition of each traversal combinator and primitive
transformation is repetitive and error prone. It is better to define for
each node a general-purpose traversal combinator that handles the
context update, and then define all other combinators that manipu-
late that node in terms of that combinator.

These are called congruence combinators (Visser 2004), and
we recommend the KURE user defines one for each constructor
of each traversable node. This may seem like a lot of work, but
our experience has been that there is a significant pay-off in the
simplicity with which subsequent transformations can be defined.

More concretely, a congruence combinator builds a translation
over a node from translations to apply to that node’s traversable
children and a function to combine the results of those translations
with the leaves of the node. For example, the congruence combina-
tor for the Lam constructor of CoreExpr is as follows:

lamT :: TranslateH CoreExpr a → (Id → a → b)→
TranslateH CoreExpr b

lamT t f = translate $ λc e → case e of
Lam b e1 → f b <$> apply t (addLamBind b c @@ 0) e1

→ fail "no match for Lam"

We won’t discuss the details of the context update done by
addLamBind ; the important point is that the translation is applied
to the child expression in an updated context.

Another, simpler, example is the congruence combinator for
Var , which has zero traversable children:

varT :: (Id → b)→ TranslateH CoreExpr b
varT f = translate $ λ e → case e of
Var n → return (f n)

→ fail "no match for Var"

Congruence combinators are used to define the Walker in-
stance for CoreExpr , as demonstrated in the following fragment:

instance Walker Context HermitM CoreExpr where
allT t = varT (λ → mempty)

<+ lamT (extractT t) (λ b → b)
<+ appT (extractT t) (extractT t) mappend
<+ ...



allR r = varT Var
<+ lamT (extractR r) Lam
<+ appT (extractR r) (extractR r) App
<+ ...

The same approach is taken for defining anyR and childL, though
the definitions are more involved and so omitted here.

3.3 Comparison with StrategyLib
The key difference between StrategyLib and KURE is that KURE
uses associated types to assign a type to transformations that are
applied to the children of a node, whereas StrategyLib effectively
fixes all transformations to operate on the generic type. Thus com-
binators in StrategyLib have no type parameter for the type to be
operated on, and hence giving a type signature to combinators such
as all is trivial.

StrategyLib also differs in that rewrites (named TP) are not
subtypes of translations (named TU). This means that StrategyLib
has two versions of most unary combinators, and potentially many
versions for combinators that combine multiple transformations.
Additionally, the restriction of TUs to operate over the generic type
means that it is not possible to sequence two TUs; only two TPs, or
a TP and a TU.

StrategyLib offers two implementations for the TP and TU
types. The first is based on a universal representation of algebraic
data types, which serves as the generic data type. The user is
required to define conversion functions to and from that data type
(via a type class). Applying a TP then involves translating the tree
to that universal data type, performing the TP, and then translating
back again. This is inefficient, particularly if only a small portion
of the tree will be modified.

The second implementation encodes transformations as rank-2
polymorphic functions. This implementation does not suffer from
the inefficient conversions of the universal representation approach,
but has the significant drawback that it is necessary to know the
data types to be transformed before the TP and TU types can be
defined. That is, they only work for a set of pre-determined data
types, they cannot be used on arbitrary structures. See Lämmel and
Visser (2002) for details.

4. Primitive Transformations
HERMIT provides a number of primitive operations on GHC Core
as KURE transformations, including basic lambda calculus manip-
ulations such as β-reduction and η-expansion, as well as the local
transformations described in Santos (1995). The rule which floats a
let binding from an application is one such transformation:

f (let v = e1 in e2) ⇒ let v = e1 in f e2

Many low-level manipulations such as these are done by GHC
before the HERMIT plugin is run. Indeed, this can make testing
them on real (simple) Haskell code difficult. However, providing
them in HERMIT serves two purposes. They are building blocks for
larger transformation strategies, and they enable subsequent trans-
formations. For example, depending on the context of the applica-
tion node, this transformation may enable further let-floating.

