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On the maximal Sobolev regularity

of distributions supported by subsets of Euclidean space

D. P. Hewett∗, A. Moiola†

November 30, 2016

Abstract

This paper concerns the following question: given a subset E of Rn with empty interior and
an integrability parameter 1 < p < ∞, what is the maximal regularity s ∈ R for which there
exists a non-zero distribution in the Bessel potential Sobolev space Hs,p(Rn) that is supported
in E? For sets of zero Lebesgue measure we apply well-known results on set capacities from
potential theory to characterise the maximal regularity in terms of the Hausdorff dimension
of E, sharpening previous results. Furthermore, we provide a full classification of all possible
maximal regularities, as functions of p, together with the sets of values of p for which the maximal
regularity is attained, and construct concrete examples for each case. Regarding sets with positive
measure, for which the maximal regularity is non-negative, we present new lower bounds on the
maximal Sobolev regularity supported by certain fat Cantor sets, which we obtain both by
capacity-theoretic arguments, and by direct estimation of the Sobolev norms of characteristic
functions. We collect several results characterising the regularity that can be achieved on certain
special classes of sets, such as d-sets, boundaries of open sets, and Cartesian products, of relevance
for applications in differential and integral equations.

Keywords: Bessel potential Sobolev spaces, (s, p)-nullity, polar set, set of uniqueness, capacity,
Hausdorff dimension, Cantor sets.

Mathematical Subject Classification 2010: 46E35 (Primary), 28A78, 28A80, 31B15.

1 Introduction

This paper concerns the following question Q:
Given a subset E of Rn with empty interior, an integrability parameter 1 < p <∞, and a regularity
parameter s ∈ R, does there exist a non-zero distribution in the Bessel potential Sobolev space
Hs,p(Rn) which is supported in E?

This question has arisen repeatedly in the course of the first author’s recent investigations [7–10]
into the analysis of acoustic scattering by planar screens with rough (e.g. fractal) boundaries. Indeed,
for such scattering problems one of the factors determining the unique solvability of the Helmholtz
equation boundary value problems (BVPs) with Dirichlet or Neumann boundary conditions, at least
as they are classically posed, and the associated boundary integral equation (BIE) formulations, is
whether the boundary of the screen (the screen being viewed as a relatively open subset of the plane)
can support non-zero elements of H±1/2,2(R2) [8, 9].

More generally, the question Q pertains to a number of other fundamental questions about
function spaces on subsets of Rn defined in terms of the spacesHs,p(Rn). We give a simple illustration
of this in Proposition 2.11 below, where we show how Q is related to the question of whether
Hs,p
F1

= Hs,p
F2

for closed sets F1 6= F2 ⊂ Rn. In [9, 12, 23], where our focus is on the case p = 2, we
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On the maximal Sobolev regularity of distributions 2

demonstrate the relevance of Q for understanding when Hs,2
0 (Ω) = Hs,2(Ω) and when H̃s,2(Ω) =

Hs,2

Ω
, for a given open set Ω ⊂ Rn, and also for understanding when H̃s,2(Ω1) = H̃s,2(Ω2) for open

sets Ω1 6= Ω2 ⊂ Rn. (Here, for closed F ⊂ Rn, Hs,p
F := {u ∈ Hs,p(Rn) : suppu ⊂ F}, and for open

Ω ⊂ Rn, Hs,p(Ω) := {u|Ω : u ∈ Hs,p(Rn)}, Hs,p
0 (Ω) = C∞0 (Ω)

Hs,p(Ω)
and H̃s,p(Ω) = C∞0 (Ω)

Hs,p(Rn)
.)

Upon consulting the classical function space literature we found a number of disparate partial
results relevant to the question Q (in particular we note [1, 2, 6, 28–30, 34, 35, 39, 40]), but no single
convenient and up-to-date reference in which these results are collected in a form easily accessible
to applied and numerical analysts. The aim of this paper is to provide such a reference, which we
hope will be of use to those interested in problems involving PDEs and integral equations on rough
(i.e., non-Lipschitz) domains. But this is not simply a review paper. We also present a number of
apparently new results, along with a range of concrete examples and counterexamples illustrating
them. The key new results we contribute include:

• a sharpening of the relationship between maximal Sobolev regularity and fractal dimension
(cf. Theorem 2.12 and Remark 2.13);

• a complete characterisation of all possible maximal regularity behaviours for sets with zero
Lebesgue measure (cf. Corollary 2.15 and the concrete examples in Theorem 4.5);

• new results on the Sobolev regularity of the characteristic functions of certain fat Cantor sets
with positive Lebesgue measure (Propositions 4.9–4.10).

While the paper does not provide a definitive answer to Q in its full generality, we hope that the
results we provide, along with the open questions that we pose, will stimulate further research.

Function space experts might correctly observe that the question Q could be posed in a much
more general setting, for instance in the context of the Besov and Triebel–Lizorkin spaces Bs

pq(Rn)
and F spq(Rn) [2, 30, 38, 39], of which Hs,p(Rn) = F sp2(Rn) is a special case. Our decision to restrict
attention to the classical Bessel potential Sobolev spaces Hs,p(Rn) (sometimes referred to as “frac-
tional Sobolev spaces”, “Liouville spaces” or “Lebesgue spaces”) is made for two reasons. First, it
allows a relatively simple and accessible presentation: the proofs of many of our results make use of
classical nonlinear potential theoretic results on set capacities and Bessel potentials already avail-
able e.g. in [2,30], allowing us to avoid any discussion of more intricate theories such as atomic and
quarkonial decompositions which are typically employed in the modern function space literature to
analyse the spaces Bs

pq(Rn) and F spq(Rn) [2,30,38,39]. Second, the spaces Hs,p(Rn) are sufficient for
a very large part of the study of linear elliptic BVPs and BIEs, which are the focus of attention for
example in the classic monographs [27] and [13] and in the much more recent book by McLean [32]
that has become the standard reference for the theory of BIE formulations of BVPs for strongly
elliptic systems. In such applications the focus is usually on the case p = 2, but since the potential
theoretic results we cite from [2,30] are valid for any 1 < p <∞, it seems natural to present results
for this general case wherever possible.

The structure of the paper is as follows. In §2 we review some basic definitions, introduce
the concepts of “(s, p)-nullity” and the “nullity threshold” of a set E ⊂ Rn (which will provide
a framework within which to study question Q), and state our main results. Sets with zero and
positive Lebesgue measure require different analyses, we study them in §2.3 and §2.4 respectively.
In §3 we collect a number of results relating to certain set capacities from nonlinear potential theory,
which we use to prove the results of §2. In §4 we provide concrete examples and counterexamples to
illustrate our general results. In §5 we offer some conclusions and highlight the key open problems
arising from our investigations.
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2 Main results

2.1 Preliminaries

Before stating our main results we fix our notational conventions. Given n ∈ N, let D = D(Rn)
denote the space of compactly supported (real- or complex-valued) smooth test functions on Rn.
For any open set Ω ⊂ Rn let D(Ω) := {u ∈ D : suppu ⊂ Ω}, let D∗(Ω) denote the associated space
of distributions (anti-linear continuous functionals on D(Ω)), and let L1

loc(Ω) ⊂ D∗(Ω) denote the
space of locally integrable functions on Ω; for brevity we write D∗ = D∗(Rn) and L1

loc = L1
loc(Rn).

Similarly for 1 < p < ∞ we write Lp = Lp(Rn) and Lploc = Lploc(R
n), and denote by p′ the Hölder

conjugate of p, i.e. the number 1 < p′ <∞ such that 1/p+ 1/p′ = 1. For any set E ⊂ Rn we denote
the complement of E by Ec := Rn \ E, and the closure of E by E. Let ∅ denote the empty set.
Given x ∈ Rn and ε > 0 let Bε(x) denote the open ball of radius ε centred at x. Let S denote the
Schwartz space of rapidly decaying smooth test functions on Rn, and S∗ the dual space of tempered
distributions (anti-linear continuous functionals on S). For u ∈ S we define the Fourier transform
û = Fu ∈ S and its inverse ǔ = F−1u ∈ S by

û(ξ) :=
1

(2π)n/2

∫
Rn

e−iξ·xu(x) dx, ξ ∈ Rn, ǔ(x) :=
1

(2π)n/2

∫
Rn

eiξ·xu(ξ) dξ, x ∈ Rn.

We define the Bessel potential operator Js on S, for s ∈ R, by Js := F−1MsF , whereMs represents
multiplication by (1 + |ξ|2)s/2. We extend these definitions to S∗ in the usual way:

û(v) := u(v̌), ǔ(v) := u(v̂), Msu(v) := u(Msv), (Jsu)(v) := u(Jsv), u ∈ S∗, v ∈ S,

and note that for u ∈ S∗ it holds that Ĵsu =Msû.
For s ∈ R and 1 < p <∞ the Bessel potential Sobolev space Hs,p(Rn) (abbreviated throughout

to Hs,p, except in Appendix A where different dimensions n are considered) is defined by

Hs,p := {u ∈ S∗ : Jsu ∈ Lp} , with ‖u‖Hs,p := ‖Jsu‖Lp .

Note that in the special case p = 2, the norm ‖u‖Hs,2 can be realised using Plancherel’s theorem as

‖u‖Hs,2 =

(∫
Rn

(1 + |ξ|2)s|û(ξ)|2 dξ

)1/2

. (1)
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Other commonly used notation for Hs,p includes Hs
p (cf. [30, 38]) and Ls,p (cf. [2]). In relation

to the wider function space literature we recall that (cf. e.g. [38, §2.5.6]) Hs,p = F sp2 with equivalent
norms, where F spq are the Triebel–Lizorkin spaces. For s ≥ 0, let W s,p ⊂ Lp be the classical Sobolev–
Slobodeckij–Gagliardo space defined in terms of weak derivatives (cf. e.g. [32, pp. 73–74]). Then for
s ∈ N0 it holds that Hs,p = W s,p with equivalent norms [38, §2.3.5] (in particular, H0,p = Lp with
equal norms). For p = 2 this result extends to all s ≥ 0 [32, Theorem 3.16]. For p 6= 2 and 0 < s /∈ N
it holds that W s,p = Bs

pp with equivalent norms [38, §2.2.2] (here Bs
pq are the Besov spaces), so

that (by [38, §2.3.2] and [37, Theorem 2.12(c)]) W s,p $ Hs,p for 1 < p < 2 and Hs,p $ W s,p for
2 < p <∞.

We recall some basic properties of Hs,p that will be useful later. It is well known that D is dense
in Hs,p, and that the following embeddings are continuous with dense image: [38, §2.7.1]

Ht,q ⊂ Hs,p, 1 < q ≤ p <∞, t− s ≥ n
(

1

q
− 1

p

)
≥ 0. (2)

For distributions with compact support a more general embedding result holds. Given a closed set
F ⊂ Rn, define the closed subspace Hs,p

F ⊂ Hs,p by

Hs,p
F :=

{
u ∈ Hs,p : supp(u) ⊂ F

}
,

where the support of a distribution u ∈ D is defined in the usual way, namely as the largest closed
subset Λ ⊂ Rn for which u(φ) = 0 for every φ ∈ D(Λc) (see e.g. [32, p. 66]). Then, since pointwise
multiplication by a fixed element of D defines a bounded linear operator from Hs,q to Hs,p for any
1 < p ≤ q < ∞ (see e.g. [37, Lemma 4.6.2]), for any compact K ⊂ Rn the following embedding is
continuous (in particular this holds for s = t and 1 < p ≤ q <∞):

Ht,q
K ⊂ H

s,p
K , t− s ≥ max

{
n

(
1

q
− 1

p

)
, 0

}
. (3)

The dual space of Hs,p can be isometrically realised as the space H−s,p
′

by the duality pairing

〈u, v〉H−s,p′×Hs,p = 〈J−su,Jsv〉Lp′×Lp ,

which in the special case p = 2 can be realised using Plancherel’s theorem as

〈u, v〉H−s,2×Hs,2 =

∫
Rn
û(ξ)v̂(ξ) dξ.

