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ABSTRACT  

The article explores the theory of Infrared-Visible Sum Frequency Generation microscopy of 

phospholipid envelopes with dimensions larger than the wavelength of the nonlinear emission. 

The main part of the study concerns derivation and accounting for the contributions of effective 

nonlinear responses specific to sites on the surfaces of a bilayer envelope and their dependence 

on polarization condition and experimental geometry. The nonlinear responses of sites are 

mapped onto the image plane according to their emission directions and the numerical aperture 

of a sampling microscope objective. According to the simulation results, we discuss possible 

approaches to characterize the shape of the envelope, to extract molecular hyperpolarizabilities, 

to anticipate possible heterogeneity in envelope composition and anisotropy of the environment 

proximal to the envelope. The modeling approach offers a promising analytic facility to assist 

connecting microscopy observations in engineered liposomes, cellular envelopes and sub-cellular 
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organelles of relatively large dimensions to molecular properties and hence to chemistry and 

structure down to available the spatial resolution. 

 

INTRODUCTION 

 

 Second-order Infrared-Visible (IR-VIS) Sum Frequency Generation (SFG) is the lowest 

order nonlinear response to probe molecular composition and structure at interfaces (Zhu et al., 

1987); (Guyot-Sionnest et al., 1987); (Walker et al., 1997); (Chen et al., 2010); (Xiao et al., 2012). 

Within the last two decades, IR-VIS SFG has been demonstrated to be a promising tool to address 

structure under microscopic spatial resolution (Flörsheimer et al., 1999); (Hoffmann et al., 2002); 

(Cimatu & Baldelli 2006); (Han et al., 2013); (Jang et al., 2013). To answer the experimental 

progress, recent effort in the theory of SFG microscopy image reconstruction (Volkov, 2014) 

suggests a computational protocol to calculate and map selected (by polarization setting) 

nonlinearities of normal modes of terminal methyls to address the surface of a weakly deformed 

membrane. The selection of the indicated modes is because they are relatively localized and have 

resonances that exhibit a distinct peak at about 2950 cm-1 (Guyot-Sionnest et al., 1987); (Walker et 

al., 1997); (Schleeger, 2014). The developed here approach assumes that terminal methyls are 

distributed in well-determined leaflets of a phospholipid bilayer: inter-digitation is not expected in 

well-hydrated membranes under physiological conditions. Also, it is important, that the results of 

image modelling for membrane deformations (Volkov, 2014) are correct as long as the dimensions 

of the deformed structures are less than the wavelength of nonlinear emission. 
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 For example, consider a geometric structure, as shown in Fig. 1A. Whenever we set angle 

CBA = 0 to the zero-limit, the curve connecting A and B converges asymptotically with a straight 

line between these points, AB. If we require AB to be comparable with the wavelength of SFG, 

then we may calculate the radius to fulfil the curvature. Specifically, using VIS = 800 nm, one may 

expect SFG responses of terminal methyl vibrations at the wavelength SFG = 650 nm. For this 

wavelength, when 0 = 1o  10o we may calculate the corresponding radius of a spherical structure 

R = AB/2Sin0  18.6 2 micron. The anticipated size range is characteristic of engineered 

liposomes (Angelova & Dimitrov, 1986); (Staneva et al., 2004), erythrocytes (Gulliver, 1875), and 

various cellular organelles. 

 The purpose of this study is to explore how image modelling may help in the detection and 

analysis of such structures; under phase matching conditions, accounting for an acceptance angle  

according to the numerical aperture of a microscope objective, and under the experimental 

geometry to detect upward (reflected) and downward (transmitted) images as shown in Fig. 1B. In 

the case of a flat interface, we may satisfy the k-vector condition by 
   

  
                 : a 

pair of angles 1  2 would provide a non-degenerate geometry. When 1 = 2 = 0, the direction of 

the emitted SFG field is not sensitive to the wavelengths of the visible and infrared radiations, and 

the experiment converges to that reported recently (Han et al., 2013). Under such geometry, an 

imaging experiment on flat surfaces and on relatively small spherical structures loses the capacity 

to report on contributions of nonlinearities stimulated by Z components of the mixing fields. The 

situation is more complex, however, when dimensionality of a structure is comparable or larger 

than the indicated threshold for the radius of the local curvature. In such case, we have to recognize 

that every spot has own phase-matching condition. Additionally, it is desirable to develop a 
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methodology that would account for that cellular structures being multilayered, complex in shape 

and in composition. To address this, the article suggests a 6-step protocol and considers a 2 micron 

radius spherical liposome as a model system to test image reconstruction. In the results, the article 

provides examples of reconstructed images calculated accounting for local phase-matching, 

different geometries, polarizations of the mixing fields and microscopy sampling conditions.  

 The outline of the article is as follows: first, relevant nonlinear susceptibilities are derived 

under assumed orientation averaging. Second, a protocol is provided to reconstruct images of a 

spherical liposome with dimensions comparable to the employed wavelength. Third, the article 

addresses liposome shape characterization and possible extraction of single molecular 

hyperpolarizabilities. Finally it explores polarization settings, which could possibly be helpful in a 

temperature jump experiment to probe relative arrangement of matter about the interface of the 

envelope. 

 

COMPUTATION AND METHODS 

 

Quantum Mechanical Studies and Orientational Averaging 

 Since we address relatively large structures, where every site may have its own local phase-

matching conditions, we need to account contributions of all 27 nonlinearities (Zhu et al., 1987); 

(Kleinman, 1962); (Dailey et al., 2004); (Moad & Simpson, 2004). Here, we employ a restricted 

B3LYP functional (Becke, 1988); (Lee et al., 1988), and 6-311++g(d,p) basis sets, as implemented 

in the Gaussian 09 package (Frisch et al., 2010), to anticipate molecular properties. The eigen-

modes of the Hessian matrix allow anticipating non-resonant Raman tensors as third derivatives of 

the energy, d3E/dF2dR, where F is the external dipole field and R is the Cartesian coordinates. 
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However, since the considered nonlinear process employs, first, an infrared field to excite a specific 

normal mode, and then visible radiation to stimulate the consequent Raman, we employed the 

IOp(7/33=1) protocol of Gaussian to extract dipole moment and polarization derivatives about 

the normal modes of interests and used this to express the nonlinearities specific to the modes of 

terminal methyl groups in dependence on the orientation angles. In particular, Fig. 2 provides the 

indicated nonlinearities of interest according to the {,} angular dimensions of the considered 

spherical structure. The results are according to averaging: about handedness, about modes, which 

contribute into the same spectral region, and about the types of the rotomers: see Appendix A, and 

the previous study (Volkov, 2014). In the case that where conical distribution in orientation at a 

local cite is considered, modelled a microscopy image would experience smearing according to the 

angle of the conical openings. The impact on orientational averaging, however, would depend on 

the location of a site. To make it clear, the article provides red and blue contours in XXX angular 

dependence in Fig. 2 to encircle the angular regions according to the distributions at the two sites, 

shown Fig. 1D (colours of the contours correspond). Current work addresses the case, when a 

backbone orients strictly along the local z-axis: in result, for each site at the interface, we describe a 

single amplitude entry in each angular map as in Fig. 2. 

 

Image reconstruction protocol 

 Under the non-degenerate geometry (when 1  2 in Fig. 1B), for P and S polarizations, the 

amplitudes of the visible are {Cos2, 0, Sin2} and {0, 1, 0} in respect to the laboratory frame. 