Congruence combinators (§3.2.4) can be used to concisely im-
plement rewrites such as the one above:

freeVarsT :: TranslateH CoreExpr [Var ]
letVarsT :: TranslateH CoreExpr [Var ]
alphaLet :: RewriteH CoreExpr

letFloatArg :: RewriteH CoreExpr
letFloatArg = do vs ← appT freeVarsT letVarsT intersect

appT
id
(if null vs then id else alphaLet)
(λf (Let bnds e)→ Let bnds (App f e))

We omit the definitions of freeVarsT , letVarsT and alphaLet ,
which collect the free variables in an expression, collect the vari-
ables bound by a let expression, and α-convert any variables bound
by a let expression to globally fresh names, respectively. The first
line of letFloatArg uses the congruence combinator appT to
transform the expression App f (Let bnds e) into the intersec-
tion of the free variables in f and the variables bound in bnds . If
these lists intersect, the let expression will be α-converted to avoid
variable capture before building the result.

The primitive transformations in HERMIT adhere to the follow-
ing conventions:

• Primitive rewrites either modify a term or fail, they never suc-
ceed with an identity transformation. This makes it viable to use
traversal strategies such as innermostR.
• For primitive rewrites, no traversal is performed. As an exam-

ple, the rewrite inline (§3.2) only operates on Var nodes (which
are replaced by looking them up in the context). By applying a
traversal/focus strategy, such as anybuR, to inline , we get a
more traditional notion of inlining.
• The type of the rewrite is as specific as possible. Above,

letFloatArg rewrites CoreExpr , rather than Core . Lifting is
done by KURE combinators when necessary (see Figure 3).

Whenever possible, primitive rewrites are lifted versions of the
underlying GHC functions for manipulating Core. Care is taken
to maintain the above behaviors, when they make sense. (Clearly,
a substitution rewrite that does no traversal is incorrect.) In this
manner, we implement substitution, free variable collection, and a
de-shadowing pass, among others.

We have come to a deep appreciation of GHC’s Core Lint pass
(Peyton Jones and Santos 1998), which has caught unintended vari-
able capture and other type errors numerous times in the process
of writing these primitive transformations. We are especially wary
of modifying types, and thankfully can rely extensively on GHC-
provided functions on the occasions where we cannot avoid doing
so.

4.1 Tags
Primitive transformations are categorized by tags, which are used
internally to build higher-level rewrite strategies, and externally
to organize them for presentation to the user. These tags denote
properties of the transformation. Using a rewrite generator called
metaCmd and a small tag predicate language, one can quickly
build a higher-level rewrite from the HERMIT dictionary. This is
used to implement the bash1 rewrite, which iteratively applies a
group of rewrites until no more changes are made.

metaCmd :: TagPredicate a ⇒
a →
([RewriteH Core ]→ RewriteH Core)→
RewriteH Core

bash :: RewriteH Core
bash = metaCmd (Local .& Eval) (innermostR ◦ orR)

The definition of bash finds all the rewrites which are tagged as
both Local and Eval. Local means that no traversal is performed,
and so the rewrite should be fairly efficient to apply. Eval means
that the rewrite performs a step of computation that reduces the
term, such that repeated application of Eval rewrites will eventu-
ally terminate. The matching rewrites are then combined with orR
(§3.2.1), producing a single rewrite that tries each one and suc-
ceeds if any of them succeed. This rewrite is then run using the
innermostR traversal strategy (§3.2.3).

1 The name bash is borrowed from the PVS System (Owre et al. 1992).



4.2 RULES
A key HERMIT command is unfold-rule, which constructs a
rewrite from a named GHC RULES pragma (Peyton Jones et al.
2001). As an example, consider this simple Haskell program. Using
unfold-rule, we rewrite foo to remove the unnecessary append:

module Main where

{-# RULES “app nil” ∀xs . xs ++ [ ] = xs #-}
foo = [1] ++ [ ]

hermit> consider ’foo
foo = (++) N ((:) N (__integer 1) ([] N)) ([] N)

hermit> any-bu (unfold-rule app_nil)
foo = (:) N (__integer 1) ([] N)

This facility allows HERMIT users to specify domain-specific
rewrites inside the modules they are rewriting, using Haskell syn-
tax. RULES pragmas are type checked, but otherwise provide
no guarantees as to the correctness of the rewrite—correctness
is the user’s responsibility. Haskell library authors already make
use of RULES for domain-specific optimizations, but determining
whether they are applied as expected is a significant challenge. The
unfold-rule command provides a way for these library authors
to explore rule definitions. Additionally, all of these rewrites are
now available to HERMIT users for free.

