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Abstract: Over the past decade, significant progress has been made in the identification of novel material binding 

peptides having affinity to a wide range of target materials and their use in nanobiotechnological innovations. These 

material binding peptides (MBPs), also known as solid/ substance binding peptides (SBPs) can be isolated using 

combinatorial display technologies such as phage display (PD), surface display (cell, bacterial, yeast, mRNA) exhibit 

material specific selectivity and affinity towards a range of inorganic and organic nanomaterial surfaces including metals, 

metal oxides, minerals, semiconductors and biomolecules. MBPs serve as mediators in bringing nanotechnology and 

biotechnology under one umbrella by linking solid nanoparticles with biomolecules including proteins, bioactive peptide 

motifs, bifunctional binding peptides, enzymes, antigens and antibody fragments. As the utilization and application of 

these inorganic binding peptides as molecular connectors, molecular assemblers and material specific synthesizers in 

nanotechnology has been expanding rapidly, so too has growing commercial interest in patenting such innovations. In this 

review, we present the past, current and future developments and applications of inorganic MBPs specific to 

nanomaterials and their applications.  

Keywords: Affinity, application, biomolecule, combinatorial peptide display, material binding peptide, mediator, 

nanotechnology, selectivity. 

1. INTRODUCTION 

 MBPs have attracted considerable interest in the 
development of innovative nanostructured materials in 
particular because of their promising and growing 
applications in nanotechnology. These MBPs are also called 
inorganic binding peptides (IOBPs) or substrate binding 
peptides (SUBPs) or solid binding peptides (SBPs) or 
genetically engineered peptides for inorganics (GEPIs). 
MBPs are short amino acid peptide sequences that are 
genetically constructed and show specific affinity to a target 
material through combinatorial display approaches which 
include phage display [1-6], cell surface display [7-10], 
ribosome display [11-14] and mRNA display [15-18] 
technologies. Although nanomaterials have been designed 
and produced decades ago, their utilization in nano- or bio-
technology is limited due to poor solubility and 
biocompatibility issues. However, several strategies have 
been developed to overcome the potential safety concerns 
and eventually, peptide display technologies came into 
existence by managing greater control over the 
nanomaterials without compromising their physical, 
chemical and functional properties. 

 G.P Smith, for the first time used phage display 
technology as a powerful tool to identify ligands for 
numerous targets in 1985 [1]. From there on, phage or cell 
surface displayed (7-15mers) libraries have become 
ubiquitous in selecting and screening peptides having strong  
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affinity towards a range of inorganic material surfaces such 

as metals (Ag [19-21], Au [22, 23], Pt [24], Pd [25]), metal 

oxides (SiO2 [26-30], ZnO [31, 32], TiO2 [33-35], Fe2O3 [36, 

37], IrO2 [38], Al2O3 [24, 39], Cu2O [31]), minerals (calcite, 

hydroxyapatite, graphite, mica, sapphire) [40-42], 

semiconductors (CdS, GaN, GaAs and ZnS) [43-45], carbon 

materials (graphene, carbon nanotubes) [46, 47] and polymer 

materials [48, 49]. These isolated peptides have many 

practical applications in biomineralization [32, 50, 51], 

synthesis and fabrication of inorganic nanomaterials [40, 52-

58], immobilization of nanoparticles onto inorganic or 

organic surfaces and surface functionalization [34, 38, 59-

61]. Now, it is starting to be possible to create novel 

materials using biological linkers to join more than one type 

of material generating hybrids with unique electronic, 

mechanical, magnetic or photonic properties [26, 27]. 

 The aim of this paper is to summarize and discuss recent 

progress in patents on MBPs specifically exploring inorganic 

nano surfaces like metals, metal oxides, minerals, carbon 

based materials, polymer based materials, magnetic materials 

and semiconductors by peptide display strategies and their 

utilization in the generation of advanced nanomaterials. 

 In order to get a clear picture on the number of patents 
present to date relevant to MBPs and their applications, a 
thorough online search was conducted using the available 
free national and worldwide databases which include EPO 
Espacenet, WIPO patent scope, USPTO, Google patent 
search, Patent lens etc. along with commercial databases 
including Derwent and Patbase. The key words used to find 
all the relevant patents were combinatorial/ phage displayed 
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peptides, material binding peptides, metal binding peptides 
(Gold (Au), Silver (Ag), Titanium (Ti), Platinum (Pt), 
Palladium (Pd), Cobalt, Copper, Nickel, Lead, Cadmium and 
Aluminum), metal oxide binding peptides (Iron oxide 
(Fe2O3), Lanthanide oxide, Silica or silicon dioxide (SiO2), 
Quartz, Zeolites, Zinc oxide (ZnO), Palladium oxide (PdO), 
Cobalt oxide (CoO), Manganese oxide (MnO2), Calcium 
Oxide, Cuprous/ copper oxide (Cu2O/ CuO), Zirconium 
oxide (ZrO2), Tin Oxide (SnO2), Chromium oxide and 
Aluminum oxide), mineral binding peptides (Clay, Calcium 
phosphate, Calcium carbonate and  Hydroxyapatite), Carbon 
based binding peptides (Graphene, Carbon nanotubes, 

Graphite, Fullerenes and Diamond), Semiconductor binding 
peptides (Zinc Sulfide, Gallium Arsenide, Cadmium Sulfide, 
Germanium and combinations), interfacial binding peptides 
and polymer binding peptides. Both English and American 
spellings were included in the searches. The initial number 
of patents found related to material or IOBPs were 981. 
After reading and excluding irrelevant patents such as 
organic binding peptides, works published before 2001, 
repeated patents, documents not in English etc., 51 highly 
relevant IOBPs patents published from 2001 onwards were 
selected and analyzed.  