Analogously, the corresponding amplitudes of the infrared radiation are {-Cos1, 0, Sin1} and {0, 1, 

0}. In the case of the degenerate geometry (when 1 = 2 = 0), for P and S polarizations, the 

amplitudes of both fields are {1, 0, 0} and {0, 1, 0}, respectively. Knowing the fields’ amplitudes, it is 
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straightforward to model images either for spherical envelopes of radius smaller than 2 microns or 

for idealistic spherical caps, as accomplished earlier (Volkov, 2014). In contrast, when for a giant 

liposome, we have to re-express the effective nonlinearities, thus the image modelling protocol 

consists of the following six steps: 

 1. We have to suggest a surface reconstruction with a mesh of proper dimensions. 

Consistently, each local area at the meshed surface would have its own unique set of nonlinear 

responses. In the case of a spherical structure, one may consider a square grid pattern to mesh the 

surface. A mesh-patch would be centred at a site n at a distance Rn from {0, 0, 0}, and with its own 

local coordinate system {x, y, z}n. We may prepare this local coordinate systems transforming the 

laboratory frame by a corresponding (to the site) set of rotation angles {  , }n. Each site would 

contain a set of molecules under a certain orientation in respect to the local frame and in respect to 

the laboratory frame: see conical openings in Fig. 1D and the corresponding red and blue encircled 

areas in Fig. 2. In general, to describe this, one would have to assign to each site a certain subset of 

molecular orientation angles {i, j and k}n and their variances {i, j, k}n expressed 

with respect to the lab-frame. The correspondence is not trivial. This may include averaging within 

the contoured areas (in Fig. 2) according to the conical openings (Fig. 1D). In such a case, we may 

expect i - j angular correlations. Hence, the subscript indexes i, j and k help to predetermine 

contributing angular combinations for each site. Further, this work considers all molecules to 

orient perpendicular to the surface of a local site (i = 0o), while k about a local z-axis is 

180o. Under these conditions, rotation of the laboratory frame to express a local coordinate 

system coincides with the rotation to orient a molecule at the site of interest: {  , }n = {, }n. The 

expressions of nonlinearities would be according to the angular range {, }n characteristic of 

the boundaries of the mesh-patches. Here,  is not the same as i, as mentioned earlier:  
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describes the angular variance of the normal to the surface specific to the meshed patch, while i 

would address a possible contribution from a contoured subset in Fig. 2, if a conical opening is 

considered. 

 2. At an arbitrary local site, n, we have to consider each (infrared, visible and SFG) field to 

have its own (local) plane of incidence (or emission), formed by the local z-axis and the 

corresponding k-vectors. These affect the field factors (Hirose et al., 1992); (Zhuang et al., 1999); 

(Li et al., 2011) and the transmission coefficients according to Snell’s law (Hecht, 2002) and 

Maxwell equations (Li et al., 2011). Each field would have its own set of factors. How to account for 

this? The previous step describes the preparation of the local coordinate system {x, y, z}n by a 

proper rotation of the Lab-frame with {, }n. Now, let us recall that the incident visible and 

infrared fields have their own k-vectors. We may re-express such within the local frame of the site 

taking projections of each k-vector onto the {x, y, z}n frame. Local x and z projections of each k-

vector (of each field) form their own incident plane. Further, we may normalize the two 

projections of the infrared beam to receive the local “incident plane” associated with xIR and yIR 

axes for the infrared. In result, we may form a corresponding system taking the cross-product: 

   
  

           
  . Analogously, we may construct the local “incident plane” (or local effective) 

system for visible radiation. Also, using the locally projected components of the mixing fields’ k-

vectors, it is possible to calculate four SFG directions according to the following sums:      
        

 , 

      
        

 ,       
        

 ,       
        

 , where r and t superscript indexes indicate the reflected and 

the transmitted fields, correspondingly. Each of them would have its own plane of emission, which 

we may form following the same prescription, as in the case of the visible and the infrared 

radiations. Therefore, at any local site, n, we may construct six local effective coordinate systems 

associated with their own incidence and emission planes: (x'IR, y'IR, z'IR)n, (x'VIS, y'VIS, z'VIS)n, (x'SFG,rt, 
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y'SFG,rt, z' SFG,rt)n and alike. Since we know the polarization vector of an incident (or of an emission) 

field at the site n in respect to the laboratory frame, then we can take its projections onto the local 

incidence (or emission) coordinate system specific to this field, and multiply the projections with 

the corresponding field factors. The resultant components would report on the effective 

amplitudes of the field according to the local geometry of the selected site n.  

 3. We have to develop a geometric criterion to sort local sites to be on the “bright” and on 

the “shadow” sides for both, IR and VIS radiations. These are necessary to calculate nonlinear 

responses for a site in a shadow: we have to know both amplitude and polarization of each field, 

which is transmitted to the site in the shadow through a certain site at the bright side. Properties of 

the transmitted field are altered according to the local geometry at the site of transmission. Hence, 

for every site in the shadow, we have to determine a corresponding site on the bright side. There 

are several ways to accomplish this. This article adopts the following approach. In the considered 

geometry of the experiment, we may adopt reference vectors for IR and visible fields as 

              ,         and               ,         according to the angles as shown in 

Fig. 1B. Let us consider that we may take a vertical slice through a spherical structure. This we take 

in a way that both incident vectors (of the infrared and the visible) would be parallel to the plane of 

the slice. The slice would be a two-dimensional vector space with     and     axes, which are parallel 

to the X and Z axes of the laboratory frame, respectively. The boundary of this space is formed by 

the local sites of the spherical structure by the intersection of the slice with the surface of the 

spherical structure. According to dimensionality, we may describe any site i at the boundary of the 

slice by the xs,i and zs,i projection of a corresponding pointer (vector) in respect to a selected 

reference “centre” of the slice ( s, 0s). If we go clockwise along the boundary of the slice, then, for 

each pair of nearby sites (i and i + 1) we may calculate a connecting vector,               , where 
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    is the pointer to the site (xs,i, zs,i), exploring the data set for the angles between the connecting 

vectors     and the field reference vector      :  Fig. 3. Next, let us consider sites i, and i + 1, as 

shown in Fig. 3. If the site i provides the connecting vectors     to be largely parallel to      , then 

we adopt the angle between     axis and the pointer to the site i to be the first reference angle 1. 

Analogously, if the site i provides the connecting vectors     to be largely antiparallel to      , then 

we adopt the angle between     axis and the pointer to the site i to be the second reference angle 2. 

The criteria for a site (at boundary of a selected s-space) to be classified as one in IR shadow are 

that the angle between the pointer from (0s, 0s) to the selected site and the     axis should be 

smaller than 2, and the angles between the pointer and the     axis should be larger than 1. In the 

case of visible radiation, the incident vector is different. Hence, we sort a site to be under direct 

exposure (in the bright side) of visible radiation, if the angles between the pointer to the site and     

and      axes are smaller than 2 and larger than 1, respectively. Supplementary Material 

Document provides examples of sorting erythro-profiles, solving for an equilibrium shape as 

developed by the Mladenov group (Djondjorova et al., 2004). For every site at the shadow side, we 

have to determine the corresponding site of refraction and transmission at the bright side: this 

requires searching for the minimal (absolute) angle among those between the transmitted k-

vector and the vectors from the transmitted site to all sites on the shadow side. Upon the refraction, 

the polarization vector of the transmitted field would be altered. This is the subject of the next step. 