When s > n/p, elements of Hs,p are continuous functions by the Sobolev embedding theorem [2,
Theorem 1.2.4]. At the other extreme, for any x0 ∈ Rn, the Dirac delta function, defined as
δx0(φ) = φ(x0) for φ ∈ D(Rn) to fit our convention of using anti-linear functionals, satisfies

δx0 ∈ Hs,p if and only if s < −n/p′. (4)

Finally, we note that part (d) of Theorem 1 in [37, §2.4.2] allows the spaces Hs,p to be arranged in
interpolation scales. For s0, s1 ∈ R, 1 < p0, p1 <∞ and 0 < θ < 1,

if s = (1− θ)s0 + θs1 and
1

p
=

1− θ
p0

+
θ

p1
, then Hs,p = [Hs0,p0 , Hs1,p1 ]θ, (5)

where [·, ·]θ denotes the space of exponent θ obtained with the complex interpolation method (see [37,
§1.9]), and equality of spaces holds with equivalent norms. Thus, if the spaces Hs,p are represented
by points in the (1/p, s)-plane, then straight segments constitute interpolation scales.
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2.2 (s, p)-Nullity

We now introduce the concept of (s, p)-nullity, which will be the focus of our studies.

Definition 2.1. Given 1 < p <∞ and s ∈ R we say that a set E ⊂ Rn is (s, p)-null if Hs,p
F = {0}

for every closed set F ⊂ E.

In other words, a set E ⊂ Rn is (s, p)-null if and only if there are no non-zero elements of Hs,p

supported in E.

Remark 2.2. Clearly, if F is closed then F is (s, p)-null if and only if Hs,p
F = {0}. Note also

that the Definition 2.1 can be equivalently stated with “closed” replaced by “compact”. Indeed, if
0 6= u ∈ Hs,p with suppu ⊂ E then 0 6= φu ∈ Hs,p is compactly supported in E for any φ ∈ D such
that φ(x) 6= 0 for some x ∈ suppu (cf. the proof of Proposition 2.7(i)).

While our terminology “(s, p)-null” appears to be new, the concept it describes has been studied
previously, apparently first by Hörmander and Lions in relation to properties of Sobolev spaces
normed by Dirichlet integrals [25], and then subsequently by a number of other authors in relation
to the removability of singularities for elliptic partial differential operators [29, 30], and to the
approximation of functions by solutions of the associated elliptic PDEs [34]. For integer s < 0 the
concept of (s, p)-nullity is referred to (in the special case p = 2) as (−s)-polarity in [25, Définition 2],
“p′-(−s) polarity” in [29] and “(p′,−s)-polarity” in [30, §13.2]. A related notion is discussed in the
more general context of the spaces Bs

pq in [39, §17] (see Remark 2.13). For s > 0, our notion
of (s, p)-nullity is closely related to the concept of “sets of uniqueness” considered in [2, §11.3]
and [30, p. 692] (for integer s); this relationship is discussed in §3.1. For s > 0 and E with empty
interior, the concept of nullity coincides with the concept of (s, p)-stability, discussed in [2, §11.5].

The reason why Maz’ya [30] uses two different terminologies (polarity and set of uniqueness) for
the positive and negative order spaces is not made clear in [30], but this may be due to the fact that
Maz’ya works primarily with the spaces W s,p, where the positive order spaces are defined using weak
derivatives, and the negative order spaces are defined by duality. By contrast, in the Bessel potential
framework of the current paper, the spaces Hs,p are defined in the same way for all s ∈ R, so that
it seems natural to define the notion of “negligibility” in the same way for all s ∈ R. Our decision
to introduce the terminology “(s, p)-nullity” instead of using “(p′,−s)-polarity” was made simply
for clarity (personally we find it more natural to say that a set which does not support an Hs,p

distribution is “(s, p)-null” rather than “(p′,−s)-polar”). But the difference is purely semantic, so
readers familiar with the concept of polarity may read “(p′,−s)- polar” for “(s, p)-null” throughout.

The following lemma collects some elementary facts about (s, p)-nullity.

Lemma 2.3. Let 1 < p, q <∞, s, t ∈ R and E ⊂ Rn.

(i) If E is (s, p)-null and E′ ⊂ E then E′ is (s, p)-null.

(ii) If E is (s, p)-null and t ≥ s+ max{n(1/q − 1/p), 0} then E is (t, q)-null.

(iii) If E is (s, p)-null then E has empty interior.

(iv) If s > n/p then E is (s, p)-null if and only if E has empty interior.

(v) E is (0, p)-null if and only if m(E) = 0, where m denotes inner Lebesgue measure (cf. Re-
mark 3.3).

(vi) For s < −n/p′ there are no non-empty (s, p)-null sets.

(vii) Let 1 < p0, p1 < ∞ and s0, s1 ∈ R. If there exists 0 6= u ∈ Hs0,p0 ∩Hs1,p1 with suppu ⊂ E,
then E is not (s, p)-null for (s, p) defined as in (5), for every 0 < θ < 1.
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Proof. (i) and (ii) follow straight from the definition of (s, p)-nullity, the standard embeddings (2)
and (3), and the boundedness on Hs,p of pointwise multiplication by elements of D. (iii) If E has
non-empty interior then one can trivially construct a non-zero element of D ⊂ Hs,p supported inside
E. (iv) follows from (iii) and the Sobolev embedding theorem. (v) follows from the fact that a closed
set supports a non-zero Lp function if and only if it has non-zero measure. (vi) follows from (4),
and (vii) follows from (5).

Lemma 2.3 immediately implies the following proposition.

Proposition 2.4. Fix 1 < p <∞. For every E ⊂ Rn with empty interior there exists

sE(p) ∈ [−n/p′, n/p]

such that E is (s, p)-null for s > sE(p) and not (s, p)-null for s < sE(p). We call sE(p) the nullity
threshold of E for the integrability parameter p.

Our aim in this paper is to investigate the following three questions:

Q1: Given 1 < p <∞ and E ⊂ Rn with empty interior, can we determine sE(p)?

Q2: For which functions f : (1,∞) → [−n, n] does there exist E ⊂ Rn such that f(p) = sE(p) for
all p ∈ (1,∞)?

Q3: Under what conditions on E and p is E “threshold null” (i.e. (sE(p), p)-null)?

Our (partial) answers to these questions are summarised in §5. To state some of our results it will
be useful to introduce the “nullity set” and “threshold nullity set” of a set E ⊂ Rn, defined by

NE :=
{

(s, p) ∈ R× (1,∞) s.t. E is (s, p)-null
}
, (6)

TE :=
{
p ∈ (1,∞) s.t. E is (sE(p), p)-null

}
. (7)

Our attempts to answer questions Q1–Q3 will make extensive use of the relationship between
(s, p)-nullity and certain set capacities from classical potential theory. The following key theorem
is stated in [30, Theorem 13.2.2] for the case where s is a negative integer, but Maz’ya’s proof in
fact works for all s ∈ R. We note that this result is actually a special case of a more general result
proved in [29, Lemma 1] (where the result is attributed to Grusin [21]). The inner capacity Cap
appearing in the theorem is defined in §3 below.

Theorem 2.5 ( [30, Theorem 13.2.2], [29, Lemma 1]). Let 1 < p <∞ and s ∈ R. Then E ⊂ Rn is
(s, p)-null if and only if Cap−s,p′(E) = 0.

Maz’ya’s proof goes via the following intermediate result, which we state for future reference,
since it provides another useful characterisation of (s, p)-nullity for closed sets.

Theorem 2.6 ( [30, Theorem 13.2.1]). Let 1 < p < ∞ and s ∈ R. Then a closed set F ⊂ Rn is
(s, p)-null if and only if D(F c) is dense in H−s,p

′
.

Theorem 2.5, combined with the classical potential theoretic results developed e.g. in [2, 30],
and summarised in §3 below, will underpin the proofs of many of our results about (s, p)-nullity,
including part (ii) of the following proposition, the proof of which is given in §3.

Proposition 2.7. Let 1 < p <∞ and s ∈ R.

(i) If E,F ⊂ Rn are both (s, p)-null and F has no limit points in E \F (which holds, for example,
if F is closed), then E ∪ F is (s, p)-null. In particular, a finite union of (s, p)-null closed sets
is (s, p)-null.

(ii) For s ≤ 0, a countable union of (s, p)-null Borel sets is (s, p)-null.



On the maximal Sobolev regularity of distributions 7

Proof. (i) We argue by contrapositive. Suppose that E ∪ F is not (s, p)-null, i.e. there exists a
non-zero u ∈ Hs,p with suppu ⊂ E ∪F . Then if suppu ⊂ F , F is not (s, p)-null and we are done. If
not, there exists x ∈ suppu∩ (E \F ), and, since F has no limit points in E \F , ε := dist(x, F ) > 0.
Let φ ∈ D(Bε(x)) with φ(x) 6= 0. Then 0 6= φu ∈ Hs,p with suppφu ⊂ E, so E is not (s, p)-null.

That φu 6= 0 follows from the fact that if u ∈ D∗ and φ ∈ D, and if there exists x ∈ suppu
such that φ(x) 6= 0, then φu 6= 0 as a distribution on Rn. To see this, let ε > 0 be such that φ is
non-zero in Bε(x). Then, since x ∈ suppu, u|Bε(x) 6= 0 and so u(ψ) 6= 0 for some ψ ∈ D(Bε(x)).
But then, defining ϕ ∈ D by ϕ(x) := ψ/φ, for x ∈ Bε(x), and ϕ(x) := 0 otherwise, we have
(φu)(ϕ) = u(ψ) 6= 0, so φu is non-zero as claimed.

Remark 2.8. Regarding part (i) of Proposition 2.7, it is natural to ask to what extent the assumption
on F can be weakened. Certainly the result does not extend to general Borel F when s > n/p. For
a simple counterexample, let E1 denote the elements of the open unit ball B = B1(0) which have at
least one rational coordinate, and let E2 = B \E1. Then for s > n/p both E1 and E2 are (s, p)-null,
since they both have empty interior. But E1 ∪ E2 = B, which is not (s, p)-null for any s ∈ R, since
it has non-empty interior.

This example also shows that part (ii) of Proposition 2.7 does not hold for all s ∈ R. Determining
the maximal s ∈ [0, n/p] such that Proposition 2.7(ii) holds appears to be an open problem.

The following proposition gives bounds on the nullity threshold of Cartesian products, derived
from Propositions A.1 (the lower bound) and A.3 (the upper bound) in the Appendix. More general
results can be derived for Cartesian products of more than two sets, but we do not present them here.
The assumption that E1, E2 are Borel is needed only for the upper bound in the case m(E1×E2) = 0.

Proposition 2.9. Let n1, n2 ∈ N, 1 < p <∞, and let E1 ⊂ Rn1 and E2 ⊂ Rn2 be Borel. Then the
nullity threshold of the Cartesian product E1 × E2 ⊂ Rn1+n2 satisfies:

s−(p) ≤ sE1×E2(p) ≤ s+(p), (8)

where

s−(p) := min
{
sE1(p), sE2(p), sE1(p) + sE2(p)

}
,

s+(p) :=

{
min

{
sE1(p), sE2(p)

}
if m(E1 × E2) = 0,

min{sE1(p) + n2
p , sE2(p) + n1

p

}
if m(E1 × E2) > 0.