 
2. COMBINATORIAL DISPLAY PROCESS ON NANOMATERIAL SURFACES 

 The connection between inorganic materials and 
biomolecules is not new in nature and exists naturally 
through the process of biomineralization. Through this, 
complex inorganic nanostructures including metal oxides 
and minerals are synthesized by certain species like 
magnetite, an iron oxide (Mms Proteins) in bacteria [62-64], 
silica (silaffins) in diatoms [65-70], silica (silicatein) in 
sponges [71, 72] aragonite and calcite (chitin, proteins and 
polysaccharides) in mollusks [73]. Though artificial 
processes have been used to reproduce the biominerals or 
materials their quality is challenging. In order to meet the 

quality and demand, several research groups started their 
quest for better alternate routes to produce more efficient, 
reliable and bulk bionanomaterials using inspiration from 
nature. This lead to the discovery of novel biomimetic 
approaches where peptides having affinity towards any target 
inorganic material can be isolated and practically reproduced 
using combinatorial peptide libraries such as phage display 
[1-6], bacterial/ yeast display [7-10], ribosome, mRNA or 
cDNA display [11-18] and rational design [74-76] as shown 
in Figure 1. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Schematic representation of different types of combinatorial display approaches used for selecting and screening of 
MBPs and their utilization towards practical applications including nanomaterial synthesis, assembly and fabrication of 
nanostructures, improving biocompatibility and biomolecule immobilization 
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 A combinatorial phage library consists of peptide, protein 
and antibody libraries many of which are commercially 
available. These libraries have been constructed by fusing 
DNA fragments into the genome of the phage or phagemid, 
and displaying the peptides on the surface of the phage coat 
proteins. For example, different types of phage coat proteins 
including pIII, pVI, pVII, pVIII and pIX have been used in 
phage libraries to display peptides, proteins and antibodies. 
as shown in Figure 1. The selection of coat proteins in the 
phage library depends on the type of display being looked 
for. For example, pIII phage capsid protein allows for 
monovalent display while pVIII allows for polyvalent 
display. A typical combinatorial display approach involves 

selection, screening and recovery of MBPs using any of the 
mentioned combinatorial technologies. So far, a range of 
biomimetic peptides showing specific affinity and molecular 
recognition for inorganic nanomaterials including metals, 
metal oxides, minerals, magnetic and semiconductor 
materials, carbon or polymer based materials have been 
isolated [19-49]. Further, these material specific peptides 
have been used for synthesizing simple to complex bio- or 
nano-materials, mediating the controlled biomineralzation 
process, directing self-assembly and nanofabrication of 
ordered structures, facilitating the immobilization of 
functional biomolecules and for constructing inorganic-
inorganic or organic-inorganic nano hybrids [50-61, 77-79].  

3. RECENT PATENTS ON INORGANIC MBPS AND THEIR APPLICATIONS 

 This section summarizes relevant patents on inorganic 
MBPs and their application towards novel innovations as 
shown in Tables 1-6. In the patents (WO 078451 A2, US 
7905943 B1, US 0172282 A1) Naik and coworkers [80, 81], 
used the phage display technique to screen and isolate MBPs 
specific to metals (Ag, Au, Co, Pd, Gd), metal oxides (SiO2, 
GeO2, Co3O4, Fe2O3, ZnO, SnO2) and other materials (ruby, 
carbon nanotubes). These peptides were further used as 
templates to mediate the controlled synthesis and formation 
of useful nanostructured materials alongside producing 
multifunctional bimetallic (gold-palladium) hybrid 
nanomaterials [81]. In addition to the existing combinatorial 
phage display approach for identifying novel peptides that 
are capable of showing high binding to inorganic surfaced 
nanomaterials, they developed a polymerase chain reaction 
(PCR)-driven phage display method to isolate peptide 
sequences specific to nanomaterials, thereby improving the 
process [82].  

 In a similar way, many patents have been registered 
obtaining SBPs having binding affinity towards a range of 
metals and metal oxides such as gold [83], silver, titanium 

and silicone [84], silica coated particles [85], titanium oxide 
and silicon containing compounds [86], titanium and 
stainless steel [87], iron oxide [88], dysprosium oxide [89] 
and ceramic materials [90] that utilize the same peptide 
sequences to initiate and synthesize nanostructures by tuning 
their size and shape [91]. Also, peptides designed through 
biomimetic and computational modelling have been used to 
precipitate stable and well defined titanium oxide 
nanoparticles of uniquely controlled morphologies including 
rectangular (KSSKK), spherical (SKSKKKSKSKKK, 
SKKKKKKKKKS, RRSSSRRSSSRR, 
RRRSRRRSRRRSRRR and SKKSKKK), flat and fused 
disks (SKKKKSSKKKKS, KKKSKSKKK, 
RRRSSRRRSSRRR, SKSKKKSKSKKKSKS and 
SSKKKSSKKK) and porous sheets (SKKKKKSKKKK, 
KKSSKKKKKKKKKS, KKKKSSKKKK, 
SKKSKKKKKKKK and SKKKSKKKK) without the use of 
high temperatures and pressures [92]. Additionally, these 
peptides revealed aggregate formation among themselves 
and the role of secondary structure in controlling 
morphology [92]. 

 

Table 1. Relevant patents on metal, metal oxide, metal compound or combination binding peptides 

No Patent number/ 

Publication or 

Renewal Years 

Patent Title Inventor/ Assignee/ Applicant Combinatorial 

Library Used  

Target Inorganic 

Material of Interest 

Refer

ence 

1 WO 078451 A2 

US 0035223 A1 
(2003, 2006) 

 

Method of isolating binding peptides 

from a combinatorial phage display 
library and peptides produced thereby 

Rajesh Naik, Morley Stone, 

Daniel Carter/ New Century 
Pharmaceuticals, Inc.  (US) 

Phage display 

(PhD. -12) 

Silver, silica, 

germanium, cobalt and 
iron oxides 

80 

2 US 7905943 B1 
(2011) 

Synthesis of hybrid inorganic 
nanoparticle structures using peptides 

 

Joseph M. Slocik, Rajesh R. 
Naik/ The United States of 

America as Represented by The 

Secretary of the Air Force (US) 

Phage display Palladium, gold  81 

3 US 0172282 A1 

US 0176760 A1 

(2006, 2008) 