 4. Here, we consider a bilayer to be infinitively thin. The difference of the index of refraction 

for water and for a membrane is relatively small: no multiple reflections within the membrane are 

anticipated at any site. Furthermore, in the following analysis, the article does not account for 

absorption of either infrared or visible radiation upon transmission through the membrane. We 
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may adopt the following expression to describe the transmitted field components through a site m 

(subclass of n, at the bright side), in respect to the laboratory frame: 

 

     , 
     , , 

 ,   , , 
 ,   , , 
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    roject      ,  ,   , 
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  T ,   roject      ,  , y , 
  ,    

  , , 
           T , ,    roject      ,  , x , 

    roject      ,  ,   , 
     

                              T ,   roject      ,  , y , 
  ,   ,                                                                                                    [1] 

 

here, subscript index F indicates either a visible or infrared field.      ,  is the field vector of an 

incident radiation according to a selected geometry and polarization. The equations show that, 

first, we project the polarization vector onto the effective local coordinate system (x',y',z')m 

associated with the incident plane of a beam: see step 2 in the protocol. Second, we scale the 

corresponding field components with the double transmission factors, Tp' and Ts' derived according 

to the indices of refraction and the local angle of incidence using definitions as described elsewhere 

(Hecht, 2002). Third, we project the scaled fields’ components onto the axes of the laboratory 

frame. Following on from this treatment, we may receive a transmitted polarization vector of a 

field, which would be altered by Fresnel transmission factors. Since the incidence geometry at a 

local site (of transmission) is unique, the transformation of the polarization vector would be site-

specific: with dependence on where it transmits. The supplementary Material provides graphical 
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examples on how a selected field vector changes in dependence on the sites of transmissions and 

geometry. 

 5. To express the nonlinear response from a site of interest in respect to the laboratory 

frame, we have to scale field components:      or      , which arrive to the site according to the local 

field factors (Sipe, 1981); (Dick et al., 1985); (Felderhof et al., 1987); (Li et al., 2011) particular to 

the local effective coordinate systems, which are specific to each field. Accounting for this, we may 

write a site-specific nonlinear field vector by scaling a unit vector       along a laboratory axis i (either 

X, or Y, or Z) with an amplitude according to a nonlinearity ijk as 

 

     ,       ,      ,   ,    ,  ,        ,                                                                                                                                  [2] 

 

where, indices j and k indicate scaled projections of the mixing (visible and infrared) fields, 

respectively, onto the laboratory frame. The employed field components are 
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Here, again, subscript F indicates either a visible or infrared field. In these equations, we employ a 

site-specific      ,  field vector, for sites on the bright side. If the site is on the shadow side, then we 

replace      ,  with      , 
  as the field vector, which is delivered to the site n at the shadow side after 

passing through a determined site m on the bright side. Ln,xx, Ln,yy and Ln,zz are the local field factors 

as described in literature (Sipe, 1981); (Dick et al., 1985); (Felderhof et al., 1987); (Li et al., 2011).  

 6. At each site, we have two incident fields (IR and VIS) and, hence, four possible SFG 

directions according to the following vector sums:      
        

 ,       
        

 ,       
        

 ,       
        

 , 

where r and t superscript indices indicate the reflected and the transmitted fields, respectively. 

Each of 27 possible nonlinearities may contribute to these four emitted directions. However, as 

indicated in step 2, each direction would have its own local emission plane with the corresponding 

field factors. Hence, using Eq. (2), we may determine four possible signals scaled by their own local 

field factors (according to each local emission plane) at a site n as 
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Here, (x', y', z')n belongs to a specific (one of four possible) sum of k-vectors. A signal along each of 

the four directions would contain the sum of contributions, determined by Eq. (4): 

      ,    , ,     , , . Setting a polarization analyzer, we may select for the S-polarized signal taking a 

sum for Y-projections       ,   ,  , ,     , ,  onto the laboratory frame. Under the degenerate 

geometry, when 1 = 2 = 0 (see Fig. 1B), the P-polarization setting of the analyzer would select a 

sum for X-projections:       ,   ,  , ,     , , . Under a non-degenerate geometry, when 1  2, the P-

polarization setting of the analyzer would deliver a properly weighted superposition of X and Z 

projections (Zhuang et al., 1999). 

 Depending on the local geometry of a site, each of the four signals may point upward or 

downward, considering the direction of the laboratory Z-axis. In fact, Fig. 1B indicates the 

possibility of simultaneous detection of upward and downward projected images. Accordingly, this 

article accounts for both, the sorting by direction and the discrimination by the numerical aperture 

of a microscope objective. It is easy to show that, for an upward emitted image the radial cut-off 

distance (from the centre of image, which coincides with the centre of spherical structure) is 

     
 

 
, where R is the radius of the sphere, and  is the angle, as shown in Fig. 1B. In this work, 

the analysis adopts  either to be equal to 18o or 38o: with the latter value corresponding to the 

numerical aperture of a microscope objective, as considered in a previous study (Volkov, 2014).  

 Fig. 4 shows angular dependences of downward emitted nonlinear signals for the indicated 

polarization setting under the degenerate geometry, when 1 = 2 = 0, and  = 18o. Each 

dependence contains contributions from all 27 nonlinearities. However, under certain 

polarizations, contributions of some of them would be larger than of the others. This is due to the 

fact that at a local site the mixing fields would have amplitudes in respect to the local effective 
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frames according to the orientation of the semi-flat area of the site. For example, S-polarized Field 

would have a strong y-component in respect to the local frame either at the top or at the bottom of 

the envelope. The same field would contribute to a strong z-component in respect to the local 

frame either at the very left or at the very right sides of the envelope. In the two cases, the field 

would stimulate different nonlinearities with correspondent y and z indexes. Labels in the half- 

angular maps, at the right side angular dependences, indicate the sites, where the correspondent 

nonlinearities would be better stimulated (than other 27) by the fields according to indicated 

polarization settings. For example, we may see that under SSS polarizations, YYY dominates at  = 

90o and  = 45o. Yet, ZYY and YZY terms become significant (compete with YYY) in angular 

regions, when   0o and   45o. Another feature is that the nonlinear responses from upper 

(0o<  < 90o) and lower (90o <  < 180o) half-spheres differ. This is the effect of alterations of the 

fields components upon double transmission through the curved sides under the direct exposure.  

It is important to mention here that the calculated angular maps of an SSS and PPP pair; 

and of SSP and PPS signals preserve the 90
o
 -shifted patterns, as present in Fig. 2 and 

discussed in Appendix A. Therefore, is not a surprise to see obvious similarity of SPP and PSP 

maps in the angular range: 0
o
 <  < 90

o
. Analogously, due to YXY = XYY, SPS dependence 

resembles PSS angular map, when 0
o
 <  < 90

o
. If different, then this is due to the transmission 

and to the field factors: see Eqs. (3)-(5). The developed protocol allows approaching image 

reconstruction for a large spherical structure under various geometries and polarization 

conditions. The next section provides the specific example and discusses possible implications 

for data interpretation. 

 

RESULTS AND DISCUSSION 
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 Let us translate the angular maps (shown in Fig. 4) for an inner shell of a bilayer of a 

spherical envelope of 2-micron radius onto an image plane. This would reconstruct images of a not 

transparent spherical object covered with a single aliphatic layer, with methyl terminals oriented 

outward.  Fig. 5 demonstrates the angular maps of the nonlinear amplitudes for the inner shell to 

yield upward (columns A) and downward (column C) emissions under the degenerate geometry 

(1 = 2 = 0); and to yield upward (columns E) and downward (column G) emissions under the 

non-degenerate geometry (1  2), when the numerical aperture of a microscope objective 

determines  = 18o. At the right side of each angular map, there is a corresponding image for the 

inner shell of a spherical bilayer envelope of 2-micron radius. Panels in columns A and E provide 

indications on the considered polarization settings, under which the nonlinearities are calculated 

and images are modelled. 