Moreover, if either p = 2 or s1, s2 ∈ N0, and if Ej are not (sEj (p), p)-null, j = 1, 2, then E1×E2 is
not (s−, p)-null. If p ≤ 2, m(E1 × E2) > 0, and Ej are (sEj (p), p)-null, j = 1, 2, then E1 × E2 is
(s+, p)-null.

We also mention Proposition A.2, which states that tensor-product distributions cannot have
higher Sobolev regularity than their factors. In particular, we cannot directly use tensor-product
distributions to prove that the Cartesian product E1 × E2 ⊂ Rn1+n2 is not (s, p)-null for any s >
min{n1/p, n2/p}. From the results in [22] (discussed briefly in Appendix A) we might conjecture that
the upper bound in (8) in the case m(E1×E2) > 0 can be improved to sE1×E2(p) ≤ sE1(p)+sE2(p).

Remark 2.10. The bounds in (8) do not in general allow sE1×E2(p) to be computed from sE1(p) and
sE2(p) (unless sE1(p)·sE2(p) = 0 and m(E1×E2) = 0). That sE1 and sE2 do not in general determine
sE1×E2 is shown by the following examples. If E1 = E2 = {0} ⊂ R, then sE1(p) = sE2(p) = −1/p′

and sE1×E2(p) = −2/p′ = sE1(p) + sE2(p) = s−(p), so the lower bound in (8) is achieved. If
E1, E2 ⊂ R are Borel sets with Hausdorff dimension zero, for which E1×E2 has Hausdorff dimension
one (cf. e.g. Example 7.8 of [18]), then by Theorem 2.12 below, sE1×E2(p) = −1/p′ = sE1(p) =
sE2(p) = s+(p), so the upper bound in (8) is achieved.

We end this section with a simple application of (s, p)-nullity to function spaces on subsets of Rn.
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Proposition 2.11. Let 1 < p <∞, s ∈ R, and let F1, F2 be closed subsets of Rn. Then the following
statements are equivalent:

(i) The symmetric difference F1 	 F2 is (s, p)-null.

(ii) F1 \ F2 and F2 \ F1 are both (s, p)-null.

(iii) Hs,p
F1

= Hs,p
F2

.

Proof. That (i) ⇔ (ii) follows from Lemma 2.3(i) and Proposition 2.7(i). To show that (iii) ⇒ (ii)
we argue by contrapositive. Suppose without loss of generality that F1 \ F2 is not (s, p)-null. Then
there exists 0 6= u ∈ Hs,p such that suppu ⊂ F1 \ F2, so that u ∈ Hs,p

F1
but u 6∈ Hs,p

F2
. To show that

(ii) ⇒ (iii) we also argue by contrapositive. Suppose that Hs,p
F1
6= Hs,p

F2
. Without loss of generality,

we assume that there exists u ∈ Hs,p
F1
\Hs,p

F2
. Let x ∈ suppu ∩ (F1 \ F2), and (by the closedness of

F2), let ε > 0 be such that Bε(x) ∩ F2 is empty. Then, for any φ ∈ D(Bε(x)) such that φ(x) 6= 0,
it holds (cf. the proof of Proposition 2.7(i)) that 0 6= φu ∈ Hs,p with supp(φu) ⊂ F1 \ F2, which
implies that F1 \ F2 is not (s, p)-null.

We now present our main theoretical results concerning (s, p)-nullity. Since Lemma 2.3(v) tells
us that a set is (0, p)-null if and only if its inner Lebesgue measure is zero (independently of p), it
makes sense to consider the cases s < 0 and s > 0 separately.

2.3 The case s < 0 (sets with zero measure)

The following theorem provides a partial characterisation of (s, p)-nullity for −n/p′ ≤ s < 0 in
terms of Hausdorff dimension dimH (defined, e.g., in [18, §3] or [2, §5.1]). It will be proved at the
end of §3 using standard results from [2, §5] connecting Hausdorff dimension and capacity1. We
note that Theorem 2.12 applies as a special case to regular submanifolds of Rn, and also to the
“multi-screens”, relevant for acoustic and electromagnetic scattering, considered e.g. in [15].

Theorem 2.12. Let 1 < p <∞ and E ⊂ Rn.

(i) For −n/p′ < s ≤ 0, if dimHE < n+ p′s, then E is (s, p)-null.

(ii) For −n/p′ ≤ s < 0, if E is Borel and (s, p)-null, then dimHE ≤ n+ p′s.

In particular, if E is Borel and m(E) = 0, then

sE(p) =
dimH E − n

p′
and dimHE = inf

{
d : E is

(
(d− n)/p′, p

)
-null

}
. (9)

Remark 2.13. A link between (s, p)-nullity and fractal dimension was established previously in [29].
Specifically, [29, Theorem 4] implies part (i) of Theorem 2.12 for compact sets, with dimH replaced
by dimB, the lower box (or Minkowski) dimension2. Since dimH(E) ≤ dimB(E) for all bounded
E ⊂ Rn [18, Proposition 3.4], our result in part (i) is stronger than what is provided by [29,
Theorem 4]. Examples of sets for which dimH(E) < dimB(E) are easy to find: a particularly simple
example is the set E = {0} ∪ {1/n : n ∈ N} ⊂ R, for which dimH(E) = 0 but dimB(E) = 1/2
(cf. [18, Example 2.7]).

1We remark that the results in [2, Chapter 5] actually allow a slightly more precise characterisation of (s, p)-
nullity in terms of Hausdorff measure. But we shall not pursue such characterisations here, since doing so would
add considerable complexity with little gain in insight (indeed, [2, §5.6.4] implies that even Hausdorff measure is
not sufficient to provide a complete characterisation of (s, p)-nullity). In any case the results in Theorem 2.12 seem
sufficient for the applications of scattering by fractal screens [7–10] that motivate the current study.

2The definition of lower box dimension in [29] differs from the standard definition found e.g. in [18, Equation (2.5)].

The two definitions can be reconciled by noting that lim infr→0+ − log(N(r))
log(r)

= inf{d ≥ 0 : lim infr→0+ N(r)rd = 0} for

any function N : (0,∞)→ [1,∞).
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Related results can also be found in [39, Theorem 17.8], where a formula similar to (9) is stated
in the context of the spaces Bs

pq. However, Triebel’s result concerns a different notion of nullity to
ours—in place of the space Hs,p

F in Definition 2.1 he has the space

Bs,F
pq := {u ∈ Bs

pq : u(ψ) = 0 for all ψ ∈ S for which ψ = 0 on F}.

As Triebel points out in [39, p. 126], while Bs,F
pq ⊂ {u ∈ Bs

pq : suppu ⊂ F}, in general we do not
have equality here. Since Bs

pq ⊂ F sp2 = Hs,p for q ≤ min{p, 2}, Triebel’s result implies part (ii) of
Theorem 2.12, but part (i) of Theorem 2.12 is stronger than what is provided by Triebel’s result.

Theorem 2.12 (specifically (9)) provides a simple characterisation of the nullity threshold sE(p)
for a Borel set E with dimHE < n. But it tells us nothing about “threshold nullity”, i.e. whether or
not E is (sE(p), p)-null. A general result concerning threshold nullity is given by the next proposition,
which follows from Proposition 3.10, Theorem 3.15(ii) and Remark 2.2.

Proposition 2.14. Let E ⊂ Rn be Borel with 0 ≤ dimH E < n, and let 1 < q < p < ∞ and
−∞ < s < t < 0 satisfy tq′ = sp′ = dimH E − n. If E is (s, p)-null, then E is (t, q)-null.

The following corollary provides a full classification of all possible nullity and nullity threshold
sets NE and TE (defined as in (6)–(7)) that can arise when m(E) = 0. It is a simple consequence of
Proposition 2.14, Theorem 2.12 and Lemma 2.3(v). This result makes clear that the “gap” between
parts (i) and (ii) of Theorem 2.12 cannot in general be bridged: no complete characterisation of
(s, p)-null sets for −n/p′ ≤ s < 0 in terms of Hausdorff dimension is possible. The sharpness of our
classification is demonstrated in Theorem 4.5, which provides the nullity and nullity threshold sets
for a range of Cantor sets (defined in Definition 4.3), for which the question of threshold nullity can
be answered completely using Theorem 4.4.

Corollary 2.15. Let E ⊂ Rn be Borel with m(E) = 0, and set d = dimH(E) ∈ [0, n]. If d = n then
NE =

{
(s, p) : s ≥ 0, 1 < p <∞

}
and hence TE = (1,∞). Otherwise, if 0 ≤ d < n then{

(s, p) : s > (d− n)/p′
}
⊂ NE ⊂

{
(s, p) : s ≥ (d− n)/p′

}
,

and either TE ∈
{
∅, (1,∞)

}
, or TE ∈

{
(1, p∗), (1, p∗]

}
, for some 1 < p∗ <∞. (10)

Moreover, Theorem 4.5 shows that this result cannot be improved: for every nullity set N ⊂ R ×
(1,∞) allowed by (10), there exists a Cantor set E(n) ⊂ Rn for which NE(n) = N .

We now consider two other classes of sets for which it is possible to answer completely the
question of threshold nullity.

First, when E consists of a single point, any distribution supported by E is necessarily a linear
combination of the delta function and its derivatives [32, Theorem 3.9]. In this case it follows from
(4) that sE(p) = −n/p′, and moreover that E is (−n/p′, p)-null. Proposition 2.7 implies that the
same holds for all countable sets. (We note however that countability is not a necessary condition

for (−n/p′, p)-nullity; a counterexample is provided by the Cantor set F
(n)
0,∞ in Theorem 4.5).

Corollary 2.16. A non-empty countable set is (s, p)-null if and only if s ≥ −n/p′.

Second, recall (e.g. [39, §3]) that for 0 ≤ d ≤ n a closed set F ⊂ Rn with dimH(F ) = d is called
a d-set if there exist constants c1, c2 > 0 such that

0 < c1r
d ≤ Hd(Br(x) ∩ F ) ≤ c2r

d <∞, for all x ∈ F, 0 < r < 1, (11)

where Hd is the d-dimensional Hausdorff measure on Rn. (Note that this definition differs from
that used in the fractal geometry literature, e.g. [18, p. 48].) Condition (11) may be understood as
saying that d-sets are everywhere locally d-dimensional. Note that the definition of d-set includes
as a special case all Lipschitz d-dimensional manifolds, d ∈ {0, 1, . . . , n} (cf. also 2.18(iv) below).
By combining Theorem 2.6 with results due to Triebel on the density of test functions in function
spaces [40, Theorems 3 and 5] one can prove the following result.
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Theorem 2.17. Let 1 < p < ∞, and 0 < d < n. Let F ⊂ Rn be either a compact d-set, or a
d-dimensional hyperplane (in which case d is assumed to be an integer). Then F is ((d− n)/p′, p)-
null.

Our final theorem in this section applies the results of Theorem 2.12 to the special case where the
set E is the boundary of an open set Ω ⊂ Rn. Its proof makes use of Lemma 4.1 in §4, which collects
a number of results concerning the relationship between the analytical regularity of the boundary
of a set and its fractal dimension. The proof of part (iv) of the theorem is postponed until §3.