Peptide templates for nanoparticle 

synthesis obtained through PCR-driven 

phage display method 

Rajesh Naik, Morley Stone, 

Daniel Carter 

Phage display 

(PhD. -12) 

Metals (Ag, Au, Co, 

Pd, Gd), metal oxides 

(SiO2, GeO2, Co3O4, 
Fe2O3, ZnO SnO2), 

other materials (Ruby, 

82 
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carbon nanotubes) 

4 US 0280220 A1 

US 8088740 B2  
(2010, 2012) 

Gold binding peptides and shape-and 

size-tunable synthesis of gold 
nanostructures 

Hor Gil Hur, Jung Ok Kim, Dae 

Hee Kim, No Sang Myung/ 
Gwangju Institute of Science 

and Technology, Gwangju (KR) 

Phage display 

(PhD. -12) 

Gold 83 

5 WO 010031 A1 
US 7498403 B2 

(2005, 2009) 

Peptides capable of binding to titanium 
silver silicone 

Kiyotaka Shiba, Kenichi Sano/ 
Japan science and technology 

agency, Tokyo (JP) 

Phage display 
(C7C, D12) 

Silver, titanium, silicon 
 

84 

6 US 0158822 A1 
WO 080419 A1  

(2010) 

Peptides that bind to silica coated 
particles 

Fahnestock et al./ E.I. du Pont 
de Nemours and Company, 

Wilmington, DE (US) 

Phage display Silica 85 

7 WO 111832 A1 
US 0045917 A1 

(2011, 2013)  

Method for selecting polypeptide 
sequence, metal oxide or silicon 

containing compound binding peptide 
and use thereof 

Akira Wada, Yoshihiro Ito, 
Takashi Kitajima / 

Riken (JP) 

Phage display Titanium oxide, silicon 
containing compounds 

86 

8 US 0185870 A1 

WO 072542 A2 
(2003, 2005) 

Interfacial biomaterials Mark W. Grinstaff, Daniel J. 

Kenan, Elisabeth B. Walsh, 
Crystan Middleton/ 

Duke University (US) 

Phage display 

(PhD. -13, 19 
X6PX6, X6YX6, 

and SCX16S 

libraries) 

Titanium, stainless 

steel 

87 

9 US 0158837 A1 

WO 080418 A1 

(2010) 

Iron oxide-binding peptides Stephen R. Fahnestock, Kristy 

N. Kostichka, Anju 

Parthasarathy, Hong Wang/ 
E.I. Dupont De Nemours and 

Company (US) 

Chemical/ 

synthetic 

approach 

Iron oxide 88 

10 WO 111407 A1 
(2015) 

 

Rare earth material-binding peptide 
and use thereof 

Takaaki Hatanaka, Nobuhiro 
Ishida/ Kabushiki Kaisha 

Toyota Chuo Kenkyusho (JP) 

Phage display 
(Random T7 

library) 

Dysprosium oxide 89 

11 WO 007723 A1 
(2010) 

 

Peptide capable of binding to ceramic 
material 

Hideki Kawamura, Kiyotaka 
Shiba, Kenji Kashiwagi/ Murata 

Manufacturing Co., Ltd., 

Japanese Foundation for Cancer 

Research (JP) 

Phage display 
(Ph.D. -12 & 

C7C) 

Ceramic and metal or 
oxide or ions 

combinations, barium 

titanate, titanium oxide, 

zirconium oxide 

90 

12 US 0100969 A1 

(2009, 2016) 

Templates for controlling synthesis of 

nanoparticles into discrete assemblies 
 

Nathanial L. Rosi, Chun-Long 

Chen/ University of Pittsburgh -
- Of the Commonwealth System 

of Higher Education (US) 

Phage display 

(PhD. -12) 

Gold  91 

13 US 8834831 B2 
(2014) 

Controlling morphology of titanium 
oxide using designed peptides 

E. Stote II Robert, Shaun F. 
Filocamo/ The United States of 

America as represented by the 

secretary of the army (US) 

Combination of 
biomimetic and 

computational 

models 

Titanium oxide 92 

14 WO 000493 A2 

US 0035245 A1 

(2010, 2013)  
 

Inorganic-binding peptides and quality 

control methods using them 

 

Christelle Vreuls, Cécile Van 

De Weerdt, Catherine 

Archembeau, André Renard, 
Joseph Martial/ Arcelormittal 

Liege Research, Universite De 

Liege Interface Entreprises 
Universite (BE) 

Phage display 

(PhD. -12 & 

C7C) 

Stainless steel, titanium 

dioxide, zinc oxide 

93 

15 WO 055980 A2 

US 0219504 A1 
(2011, 2012) 

Composite of a protein comprising 

zinc oxide-binding peptides and zinc 
oxide nanoparticles, and use thereof 

Nam-Hyuk Cho, Taek-Chin 

Cheong, Seung-yong Seong, Ji 
Hyun Min, Jun Hua Wu, 

Young-Keun Kim/ Snu R&Db 

Foundation, Korea University 
Research and Business 

Foundation (KO) 

Combination of 

peptide library 
and motif 

modification 

Zinc oxide 94 

16 US 0249682 A1 
WO 094095 A2 

(2005, 2006) 

Long lasting waterproof sunscreen 
comprising metal oxide and peptide 

conditioner 

Janine Buseman-Williams, 
Xueying Huang, Hong Wang, 

Gary Whiting/ E.I. Dupont De 

Nemours and Company (US) 

Phage display 
(Ph. D.-7& 12) 

Titanium dioxide, zinc 
oxide, cerium oxide, 

iron oxide and 

combinations 

95 
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17 WO 056511 A2 

US 7618816 B2 

(2007, 2009) 

Metal-binding therapeutic peptides Desmond Mascarenhas/ 

Ontherix, Inc. (US) 

Combination of 

cell display, 

mutations   

Metal based 

compounds and 

domains 

96 

18 US 0165225 A1 

US 8916376 B2 

(2012, 2014)  

Metal-binding peptides Victor G. Stepanov, Yamei Liu, 

George E. Fox, George W. 