 Let us consider the results of imaging in Fig. 5. The angular maps of the signals emitted 

upwards resemble (in character) the patterns in the angular maps for the same polarization 

signals but emitted downwards. However, the angular maps of the signal emitted upward is 

limited to   [0o, ] and [180o - , 180o] angular regions by the effect of the numerical aperture: 

here,  = 18o. Thus, the upward emitted images of a liposome structure are limited to relatively 

small areas, by the radial cut-off distance from centre of image to the peak of the outer rim of 

amplitudes at              , next to the poles. In contrast, the angular maps sorted in 

columns C and G, and the corresponding sets of the images (by columns D and H) indicate that the 

signals emitted downwards are able to report on the structural content in the region about the 

equator. Column G demonstrates that under the non-degenerate geometry (1  2, Fig. 1B) the 

signal may be more intense in some areas of the surface than under the collinear geometry: for 
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example, one may compare the upward emitted images under the SSS or SPS polarizations. The 

enhancement is due to the local incident angles. Due to the large angle of infrared radiation 

towards to the Z laboratory axis (under a non-degenerate geometry), the correspondent angular 

maps demonstrate a curved distribution in the {;} angular space: this is specific to the bright-

shadow sorting of the sites for infrared radiation. Moreover, projections of the transmitted 

(through the sites at the bright side) fields onto the laboratory frame demonstrate a complex 

pattern in sign: for example, notice the striking negative amplitude of the PPP and SPS signals 

when  is about 180o, and  < 90o. In contrast, under the collinear geometry, both, angular maps 

of the effective nonlinearities and the projections onto the image plane are easier to perceive and 

compare.  

 To reconstruct images of a spherical bilayer structure, we need to account the 

contributions from the outer shells, as well. Figs. 6A-C represent upward and downward emitted 

images for a spherical bilayer of 2 micron radius under a range of polarizations, as indicated above 

the panels in the figure. Under all polarization conditions, the images demonstrate the outer rim 

amplitude patterns. The build-up of the outer rim amplitude is due to two contributions: 1) 

increment of density of states imaged onto the plane upon approaching the regions of spherical 

envelopes, which orient more and more perpendicular to the image plane; 2) structural mismatch 

of contributions of inner and outer shells. When under the degenerate geometry condition (panels 

B and C), the images are more obvious to rationalise. For example, pairs of the signals SPP and PSP, 

SPS and PSS consist of responses, which differ due to site-specific Fresnel and local field factors, 

only. The pair of the SSS and PPP images, as well as, SSP and PPS ones, demonstrate a 90o rotation 

of amplitude patterns in the image plane. These are consistent with the angular maps in Fig. 5. 

When under the non-degenerate geometry (Fig. 6, panel A), the results are more complex: first, the 
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images are not symmetric or anti-symmetric about the Y axis, at X = 0; second, nonlinear angular 

maps for PPP, SPP and SPS signals show complex patterns due to sign change (Eq. (3)) upon their 

refraction and transmissions under oblique incidence: see Figs. S2 and S3 in Supplementary 

Material Document. Since the results under the degenerate arrangement of beams are easier to 

interpret: it may be more suitable in structural analysis of giant liposomes, red blood cells and 

similar systems. However, the non-degenerate geometry may help to gain better responses due to 

the local field factors and may help avoiding an exposure of some regions in the 3D structure, thus 

setting up a novel opportunity to address transport phenomena (upon crossing bright-shadow 

borders). In the following, the article addresses the implications of imaging under the degenerate 

geometry condition, only. 

 

Contributions of Structural Components 

 

 Images in Figs. 6 B and 6C indicate that the response from the outer shell (of the 2-micron 

radius bilayer envelope) determines the amplitudes of the outer rim pattern in both downward 

and upward emitted images. Contributions of inner shells are noticeable in the internal areas 

(closer to the centres) of the images. Of course, these are more obvious in the downward emitted 

images. Another obvious feature is that, overall, the contribution of the upper half of the envelope 

prevails over that from the lower half. This is expected: upon examination of Fig. 4, one may notice 

that the angular region for   [0o, 90o] contains the larger amplitudes than those for   [90o, 

180o]. The attenuation of the contributions of the lower half is a result of the fields alterations upon 

transmission to the sites located in the shadow sides (not under direct exposure). Nonetheless, one 

may trace some weak signatures, characteristic of the lower half. For example, in PSP and SPS 
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downward projected images (panels B and C), the contributions of the sites located at the lower 

half become more prominent in the amplitude patterns in the internal region of the images the 

more we move from the outer rim toward the centre of the image. In the case of the upward 

emitted signals, the contributions of the sites located at the lower half may be noticeable, also. For 

example, we may clearly see a weak modulation in the outer regions in the SSP, PPS and SPS 

images, sampled under the high numerical aperture: compare the character of the images of the 

responses in panels B and C. 

 The increase of the numerical aperture affects downward emitted images slightly. At the 

same time, the increase of the numerical aperture has a strong effect on the upward emitted 

images: it widens the radial cut-off range: see Fig. 6C. In this respect, it is interesting to mention that 

the upward emitted images bring to attention the most helpful implications of the work on image 

reconstruction for an abstract spherical cap (Volkov, 2014). In particular, the outer rim in the 

downward detected image reports on the radius of a spherical structure in the equatorial plane. At 

the same time, the radial cut-off distance from the centre of the image to the peak of the outer rim 

in the upward detected image provides another measure of the local curvature:       

      .   , where  is the acceptance angle according to the numerical aperture of the microscope 

objective (Fig. 1B). A sequence of such measurements may help probing a liposome as a 3D object. 

 

Envelope Dynamics 

 

Simultaneous detection and comparative investigation of the outer rim patterns in the 

upward and in the downward emitted signals opens up an interesting opportunity to monitor 

envelope dynamics. Specifically, since  is according to the numerical aperture, we may 
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compare the equatorial radius from a downward emitted image, and the local R at measured Dc 

from a corresponding upward image. These would allow anticipating the departure of a longitude 

line, which connects the pole with a corresponding point at the equator, along a selected radial 

direction from the centre of the image. Furthermore, knowing the numerical aperture of a 

microscope objective, comparing the positions of the maxima of the outer rims in the upward and 

in the downward emitted images one may predict the departure of the shape of a liposome from 

an ideal sphere. Of course, considering the relative contributions of the upper and the lower half-

spheres, this is an approximate approach: one has to account for possible contributions from the 

two halves. For example, under either the SPP, or PSP, or SSS polarizations, readings along the 

Y-axis at X = 0 would indicate more precisely on the curvature of the upper half along such 

longitude line (see Fig. 4). By taking a series of such upward and downward emitted pairs of 

images in dependence on time, one may attempt reconstructing the dynamics of the envelope 

wobbling on a time scale commensurate with the image sampling rate. 

 

Molecular Properties 

 

It is interesting that the upward detected images in Fig. 6, as limited to certain Dc, 

resemble those modelled for abstract spherical structures with abrupt edges, as reported earlier 

(Volkov, 2014). In this respect, it is interesting to compare either horizontal or vertical 

(according to polarization) slices from the upward emitted images and detected under a smaller 

numerical aperture with images modelled for an idealistic spherical caps of the corresponding 

dimensions. First, in the case of symmetric envelopes, the vertical and horizontal slices across 

the centres of the images (as shown in Figs. 6B and 6C) contain combinations of nonlinearities, 



 20 

which are easier to rationalize. This is because, along these directions, a transformation of the 

laboratory to a local frame of a site n (by a {,}n pair) requires to vary  angle only, while  

would take discrete values 0
o
 (180

 o
) or 90

 o
 (270

 o
). In the case of a non-symmetric envelope, this 

would be possible at certain locations only: where local frames would have one of the local axes, 

x or y, to be parallel to one of the axes of the laboratory frame. Let us consider the content 

provided by a vertical or a horizontal slice from Figs. 6B and 6C. With a help of Fig. 4, we may 

anticipate which direction would be more instructive and which nonlinearity would be the main 

to contribute. For example, for the SSS and PPP polarizations, it is more helpful to employ the 

vertical (along the Y-axis image plane, at X = 0) and the horizontal (along the X-axis in image 

plane, at Y = 0) slices, respectively. In particular, under the SSS polarization, the reading along 

the positive direction of the Y-axis (this is in the upper half of the image plane) in corresponding 

to   [0
o
, 180

o
], while  = 90

o
 in the angular range shown in the correspondent map in Fig. 4. 