Here and in what follows we shall say that a non-empty open set Ω is C0 (respectively C0,α,
0 < α < 1, respectively Lipschitz) if its boundary ∂Ω can be locally represented as the graph
(suitably rotated) of a C0 (respectively C0,α, respectively Lipschitz) function from Rn−1 to R, with
Ω lying only on one side of ∂Ω. For a more precise definition see [20, 1.2.1.1]. We note that for n = 1
there is no distinction between these definitions: we interpret them all to mean that Ω is a countable
union of open intervals whose closures are disjoint. We also point out that in the literature several
alternative definitions of Lipschitz open sets can be found (for a detailed discussion see e.g. [19,20]);
in particular, our definition includes Stein’s “minimally smooth domains” [36, §VI.3.3].

Theorem 2.18. Let 1 < p <∞ and let Ω ⊂ Rn be non-empty and open.

(i) If Ωc has non-empty interior then ∂Ω is not (s, p)-null for s < −1/p′. (In particular this holds
if Ω 6= Rn is C0.)

(ii) If Ω is C0 and s ≥ 0, then ∂Ω is (s, p)-null.

(iii) If Ω is C0,α for some 0 < α < 1 and s > −α/p′, then ∂Ω is (s, p)-null.

(iv) If Ω is Lipschitz then ∂Ω is (s, p)-null if and only if s ≥ −1/p′.

Proof. The case n = 1 is covered by Corollary 2.16, so assume n ≥ 2. For (i), Lemma 4.1(i) states
that dimH∂Ω ≥ n−1 and then Theorem 2.12(ii) implies that ∂Ω is not (s, p)-null for any s < −1/p′.
(ii) follows from Lemma 2.3(v) and Lemma 4.1(ii). (iii) follows from Theorem 2.12(i) and Lemma
4.1(iii). (iv) is proved in §3.

In §4 we provide concrete examples to demonstrate the sharpness of these results. In particular,
Lemma 4.1 implies that for n ≥ 2 there exists a bounded C0,α open set whose boundary is not
(s, p)-null for any s < −α/p′, and a bounded C0 open set whose boundary is not (s, p)-null for any
s < 0.

2.4 The case s > 0 (sets with non-zero measure)

As has been discussed above, questions of (s, p)-nullity for s < 0 can often be answered by appealing
to Theorem 2.5 and applying standard potential theoretic results on the capacity Capt,p′ with t =
−s > 0. When it comes to investigating (s, p)-nullity for s > 0, however, Theorem 2.5 appears to be
of little use because the properties of Capt,p′ for t < 0 do not seem to have been widely documented.
Certainly, if a set E is to have nullity threshold in (0, n/p] it must have non-zero measure and empty
interior (cf. Lemma 2.3(iii),(v)). But we are not aware of any general characterisations of (s, p)-
nullity for s ∈ (0, n/p] in terms of the geometrical properties of a set, analogous to that provided by
Hausdorff dimension for nullity thresholds in [−n/p′, 0].

The following theorem provides an alternative analytic characterisation in terms of the capacity
caps,p defined in §3. It is taken from [2, Theorem 11.3.2], where it is stated with part (i) replaced
by an equivalent statement in terms of sets of uniqueness (cf. §3.1) and the assumption that F be
closed relaxed to F being Borel. It generalises an earlier result presented in [34, Theorem 2.6].

Theorem 2.19 ( [2, Theorem 11.3.2]). Let 1 < p < ∞ and 0 < s ≤ n/p. Let F be closed with
empty interior. Then the following are equivalent:
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(i) F is (s, p)-null;

(ii) caps,p(Ω \ F ) = caps,p(Ω) for all open Ω ⊂ Rn;

(iii) caps,p(Bδ(x) \ F ) = caps,p(Bδ(x)) for all open balls Bδ(x) ⊂ Rn;

(iv) For almost all x ∈ Rn (with respect to Lebesgue measure)

lim sup
δ→0

caps,p(Bδ(x) \ F )

δn
> 0.

As is pointed out in [2, p. 314], given 1 < p < ∞ and s ∈ (0, n/p], this characterisation allows
us to construct compact sets K ⊂ Rn with positive measure and empty interior which are not
(s, p)-null, by engineering the failure of condition (ii) above. The approach suggested in [2, p. 314]
(described in more detail in §4.2 below), is based on a standard “Swiss cheese” construction. One
starts with a bounded open set Ω ⊂ R and removes from Ω a countable sequence of open balls of
diminishing radius in such a way that the remaining compact set K ⊂ Ω has empty interior and
satisfies caps,p(Ω \ K) < caps,p(Ω). As we will explain in §4.2.2 (see in particular Theorem 4.6),
sufficient conditions to ensure the latter bound can be obtained using the countable sub-additivity
of capacity (Proposition 3.7) and standard estimates on the capacity of balls (Proposition 3.16).

In §4.2.2 we apply this methodology to derive sufficient conditions for the non-(s, p)-nullity of
certain fat Cantor sets (defined in Examples 4.7 and 4.8). In §4.2.2 we also prove similar but
complementary results using a completely different methodology not involving capacity, adapted
from [26], which is based on direct estimates of the Sobolev norm of the characteristic function of
the set for the case p = 2, obtained via explicit bounds on its Fourier transform.

However, these two approaches (i.e., proving upper bounds on capacities, or on Sobolev norms)
do not in general allow us to calculate the nullity threshold sK(p) for the compact set K under
consideration; they only provide a lower bound on sK(p) (by proving the existence of some s̃ ∈
(0, n/p] for which K is not (s̃, p)-null). Since K is assumed to have empty interior, all we can
deduce is that sK ∈ [s̃, n/p]. Only in the extreme case s̃ = n/p does such a non-nullity result
specify the nullity threshold exactly. The existence of a compact set Kp with empty interior which
is not (n/p, p)-null appears to have been proved first by Polking in [35, Theorem 4]. Polking’s
set Kp is a “Swiss cheese” set of the kind described above, but Polking’s analysis does not make
use of the capacity-theoretic characterisation of Theorem 2.19; instead Polking provides an explicit

construction of a non-zero function fp ∈ Hn/p,p
Kp

, appealing to Leibniz-type formulae for fractional

derivatives in order to prove that ‖fp‖Hn/p,p <∞. As Polking remarks in [35], this result “illustrates
in a rather striking manner that the Sobolev embedding theorem is sharp”.

Theorem 2.20 ( [35, Theorem 4], [2, p. 314]). Let 1 < p <∞. There exists a compact set Kp ⊂ Rn
with empty interior which is not (n/p, p)-null. In particular, sKp(p) = n/p.

The set Kp whose existence is guaranteed by Theorem 2.20 is, at least a priori, p-dependent.
(Certainly the constructions in [35, Theorem 4] and [2, p. 314] are intrinsically p-dependent.) By
taking the closure of the union of a countable sequence of such setsKp, suitably scaled and translated,
one can construct a compact set with empty interior that is not (n/p, p)-null for any 1 < p <∞.

Corollary 2.21. There exists a compact set K ⊂ Rn with empty interior which is not (n/p, p)-null
for any 1 < p <∞. In particular, sK(p) = n/p for every 1 < p <∞.

Proof. For each j ∈ N let pj = 1 + 1/j, xj = (21−j , 0, . . . , 0) and let Kpj ⊂ [0, 1]n be a compact set
with empty interior which is not (n/pj , pj)-null. Then K = {0} ∪

⋃∞
j=1(xj + 2−jKpj ) is compact,

has empty interior, and is not (n/p, p)-null for any 1 < p <∞.

The following related result is a by-product of the arguments leading to Theorem 2.20, and gives
the nullity threshold of certain non-compact sets, for example Rn \Qn.



On the maximal Sobolev regularity of distributions 12

Theorem 2.22. Let A ⊂ Rn have non-empty interior and Q ⊂ A be countable and dense in the
interior of A. Then E := A \Q is not (n/p, p)-null, and hence sE(p) = n/p, for all 1 < p <∞.

Proof. Given A and Q as in the assertion and 1 < p < ∞, the Swiss-cheese construction of [35,
Theorem 4], applied to any non-empty bounded open subset of A, gives a set Kp ⊂ A \ Q that is
not (n/p, p)-null. Then A \Q is not (n/p, p)-null for any p and has empty interior, so the theorem
follows.

Proving the existence of sets whose nullity threshold lies in the open interval (0, n/p) appears to
be an open problem—certainly we are not aware of any literature on this matter. The difficulty
here is that one would need to prove that a set with positive measure is (s, p)-null for some s ∈
(0, n/p). The possibility of doing this for a closed set F using the capacity-theoretic characterisation
of Theorem 2.19 seems remote. Using the conditions (ii) or (iii) from that theorem would require us
to prove equality of two capacities, which is difficult because capacity can usually only be estimated
rather than computed exactly. Condition (iv) could in principle be verified by proving a sufficiently
sharp lower bound on caps,p(Bδ(x) \ F ), but even this seems difficult in general as lower bounds
for caps,p appear to be available only for balls (by contrast, quite general upper bounds can be
obtained using countable sub-additivity, as we have mentioned above). We also remark that the
Fourier approach adopted in Proposition 4.10 is not promising in this regard: lower bounds for |û|
might be used to show that a particular u is not in a certain Hs,p

F , but this would not rule out the
existence of other non-trivial functions in Hs,p

F .

3 Capacity

In this section we provide proofs of Proposition 2.7(ii), Theorem 2.12, and Theorem 2.18(iv). Our
arguments rely on Theorem 2.5, which characterises s-null sets in terms of a set function called
capacity. The notion of capacity is central to potential theory, and we briefly review some of the
basic ideas here. Our presentation is based broadly on [2, 30], but other relevant references include
[1, 3, 6, 14,28,33,34,41]. We begin with a rather general definition of capacity before specialising to
the particular capacities of relevance to the problem in hand. Since (i) the literature is in places
highly technical; (ii) notational conventions are varied and sometimes conflicting (see the discussion
in Remark 3.2 below); and (iii) the concept of capacity may not be familiar to some readers, we
take care to clarify certain details that are not fully explained in [2, 30].

Definition 3.1. Let Ccomp be a set function defined on compact subsets of Rn, taking values in
[0,∞], such that Ccomp(∅) = 0 and Ccomp(K1) ≤ Ccomp(K2) for all compact K1 ⊂ K2 ⊂ Rn. From
Ccomp we define inner and outer capacities on arbitrary subsets E ⊂ Rn by

C(E) := sup
K⊂E

K compact

Ccomp(K), C(E) := inf
Ω⊃E

Ω open

C(Ω).

Clearly C(E) ≤ C(E) for all E ⊂ Rn. If C(E) = C(E) then we say E is capacitable for Ccomp and
define the capacity of E to be C(E) := C(E) = C(E).

It follows straight from the definitions that open sets are capacitable, and that C(K) = Ccomp(K)
for all compact K ⊂ Rn. It is common practice [2,30] to denote the original set function from which
C and C(E) are defined simply by C, rather than Ccomp. No ambiguity arises from this abuse
of notation provided that compact sets are capacitable; that this is the case for the capacities of
interest to us will be demonstrated in Proposition 3.4 below.

We now define two particular capacities of relevance for the study of (s, p)-nullity. For 1 < p <∞,
s ∈ R and K ⊂ Rn compact, we define

capcomp
s,p (K) := inf{‖u‖pHs,p : u ∈ D and u ≥ 1 in a neighbourhood of K}, (12)

Capcomp
s,p (K) := inf{‖u‖pHs,p : u ∈ D and u = 1 in a neighbourhood of K}. (13)
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Clearly capcomp
s,p (K) ≤ Capcomp

s,p (K) for all compact sets K. It is a much deeper fact that, at least
for s > 0, the reverse inequality also holds, up to a constant factor—see Theorem 3.13 below.