5. Interfaces to HERMIT
To allow the user to interactively apply transformations to their pro-
grams during GHC compilation, HERMIT provides several inter-
faces at different levels of abstraction. The lowest-level interface is
the HERMIT kernel, an intentionally small API of idempotent op-
erations that is designed to support higher-level interfaces or fully
automated clients. The kernel interface is directly reflected as a
RESTful web service over the ubiquitous HTTP protocol, in order
to support the construction of rich cross-platform user interfaces.
Also building on the kernel API is the HERMIT shell, which imple-
ments additional capabilities in order to offer a familiar interactive
REPL. We now overview the kernel interface and the capabilities
of the shell.

5.1 Kernel
The HERMIT kernel is an agent that accepts requests to apply
transformations to the syntax of individual modules. It ties together
KURE and the GHC Plugins sub-system.

Specifically, the kernel provides the following operations,
wrapped up as named fields in a record called Kernel :

newtype AST = AST Int

data Kernel = Kernel
{applyK :: AST → RewriteH Core → IO AST
, queryK :: ∀α. AST → TranslateH Core a → IO α
, deleteK :: AST → IO ()
, listK :: IO [AST ]
, resumeK :: AST → IO ()
, abortK :: → IO ()}

• AST is a handle to a specific version of a module’s ModGuts .
• applyK applies a rewrite to the specified AST and returns the

handle to the resulting AST .
• queryK applies a translation to the specified AST returning

the resulting value.
• deleteK deletes the internal record of a specific AST .
• listK lists all AST s tracked by the kernel.
• resumeK halts the kernel and returns control to GHC, which

compiles the specified AST .

• abortK halts the kernel and exits GHC without compiling.

This API intentionally leaves the responsibility of tracking the
relationship between AST s to the client, reflecting a filesystem
style of thinking. Some user interfaces, such as the REPL, are linear
in nature, generally using the most recent AST . An agent which
performs a search of the transformation space by speculatively
applying rewrites in parallel might maintain a tree of AST s.

Kernel clients are defined using hermitKernel , which accepts
client functionality as an IO function over the kernel and the initial
AST handle, and generates a GHC Plugins pass.

hermitKernel :: (Kernel → AST → IO ())
→ ModGuts → CoreM ModGuts

The client function runs in its own thread. When the kernel receives
a resumeK command, it kills this thread and returns the ModGuts
of the chosen AST to GHC for compilation.

5.2 Shell
The HERMIT shell builds on the kernel to offer a REPL interface
with a rich feature set. Currently, this is the primary user interface.

• The shell interprets a monomorphic but dynamically-typed dic-
tionary of expression language commands and makes the ap-
propriate kernel API calls.
• KURE combinators are reflected as shell commands, with the

same typing discipline.
• The shell additionally maintains a focused expression and

works over the most recent AST by default, providing the
ability to navigate intuitively.
• There are a number of pretty printers for abstract syntax, and

renderers for different output formats, including HTML, Uni-
code, and LATEX.
• Previously applied transformations can be undone or replayed.

This replay tree of transformations can be branched, as well as
saved to and loaded from a file.
• There is a rudimentary, automatically generated, help system,

comparable to UNIX man.

In the next section, we use the shell interface to perform a
derivation using HERMIT.

6. Case Study: Optimizing reverse

As our case study, we perform the derivation of the efficient version
of reverse , as given in Gill and Hutton (2009), using equational
reasoning. The objective is to get a feel for how feasible these trans-
formations are inside the HERMIT system, as well as to illustrate
the HERMIT shell on a larger example.