And the reading along the negative direction of the Y-axis (this corresponds to the lower half of 

the image plane) corresponds to   [0
o
, 180

o
], while  = 270

o
: see Fig. 4. Of course, the data in 

Fig. 4 is for the inner shell only, while the slices represent the interplay of the contribution of the 

inner shell and the opposite sign contribution of the outer shell, which has a larger radius than the 

inner one. Analogously, under the PPP polarization, the reading along the positive direction of 

the X-axis (at Y = 0) corresponds to   [0
o
, 180

o
], while  = 0

 o
. 

Second, using an objective with a smaller numerical aperture would allow sampling 

image areas of a liposome, which are closer to the upper and the lower poles. These are more 

parallel to XY laboratory plane: hence, if sampled, the nonlinear optical response from such area 

would resemble better that obtained from an idealistic spherical cap (Volkov, 2014), which 

deviates little from the XY laboratory plane. An increase of the numerical aperture would allow 
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sampling images (of the outer rims) due to the structural mismatches at the more tilted areas, that 

are more distantly located from the poles of the liposome. Thus, upward emitted nonlinear 

optical images under a higher numerical aperture would be more informative and more complex 

to consider than those detected under a smaller numerical aperture. The response detected under 

a smaller numerical aperture would resemble more closely the one from an idealistic and 

minimally deviating from a spherical cap of corresponding dimensions. It is important to notice 

that employment of a microscope objective with a smaller numerical aperture would give a 

looser focusing. At the same time, in this work, for the purpose of analysis and deduction, we 

calculated images under the same high resolution. We discuss the implication of the resolution 

limit for the proposed extraction of molecular hyperpolarizability at the end of this section. 

Third, here, we may extract contributions of the molecular hyperpolarizabilities to the 

specific slices under the considered polarizations. In particular, Supplementary Material 

Document provides a Mathematica code to derive, for example, Sin XXX(,) function 

integrating       ,   ,         ,   ,     about   [0,2] according to the theoretical 

approach reported earlier (Volkov, 2014). For a practical purpose, by setting  = 0
o
, it is possible 

to re-express, for example, nonlinearity XXX as a function of  along the positive range of the 

X-axis at Y = 0 in the image plane: (1  ) 
   

(). Here, 2 in the denominator takes care of 

normalization for the -angle integration, as accomplished in Supplementary Material 

Document. Table I lists several nonlinear susceptibilities as functions of , considered for the 

indicated polarization conditions and for the selected values of the -angle. The tabulated entries 

under the PPS and PSP polarizations, when  = 0
o
, are given in the angular brackets and are 

equated to zero. The same is true for the functions under the PSS and SSP polarizations when  

= 90
o
. The meaning of this is that the content of these entries is according to chiral 
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hyperpolarizabilities: if the right- and left-twisted rotomers or conformers are equally present 

(the case considered in this article), the functions average to zero. However, if in an experiment a 

signal is observed, this may be assigned either to the inequality of chiral contributions or to the 

            contribution of a molecular species, under study. The entries under the PPS and 

PSP polarizations, when  = 90
o
, report on             and             superpositions, 

respectively. These are the same for the SSP and PSS polarization settings, when  = 0
o
. In 

principle, each of the slices is informative for a corresponding pair of molecular 

hyperpolarizabilities. However, it is possible to extract the       component, specifically. In 

order to do this, we need to combine results of measurements using three different polarizations. 

For example, for a relatively small numerical aperture objective, we may assume that an upward 

emitted image is close to that from a spherical cap. Hence we may extract a function along a 

desired (X or Y) directions using one of the four possibilities: 
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Here, the subscript index Y,X=0 indicates that we consider an image slice along the Y-axis at X 

= 0. For a weak curvature spherical cap and under the degenerate experimental geometry, for 

example, the local field function Lxyy (and similar) would be a number with a little effect. Taking 

the readings along positive direction of the Y-axis at X = 0 (correspond to vertical slices at  = 
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90
o
 in Fig. 4) in the images under the SSS, PSP, PPS polarizations, and Eq. (9), we may derive 

an average       molecular hyperpolarizability as a function of the tilt of the long molecular 

axis from the Z laboratory axis as 
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 Of course, this is not a trivial angular function, which reflects a dependence of matter 

distribution in space. However, tentatively, considering that the upward emitted image would 

report mainly on the structural mismatch at the edge of the surface (where the emit nonlinear 

photons hit the limit of acceptance by the microscope objective numerical aperture) we may adopt 

 = , according to Fig. 1B. Accordingly, panels A and B in Fig. 7 provide the necessary vertical 

slices extracted from panels B and D in Fig. 6. With this input, we may employ Eq. (10) to calculate 

      containing functions: see black lines in Figs. 7C and 7D. How far away would these extracts 

be from the original input numbers? We may compare the results with a model by Gaussian 

distribution: 
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where Dc is anticipated from the position of the outer rim in the upward projected image and 

compared to      
 

 
 according to the position of the outer rim in the downward projected image; 

 is the adopted distance between the layers of the terminal methyl groups of the outer and the 

inner shells; Nout and Nin are the numbers of molecules in the gridded strips of the considered edges 
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(outer and inner); and       would be the hyperpolarizability of interest. The red-yellow circled 

lines in Figs. 7C and 7D demonstrate the modelled outer rim response averaged for all rotamers, 

         .11 (kg/mole)0.5 (Å4/amu). The modelled dependence is in the right amplitude range, 

though, of course, Eq. (11) describes the effect of the very edge structural mismatch, while the 

black lines in Figs. 7C and 7D provide responses for the continuous distributions. Also, of course, in 

the case of a liposome response, the larger departure of       functions from the dependence by 

Eq. (11), is due to the more complex nature of the response: there are several nonlinearities to 

contribute, each with its own local field factor. 

Practical extraction of a single hyperpolarizability concerns a number of issues. Spatial 

resolution would not be an issue in detection of structural properties of an envelope when its 

radius is larger than 2 microns (Angelova & Dimitrov, 1986); (Staneva et al., 2004). However, a 

higher resolution would be desirable to address fine features as shown in Fig. 7. The vertical bars 

(with green diagonal and blue anti-diagonal patterns) represent the data points as depicted by the 

black line in Fig. 7D but rendered on the grid of 350 nm – the resolution limit possible in 

conventional microscopy for this wavelength. The bars with the two different patterns 

demonstrate possible spatial oversampling, when the grid is shifted either due to sample or focus 

repositioning. Employment of a small numerical aperture objective (this is implied when 

discussing the results anticipated an objective with the acceptance angle  = 18
o
) would not 

allow a desired quality resolution as a small numerical aperture objective give loose focusing. 

The extraction should be possible with an objective with the acceptance angle  = 38
o
 or better. 

Another practical issue concerns fitting of the detected signatures. The model adopts the  

parameter as the separation between layers, assumes a certain departure from spherical shape, 

and the number of molecules involved in responses (note Nout and Nin in Eq. (11)). However, the 
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attractive side of the technique is that with several polarizations it may report on several 

responses, which have to be consistent with each other, and the adopted parameters may be 

optimised to yield a reference value for the hyperpolarizability. The outlined approach may be 

particularly valuable to report and quantify if the non-uniform chemical composition and/or 

density are present at the interfaces of spherical structures. 