Remark 3.2. The capacities caps,p and Caps,p arising from (12) and (13) are classical and appear
throughout the potential theory literature. Our notation is adapted from [30, §10.4 and §13.1], where
caps,p(·) and Caps,p(·) are respectively denoted cap(·, Hs

p(Rn)) and Cap(·, Hs
p(Rn)). But many other

conflicting notational conventions exist: for instance, {capcomp
s,p ,Capcomp

s,p } are respectively denoted
{Cs,p, Ns,p} in [2, §2.2, §2.7], {Ns,p,Ms,p} in [28], and {Bs,p, Cs,p} in [3, 34]; capcomp

s,p is denoted

Bs;p in [33], and B
(n)
s,p in [1].

Navigating the literature is also complicated by the fact that caps,p and Caps,p can be defined
in a number of equivalent ways. Firstly, Definitions (12)–(13) are sometimes stated with the trial
functions u ranging over S (as in [2, pp. 19–20]) rather than D (as in [30, §13.1]). That these two
choices of trial space lead to the same set functions (and hence the same capacities) is straightforward
to prove. Let c̃apcomp

s,p denote the set function defined by (12) using S instead of D, and let K ⊂ Rn
be compact. Obviously c̃apcomp

s,p (K) ≤ capcomp
s,p (K); for a bound in the opposite direction, consider

any u ∈ S with u ≥ 1 on an open neighbourhood Ω of K. Take R > 0 such that Ω ⊂ BR(0), and take
a cutoff χ ∈ D such that χ = 1 in BR(0). Then w := (1− χ)u ∈ S, with support in the complement
O := Rn \BR(0), so that given ε > 0 there exists ψε ∈ D(O) such that ‖w−ψε‖Hs,p < ε. This bound
implies that ηε := χu+ψε ∈ D satisfies ‖u−ηε‖Hs,p < ε, so that ‖ηε‖Hs,p < ‖u‖Hs,p+ε; note also that
ηε = χu+0 ≥ 1 on Ω. Since u and ε > 0 were arbitrary we conclude that c̃apcomp

s,p (K) ≥ capcomp
s,p (K),

and hence that c̃apcomp
s,p (K) = capcomp

s,p (K), as claimed. The analogous result for Caps,p follows by a
similar argument with “≥ 1” replaced by “= 1” throughout.

Secondly, Definition (12) is sometimes stated (e.g. [2, §2.2] and [30, §13.1]) with “on K” instead
of “in a neighbourhood of K”. Again it is easy to verify that the two definitions are equivalent. Let
ĉapcomp

s,p denote the set function defined by (12) using “on K” instead of “in a neighbourhood of
K”. Then clearly ĉapcomp

s,p (K) ≤ capcomp
s,p (K); for a bound in the opposite direction, note that,

given α ∈ (0, 1), if u ≥ 1 on K then there exists a neighbourhood of K on which u ≥ α. Hence
capcomp

s,p (K) ≤ α−pĉapcomp
s,p (K), and since this holds for α arbitrarily close to 1, we conclude that

ĉapcomp
s,p (K) = capcomp

s,p (K), as claimed.
Finally, for s > 0 some authors use a definition of capcomp

s,p in which the right-hand-side of (12)
is replaced by an infimum of ‖f‖pLp over the non-negative f ∈ Lp for which J−sf ≥ 1 on K (cf.
e.g. [34, Definition 2.1]). That this definition is equivalent to (12) is proved in [2, Proposition
2.3.13].

Remark 3.3. For s = 0 one can show using standard measure-theoretic techniques that the capaci-
ties cap0,p and Cap0,p both coincide with the Lebesgue measure on Rn. Specifically, for E ⊂ Rn let
m(E) = sup{m(K) : E ⊃ K, K compact} and m(E) = inf{m(Ω) : E ⊂ Ω, Ω open} be the usual
inner and outer Lebesgue measures of E [5, Definitions 2.2–2.3]. Then for every 1 < p < ∞ it
holds that cap

0,p
(E) = Cap

0,p
(E) = m(E) and cap0,p(E) = Cap0,p(E) = m(E). Hence E is capac-

itable for capcomp
0,p (equivalently for Capcomp

0,p ) if and only if E is Lebesgue measurable, in which case
cap0,p(E) = Cap0,p(E) = m(E), where m is the Lebesgue measure.

As promised, we now prove the capacitability of compact sets for capcomp
s,p and Capcomp

s,p .

Proposition 3.4. Compact sets are capacitable for both capcomp
s,p and Capcomp

s,p , for all 1 < p < ∞
and s ∈ R.

Proof. The result for capcomp
s,p is stated and proved in [2, Proposition 2.2.3] for integer s > 0, but the

same proof is in fact valid for all s ∈ R. To prove the result for Capcomp
s,p , let K ⊂ Rn be compact and,

given ε > 0, let u ∈ D satisfy u = 1 in a neighbourhood Ω of K, with ‖u‖pHs,p < Capcomp
s,p (K) + ε.

Hence Capcomp
s,p (K̃) ≤ ‖u‖pHs,p < Capcomp

s,p (K) + ε for all compact K̃ ⊂ Ω, which implies that

Caps,p(Ω) = Cap
s,p

(K) ≤ Caps,p(K) ≤ Caps,p(Ω) ≤ Capcomp
s,p (K) + ε. Since ε was arbitrary, we

conclude that K is capacitable for Capcomp
s,p .
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The link between capacity and nullity was stated in Theorem 2.5 above: to repeat, a set E is
(s, p)-null if and only if Cap−s,p′(E) = 0. However, relatively little seems to be known about the

capacity Caps,p; the capacity caps,p appears to be much better understood. In particular, there is a
class of capacities, known as “Choquet capacities” (cf. [2, Theorem 2.3.11] and Choquet’s original
work [14]) for which all Suslin sets (defined in [2, §2.9, Notes to §2.3]), in particular all Borel sets,
are capacitable. The capacity caps,p is well-known to be of this class [2, §2.3] (and see also [33]), at
least for s ≥ 0. But it has been suggested that the same is probably not true of Caps,p [34, p. 1236]
(although of course it is true for Cap0,p, cf. Remark 3.3).

Proposition 3.5 ( [2, Propositions 2.3.12 and 2.3.13]). Borel sets are capacitable for capcomp
s,p for

1 < p <∞ and s ≥ 0.

Remark 3.6. In Theorem 3.15(ii), Proposition 2.7(ii), Proposition 2.9, Theorem 2.12(ii), Proposi-
tion 2.14, Theorem 4.5 and Proposition A.3 we require certain sets to be Borel. This assumption is
made solely to allow application of Proposition 3.5. Hence, if desired, throughout the paper “Borel”
may be substituted by “Suslin”, or possibly by a more general class of capacitable sets.

The outer capacity caps,p is also known to be countably subadditive for s ≥ 0 [2, §2.3]. The
authors are not aware of a similar result for Caps,p, but the example in Remark 2.8, together with
Theorem 2.5, shows that Cap

s,p
is not subadditive (not even finitely) for s < −n/p′.

Proposition 3.7 ( [2, Propositions 2.3.6 and 2.3.13]). Let 1 < p < ∞, s ≥ 0 and let Ei ⊂ Rn,
i ∈ N. Then

caps,p

( ∞⋃
i=1

Ei

)
≤
∞∑
i=1

caps,p(Ei).

The link between the analytical concept of capacity and the geometrical concept of fractal
dimension is provided by the following theorem, which provides a partial characterisation of the sets
of zero outer capacity caps,p(E) for 0 < s ≤ n/p in terms of Hausdorff dimension. The theorem,
which we state without proof, is essentially a rephrasing of the results in [2, §5.1] (specifically
Theorems 5.1.9 and 5.1.13). Similar results can be found e.g. in [30, §10.4.3], [33, §8] and [41,
Theorem 2.6.16]. For a historical background to these results the reader is referred to [2, §5.7].

Theorem 3.8 ( [2, Theorems 5.1.9 and 5.1.13]). Let 1 < p <∞ and E ⊂ Rn.

(i) For 0 ≤ s < n/p, if dimH(E) < n− ps then caps,p(E) = 0.

(ii) For 0 ≤ s ≤ n/p, if caps,p(E) = 0 then dimH(E) ≤ n− ps.

The behaviour of caps,p under Lipschitz mappings is also understood [2, §5.2].

Theorem 3.9 ( [2, Theorem 5.2.1]). Let E ⊂ Rn, and let Φ : E → Rn be a Lipschitz map with
Lipschitz constant L. Then for 1 < p <∞ and 0 ≤ s ≤ n/p there exists a constant a > 0, depending
only on n, p, s and L, such that

caps,p (Φ(E)) ≤ a caps,p(E).

A further useful result on caps,p is the following.

Proposition 3.10 ( [2, Theorem 5.5.1]). Let E ⊂ Rn be bounded, and let s, t ∈ R and 1 < p, q <∞
be such that either 0 < tq < sp ≤ n or p < q and 0 < tq = sp ≤ n. Then, caps,p(E) = 0 implies that
capt,q(E) = 0.
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Note that [2, Theorem 5.5.1] requires E to have diameter at most one, as that theorem deals
with the actual values of the capacities. Since here we are only concerned with the vanishing of the
same capacities, by affine scaling the result holds for any bounded set.

To prove Proposition 2.7(ii), Theorem 2.12, and Theorem 2.18(iv), which was the goal of this
section, we have to link the concept of nullity (which by Theorem 2.5 concerns Caps,p) with the
results of Proposition 3.5 and Theorem 3.9 (which concern caps,p). The link, as was hinted at just
before Remark 3.2, is that the two capacities caps,p and Caps,p are equivalent, at least for s ≥ 0, in
the sense of the following definition.

Definition 3.11. Let Ccomp and C̃comp be set functions satisfying Definition 3.1. The resulting
capacities C and C̃ are said to be equivalent if there exist constants a, b > 0 such that

aCcomp(K) ≤ C̃comp(K) ≤ bCcomp(K), for all compact K ⊂ Rn.

Proposition 3.12. If two capacities C and C̃ are equivalent then, for any E ⊂ Rn,

aC(E) ≤ C̃(E) ≤ bC(E), aC(E) ≤ C̃(E) ≤ bC(E),

where a, b are the constants in Definition 3.11. In particular, E is capacitable for Ccomp with
C(E) = 0 if and only if E is capacitable for C̃comp with C̃(E) = 0.

Theorem 3.13 ( [2, eq. (2.7.4), Corollary 3.3.4, and Notes to §2.9 and §3.8]). For every 1 < p <∞
and s ≥ 0 the capacities caps,p and Caps,p are equivalent. Specifically, for any s ≥ 0 there exists
b ≥ 1 such that, for all compact K,

capcomp
s,p (K) ≤ Capcomp

s,p (K) ≤ b capcomp
s,p (K).

Remark 3.14. It is noted in [2, Notes to §2.7]) that results due to Deny [16, Théorème II:3, p. 144]
imply that for p = 2 and 0 < s ≤ 1, the constant b in (3.13) can be taken to be 1, so that caps,p and
Caps,p coincide (we have already noted this result for s = 0 in Remark 3.3). An interesting open
question concerns the extent to which this result generalises to p 6= 2 and/or s 6∈ [0, 1]. In Appendix
B we demonstrate that the result is certainly not true for p = 2 and s = 2, using an explicit formula
for the norm in the restriction space H2,2(Ω) recently presented in [11].

Theorem 2.5, Proposition 3.5, Proposition 3.12 and Theorem 3.13 then provide the following key
result, which allows us to complete the proofs of the remaining results stated in §2.