The formula behind this worker/wrapper derivation is as fol-
lows:

1. Transform a recursive function to explicitly use the fixed-point
combinator.

2. Use the worker/wrapper transformation, after checking the pre-
conditions.

3. Simplify to expose the underlying representation-changing
functions.

4. Move these representation changers to allow fusion. This fusion
produces the improvement; everything else is meant to enable
this.

5. Simplify and remove the use of the explicit fixed point.



beta-reduce (λv → e1) e2 ⇒ let v = e2 in e1

case-float-app

(case e of
a1 → e1
a2 → e2
...
an → en) e′

⇒

case e of
a1 → e1 e′

a2 → e2 e′

...
an → en e′

eta-expand ys e ⇒ λys → e ys

fix-intro rec f = body ⇒ f = fix (λf → body)

let-float-arg f (let v = e1 in e2) ⇒ let v = e1 in f e2

let-float-let

let v1 = let v2 = e2
in e1

in e
⇒

let v2 = e2
in let v1 = e1

in e

let-intro work e ⇒ let work = e in work

let-subst let v = e1 in e2 ⇒ e2 [e1 / v ]

Table 1. Rewrites used, directly or indirectly, in case study.

6.1 Transforming reverse in the HERMIT Shell
We start with the quadratic version of reverse (quadratic because
it calls append, which is O(n), for each element of the list).

rev :: [a ]→ [a ]
rev [ ] = [ ]
rev (x : xs) = rev xs ++ [x ]

Loading this in HERMIT, we get the more verbose System F�
C

output:
hermit> consider ’rev

rev = λ . �
let rec rev = λ ds �

case ds of wild
[] � [] N
(:) x xs �
(++) N (rev xs) ((:) N x ([] N))

in rev

We can see that there is an outer rev , whose right-hand side is a
type lambda. This is capturing as a type argument the type of the list
elements, with . denoting the type argument (in this pretty printer).
The inner recursive definition of rev is what we wish to transform.
We decide that, for space and presentation reasons, we are going
to turn off the rendering of type expressions. Note that this is
purely an observational projection issue; the types are maintained
internally. As navigation commands refer to the underlying syntax
tree, typically one would operate with the symbols in place.
hermit> set-pp-expr-type Omit

rev = λ �
let rec rev = λ ds �

case ds of wild
[] � []
(:) x xs � (++) (rev xs) ((:) x [])

in rev

We focus on the inner definition, deciding to convert it to use
fix , by first moving into the right-hand side of the outer rev with the
shell navigation command down. We then use consider to jump
to the inner rev , where we introduce the fix . Tables 1 and 2 list all
the rewrites used in this example.
hermit> down ; consider ’rev ; fix-intro

rev =
fix (λ rev ds �
case ds of wild
[] � []
(:) x xs � (++) (rev xs) ((:) x []))

We are now focused on what was the inner rev , and we want to
apply the worker/wrapper rule. This step requires introducing the

append ∀x xs ys . (x : xs) ++ ys ⇒ x : (xs ++ ys)

app nil ∀xs . [ ] ++ xs ⇒ xs

fusion† ∀xs . repH ◦ absH ◦ xs ⇒ xs

rep app ∀xs ys . repH (xs ++ ys) ⇒ repH xs ◦ repH ys

ww† ∀work . fix work ⇒ wrap (fix ( unwrap

◦ work
◦ wrap))

Table 2. GHC RULES used in case study; † has precondition.

specific wrap and unwrap functions, as well as verifying a pre-
condition (that wrap ◦ unwrap ≡ id ). We omit the verification,
which is a separate, straightforward derivation. Indeed, HERMIT,
as a low-level rewrite API, provides no safety checks (other than
typing), and we fully expect higher-level systems on top of HER-
MIT to provide stronger safety properties. The HERMIT shell is a
“superuser” shell.