Jackson, Roger J. McNichols, 
Weniger/ Biotex, Inc. (US) 

Artificial library 

created (20 mer) 

Metal ions, organic 

molecules, viral 

particles and biological 
molecules 

97 

19 WO 079053 A2 

US 8569226 B2 
(2009, 2013) 

High Affinity metal-oxide binding 

peptides with reversible binding 

Eric Mark Krauland, Stephen 

Kottmann, Roberto Juan 
Barbero, Angela Belcher/ 

Massachusetts Institute of 

Technology, Cambridge, MA 
(US) 

Yeast surface 

display, rational 
design 

methodology, 

and genetic 
engineering 

Oxides (sapphire, 

quartz, thermally 
grown oxide on silicon, 

amorphous borosilicate 

glass) or plasma 
activated surfaces 

98 

 Vreuls et al. invented a method to identify imperfections 
or non-homogenous conditions on the surface of materials 
thereby isolating specific nanoparticles from a mixture by 
using stainless steel (MTWDPSLASPRS), titanium oxide 
(LNAAVPFTMAGS) and zinc oxide binding peptides 
(VRTRDDARTHRK) [93]. In a separate patent (US 
0219504 A1), Cho and co-workers created a complex protein 
joining zinc oxide binding peptides and zinc oxide 
nanoparticles together which resulted in an active agent for 
delivering drugs in vivo by an intracellular mode and helping 
in cell or MRI imaging [94]. In another patent (US 0249682 
A), Williams and co-workers disclosed a sunscreen 
formulation that is resistant to water and lasts for a long time 
using peptide derived oxides such as titanium dioxide, zinc 
oxide, iron oxide, cerium oxide and a combination of 
nanoparticles alongside liquid as a sunscreen agent [95].  

 Desmond Mascarenhas in his patent (WO 056511 A2) 
described a method for treating selective human 
inflammatory diseases by delivering the metallic binding 
domain polypeptide linker complex 
(QCRPSKGRKRGFCW) in conjunction with curcumin and 
lycopene that showed specific binding to live cells that were 
under cellular stress resulting in increased cellular uptake, 
providing diagnostic information and altering a wide range 
of disease and cellular processes [96]. Alternatively, 
functionalised biomolecules were produced in cells or 
organisms by incorporating materials such as metals, toxins 
and peptides into the genome of cells and such modified 
cells have been used for isolating targeted molecules within 
the cells [97]. Furthermore, Krauland et al. (WO 079053 A2) 
engineered two peptides (GKGKGKGKGKGK & 

GKGKGKGKGKGKASGKGKGKGKGKGK) using a 
combination of yeast surface display, biopanning 
approaches, rational design strategy and genetic engineering 
that exhibit high affinity to metal oxide surfaces (eg. 
sapphire, quartz etc.) and bind in a reversible manner to 
plasma activated surfaces (eg. polystyrene, 
polydimethylsiloxane, polyurethane etc. upon exposure to 
oxygen plasma) where either of the peptides can selectively 
be released by exposing the oxide or plasma activated 
surfaces to high salt conditions and/or changing the electric 
field. In addition, these peptides when integrated selectively 
with protein or cells, act as a binding agent towards targeted 
oxide surfaces, thereby helping in the construction of 
biosensors [98].  

 Imamura et al. disclosed an invention related to a 
magnetic–biosubstance complex structure formation, where 
the biosubstance was immobilized on the carrier present on 
the magnetic substance. As a result of this, structures 
containing a carrier can be used as a vehicle for carrying or 
delivering diagnostic agents, bacteria, cells and drugs, 
separation and purification of proteins, DNA or RNA, as a 
carrier for enzyme reaction and for the formation of complex 
structures could be developed. The structure in the present 
invention (WO 097416 A1) comprises a magnetic substance, 
a peptide fragment and/or a gene capable of linking to a 
magnetic substance, preferably ferrous oxide (Fe2O3) binding 
peptides selected from phage display and a biosubstance 
containing nucleic acids, proteins, lipids, carbohydrates and 
combinations thereof, preferably a polyhydroxyalkanoate-
synthesizing enzyme [99]. 

Table 2. Relevant patents on magnetic and semiconductor binding peptides   

No Patent number/ 

Publication or 

Renewal years 

Patent title Inventor/ Assignee/ Applicant Combinatorial 

library used  

Target inorganic 

material of interest 

Refer

ence 

20 WO 097416 A1 
US 0108123 A1 

(2004, 2008) 

 
 

Magnetic substance-biosubstance 
complex structure, peptide fragment 

capable of linking to magnetic 

substance and gene therefor, and 
process for structure 

Takeshi Imamura, Tetsuya 
Yano, Tsuyoshi Nomoto, 

Shinya Kozaki, Tsutomu 

Honma, Akiko Tsuchitani/ 
Canon Kabushiki Kaisha (JP) 

Phage display 
(Ph.D. -12) 

Iron oxide (Fe2O3) 99 

21 US 0148380 A1 

US 8372949 B2 
(2003, 2013) 

Molecular recognition of materials Angela M. Belcher (US) 

 

Phage display 

library (7-12 a.a 
fused to p3 

Semiconductor and 

magnetic material 
combinations (GaN, 

100 



Recent Patents on Nanotechnology, 2016, Vol. 0, No. 0 Thota and Perry  

protein) ZnS, CdS, Fe3O4, 

Fe2O3, CdSe, ZnSe and 

CaCO3) 

22 WO 026590 A2 

US 0003629 A9 
(2003, 2012) 

 

Biological control of nanoparticle 

nucleation, shape and crystal phase 

Angela Belcher, Richard 

Smalley, Esther Ryan, Seung-
Wuk Lee/ Board of Regents, 

The University of Texas System 

(US) 

Phage display 

(Ph.D. -12, C7C) 

Metal oxides (Fe3O4, 

Fe2O3 and CaCO3) 
Semiconductors (GaAs, 

InP, ZnS, CdS, CdSe, 

and ZnSe) 

101 

23 WO 029431 A2 

US 0300605 A1 

(2003, 2011) 
 