Theorem 3.15. Let 1 < p <∞, s ≤ 0 and E ⊂ Rn.

(i) If cap−s,p′(E) = 0 then E is (s, p)-null.

(ii) If E is Borel, then cap−s,p′(E) = cap−s,p′(E) = 0 if and only if E is (s, p)-null.

Proof of Proposition 2.7(ii). This follows immediately from Theorem 3.15 and Proposition 3.7.

Proof of Theorem 2.12. Part (i) follows from Theorem 3.15(i) and Theorem 3.8(i). Part (ii) follows
from Theorem 3.15(ii) and Theorem 3.8(ii).

Proof of Theorem 2.18(iv). By applying a suitable smooth cutoff and a coordinate rotation, it suf-
fices to consider the case where Ω = {x ∈ Rn : xn < φ(x1, . . . , xn−1)}, where φ : Rn−1 → R is
Lipschitz. Defining Rn0 := {x ∈ Rn : xn = 0}, the map Φ : Rn0 ⊂ Rn → ∂Ω ⊂ Rn is Lipschitz with
a Lipschitz inverse (given by the orthogonal projection of ∂Ω onto Rn0 ). Hence by Theorem 3.9 and
Theorem 3.15(ii), the closed set ∂Ω is (s, p)-null if and only if the hyperplane Rn0 is (s, p)-null, which
by Theorem 2.17 holds if and only if s ≥ −1/p′.

Capacities can rarely be computed exactly. (An exception is provided by Appendix B.) But
estimates are available for the capacity of balls, which will be of use to us in §4.2.2.
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Proposition 3.16 ( [2, Propositions 5.1.2–4]). Let 1 < p < ∞. Given 0 < s < n/p, there exist
constants 0 < As,p,n < Bs,p,n, depending on s, p and n, such that

As,p,nr
n−sp ≤ caps,p

(
Br(x)

)
≤ Bs,p,nrn−sp, 0 < r ≤ 1, x ∈ Rn.

For s = n/p, given c > 1 there exists a constant Cc,p,n > 1, depending on c, p and n, such that

1

Cc,p,n

(
log(c/r)

)1−p ≤ capn/p,p
(
Br(x)

)
≤ Cc,p,n

(
log (c/r)

)1−p
, 0 < r ≤ 1, x ∈ Rn.

3.1 Sets of uniqueness and (s, p)-nullity

We end this section by exploring the relationship between the concept of (s, p)-nullity and the
concept of sets of uniqueness considered in [2, 30]. Following [2, Definition 11.3.1] and [30, p. 692],
given 1 < p < ∞ and s > 0 we say that E ⊂ Rn is a (s, p)-set of uniqueness (abbreviated to
(s, p)-SOU) if

{u ∈ Hs,p : caps,p(suppu ∩ Ec) = 0} = {0}.

Note that if E is Borel then by Theorem 3.15(ii) this definition can be restated as

{u ∈ Hs,p : (suppu ∩ Ec) is (−s, p′)-null} = {0}.

Proposition 3.17. Let 1 < p <∞ and s > 0.

(i) If E is a (s, p)-SOU then E is (s, p)-null.

(ii) If E is closed, then E is a (s, p)-SOU if and only if E is (s, p)-null.

Proof. (i) Suppose that u ∈ Hs,p with suppu ⊂ E. Then caps,p(suppu ∩ Ec) = caps,p(∅) = 0, and
since E is a (s, p)-SOU it follows that u = 0. Hence E is (s, p)-null.

(ii) Suppose that u ∈ Hs,p with caps,p(suppu ∩ Ec) = 0. Then m(suppu ∩ Ec) = 0 (this holds
e.g. by Theorem 3.8(ii), which gives dimH(suppu ∩Ec) < n), hence suppu ∩Ec is (s, p)-null. Since
E is closed and (s, p)-null, suppu ∩ E is also closed and (s, p)-null. Then Proposition 2.7(i) gives
that suppu is (s, p)-null, which implies that u = 0. Hence E is a (s, p)-SOU.

4 Examples and counterexamples

In this section we present examples and counterexamples to illustrate the results of §2.

4.1 Boundary regularity and Hausdorff dimension

The following lemma concerns the relationship between the analytical regularity of the boundary
of a set and its Hausdorff dimension. Its proof shows how to construct examples of C0 open sets
whose boundaries have a given Hausdorff dimension, using the modified Weierstrass-type functions
analysed in [39, Theorem 16.2]. These results should be considered in the context of Theorem 2.18
above.

Lemma 4.1. Let Ω ⊂ Rn be an open set such that Ωc has non-empty interior. Then:

(i) n− 1 ≤ dimH(∂Ω) ≤ n.

(ii) If Ω is C0 then m(∂Ω) = 0.

(iii) If Ω is C0,α with 0 < α < 1, then n− 1 ≤ dimH(∂Ω) ≤ n− α.

(iv) If Ω is Lipschitz, then dimH(∂Ω) = n− 1.
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(v) For n ≥ 2 and 0 < α < 1, there exists Ωα,n ⊂ Rn open, bounded and C0,α such that
dimH(∂Ωα,n) = n− α.

(vi) For n ≥ 2, there exists Ω0,n ⊂ Rn open, bounded and C0 such that dimH(∂Ω0,n) = n.

Proof. If n = 1, there is no distinction between C0, Hölder and Lipschitz open sets: they all mean
a countable union of open intervals with pairwise disjoint closures. Hence ∂Ω contains at most
countably many points, so it always has dimension 0 = n− 1. So we assume henceforth that n ≥ 2.

(i) The upper bound dimH(∂Ω) ≤ n is trivial. For the lower bound, since Ω is open and its
complement Ωc has non-empty interior we can take two disjoint balls of some radius ε > 0 such that
Bε(x) ⊂ Ω and Bε(y) ⊂ Ωc. After translation and rotation, without loss of generality we can assume
x = 0 and y = (y, 0, . . . , 0). For all z̃ ∈ Rn−1 with |z̃| < ε, the point (0, z̃) lies in Ω and the point
(y, z̃) lies in the interior of Ωc, so the segment [(0, z̃), (y, z̃)] contains at least one point in ∂Ω. The
orthogonal projection P1 : Rn → Rn−1 defined by x 7→ (x2, . . . , xn) is Lipschitz and P1(∂Ω) contains
the set {z̃ ∈ Rn−1 : |z̃| < ε} which has Hausdorff dimension equal to n−1. Thus by [18, Corollary 2.4]
we have dimH(∂Ω) ≥ dimH(P1(∂Ω)) ≥ n − 1, as required. (ii) The graph of a continuous function
has zero Lebesgue measure (this follows from the translation invariance of Lebesgue measure—just
consider the measure of the union of infinitely many disjoint vertical translates of the graph). Since
the boundary of a C0 open set can be covered by a countable number of C0 graphs, the assertion
follows from the countable subadditivity of Lebesgue measure. (iii) If ∂Ω is the graph of a C0,α

function, this follows from [39, Theorem 16.2(i)], which states that, for 0 < α < 1, the Hausdorff
dimension of the graph of a function in C0,α([−1, 1]n−1) is at most n− α. The general case follows
from the “countable stability” of the Hausdorff dimension (see [18, p. 49]): for countably many
subsets {Aj}j∈N of Rn we have dimH

⋃
j Aj = supj dimHFj (note that the open cover of ∂Ω given

by the definition of a C0,α open set in [20, 1.2.1.1] allows a countable subcover, this can be seen
using the compactness of ∂Ω ∩ BR(0) for R > 0 and considering a countable number of balls, e.g.
{B`(0)}`∈N). (iv) Since a Lipschitz open set is C0,α for every 0 < α < 1, the Hausdorff dimension of
its boundary satisfies n−1 ≤ dimH(∂Ω) ≤ n−α for all these values, from which the assertion follows.
(v) This follows from [39, Theorem 16.2(ii)] which provides a function fα,n : [−1, 1]n−1 → [−1, 1]
of class C0,α (defined via a modification of the well-known Weierstrass function), whose graph
has Hausdorff dimension exactly equal to n − α (that fα,n can be taken with values in [−1, 1]
follows because affine transformations do not affect the Hausdorff dimension). We can immediately
define Ωα,n := {x ∈ (−1, 1)n−1 × R, −2 < xn < fα,n(x1, . . . , xn−1)}. (vi) We construct Ω0,n by
gluing together the functions from the previous step. We define f0,n : [−1, 1]n−1 → [−1, 1] as
f0,n(x1, . . . , xn−1) := f1/j,n(x1, . . . , 2

jxn−1 − 1) if 2−j < xn−1 ≤ 2−j+1 and j ∈ N. To ensure global
continuity we assume that each f1/j,n vanishes at xn−1 = ±1 (if necessary we can ensure this by
multiplying f1/j,n by a suitable element of D((−1, 1))). We then construct the corresponding open
set as before. Its boundary has Hausdorff dimension not smaller than n − 1/j for all j ∈ N, from
which the assertion follows.

4.2 Swiss-cheese and Cantor sets

Our remaining examples belong to two classes of compact sets with empty interior: “Swiss-cheese”
sets and Cantor sets. When n = 1, Cantor sets are special cases of Swiss-cheese sets.

Definition 4.2. A Swiss-cheese set is a non-empty compact set K with empty interior, constructed
as K = Ω \ (

⋃∞
i=1Bri(xi)), where Ω ⊂ Rn is a bounded open set, and xi ∈ Rn and ri > 0 for each

i ∈ N.

Given 1 < p <∞ and s ∈ [−n/p′, n/p], one would like to engineer the (s, p)-nullity (or otherwise)
of K by choosing an appropriate sequence of ball centres {xi}∞i=1 and a sequence of radii {ri}∞i=1

which tends to zero at an appropriate rate as i→∞.
In one dimension (n = 1), a well-studied family of examples of this construction is the classical

ternary Cantor set and its generalisations. These are Swiss-cheese sets for which for every i ∈ N
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the centre xi of the ith subtracted ball is chosen as the centre of one of the largest connected
components of Ω \ (

⋃i−1
i′=1Bri′ (xi′)). Following [2, §5.3], we consider Cantor sets in Rn (sometimes

known as “Cantor dust” when n ≥ 2) defined in the following general way.

Definition 4.3. Let {lj}∞j=0 be a decreasing sequence of positive numbers such that 0 < lj+1 < lj/2
for j ≥ 0. Let E0 = [0, l0] and for j ≥ 0 let Ej+1 be constructed from Ej by removing an open interval
of length lj − 2lj+1 from the middle of each of the 2j subintervals making up Ej, each of which has
length lj. The Cantor set associated with the sequence {lj}∞j=1 is then defined to be E :=

⋂∞
j=0Ej.

For n ≥ 1 we define the n-dimensional Cantor set E(n) ⊂ Rn to be the Cartesian product of n copies
of E.

The total measure of Ej is 2jlj , so the measure of E is limj→∞ 2jlj ∈ [0, l0). Since each Ej is
compact, E is also compact. Moreover, E has empty interior and is uncountable. Without loss of
generality we shall always take l0 = 1, so that E ⊂ [0, 1] and E(n) ⊂ [0, 1]n.

4.2.1 The case s < 0 (sets with zero measure)

For the case −n/p′ ≤ s < 0 the (s, p)-nullity of a Cantor set E(n) can be characterised precisely in
terms of the asymptotic behaviour of the sequence {lj}∞j=1. Theorem 5.3.2 in [2], which was first
proved in [31, Theorem 7.4] (see also [30, §10.4.3, Proposition 5]), provides necessary and sufficient
conditions for caps,p(E

(n)) to vanish, for a given 0 < s ≤ n/p. Reinterpreting this result in terms of
(s, p)-nullity, using Theorem 3.15(ii), provides the following result.