The wrap and unwrap functions, in this case imported from
a pre-compiled module, transform between a version of rev that
returns a list and one that returns an H-list (Hughes 1986). H-lists
have a more efficient, constant time, append.

type H a = [a ]→ [a ]

repH :: [a ]→ H a
repH xs = (xs++)

absH :: H a → [a ]
absH h = h [ ]

unwrap :: ([a ]→ [a ])→ ([a ]→ H a)
unwrap f = repH ◦ f

wrap :: ([a ]→ H a)→ ([a ]→ [a ])
wrap g = absH ◦ g

To invoke the worker/wrapper rule (given in Table 2) we use a
command called unfold-rule. To direct the rule to the fix call
site, we use the higher-order command prune-td:
hermit> prune-td (unfold-rule "ww")

rev =
wrap
(fix

((.) unwrap
((.)

(λ rev ds �
case ds of wild
[] � []
(:) x xs � (++) (rev xs) ((:) x []))

wrap)))

Next, we want to inline and simplify the compose function.
To give an idea of the options available to accomplish this, recall
the primitive inline rewrite that simply replaces a value with
its definition. A higher-level rewrite, unfold, calls inline, then
performs β-reductions and (safe) let-inlining to clean up the result.
This is typical of the suite of commands provided by HERMIT:
focused commands that perform well-understood transformations
are combined by higher-level combinators.
hermit> prune-td (unfold ’.) ; prune-td (unfold ’.)

rev =
wrap
(fix (λ x �

unwrap
((λ rev ds �

case ds of wild
[] � []
(:) x xs � (++) (rev xs) ((:) x []))

(wrap x))))



Now we want to inline wrap and unwrap and simplify the result.
This exposes our representation changing functions, repH and
absH .
hermit> prune-td (unfold ’wrap)
hermit> prune-td (unfold ’wrap)
hermit> prune-td (unfold ’unwrap)
hermit> prune-td (unfold ’.)

rev =
(λ g x � absH (g x))
(fix (λ x �

(λ f x � repH (f x))
((λ rev ds �

case ds of wild
[] � []
(:) x xs � (++) (rev xs) ((:) x []))

((λ g x � absH (g x)) x))))

We need to do some more work to get the repH to where we
want it—at the outermost location of our expression inside fix . To
perform this cleanup, we use bash.
hermit> bash

rev =
let g =

fix (λ x x �
repH
(case x of wild

[] � []
(:) x xs �
(++) (absH (x xs)) ((:) x [])))

in λ x � absH (g x)

This appears to have gone badly wrong. x is bound twice by a
lambda, and this code does not seem as if it would even type check!
The problem is an artifact of this specific pretty printer, which only
shows the human-readable part of variable names; there is a hidden
unique number that is used to distinguish binders, so the two xs
are actually distinct to GHC. There is a fundamental tradeoff here
between clarity and correctness of representation. We could change
the pretty printer to display distinct names, but this is problematic
for commands like consider, which would then have to be aware
of this automatic aliasing.

Places where (pretty-printed) bindings shadow can be automat-
ically detected, and we are working on a longer-term solution that
will work something like the post-commit hooks provided by ver-
sion control tools. For now, we provide an unshadow command,
which can be called explicitly to rename the human-readable part
of binders that clash.
hermit> unshadow

rev =
let g =

fix (λ x x0 �
repH
(case x0 of wild

[] � []
(:) x1 xs �
(++) (absH (x xs)) ((:) x1 [])))

in λ x � absH (g x)

In order to create the opportunity to fuse repH and absH ,
we need to float the case statement out of the argument position,
effectively pushing repH into each alternative.
hermit> any-bu case-float-arg

rev =
let g =

fix (λ x x0 �
case x0 of wild
[] � repH []
(:) x1 xs �
repH ((++) (absH (x xs)) ((:) x1 [])))

in λ x � absH (g x)

Now we apply the rep_app rule, which sets us up for fusion of the
representation-changing functions.
hermit> prune-td (unfold-rule rep_app) ; bash

rev =
let g =

fix (λ x x0 �
case x0 of wild
[] � repH []
(:) x1 xs �
(.)
(repH (absH (x xs))) (repH ((:) x1 [])))

in λ x � absH (g x)