Nanoscaling ordering of hybrid 

materials using genetically engineered 

mesoscale virus 

Angela M. Belcher, Seung-Wuk 

Lee/ Board of Regents, 

University of Texas System 
(US) 

Phage display 

(PhD. -7& 12) 

Semiconductors (GaN, 

CdS, FeS, and ZnS, 

CdSe, ZnSe) 

102 

24 WO 033488 A2 

(2004) 
 

 

Peptide mediated synthesis of metallic 

and magnetic materials 

Angela M. Belcher, Brian Reiss, 

Chuanbin Mao, Daniel Solis/ 
Board of Regents, University of 

Texas System (US) 

Phage display 

(PhD. -12) 
 

Metal materials 

including magnetic 
materials (e.g., Co, 

CoPt SmCo5, or FePt) 

103 

25 WO 037856 A2 

US 0264166 A1 

(2005, 2012) 

 

Multifunctional biomaterials as 

scaffolds for electronic, optical, 

magnetic, semiconducting, and 

biotechnological applications 

Angela M. Belcher, Beau R. 

Peelle, Ki Tae Nam/ MIT, 

Board of Regents, The 

University of Texas System 
(US) 

Phage display 

(M13 pf1, fd1, 

TMV) 

Semiconductors (ZnS 

and CdS) 

Metals (Au) 

 

104 

26 WO 036992 A2 

EP 1545202 A2 
(2004, 2005) 

 

 

Fabricated biofilm storage device Angela M. Belcher, Seung-Wuk 

Lee, Brent L. Iverson, Soo-
Kwan Lee/ Board of Regents, 

University of Texas System 

(US) 

Phage display 

(PhD. -12) 
 

Semiconductors (GaAs, 

and ZnS) indium tin 
oxide (ITO), metal, 

metal alloy, mineral, or 

combinations of 
streptavidin BPs 

105 

27 WO 067683 A2 

US 8846190 B2 
(2005, 2014)  

 

Inorganic nanowires Angela M. Belcher, Chuanbin 

Mao, Daniel J. Solis/ Board of 
Regents, The University of 

Texas System (US) 

M13 

bacteriophage 
display 

Semiconductor, 

metallic, metal oxide 
and magnetic or 

mixtures 

106 

Table 3. Relevant patents on carbon based MBPs   

No Patent number/ 

Publication or 

Renewal years 

Patent title Inventor/ Assignee/ Applicant Combinatorial 

library used  

Target inorganic 

material of interest 

Refer

ence 

28 US 0309126 A1 

(2014) 

Peptide binding to graphitic materials 

and phage including same 

Hyunjung Yi, Ki Young Lee, Ki 

Young Lee, Chaun Jang, 
Joonyeon Chang and Joonyeon 

Chang/ Korea Institute of 

Science and 
Technology, seoul (KR) 

M13 phage 

display (p8 
peptide library) 

Graphite, graphene, 

carbon nanotube, 
fullerene 

107 

29 WO 102020 A2 

US 0028316 A1  
(2003, 2011) 

Carbon nanotube binding peptides Anand Jagota, Steven Raymond 

Lustig, Siqun Wang, Hong 
Wang/ E. I. Du Pont De 

Nemours and Company (US) 

Phage, bacterial 

and yeast display 

 Carbon nanotube 108 

30 US 0156688 A1 
US 9029168 B2 

(2012, 2015) 

 

Use and making of biosensors utilizing 
antimicrobial peptides for highly 

sensitive biological monitoring 

Michael C. McAlpine, Manu 
Sebastian Mannoor/ The 

Trustees of Princeton University 

(US) 

Phage display 
and chemical 

modification 

Graphene, microbial 
and bacterial cells 

109 

 Angela M. Belcher’s group obtained many patents 
describing the selection and screening of IOBPs or viruses 
using phage display libraries and genetic engineering 
methods for varied materials including magnetic and 
semiconductor nanomaterials, and their utilization towards a 
range of applications [US 0148380 A1, WO 026590 A2, WO 

029431 A2, WO 033488 A2, WO 037856 A2, WO 036992 
A2, WO 067683 A2]. As illustration, the examples include, a 
method for selecting peptides containing one or more 
sequences having specific affinity for one or more magnetic 
or semiconducting crystal materials like GaN, ZnS, CdS, 
Fe3O4, Fe2O3, CdSe, ZnSe and CaCO3 [100], controlled 
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nanoparticle synthesis including the desired target 
nanoparticle size, shape, growth and crystal phase by using 
the same phage or virus displayed nanoparticle binding 
peptides [101] and directing the assembly and fabrication of 
magnetic or semiconducting nanoscale hybrid materials 
mediated by genetically engineered mesoscale virus or phage 
displayed peptides [102, 103]. Additionally, these peptide or 
virus equipped multifunctional biomaterials have been used 
as templates or scaffolds for magnetic, electronic, optical and 
semiconducting applications [104], as well as for designing 
biofilm storage devices and nanowires [105, 106].  All the 
patents from this group describe a range of phage displayed 
or virus modifications that show specific binding to 
nanomaterial structures, as well as forming novel hybrid 
structures in the presence of modified biomaterials for 
specific binding. For instance, the polypeptide and 
oligomeric amino acid sequences can be expressed anywhere 
on the surface of the virus particles or coat proteins including 
pIII, pVI, pVII, pVIII and pIX and in the genome of the 
virus itself or at more than one site for modification of 
specific binding units. i.e. the ends of the polypeptide or 
virus particle can be altered to show specific recognition to 
an initial target material, whereas the genome of the virus 

can be manipulated to show specific affinity towards a 
second target material. In this process, multiple sites on the 
virus nanoparticles can be modified and utilized as scaffolds 
or templates for designing nanowires and novel devices 
[100-106]. 