Theorem 4.4. Let 1 < p <∞ and −n/p′ ≤ s < 0. The Cantor set E(n) is (s, p)-null if and only if

∞∑
j=0

(
2−jnl

−(sp′+n)
j

)p−1
=∞, for − n/p′ < s < 0,

and if and only if
∞∑
j=0

2−jn(p−1) log 1/lj =∞, for s = −n/p′.

Using Theorem 4.4 we can construct a zoo of Cantor sets, all with zero measure, which realise
all of the possible nullity sets permitted by Corollary 2.15.

Theorem 4.5. Let n ∈ N, 0 ≤ d < n and 1 < p∗ < ∞. Then there exists two Cantor sets

E
(n)
d,p∗

, F
(n)
d,p∗
⊂ Rn such that dimHE

(n)
d,p∗

= dimH F
(n)
d,p∗

= d and

E
(n)
d,p∗

is (s, p)-null if and only if either s > (d− n)/p′, or s = (d− n)/p′ and p ≤ p∗,

F
(n)
d,p∗

is (s, p)-null if and only if either s > (d− n)/p′, or s = (d− n)/p′ and p < p∗.

Furthermore, there exist F
(n)
d,∞, F

(n)
d,1 , F

(n)
n,∞ ⊂ Rn such that dimHF

(n)
d,∞ = dimH F

(n)
d,1 = d, dimH F

(n)
n,∞ =

n, and

F
(n)
d,∞ is (s, p)-null if and only if s ≥ (d− n)/p′, 0 ≤ d ≤ n,

F
(n)
d,1 is (s, p)-null if and only if s > (d− n)/p′, 0 ≤ d < n.

Moreover, for any Borel set E ⊂ Rn with m(E) = 0, (exactly) one of the n-dimensional Cantor sets
above is (s, p)-null precisely for the same values s, p for which E is (s, p)-null.

Proof. To construct each Cantor set, setting l0 = 1 as usual, we just need to find a sequence {lj}∞j=1

with 0 < l1 < 1/2 and 0 < lj+1 < lj/2 for j ≥ 1, such that the series in Theorem 4.4 diverge for the
desired set of values of s and p. The 9 different examples we require are defined in Table 1.

The convergence of the corresponding series can be verified using the fact that, for x, y > 0,
the geometric series

∑
j≥0 x

j < ∞ ⇔ x < 1; its generalisation
∑

j≥0 x
jy
√
j < ∞ ⇔ x < 1 or
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Table 1: Cantor sets used in the proof of Theorem 4.5.

For and choosing l0 = 1 and, for j ≥ 1, gives

d = 0 1 < p∗ <∞ lj = 2−2(2jn(p∗−1)−1)/(2n(p∗−1)−1) E
(n)
0,p∗

0 < d < n 1 < p∗ <∞ lj = 2−jn/d
(
1 + (j−1)

2 (2(n−d)(p∗−1) − 1)
) 1
d(p∗−1) , E

(n)
d,p∗

d = 0 p∗ = 1 2−j
2−1 F

(n)
0,1

d = 0 1 < p∗ <∞ lj = 2−2(j+j0)n(p∗−1)/(j+j0)2
F

(n)
0,p∗

j0 = min{j ∈ N s.t. 2(j+1)n(p∗−1)

(j+1)2 − 2jn(p∗−1)

j2
> 1}

d = 0 p∗ =∞ lj = 2−22j

F
(n)
0,∞

0 < d < n p∗ = 1 lj = 2−jn/d 2(n/d−1)
√
j/2 F

(n)
d,1

0 < d < n 1 < p∗ <∞ lj = 2−jn/d
(
(j + j0) log2(j + j0)

) 1
d(p∗−1) F

(n)
d,p∗

j0 = min
{

2 ≤ j ∈ N s.t. (j+1) log2(j+1)

j log2 j
< 2(n−d)(p∗−1)

and 2−jn(p∗−1)(j + 1) log2(j + 1) < 2(n−d)(p∗−1)
}

0 < d < n p∗ =∞ lj = 2−jn/d F
(n)
d,∞

d = n p∗ =∞ lj = 2−j/(j + 1) F
(n)
n,∞

x = 1 and y < 0; the generalised harmonic series
∑

j≥1 j
−x <∞⇔ x > 1; and

∑
j≥2 j

−x log−y j <

∞ ⇔ x > 1 or x = 1 and y > 1. To prove that F
(n)
n,∞ is (0, p)-null, we compute the measure

m(F
(n)
n,∞) = limj→∞ 2njlnj = 0. The final statement in the assertion follows from Corollary 2.15.

A few remarks are in order here. First, the standard one-third Cantor set with lj = 1/3j

corresponds to F
(1)
log 2/ log 3,∞ in the table in the proof of Theorem 4.5. Second, the set F

(n)
0,∞ demon-

strates that Corollary 2.16 is not sharp: there exist uncountable sets which are (−n/p′, p)-null for all
1 < p <∞. Third, Theorem 2.17 implies that none of the Cantor sets constructed in Theorem 4.5

are d-sets, except for F
(n)
d,∞, 0 ≤ d ≤ n.

4.2.2 The case s > 0 (sets with non-zero measure)

For a general Swiss-cheese set defined as in Definition 4.2 we can give sufficient conditions for
non-(s, p)-nullity, for 0 < s ≤ n/p, by combining Theorem 2.19 with capacity estimates from §3.

Theorem 4.6. Let K = Ω \ (
⋃∞
i=1Bri(xi)) be a Swiss-cheese set defined as in Definition 4.2.

Suppose that 0 < ri ≤ 1 for each i ∈ N, and let 0 < r ≤ 1 be such that Br(x) ⊂ Ω for some x ∈ Ω.
Given 1 < p < ∞ and 0 < s ≤ n/p, let 0 < As,p,n ≤ Bs,p,n, c > 1 and Cc,p,n > 1 denote the
constants from Proposition 3.16. Then K is not (s, p)-null provided that

∞∑
i=1

rn−spi <
As,p,n
Bs,p,n

rn−sp, for 0 < s < n/p, (14)

and

∞∑
i=1

(
log(c/ri)

)1−p
<

(
log(c/r)

)1−p
C2
c,p,n

, for s = n/p. (15)

Proof. By countable subadditivity (Proposition 3.7), we have that

caps,p(Br(x) \K) ≤ caps,p

( ∞⋃
i=1

Bri(xi)

)
≤
∞∑
i=1

caps,p
(
Bri(xi)

)
.
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The statement of the theorem then follows from Theorem 2.19 (in particular the equivalence
(i)⇔(iii)) and the estimates in Proposition 3.16.

As was alluded to in §2.4, given n ∈ N, 1 < p < ∞ and 0 < s ≤ n/p, Theorem 4.6 allows
us to construct non-empty compact Swiss-cheese sets K ⊂ Rn with empty interior, which are not
(s, p)-null. To ensure that K has empty interior, one can take the ball centres {xi}∞i=1 to be any
countable dense subset of Ω. To ensure that K is non-empty, one just needs to make sure that
ri → 0 sufficiently fast as i → ∞ so that

∑∞
i=1m

(
Bri(xi)

)
< m(Ω), from which it follows that

m(K) > 0.
As further concrete examples we consider two families of Cantor sets in R, for which we prove

non-(s, p)-nullity for certain values of s > 0 in Proposition 4.9. Note that since Theorem 4.6 concerns
Swiss-cheese sets, it applies to Cantor sets only for n = 1.

Example 4.7 (“Fat” Cantor set). Given 0 < α < 1/2 and 0 < β < 1 − 2α, denote by G
(n)
α,β ⊂ Rn,

n ∈ N, the Cantor set constructed as in Definition 4.3 with lj+1 = 1/2(lj − βαj) for j ≥ 0. For
n = 1, the resulting set Gα,β is called a “generalised Smith–Volterra–Cantor” set in [17, §2.4-2.5],
where it is denoted SV C(α, β). The classical Smith–Volterra–Cantor set is obtained by the choice
α = β = 1/4. (We remark also that the “ε-Cantor” sets of [4, p. 140] are obtained by the choice
β = (1− ε)/2, α = 1/4, for a given 0 < ε < 1.) Then

lj =
1

2j

(
1− β

(
1− (2α)j

1− 2α

))
, so that 2jlj = 1− β

(
1− (2α)j

1− 2α

)
→ 1− β

1− 2α
, j →∞,

from which we conclude that m(G
(n)
α,β) = (1 − β/(1 − 2α))n > 0. (In particular for the classical

Smith–Volterra–Cantor set we have m(G1/4,1/4) = 1/2.) Hence G
(n)
α,β is not (s, p)-null for any s ≤ 0

and any 1 < p <∞; on the other hand, since it has empty interior, G
(n)
α,β is (s, p)-null for s > n/p.

Example 4.8 (“Super-fat” Cantor set). To construct a Cantor set which is even fatter (in the
sense of nullity), choose lj = 2−j(1 − γ + γδ

j
) with 0 < γ < 1 and δ > 1. Then lj+1 < lj/2

for all j ≥ 0, and when constructing level j + 1 from level j ∈ N0 we subtract 2j intervals with
radii 1

2 lj − lj+1 = 2−j−1(γδ
j − γδj+1

) < 2−j−1γδ
j
, which decrease faster as j → ∞ than those in

Example 4.7. We denote the resulting Cantor set, which has Lebesgue measure 0 < (1− γ)n < 1, by

K
(n)
γ,δ .

Proposition 4.9. Given 1 < p <∞ and 0 < s < 1/p, there exist 0 < α < 1/2 and 0 < β < 1− 2α
such that the fat Cantor set Gα,β ⊂ R defined in Example 4.7 is not (s, p)-null.

Given 1 < p < ∞, there are parameters 0 < γ < 1 and δ > 2
1
p−1 such that the corresponding

super-fat Cantor set Kγ,δ ⊂ R of Example 4.8 is not (1/p, p)-null.

Proof. To analyse the fat Cantor set using Theorem 4.6 we note that in constructing Ej from Ej−1

we remove 2j−1 intervals of radius (β/2)αj−1. The intervals we remove are all disjoint, so

∞∑
i=1

rn−spi =

∞∑
j=0

2j
(
βαj

2

)1−sp
=

(
β

2

)1−sp ∞∑
j=0

(2α1−sp)j =
(β/2)1−sp

1− 2α1−sp ,

where for the sum to converge we need 2α1−sp < 1, i.e.

0 < α < 2−1/(1−sp), or, equivalently, s < sα,p :=
1

p

(
1 +

log 2

logα

)
.

Since l0 = 1 we can choose r = 1/2 in Theorem 4.6, then (14) will be satisfied (and hence Gα,β is
not (s, p)-null) provided that β lies in the range

0 < β <

(
As,p,1
Bs,p,1

)1/(1−sp)
(1− 2α1−sp)1/(1−sp).
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To analyse the super-fat Cantor set one proceeds in a similar way using (15) instead of (14).
Possible parameters ensuring that Kγ,δ is not (1/p, p)-null are

δ > 2
1
p−1 and 0 < γ < (2c)

(
−C−2

c,p,1(1−2δ1−p)
) 1

1−p
< 1.