 

Temperature Jump Experiment 

 

 A temperature jump experiment provides a sensitive way to probe energy flow pathways, the 

matter of assembly and coupling of selected normal modes to the environment. An experiment relies on 

observations specific to the redistribution of populations upon either a direct energy investment into the 

modes of solvent (Callender & Dyer, 2002), or upon a relaxation after an electronic excitation of a dye 

molecule (Phillips et al., 1995). 

 There are three experiments to consider. First, we may rapidly increase the temperature outside. 

Terminal methyl groups are located in the middle of the bilayer, at the junction of two leaflets (or shells). 

However, the aliphatic tails (terminated by methyls), as constituent elements, protrudes towards their own 

(outer or inner) environments. Quantum studies (conducted here) indicate that normal modes of methyl 

groups are sensitive to the conformational states of aliphatic tails. Hence, in a sense, the normal modes of 

methyls would respond as infrared chromophores to report on populations (and their redistributions) of 

conformers within each shell. If the outer environment becomes hotter, then, in the outer shell, aliphatic 

tails’ rotomers would become equally possible (the higher temperature limit of the Boltzmann 

distribution). In result, for a while, the optical response of the methyl modes of the outer shell would be 

different from that of the moieties in the inner shell. Appendix B provides the details on the temperature 
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difference (response at 700 K minus that at 300K) effective nonlinearities for the outer shell. This 

temperature range is attainable at the surface of a metallic nanostructure upon an excitation of a plasmon. 

According to the anticipated temperature difference effective nonlinearities, Fig. 8A demonstrates such 

non-equilibrium temperature jump images (under the indicated polarizations), when conformers in the 

outer shell become equally possible (hot state), while the all-trans conformer persists to be slightly more 

probable in the inner shell (cold state). Relaxation of such responses (upon thermal equilibration) would 

be informative on the energy transfer across the bilayer. In the case, when the inner shell is prepared to be 

hotter than the outer one, the images would be of opposite signs and slightly smaller in radius, 

correspondently. For example, this is what one would expect after a uniform excitation of solvent both, 

inside and outside: the outer shell would cool faster. Imaging dynamics of such signals would report on 

anisotropy of the environment and on the structural heterogeneity of the liposome, if present. 

 According to the second scenario, one would slowly change temperature of the whole sample 

holder to reach the alternative state adiabatically. Then, calculating the difference between the 

measurements before and after the temperature change would provide images as calculated and reported 

in Fig. 8B. These would be according to adiabatic temperature difference experiment.  

 The third relevant experiment would employ an electronic excitation of a single chromophore 

associated with a membrane with monitoring of the development of a dissipating (from the chromophore) 

heat wave in the plane of membrane. To rationalize the process, one would have to have images, as 

demonstrated in Figs. 8A and 8B. These instruct which polarization scheme may be more helpful to sense 

a temperature change, and in which compartment of a bilayer envelope. For example, we may see that 

under the PPP polarization, the images (upward and downward) provide the highest sensitivity to the 

temperature jump. Thus, this polarization may be considered to test the sensitivity of the experiment in 

general. However, mainly, the responses would be from the upper half-sphere. At the same time, the 
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contribution of the weaker signal from the lower half would not be distinguishable in the image plane. 

Additionally, under this polarization, the downward emitted image would not help to determine if the 

response originates from the area next to the equator or from somewhere else. The same lack of resolving 

capacity is present in the weaker responses under the SSS, SPP and PSS polarizations. In contrast, the 

images (upward and downward) under the SSP and PPS polarizations are more specific. The downward 

emitted image under the former polarization would report on the response from the area next to the 

equatorial plane and mainly from the upper half. At the same time, both, the downward and the upward 

collected images of the latter polarization would be informative on the region next to the lower pole of the 

structure. Let us consider the results under the PSP polarization. The downward emitted image shows the 

non-equilibrium heat responses from the upper half area next to the equator and from the area next to the 

lower pole as the outer rim signature and the quartet of spots next to the centre of the image, respectively. 

In contrast, the upward emitted image reports (indistinguishably) on responses from the areas proximal to 

both poles together. The last polarization, we wish to consider here is SPS: the downward emitted image 

provides the heat responses from the equatorial areas of the upper half, while the upward projected image 

reports (indistinguishably) on the response from the areas proximal to both poles together.  

 Measurements of heat transport both across a membrane and in-plane with the membrane while 

imaging the whole envelope would require a corresponding time resolution. As an example, it was 

experimentally measured that heat transfer from water to the carbonyl moiety of a phospholipid molecule 

when present in membrane fragments occurs within a hundred picoseconds, with the rate depending on 

hydration, (Volkov et al., 2006). Considering a cascade of inter- and intra-molecular transfers if across a 

membrane, it is instructive to take tens of nanoseconds for a heat-front propagation across a membrane as 

anticipated by using non-equilibrium molecular simulations (Potdar et al., 2015). Additionally, it was 

anticipated in the group in Sendai (Nakano et al. 2010) that the in-plane heat conduction is 2.5 times 
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smaller than that across of a phospholipid membrane. The time scale is already within the sampling rate 

of 17 MHz of the iXon Ultra 897 from Andor, Oxford Instruments. Recently, SPADnet silicon sensors 

were employed to image with sensitivity down to single photons and under a temporal resolution of 50 

picoseconds (Gros-Daillon et al. 2013). A systematic advance in contemporary detection systems 

provides strong promise for the quantitative sampling of non-equilibrium heat transport events with a 

microscopy resolution.  

 

CONCLUSIONS 

 

The article addresses IR-VIS SFG microscopy image reconstruction for a three-

dimensional spherical system of radius larger than the wavelength of the emitted radiation such 

as a liposome. The theory of imaging reconstruction is developed for the phase-matched signals 

under two, non-degenerate (when infrared and visible beams are focused separately) and 

collinear (degenerate) geometries. The results show that, while the latter geometry is better for a 

direct and quantitative analysis, the former may be beneficial if some areas of the surface are 

considered to be unexposed to light. The simulations indicate that while the upward emitted 

image is helpful to research within the cut off region next to one of the poles (according to the 

numerical aperture of the microscope objective), the downward emitted image is informative on 

all of the structural regions. At the same time, the central region in the downward emitted images 

is free from the response from the moieties specific to phospholipid membrane, as the 

contributions of the two leaflets cancel each other. The background free region is larger for a 

larger structure. This makes the polar regions, monitored under the transmission geometry, to be 

attractive in research on guest molecular systems. The article suggests a numerically tested 
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protocol to try extracting averaged molecular hyperpolarizabilities for phospholipid molecules. 

Finally, the work explores the opportunity of temperature jump experiments when IR-VIS SFG 

microscopy is a probing tool. The results indicate that the approach could be helpful to 

characterize the relative arrangement of matter by monitoring thermalization pathways in 

dependence on localization at the surface since different polarization may specify responses from 

different regions of spherical envelope. Hence, the study provides a systematic theoretical 

background for practical characterizations of phospholipid membranes’ 3D structural assemblies 

using the IR-VIS SFG microscopy. 

 

ACKNOWLEDGMENT Victor Volkov thanks Dr. Riccardo Chelli for stimulating discussion 

on normalization of orientational distribution functions. Carole C. Perry acknowledges support 

of AFOSR grant FA9550-1-16-0213. 