Now we fuse the representation-changing functions, which per-
forms the key optimization. Again, we have skipped over the verifi-
cation of a precondition given in the worker/wrapper paper, namely
that this fusion law only operates in the context of the recursive call
(which it does here).
hermit> prune-td (unfold-rule fusion)

rev =
let g =

fix (λ x x0 �
case x0 of wild
[] � repH []
(:) x1 xs � (.) (x xs) (repH ((:) x1 [])))

in λ x � absH (g x)

All that remains is cleanup. GHC could do this for us, but we give
the commands used here, so that we can see the final result:
hermit> prune-td (unfold ’repH)
hermit> prune-td (unfold ’.) ; bash
hermit> focus (consider case) (eta-expand ’ys)
hermit> any-bu case-float-app
hermit> prune-td (unfold-rule "append")
hermit> prune-td (unfold-rule "app_nil")
hermit> prune-td (unfold ’fix) ; bash ; unshadow

rev =
let rec x = λ x0 ys �

case x0 of wild
[] � ys
(:) x1 xs � x xs ((:) x1 ys)

in λ x0 � absH (x x0)

We have reached our linear version of reverse . We also performed
measurements (not given), to verify that we have indeed removed
the quadratic cost of the original rev .

6.2 Evaluation
At several stages we needed to exploit the GHC RULES system.
For example, both the ww rule and fusion rule actually have a pre-
condition (see Gill and Hutton (2009) for more details; the specifics
of the preconditions are not as important as noting that there are
preconditions, and that we do not yet automatically handle them).
We need to have some way of distinguishing between “regular”
rules that are used by the GHC optimizer, and rules with precondi-
tions, that are only to be used in HERMIT. Furthermore, the user
may want to experiment with a non-terminating set of rules. Be-
cause of these two cases, we expect that we will somehow need
to designate HERMIT-only rules inside GHC in the near future.
We are experimenting with two possible solutions for this: using a
witness type that only HERMIT generates, or adding a syntactical
marker to stop GHC’s optimizer from using a rule.

We were originally thwarted by the foldr /build representation
used for constant lists in GHC (Peyton Jones et al. 2001), which
complicated our derivations somewhat. We eventually chose to turn
usage of this representation off via a compile-time flag. Again, we
need a more encompassing solution going forward.



Is it easier to perform equational reasoning by hand than to use
HERMIT? Yes and no. Is is extremely tedious to perform rewrites
at this level, even when using a tool. HERMIT takes care of the
scoping issues and rule applications, but manipulating the syntax
such that the rules successfully match is an acquired skill, and in
part a navigational issue. On the other hand, HERMIT may prove
useful when investigating why specific GHC rules are not firing, by
stepping through what the expected GHC behavior is and observing
optimization opportunities (though we have not yet tried this). The
next step is to build meta-transformations that can automate as
much of the tedium in derivations such as this as possible, while
accurately managing pre-conditions.

7. Related Work
There are a wide variety of approaches to formalizing program
transformation, such as fold/unfold (Burstall and Darlington 1977),
expression procedures (Scherlis 1980; Sands 1995), the CIP sys-
tem (Bauer et al. 1988), and the Bird-Meertens Formalism (Mei-
jer et al. 1991; Bird and de Moor 1997). These systems vary in
their expressive power, often trading correctness for expressive-
ness. For example, fold/unfold is more expressive than expression
procedures, but expression procedures ensures total correctness
whereas fold/unfold allows transformations that introduce non-
termination (Tullsen 2002).

The most mature strategy rewrite system is Stratego (Braven-
boer et al. 2008), which grew out of work on a strategy language
to translate RML (Visser et al. 1998), and drew inspiration from
ELAN (Borovanský et al. 2001). StrategyLib (Lämmel and Visser
2002) is the system most similar to KURE, and many aspects of
the KURE design were drawn from it. We overviewed Stratego in
§3.1 and compared KURE and StrategyLib in §3.3. Visser (2005)
surveys the strategic programming discipline.

The combinators of Ltac (Delahaye 2000), the tactics language
used by the proof assistant Coq (Bertot and Castéran 2004), are
very reminiscent of KURE’s strategic programming combinators.
The key differences are that Ltac tactics operate on proof obliga-
tions rather than tree-structured data, and that they return a set of
sub-goals. We need to investigate what ideas can be incorporated
from such tactics languages as we improve HERMIT’s support for
equational reasoning.