 Carbon based MBPs include graphene, fullerene and 
single or multi-walled carbon nanotubes. In separate 
inventions, two separate patents (US 0309126 A1 and WO 
102020 A2) were issued for selecting peptides that were 
found to have specific binding interaction for a variety of 
graphitic materials such as graphene, highly oriented 
pyrolytic graphite, graphite alone and fullerenes [107] and 
for carbon nanotubes [108]. Moreover, these graphitic or 
carbon nanotube binding peptides have been used for 
application towards designing sensing devices to detect 
microorganisms. For example, a method for preparing 
sensors has been disclosed (US 0156688 A1), in which the 
sensing device was built by immobilising the antimicrobial 
peptide motifs having definite binding affinity for targets 
including E.coli, gram +ve or -ve bacteria, viruses, 
pathogens, fungi and varied cancer cells which can be read 
out upon changes in the electrical conductivity of the system 
[109]. 

Table 4. Relevant patents on mineral binding peptides   

No Patent number/ 

Publication or 

Renewal years 

Patent title Inventor/ Assignee/ Applicant Combinatorial 

library used  

Target inorganic 

material of interest 

Refer

ence 

31 WO 117564 A2 

US 7749957 B2 
(2007, 2010) 

Clay-binding peptides and methods of 

use 

Steven Dale Ittel, Scott D. 

Cunningham, Pierre E. 
Rouviere, Stephen R. 

Fahnestock, John P. O’Brien, 

Eberhard Schneider, Gregor 
Schurmann, Peter Wagner/ 

E.I. du Pont de Nemours and 

Company, Wilmington (US) 

Phage display 

(PhD. -7& 12) 
and mRNA 

display (p27 

mer) 

Clay 110 

32 US 7754680 B2 

(2010) 

Peptides for binding calcium 

carbonates and methods of use 

Scott D. Cunningham, Steven 

Dale Ittel, John P. O'Brien, 

Pierre E. Rouviere / E.I. du Pont 
de Nemours and Company, 

Wilmington, DE (US) 

Phage display 

(PhD. -7& 12) 

and mRNA 
display (p27 

mer)  

Calcium carbonates 111 

33 WO 062776 A2 
US 8022040 B2 

(2006, 2011)  

 

Hydroxyapatite-binding peptides for 
bone growth and inhibition 

Carolyn R. Bertozzi, Jie Song, 
Seung-Wuk Lee/ The Regents 

of the University of California 

(US) 

Phage display 
(Ph. D.-7& 12, 

C7C) 

Hydroxyapatite(HAp) 112 

34 WO 166626 A1 

US 0152672 A1 

(2012, 2016) 

 

Reagents and methods for treating 

dental disease 

Mehmet Sarikaya, Martha 

Somerman, Candan Tamerler-

Behar, Hanson Fong, Hai 

Zhang, Mustafa Gungormus/ 

University of Washington (US) 

Phage display 

(PhD. -12, C7C) 

 

Hydroxyapatite  113 

35 US 0070200 A1 
(2010)  

 

Method and system for designing 
polypeptides and polypeptide-like 

polymers with specific chemical and 

physical characteristics 

Mehmet Sarikaya, Candan 
Tamerler-Behar, Ersin Emre 

Oren, Vaikuntanath V. 

Samudrala (US) 

Phage display 
(Ph.D.-12), 

bacterial cell 

surface display 
(FliTrx) 

Hydroxyapatite, quartz 
and gold 

114 

 Similarly, mineral based MBPs for clay, calcium 
phosphate or calcium carbonate, hydroxyapatite and other 
materials have been identified. A number of patents were 

granted for peptides having specific binding affinity for a 
variety of minerals including clay [110], calcium carbonate 
[111] and hydroxyapatite materials [112-114]. Additionally, 
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these mineral recognising peptides have been utilized for 
regenerating or inhibiting the growth of bone under 
controlled biomineralization conditions [112] and for curing 
dental diseases [112]. For example, Bertozzi ed. filed a 
patent for the identification of hydroxyapatite binding 
peptides which are similar to the type I collagen sequence 
(Gly-Pro-Hyp)X, a crucial material of extracellular matrices 
of native bone; with these sequences then being used as a 
template for synthesizing implantable bone by attaching a 
biocompatible and biodegradable substrate in mammals 
[112]. In contrast, Sarikaya et.al. developed a method for 
curing dental diseases and initiated dental mineralisation by 
constructing a recombinant polypeptide complex comprising 

phage displayed amelogenin and heterologous polypeptide 
containing substances derived from collagen, dentin, 
statherin, osteocalcin, enamilin and/or inorganic 
polypeptides and their affinity tags and markers [113]. In 
another patent (US 0070200 A1), he described a method and 
system for developing polypeptides which were initially 
characterized based on their specific affinities, physical and 
chemical properties for target inorganic substances and then 
applied those characterizations computationally to generate a 
polypeptide-scoring function resulting in the identification of 
further polypeptide sequences for additional applications in 
areas such as electronics, nanomedicine and nanotechnology 
[114]. 

Table 5. Relevant patents on polymer binding peptides   

No Patent number/ 

Publication or 

Renewal years 

Patent title Inventor/ Assignee/ Applicant Combinatorial 

library used  

Target inorganic 

material of interest 

Refer

ence 

36 US 0185870 A1 

WO 072542 A2 

(2003) 

Interfacial biomaterials Mark W. Grinstaff, Daniel J. 

Kenan, Elisabeth B. Walsh, 

Crystan Middleton/ 
Duke University (US) 

Phage display 

(PhD. -13, 19 

X6PX6, X6YX6, 
and SCX16S 

libraries) 

Polystyrene, 

polyurethane, 

polycarbonate, 
polyglycolic acid.  