 

  



 30 

TABLE I. The nonlinear susceptibilities as functions of  angle, considered for the indicated 

polarization conditions and for the selected values of  angles. Here, A   (           )  

(           ). Terms in angular brackets are equated to zero, as the functions are expected to 

average to zero in the case where torsional conformers of opposite handedness are equally 

present. In case of experimental extraction, each hyperpolarizability, as listed, would be averaged 

for all possible structural states. 
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APPENDIX A 

We calculate     , ( , ) functions of the relevant normal modes of interest space, as 

described by Equation A1 for the selected normal modes of decanoic acid (Volkov, 2014):  
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where   ,    and    are the angular ranges about the selected Euler angles to 

express nonlinearity. Here, each symbol M, K and L represents either X, Y or Z components of 

the laboratory frame. The first and second functions of the orientation distributions describe the 

components of the Raman tensor and transition dipole moment of a selected normal mode q: 

   , ( , , )    
      and   , ( , , )    

    . Here,   
  (   ,   ,   ) is the row 

(transposed) vector of the Euler rotation matrix R about the M axis and  is the Raman tensor. 

The detailed expression of the Euler rotation matrix (according to the employed notation) is 

provided elsewhere (Volkov, 2014). 

 In current study, we adopt  = 2o to sample the angular range [0o, 180o],  = 2.5o to 

sample the angular range [0o, 360o], and integrating  over 2 angular range. These are according 

to the model and to the dimensions of the adopted mesh for the spherical envelope. Fig. A1 

provides the angular dependences for all 27 nonlinearities for mode #115 of the all-trans decanoic 

acid conformer and of mode #114 of a 120o torsion rotomer (having a higher energy minimum) 

about the eighth carbon atom of its aliphatic tail.. A reader may notice that the nonlinearities are 
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invariant upon the exchange of first two (from the left side) indexes, which are specific to the 

Raman tensors. While among the strongest, ZZZ is unique one: its numerical content is unique. In a 

contrast, the other diagonal nonlinearities: XXX and YYY, are numerically identical but /2-shifted 

(in respect to each other) about the -angular degree of freedom. We may describe the 

degeneracy as XXX = [YYY],/2. Accordingly, with a proper numerical sampling of the -angular 

space, one may construct YYY by a -angular swap of XXX. Analogously, we may express other 

identities as: XXZ = [YYZ],/2, ZZX = [ZZY],/2, XXY = [YYX],/2, XYX = YXX = [XYY = YXY],/2, XZZ 

= ZXZ = [YZZ = ZYZ],/2 and XZX = ZXX = [YZY = ZYY],/2 which all concern the non-chiral terms. 

Within the context of this work, a nonlinear susceptibility is considered chiral, whenever its three 

indices are different from each other. 

 The decanoic acid rotamer about its 8th carbon atom demonstrates strong chiral 

nonlinearities: see the lower row in Fig. A1. In contrast, the chiral responses of the all-trans 

decanoic acid (upper row in Fig. A1) are relatively weak (note the scaling factor of 10 in the figure), 

and demonstrate a “chess-like” amplitude variances specific to the four quarters according to in-

plane rotation by  angle. Additionally, in the case of the all-trans molecule, there are several weak 

features in the chiral angular maps, which indicate on the presence of a slight electronic distortion. 

In particular, at  = 90o in {, } in the angular maps of YZX (ZYX) and of XYZ (YXZ) responses, 

weak diagonal and anti-diagonal “bridging” between the quarters, respectively is observed. When 

 approaches 0o and 180o, the same subtle electronic asymmetry of the backbone contributes to 

the weak negative and positive amplitudes in the {, } angular maps of the XZY (ZXY) and YZX 

(ZYX) nonlinearities, respectively. In the case where a backbone lacks any residual twist and 

asymmetry about its plane, these weak features would not be present and all chiral nonlinearities 
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would demonstrate an identical “chess-like” variance in amplitude, which would be specific to the 

four quarters of in-plane rotation by  angle. This is principally identical to properties specific to a 

symmetric top, where off-diagonal components of the Raman tensor are zero.  

 To understand the contributing role of backbone handedness to chiral nonlinearities, it is 

instructive to explore responses from structures of opposite handedness. The results for such 

structures (not shown) demonstrate that the chiral terms to flip about  axis (in {, } angular 

maps), and change their signs. This effects 6 chiral nonlinearities: XYZ = YXZ, XZY = ZXY, and YZX = 

ZYX. It is important to mention, that the change in the backbone twist (handedness) affects several 

such non-chiral nonlinearities XYX = YXX, YYY, YZZ = ZYZ, XXY, and ZZY as well. For the rotamers of 

the opposite handedness, these responses would flip about the  axis, and change signs, also.  

 The described angular dependences are consistent with the experimental studies in 

molecular ensembles at interfaces where  angle averaging is likely (Zhuang et al., 1999). 

Inspection of angular maps shows that  integration delivers 3 regular non-zero nonlinearities, 

that are  dependent: XXZ = YYZ, XZX = ZXX = YZY = ZYY, and ZZZ. In fact, the authors of (Zhuang 

et al., 1999) employed SSP, SPS and PSS measurement to extract YYZ, YZY and ZYY nonlinearities to 

address structural properties of pentyl-cyanoterphenyl at the air-water interface. The situation is 

different for the chiral responses. As discussed in the previous section, in the case of a sample with 

proteins at the interface, any chiral SFG nonlinearity would consist of two contributions: a “chess-

like” response according to the  specific quarters, and a contribution specific to the backbone 

handedness. In the case of -averaging, the former contribution averages to zero, the latter one 

would express according to the nonlinearities. Specifically, under -averaging two nonlinearities 

XYZ = YXZ reduce to zero, and the other four responses would remain with their relations defined 
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as XZY = ZXY = - (YZX = ZYX). Of course, these four may be detected only if -dependent 

anisotropy is present. In this respect, the PPS polarization provides the possibility to measure the 

sum of XZY + ZXY, since the XXY and ZZY components are reduced to zero. Here, the XZY and ZXY 

are identical but have different local filed factors (Hirose et al., 1992); (Zhuang et al., 1999); (Li et 

al., 2011). Under the SPP and PSP polarizations, one would measure the YZX and ZYX responses, 

respectively: a reader may left explore discussion elsewhere (Xiao et al., 2012). In case the system 

consists of both, right and left twisted rotomers of equal probability, all chiral nonlinearities would 

show the same -dependent chess-order orientational pattern. Upon 360o averaging for  angle, 

their contributions would reduce to zero. However, this may not be the case at the temperature 

below the phase transition, when relative ordering may bring about formation of domains with a 

preferred handedness. A confirmation as to whether anisotropy about  angle is present would be 

possible upon measuring the YYY contribution under the SSS polarization. In the case of the in-

plane -anisotropy, SSS polarization measurement still may fail to report on it: one may observe 

no signal if it happens that the incidence plane (for the mixing fields) would coincide with the 

vertical direction in {, } angular map at  = 0o and 180o. This may be resolved upon a slight 

rotation of a sample holder. 

 Finally, it is instructive to mention that since the numerical degeneracy YZY = ZYY and XZY 

= ZXY = - [YZX = ZYX], the ratios of the PSS and SPS, PSP and SPP spectra are the functions of 

media refractive indexes at SFG and visible frequencies: 
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Here, SFG and vis are the angles between the SFG, visible and IR beams and the Z-laboratory 

axis, and the Lzz factors are not trivial, since they include surface specific refractive indices 

(Hirose et al., 1992). Considering the relatively weak dependences of the refractive indices in the 

frequency range of visible and SFG radiations, Eq. (A2) and Eq. (A3) provide functions, which 

are possible to measure and model. This would be helpful in a practical accounting of  Lyy and Lzz 

factors according to a geometry. A helpful constraint comes from the fact that functions by Eq. 

(A2) and Eq. (A3) must be equal. Anticipation of both Lyy and Lzz factors for the visible and SFG 

radiations would allow exploration of the spectral ratios as derived in Eq. (A4) and Eq. (A5). 

Numerical simulations (data not shown) indicate that the relations may help in extraction of the 

refractive index of media in the infrared spectral range. 