It is well known that handling name bindings when working
with abstract syntax is tedious and error prone. There has been
a good deal of work in this area, with Unbound (Weirich et al.
2011b), a Haskell-hosted DSL for specifying binding structure,
being a recent solution. HERMIT uses congruence combinators
for this task, which are a general mechanism for encapsulating
the maintenance of any sort of contextual information, of which
bindings are just one example.

The Haskell Refactorer (HaRe) (Brown 2008; Li and Thompson
2008) is a source-level refactoring tool for a superset of Haskell 98.
HaRe is a GUI-based interface into Haskell syntax, with support
for many built-in transformations. The principal difference, apart
from the GUI, is that HaRe works directly on Haskell syntax, while
HERMIT works on the lower-level Core. This decision allows
HERMIT to support GHC extensions with ease, at the cost of not
being able to output Haskell source code (although we could output
Core).

Closely related to HERMIT is the Programming Assistant for
Transforming Haskell (PATH) (Tullsen 2002). Both are designed
to be user directed, rather than fully automated, and are targeted
at regular Haskell programmers, without advanced knowledge of
language semantics and formal theorem proving tools. Again, the
significant difference is the choice of target language for transfor-
mations: PATH operates on its own Haskell-like language with ex-
plicit recursion.

The Ulm Transformation System (Ultra) (Guttmann et al. 2003)
is very similar to PATH, although its underlying semantics are
based on CIP whereas PATH develops its own formalism. A distin-
guishing feature of Ultra is that it operates on a subset of Haskell
extended with some non-deterministic operators, thereby allow-
ing concise non-executable specifications to be expressed and then
transformed into executable programs.

HERMIT is a direct descendant of HERA (Gill 2006), and the
KURE design was inspired by the HERA implementation. HERA
operated on Haskell syntax using Template Haskell (Sheard and
Peyton Jones 2002). One (unpublished) conclusion from HERA
was that meta-transformations such as the worker/wrapper trans-
formation need typing information, such as that provided by GHC
Core. This was the original motivation for choosing GHC Core as
our subject language in HERMIT. As such, HERA can be consid-
ered as an early prototype of HERMIT, now completely subsumed.

8. Conclusion and Future Work
HERMIT provides an API that allows transformations to be per-
formed on Haskell programs as a novel optimization pass inside
GHC. By using the shell or RESTful API, we can perform opti-
mization surgery, and observe measurable improvements in Haskell
programs. Now the real work starts. Can we use HERMIT to
replay derivations between clear code and efficient implementa-
tions? What powerful meta-commands can we provide? What form
should a GUI interface take to make navigation straightforward?

An important decision was to target Core and work inside
GHC. Consequently, we can speed up programs in GHC-extended
Haskell (not just Haskell 98 or Haskell 2010) by leveraging the
GHC desugaring capabilities. However, this means we operate at
the System F�

C level, which has two main issues: scale and ex-
plicit types. Scale we deal with by providing high-level navigation
commands such as consider; explicit types we deal with by us-
ing abstraction symbols, such as N. A lesser issue is name-clash
mirages for the pretty-printers that use truncated names, but there
are several possible solutions, including a smarter pretty printer, or
a set of KURE combinators that detect and rename such clashes.
Still, more research into all aspects of Core presentation needs to
be done. Overall, our experience is that operating on System F�

C
directly is possible, and even enjoyable.

Our Eval tag is a very informal method of ensuring that bash
terminates. We intend to give this a formal treatment in the fu-
ture, perhaps in line with the recent work by Lämmel et al. (2013).
We envision a family of powerful meta-transformations that are re-
stricted to applying rewrites that are guaranteed to terminate. Doing
so will require some form of meta-transformation strategy, such as
Rippling (Bundy et al. 2005), to prune at each step rewrites that
could lead to non-termination. These meta-commands are straying
into the territory of the tactics provided by interactive proof assis-
tants such as Coq (Bertot and Castéran 2004), and we intend to look
to proof assistants for guidance in this regard.