87 

37 WO 035612 A2 
US 0113741 A1 

(2004, 2010) 

Composition, method and use of bi-
functional biomaterials 

Angela M. Belcher, Christine J. 
Schmidt, Kiley P. H. Miller, 

Archit Sanghvi/ Board of 

Regents, The University of 
Texas Systems (US) 

Phage display 
(Ph.D. -12) 

 

 Polypyrrole doped 
with chlorine (PPyCl) 

and poly lactic acid-co-

glycolic acid (PLGA)) 

115 

38 WO 033482 A2 

US 0084618 A1 
(2004, 2012) 

Phenolic binding peptides Christopher Murray, Pilar 

Tijerina, Franciscus Van 
Gastel/ Danisco US Inc., Palo 

Alto, CA (US) 

Phage display 

(PhD-7& 12, 
C7C) 

Phenolic compounds 116 

39 US 0141628 A1 
US 7906617 B2 

(2007, 2011) 

Polyethylene binding peptides and 
methods of use 

Scott Cunningham, David 
Lowe, John O'Brien, Hong 

Wang, Antoinette Wilkins/ E.I. 

du Pont de Nemours and 
Company, Wilmington, DE 

(US) 

Phage display 
(PhD-7& 12) 

Polyethylene 117 

40 US 0265431 A1 
US 7858581 B2 

(2007, 2010) 

 

PMMA binding peptides and methods 
of use 

Scott Cunningham, David 
Lowe, John O'Brien, Hong 

Wang, Antoinette Wilkins / 

E.I. du Pont de Nemours and 
Company, Wilmington, DE 

(US) 

Phage display 
(PhD-7& 12) 

Polymethylmethacrylat
e 

118 

41 US 0310495 A1 
(2010) 

 

Peptides having affinity for poly 
(benzyl methacrylate-co-methacrylic 

acid) potassium salt copolymers and 

methods of use 

 

Eberhard Schneider, Gregor 
Schurmann, Peter Wagner, 

Hong Wang, Gordon Mark 

Cohen/ E. I. Du Pont De 

Nemours and Company (US) 

mRNA and 
phage display 

Poly (benzyl 
methacrylate -co-

methacrylic acid) 

potassium salt 

copolymers 

119 

42 WO 018964 A2 
US 0178390 A1 

(2009, 2013) 

 

System comprising bacteriophages and 
particles that contain active substances 

 

Stefanie Eiden, Axel Eble, 
Martin Weiss, Daniel Gordon 

Duff, Olaf Bork, Holger Egger, 

Bastian Budde, Sascha Plug/ 
Bayer Technology Services 

Gmbh 

Phage display 
(PhD. -12, gpIII, 

gpVII) 

 
 

Polycarbonate and 
polyurethane surfaces 

120 

43 WO 065573 A1 
US 0279894 A1 

(2009, 2010) 

 

Bacteriophages and coating material 
for surfaces 

 

Stefanie Eiden, Axel Eble, 
Bastian Budde, Sascha Plug, 

Peter Krüger/ Bayer 

Technology Services Gmbh, 

Phage display 
(PhD. -12, gpIII, 

gpVIII)   

 

Polyurethane surfaces 121 
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Bayer Material science  

 A variety of synthetic polymers were displayed that link 
biological and non-biological surfaces resulting in the 
identification of polymer binding peptides and their 
utilization in generating unique functional nanomaterial 
surfaces. Synthetic and copolymer surfaces include 
polystyrene, polyurethane, polymethylmethacrylate, 
polycarbonate, polyurethane, polyglycolic acid, phenolic 
compounds and combinations of other nanomaterials thereof.  
A few patents were registered for selecting peptides or 
proteins found to interact specifically with polymer surfaces 
including polystyrene, polyurethane, polycarbonate, 

polyglycolic acid and combinations with metal or oxide 
nanomaterials [87], polypyrrole doped with chlorine and 
poly lactic acid-co-glycolic acid [115], phenolic compounds 
[116], polyethylene [117], polymethylmethacrylate [118], 
poly (benzyl methacrylate-co-methacrylic acid) potassium 
salt copolymers [119] and polycarbonate and polyurethane 
surfaces [120, 121]. Moreover, these polymer binding 
peptides along with proteins of bacteriophages have been 
utilized for the prolonged release of drugs [120] and as an 
active coating material for developing corrosion resistant 
surfaces [121]. 

Table 6. Relevant patents on other MBPs  

No Patent number/ 

Publication or 

Renewal years 

Patent title Inventor/ Assignee/ Applicant Combinatorial 

library used  

Target inorganic 

material of interest 

Refer

ence 

44 WO 048399 A2 

US 0364584 A1 

(2004, 2014) 
 

Skin or hair binding peptides Giselle G. Janssen, Christopher 

J. Murray, Deborah S. 

Winetzky/ Danisco Us Inc. 

Phage display 

(Ph.D. 7& 12, 

C7C) 

Hair and Skin 122 

45 US 0222609 A1 

WO 126641 A1 
 (2006, 2007) 

 

Peptide-based body surface colouring 

reagents  

John O'Brien, Hong Wang, 

Ying Wu/ E. I. Du Pont De 
Nemours and Company (US) 

Phage display 

(Ph.D. -12) 
 

Hair, nail, teeth, gums, 

skin, and tissues of the 
oral cavity. 

123 

46 US 0107614 A1 
WO 057463 A2 

(2005, 2008) 

Peptide-based conditioners Stephen Fahnestock, John 
O'Brien, Hong Wang/ E. I. Du 

Pont De Nemours and 

Company (US) 

Phage display 
(Ph.D. 7 & 12) 

Hair, nail, gums, oral 
cavity tissues and skin 

124 

47 WO 028503 A1 

US 7759460 B2 

(2006, 2010)  
 

Peptide-based body surface reagents 

for personal care 

Xueying Huang, John P. 

O'brien, Hong Wang, Ying 

Wu/ E. I. Du Pont De Nemours 
and Company (US) 

Phage display 

(Ph.D. 7& 12) 

Hair, Nail and Skin 125 

48 US 0247590 A1 

WO 117709 A2 
(2010) 

Peptide-based systems for delivery of 

cosmetic agents 

Douglas Robert Anton, Susan 

Daly, Robert J. Bianchini, 
Hong Wang, Pierre E. 

Rouviere, Scott D. 
Cunningham, Stephen R. 

Fahnestock, Tanja Maria 

Gruber/ Johnson & Johnson, E. 
I. Du Pont De Nemours and 

Company (US) 

 Human hair, skin and 

nail. 