 

APPENDIX B 

 

Thermochemical analysis within Gaussian 09 (Frisch et al., 2010) provides the energies 

of the relevant conformers according to the subset of partition functions, specific to each case. 

Accounting for the degeneracy of each kinked molecules, we may anticipate Boltzmann statistics 

for the conformers (see left side in Fig. B1) for different temperatures. These are comparable to 

the properties in fluorinated amphiphil molecules (Collazo et al., 1992). The calculated statistics 

indicate that at the higher temperature limit (for example at 700 K), the rotomers are equally 

possible. The results in Fig. 2 are according to the high temperature limit: the structural 
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averaging assumed equal probabilities for all rotomers, but already at 300 K, there is a slight 

preference for the extended all-trans conformer. This becomes more obvious at 200 K. At the 

low temperature limit, the all-trans conformer becomes the main structural state. For presentation 

purposes, this study adopts the weightings of the conformers as expected at 300 K and 700K. 

Accordingly, the right side in Fig. B1 provides the temperature perturbed effective nonlinearities, 

as reported under the indicated polarization conditions in Fig. 4. A temperature jump of 400 K is 

possible at the surface of metallic nanoparticles upon excitation of a plasmon. In case of a 

smaller temperature range (of 10 – 20 K), the signals, as reported in Fig. 8, would have to be 

scaled accordingly 
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FIGURE CAPTIONS 

 

FIG 1. Panel A: geometry of a curved structure. Panel B: non-degenerate geometry of a SFG 

microscopy experiment. Panel C: Euler rotation angles , , and  describe an orientation of a 

hydrated all-trans decanoic acid in respect to the Laboratory frame. Panel D: local coordinate 

systems {x,y,z} received upon rotation transformation of the laboratory frame {X,Y,Z} using 

rotation angles {, } of {57
o
, 225

o
} and {33

o
, 300

o
}; cones with circular red and blue traces 

depict possible local orientational distributions.  

 

FIG 2. {, }n angular dependences of SFG nonlinearities (as indicated on the top of each 

angular map) averaged for modes 113, 114, 115 of left and right rotomers of decanoic acid under 

equal probability (high temperature limit). The scale of the colour code bar for the chiral 

nonlinearities is ten times decreased to vary in the range [-0.5, 0.5]. Red and blue thick line 

contours in the XXX panel depict angular limits of conical openings about z-local axes at the 

positions as shown in Fig. 1D. 

 

FIG 3. Geometry of a connecting vector along the sites within a selected slice to fulfil a sorting 

criterion to identify a site to be either on a shadow side or freely exposed to IR radiation.  

 

FIG 4. Downward emitted nonlinear amplitudes of the inner shell of a symmetric spherical 

phospholipid membrane envelope in dependence on  and  under the degenerate experimental 

geometry and at the high temperature limit. The polarization conditions are as indicated in 

panels. The angular dependences are calculated for microscope objective acceptance angle  = 
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18
o
. At the right side of each angular dependence, there is a factorization half-angular (about  

angle) map, which show main nonlinearities to contribute into the corresponding signals in 

dependence on the angular pairs {, }n. 

 

FIG 5. Angular dependencies of the nonlinear amplitudes for the inner shell of a bilayer envelope 

under polarizations as indicated in column A and emitted upwards (columns A and E) and 

downward (columns C and G) for degenerate and non-degenerate geometries, respectively. The 

results of image mapping are at the right of each angular dependence.  

 

FIG 6. Panel A: upward (upper row) and downward (lower row) emitted images when 1  2 for 

a 2-micron radius bilayer spherical envelope under polarizations as indicated on the top and for a 

microscope objective acceptance angle  = 18
o
. Panel B: the same as in panel A, but when 1 = 

2 = 0. Panel C: Images calculated for 1 = 2 = 0, while the microscope objective acceptance 

angle  = 38
o
. Panel D: Images of a spherical cap of a 2 micron radius spherical envelope 

(Volkov, 2014). Radius of the base plane (CB in Fig. 1A) of the cap is tuned to 0.275 nm (see 

CB in Fig. 1A) to match best the distance of the outer rim detected in the upward emitted images 

as shown in Panel B. 

 

FIG 7. Panels A and B: vertical slices from the upward emitted images in Fig. 6D along Y-axis at 

X = 0 under the indicated polarizations. Black lines in panels C and D represent      ( ) 

functions calculated by Eq. (10) according to the slices provided in Panels A and B, respectively. 

Yellow-red circled lines (in panels C and D) show the response modelled using Eq. (11). Blue 

diagonal patterned bars demonstrate factorized contribution of      ( ) upon rendering the 
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signals on the grid of 330 nm – the anticipated resolution limit in. Green anti-diagonal patterned 

bars demonstrate the same contribution but when the grid is shifted to achieve spatial 

oversampling. 

 

FIG 8. Panel A: non-equilibrium response on a temperature jump of the surrounding 

environment: the outer shell become hotter, the inner shell is still cold, for the upward and the 

downward emitted signals (upper and lower rows, respectively). Panel B: equilibrated 

temperature difference response: hotter liposome signal minus cooler liposome signal, for the 

upward and the downward emitted signals (upper and lower rows, respectively). The image 

reconstruction is for an experiment when  = 38
o
. 

 

FIG A1. Structural representations and {, } angular dependencies of SFG nonlinearities. 

Upper and lower rows: mode #115 of all-trans decanoic acid and mode #114 of decanoic acid 

rotomer about the eighth carbon atom, respectively. The scale of the colour code is linear and 

varies in the range [-10, 10] from blue to red for all angular maps, save the chiral ones of the all-

trans decanoic acid form, where the range is [-1, 1]. 

 

FIG B1. Left Side: deduced probabilities, according to Boltzmann distribution, for decanoic acid 

rotomers for the indicated temperatures according to the thermochemical output for use of 

Gaussian 09 (Frisch et al., 2010). Right Side: corresponding change of effective nonlinearities 

(Fig. 3) angular maps for upward and downward emitted signals.  
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Fig. S1. Left side: graphical presentations of sites sorted to be either under direct exposure (on 

the light side) or not (on the shadow side) at the interface of an elliptical biconcave object and a 

perfect sphere for Infrared and Visible beams under a non-degenerate experimental geometry, as 

shown in Fig. 1B in the article. Right side: profiles of the structures generated using the solution 

by Mladenov group (Djondjorova et al., 2004). 
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Fig. S2. Changes (gains or losses) of the S-polarized vector {0, 1, 0} in the laboratory frame of 

an IR beam upon passing sites at the surface side, under direct exposure to this field, under a 

non-degenerate geometry, when 1  2 according to Fig. 1B in the article. Panels from left to 

right: changes of the X, Y and Z components after transmission. Each site is represented by a 

small sphere colored according to a linearly scaled blue-white-red blend, the amplitudes of which 

is according to the minimum-maximum numerical values. 

 

 

 

 

Fig. S3. Changes (gains or losses) of the S-polarized vector {0, 1, 0} in the laboratory frame of 

IR beam upon passing sites at the surface side under direct exposure to this field, under a 

degenerate geometry, when 1 = 2 according to Fig. 1B in the article. Panels from left to right: 

changes of the X, Y and Z components after transmission. Each site is represented by a small 

sphere colored according to a linearly scaled blue-white-red blend, the amplitudes of which is 

according to the minimum-maximum numerical values. 
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An example of the Mathematica code to express XXX nonlinearity as a function of  and  

angles: 

 

 

 

 

Multiplication with a sine function is according to the numerator integral in Equation A1 in 

Appendix A. 

Comparisons of results of appro imate e pressions received upon “rotations to angles” (solid 

red line) with the outcomes of exact integrations (black dots), for nonlinearity XXX.  
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