We found the typed congruence combinators useful when struc-
turing our code, partly because they automatically pass the correct
context in the presence of scoping, which is traditionally a signifi-
cant source of bugs in rewrite systems.

The unfold-rule command allows for the specification of
transformations in Haskell syntax, in the user’s Haskell program,
via GHC RULES. We imagine library writers making extensive and
ongoing use of this HERMIT command, because it allows them to
try out their own rules inside HERMIT.

We have been working on HERMIT prototypes for many years,
and are delighted that it is finally ready to be used as a basis for
further research into the transformation of Haskell programs.
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mechanism for Haskell. In Haskell Symposium, pages 37–48. ACM,
2010.

E. Meijer, M. M. Fokkinga, and R. Paterson. Functional programming with
bananas, lenses, envelopes and barbed wire. In Functional Programming
Languages and Computer Architecture, pages 124–144. Springer, 1991.

B. O’Sullivan. http://hackage.haskell.org/package/criterion.
S. Owre, J. M. Rushby, and N. Shankar. PVS: A prototype verification

system. In International Conference on Automated Deduction, pages
748–752. Springer-Verlag, 1992.

L. C. Paulson. The foundation of a generic theorem prover. Journal of
Automated Reasoning, 5(3):363–397, 1989.

S. Peyton Jones and A. L. M. Santos. A transformation-based optimiser for
Haskell. Science of Computer Programming, 32(1–3):3–47, 1998.

S. Peyton Jones, A. Tolmach, and T. Hoare. Playing by the rules: rewriting
as a practical optimisation technique in GHC. In Haskell Workshop,
pages 203–233. ACM, 2001.

B. C. Pierce. Types and Programming Languages. MIT Press, 2002.
A. Rodriguez, J. Jeuring, P. Jansson, A. Gerdes, O. Kiselyov, and B. C.

d. S. Oliveira. Comparing libraries for generic programming in Haskell.
In Haskell Symposium, pages 111–122. ACM, 2008.

D. Sands. Higher-order expression procedures. In Partial evaluation and
semantics-based program manipulation, pages 178–189. ACM, 1995.

A. Santos. Compilation by Transformation in Non-Strict Functional Lan-
guages. PhD thesis, University of Glasgow, 1995.

W. L. Scherlis. Expression procedures and program derivation. PhD thesis,
Stanford University, 1980.

T. Sheard and S. Peyton Jones. Template metaprogramming for Haskell. In
Haskell Workshop, pages 1–16. ACM, 2002.

M. Sulzmann, M. M. T. Chakravarty, S. Peyton Jones, and K. Donnelly.
System F with type equality coercions. In Types in Language Design
and Implementation, pages 53–66. ACM, 2007.

M. Tullsen. PATH, A Program Transformation System for Haskell. PhD
thesis, Yale University, 2002.

E. Visser. Program transformation with Stratego/XT: Rules, strategies,
tools, and systems in StrategoXT-0.9. In Domain-Specific Program
Generation, pages 216–238. Springer, 2004.

E. Visser. A survey of strategies in rule-based program transformation
systems. Journal of Symbolic Computation, 40(1):831–873, 2005.

E. Visser, Z. Benaissa, and A. Tolmach. Building program optimizers
with rewriting strategies. In International Conference on Functional
Programming, pages 13–26. ACM, 1998.

D. Vytiniotis, S. Peyton Jones, and J. P. Magalhães. Equality proofs
and deferred type errors. In International Conference on Functional
Programming, pages 341–352. ACM, 2012.

S. Weirich, D. Vytiniotis, S. Peyton Jones, and S. Zdancewic. Generative
type abstraction and type-level computation. In Principles of Program-
ming Languages, pages 227–240. ACM, 2011a.

S. Weirich, B. A. Yorgey, and T. Sheard. Binders unbound. In International
Conference on Functional Programming, pages 333–345. ACM, 2011b.

A. R. Yakushev, S. Holdermans, A. Löh, and J. Jeuring. Generic program-
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