126 

49 WO 015163 A1 
US 0183373 A1 

(2009, 2011)  

Recombinant peptide production using 
a cross-linkable solubility tag 

 

Albert W. Alsop, Qiong Cheng, 
Linda Jane Decarolis, Stephen 

R. Fahnestock, Tanja Maria 

Gruber, Pierre E. Rouviere/ 

E. I. Du Pont De Nemours and 

Company (US) 

Phage, ribosome 
and mRNA 

display 

Hair, skin, nail, teeth, 
cellulose, polymer and 

clay.  

127 

50 US 0141629 A1 
US 7709601 B2 

(2007, 2010)  

 

Nylon binding peptides and methods 
of use 

Scott Cunningham, David 
Lowe, John O'Brien, Hong 

Wang, Antoinette Wilkins/ 

E.I.du Pont de Nemours and 
Company, Wilmington, DE 

(US) 

Phage display 
(Ph.D. -7 &12) 

Nylon agents 
(pharmaceuticals, 

markers, colorants, 

conditioners and 
fragrances) 

128 

51 WO 079479 A2 
US 0231251 A9 

(2001, 2013) 

Methods for selective targeting Giselle G. Janssen, Christopher 
J. Murray, Deborah S. 

Winetzky David A. Estell, Pilar 

Phage display 
(Ph.D. -7-12)  

Selected fabrics, stains, 
soil, pigments, skin, 

hair, cytokines and 

 129 
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Tijerina, Yiyou Chen/ 

Genencor International, Inc. 

receptors 

52 US 7332356 B2 

(2004)  

 

Fluorescent dye binding peptides Garry Nolan, Michael Rozinov/ 

The Board of Trustees For The 

Leland Stanford Junior 
University (US) 

Phage display 

(Ph.D.-12)  

 

Fluorophore dyes 

(Fluorescein, oregon 

green 514, rhodamine 
red and texas red) 

130 

 In the same way, a separate class of MBPs were also 
reported where one or more compounds binds to different 
specific targets under the presence of anti-targets. In simple 
terms, a peptide that binds specifically to compound A has 
been identified using compound B as an anti-target and 
compound B binding peptides in the presence of anti-target 
compound A. The compounds include coloring, 
conditioning, cosmetic and personal care reagents that are 
directly involved in improving the properties of keratin, a 
key component in skin, hair, nails and teeth. Various patents 
have been published where peptides having higher affinity 
for human body surfaces such as skin, hair, nail, teeth, 
pigment, gum or oral cavity; nylon agent and fluorophore 
dyes were selected and identified using phage, ribosome and 
mRNA libraries [122-130]. Although peptide based products 
have useful applications, their long lasting behavior remains 
a challenge. In order to improve the durability for these 
products, two or more agent binding peptides have been used 
alongside linkers [123-127]. Further, these body surface 
binding proteins or peptides have been used in day to day 
applications such as hair or nail coloring reagents [123], 
conditioners for hair or skin [124], personal care products for 
skin, teeth and associated pigments [125], as cosmetic 
delivery agents [126], recombinant peptide production [127] 
and for developing markers, fragrances, pharmaceutical 
products, selective fabrics and fluorophore dyes [128-130].  

CONCLUSION  

 Biomimetic MBPs have emerged as a new frontline in the 
design of novel nanomaterials with improved/ controlled 
physical and chemical properties without affecting the structural 
or functional activities of the nanomaterials themselves which 
can be realized from the above discussion of recent literature 
and patents. Although combinatorial display technologies are 
firstly for selecting and identifying biomolecules against almost 
any material of interest and further towards generating more 
efficient and reliable peptide based nanostructures, the accuracy 
of molecular recognition for inorganic materials as a target and 
then translating practical (in vitro, in vivo or ex vivo and in 
silico) applications into product specific commercial success is 
still challenging unlike the situation where organic molecules 
are the targets of interest.  

CURRENT & FUTURE DIRECTIONS 

 The unique binding ability/nature of peptide libraries to 
select and screen specific material of interest, particularly 
inorganic materials has created much interest and potential to 
reach a wider scientific community which may ultimately 
lead to the development of even more novel bio- or nano-
materials. However, these libraries still possess drawbacks.  
These include their ability to bind to non-specific undesired 
targets [131, 132], under representation of the desired 

sequences and their properties due to having bias towards 
peptide/ protein position, composition, and expression [133] 
or pH and interaction specific intrinsic bias [30], thus many 
target specific strong MBPs are not found during the phage 
display process. Additionally, another important factor to 
consider is the limited fundamental understanding of 
peptide-material interactions which is a major bottle neck for 
generating peptide based inorganic nanomaterials with 
improved biostability/ compatibility, solubility and 
functionality and increased physico-chemical properties. In 
advancing our understanding of peptide mineral interactions 
a clear understanding of the solution behavior of both the 
peptide and the mineral is needed before the interaction of 
the two can be understood. As examples, in our research we 
have shown that by careful study of the particular properties 
of the material itself, for example silica [29, 30, 134] and 
ZnO [57, 135, 136] we can show that the size of particles 
[29, 30, 134] and charge/ functionality on particles [30, 137] 
have clear effects on the binding of small peptides to 
minerals as well as the route by which a material is formed 
[57, 135, 136] by moderating peptide mineral interaction.  

 Further, although, online databases are easily available 
for specific organic MBPs such as antimicrobial and 
anticancer peptides, no specific databases have been 
designed for inorganic MBPs obtained from distinct classes 
of combinatorial display techniques. We propose that such 
databases, with all the experimental and computational 
information relating to the different classes of nanomaterials 
and libraries should be built. These databases will find 
solutions for bias problems and improve our understanding 
of biomolecule-inorganic material interactions which will 
lead in turn to the development of smart nanomaterials and 
slowly reduce the sole dependence on in vitro display 
technologies to take this approach forward as is presently the 
case. 

LIST OF ABBREVIATIONS 

MBPs   = Material binding peptides 

SBPs    = Solid binding peptides 

IOBPs  = Inorganic binding peptides 

GEPIs  =  Genetically engineered peptides for inorganics 

PD       = Phage display 

BSD    = Bacterial surface display 

YSD    = Yeast surface display 

RD      = Ribosome display 
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