By mimicking the approach of Theorem 4.5 (in particular the construction of the set F
(n)
0,∞), one

might try to construct an “ultra-fat” Cantor set that is not (s, p)-null for all s ≤ 1/p and 1 < p <∞.
We conjecture that such a set can be constructed by subtracting at every level j ∈ N0 an interval

with radius proportional to 1/222j

. However, to use Theorem 4.6 to prove non-nullity, one needs to
know the dependence on p of the constant Cc,p,1 from Proposition 3.16, which corresponds to the
constant A in [2, Proposition 5.1.3].

The proof of Proposition 4.9 implies that if 0 < α < 1/2 is fixed, then the fat Cantor set defined
in Example 4.7 is not (s, p)-null provided that s < sα,p and that β is sufficiently small. But the
permitted range of β appears to depend on s and p in a nontrivial way. The following proposition
provides a complementary result for the special case of (s, 2)-nullity, which removes the restriction
on β. Our proof, which is independent of the capacity-based approach of Theorem 4.6, is inspired
by the method used to prove similar results in [26, Lemma 2.5 and Theorem 3.1], and involves
estimating the local L2 norm of the Fourier transform of the characteristic function of E in terms of
the L2 norm of the difference between the characteristic function and a slightly shifted version of it.

Proposition 4.10. Let E ⊂ R be a Cantor set as in Definition 4.3. Let Gapj := lj−1 − 2lj, j ≥ 1,
denote the length of the 2j−1 gaps introduced in Ej−1 to construct Ej. Assume that Gapj < lj
(equivalently 3lj > lj−1) and that Gapj < Gapj−1 for all j ≥ 1. If

∑
j≥2

Gap2−2s
j−1

Gap2
j

(∑
k≥j

2kGapk

)
<∞ (16)

for s > 0, then the characteristic function χE of E belongs to Hs,2 (and hence E is not (s, 2)-null).
In particular, for the fat Cantor set Gα,β with 0 < α < 1/2 and 0 < β < 1 − 2α, χGα,β ∈ Hs,2

for all s < sα,2, where

sα,2 :=
1

2

(
1 +

log 2

logα

)
∈ (0, 1/2).

Proof. To prove that χE ∈ Hs,2 for the claimed range of s our strategy is to prove directly that
‖χE‖2Hs,2 =

∫∞
−∞(1+|ξ|2)s|χ̂E(ξ)|2dξ <∞ (cf. (1)). Since the characteristic function χE is compactly

supported, χ̂E is analytic, and so it suffices to control the behaviour of the integrand at infinity.
Since {Gapj}∞j=1 is a non-increasing sequence, the gaps between the subintervals in Ej have mini-

mal length min1≤k≤j Gapk = Gapj . For any such Cantor set E, the symmetric difference between Ej
and its translation {Ej+Gapj} is composed of 2j+1 (some open, some semi-open) intervals of length
Gapj (in some cases touching each other at one extreme). So ‖χEj −χ{Ej+Gapj}‖

2
L2(R) = 2j+1Gapj .

Comparing E and Ej we have ‖χEj −χE‖2L2(R) = |Ej | − |E| =
∑

k>j 2k−1Gapk and similarly for the
translates. Using the triangle inequality we have

‖χE − χ{E+Gapj}‖
2
L2(R) ≤

∑
k≥j

2k+2Gapk.

The intervals Ij := (Gap−1
j−1,Gap−1

j ], j ≥ 2, are a partition of a neighbourhood of infinity; explicitly,⋃
j≥2 Ij = (Gap1,∞) with empty mutual intersections. We define the coefficients

zj := sup
ξ∈Ij

ξ2s

1− cos(Gapjξ)
≤ sup

ξ∈Ij
c1

ξ2s

(Gapjξ)
2
≤ c1

Gap2−2s
j−1

Gap2
j

, j ≥ 2,
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where c1 := 1/(1− cos 1) ≈ 2.175. From Plancherel’s Theorem and the above bounds we have∫
|ξ|>Gap1

(1 + |ξ|2)s|χ̂E(ξ)|2dξ ≤ 2s
∑
j≥2

∫
|ξ|∈Ij

|ξ|2s|χ̂E(ξ)|2dξ

≤ 2s
∑
j≥2

zj

∫
|ξ|∈Ij

(
1− cos(Gapjξ)

)
|χ̂E(ξ)|2dξ

≤ 2s−1
∑
j≥2

zj

∫
R
|1− e−iξGapj |2 |χ̂E(ξ)|2dξ

= 2s−1
∑
j≥2

zj‖χE − χ{E+Gapj}‖
2
L2(R)

≤ 2s+1
∑
j≥2

zj

(∑
k≥j

2kGapk

)
≤ 2s+1c1

∑
j≥2

Gap2−2s
j−1

Gap2
j

(∑
k≥j

2kGapk

)
.

Thus, if condition (16) holds, ‖χE‖2Hs,2 =
∫∞
−∞(1 + |ξ|2)s|χ̂E(ξ)|2dξ <∞ and the proof is complete.

In the fat Cantor case we have Gapj = βαj−1, so {Gapj}∞j=1 is strictly decreasing and Gapj < lj
for each j ≥ 1. Hence∫
|ξ|>Gap1

(1 + |ξ|2)s|χ̂E(ξ)|2dξ ≤ 2s+1c1β
1−2s

α3−4s

∑
j≥2

α−2sj
(∑
k≥j

(2α)k
)
≤ 2s+1c1β

1−2s

α3−4s(1− 2α)

∑
j≥2

(2α1−2s)j ,

which is bounded for s < sα,2.

Proposition 4.10 demonstrates the non-(s, 2)-nullity of the set Gα,β, for s < sα,2, by showing that
a specific function supported inside Gα,β (namely χGα,β ) belongs to Hs,2. We note that the proof
relies on Plancherel’s Theorem, and hence does not generalise easily to the case p 6= 2. However, we
can immediately deduce some simple consequences for the case p 6= 2. Since Gα,β is bounded, χGα,β
belongs to Lp for all 1 < p < ∞ and, by interpolation (5), it belongs to Hs,p for 2 ≤ p < ∞ and
s < sα,p = 2sα,2/p. Hence the nullity threshold of Gα,β satisfies sGα,β (p) ≥ sα,p for all 2 ≤ p < ∞,
and all 0 < β < 1 − 2α. In the light of Proposition 4.9 we expect that this result also extends to
1 < p < 2, but we do not have a proof of this. (The only (weaker) β-independent result we have
for 1 < p < 2 is that sGα,β (p) ≥ sα,2 for all 1 < p < 2, which follows from the embedding (3).) One
might speculate that these inequalities are actually equalities, i.e. that sGα,β (p) = sα,p for all n ∈ N
and 1 < p < ∞. But we do not know of any techniques for obtaining an upper bound on sGα,β (p)
that would verify this. As far as we are aware, calculating the exact value of sGα,β (p) is an open
problem.

Regarding the higher-dimensional fat Cantor sets G
(n)
α,β, n ≥ 2, it follows from the above results,

combined with Proposition 2.9, that s
G

(n)
α,β

(p) ≥ sα,p for all 2 ≤ p < ∞, and s
G

(n)
α,β

(p) ≥ sα,2 for

all 1 < p < 2. The characteristic function of the one-dimensional fat Cantor set Gα,β does not
belong to Hs,p(R) for any s > 1/p by the Sobolev embedding Hs,p(R) ⊂ C0(R) (or equivalently by
the (s, p)-nullity of Gα,β). Hence Proposition A.2 in the Appendix implies that for all n ≥ 2 the

characteristic function χ
G

(n)
α,β

of the corresponding set G
(n)
α,β does not belong to Hs,p(Rn) either, for

s > 1/p, since it can be written as the tensor product χ
G

(n)
α,β

= χ
G

(1)
α,β

⊗χ
G

(n−1)
α,β

due to the Cartesian-

product structure of Cantor sets. Thus we cannot hope to extend the proof of Proposition 4.10 to

show that G
(n)
α,β is not (s, p)-null for some 1/p < s ≤ n/p. Indeed, for any Cantor set E(n) ⊂ Rn, if

1/p < s ≤ n/p then non-zero functions in Hs,p

E(n) (if any exist) cannot be of tensor-product form.
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5 Conclusion

In Definition 2.1 and Proposition 2.4 we introduced the concepts of “(s, p)-nullity” and the “nullity
threshold” sE(p) of a subset E ⊂ Rn, to describe the Sobolev regularity of the distributions sup-
ported by E. We now summarise our contributions to the questions Q1–Q3 posed in §2.2. (An
even more concise summary is given in tabular form in Table 2). We assume throughout this section
that E is Borel with empty interior. Our first observation is that the case m(E) = 0 is significantly
better understood than the case m(E) > 0.

Q1: Given 1 < p < ∞ and E ⊂ Rn with empty interior, can we determine sE(p)?
If m(E) = 0 then sE(p) is immediately computed in terms of Hausdorff dimension as sE(p) =
(dimHE − n)/p′, see Theorem 2.12. If m(E) > 0 then we know 0 ≤ sE(p) ≤ n/p, but the only
general result we know of that allows a more precise characterisation of sE(p) is Theorem 2.19,
which appears useful only for proving lower bounds on sE(p). Using a result from [35] we described
two types of set with maximum nullity threshold sE(p) = n/p for all 1 < p <∞, see Corollary 2.21
and Theorem 2.22. We also derived lower bounds on sE(p) for some “fat” and “super-fat” Cantor
sets and Swiss cheese sets in §4.2.2 (the lower bound obtained for the fat Cantor set is represented
by the dotted line in Figure 1). But we are unaware of any viable techniques for obtaining nontrivial
upper bounds on sE(p) when m(E) > 0. In fact, we have no evidence whatsoever of the existence
of sets with sE(p) ∈ (0, n/p).

Open question: Given 1 < p <∞, do there exist sets E for which sE(p) ∈ (0, n/p)?
Open question: What is the nullity threshold of the fat Cantor sets of Example 4.7?

Q2: For which functions f : (1,∞)→ [−n, n] does there exist E ⊂ Rn such that f(p) = sE(p)
for all p ∈ (1,∞)? To describe the possible nullity-threshold functions, it is convenient to make
the change of variable p 7→ r = 1/p, and define, for E ⊂ Rn non-empty with empty interior,

SE(r) := sE(1/r) = inf
{
s ∈ R, such that E is (s, 1/r)-null

}
, 0 < r < 1.

The function SE satisfies the following conditions:

• n(r − 1) ≤ SE(r) ≤ nr for 0 < r < 1, so the graph of SE(r) in the rs-plane lies in the shaded
parallelogram in Figure 1 (cf. Lemma 2.3(iv)–(vi)).

• SE is non-decreasing and Lipschitz-continuous with 0 ≤ S′E(r) ≤ n for a.e. 0 < r < 1 (cf.
Lemma 2.3(ii)).

• The graph of SE in the rs-plane cannot cross the line s = 0. Precisely, if SE(r∗) ≥ 0 (or
SE(r∗) < 0) for some r∗ ∈ (0, 1) then SE(r) ≥ 0 (or SE(r) < 0, respectively) for all r ∈ (0, 1)
(cf. Lemma 2.3(v)).

• If m(E) = 0 then SE(r) = (n− dimH E)(r − 1) (cf. Theorem 2.12). So if the graph of SE lies
in the lower half rs-plane in Figure 1, it is necessarily a straight line through (1, 0) with slope
equal to n− dimHE.

Hence the only functions F : (0, 1) → [−n, 0] which can be realised as F (r) = SE(r) for some
E ⊂ Rn are straight lines F (r) = λ(r−1), λ ∈ [0, n], which are realised by any set E with m(E) = 0
and dimHE = n− λ (for example the Cantor sets of Theorem 4.5). By contrast, the only functions
F : (0, 1) → [0, n] that we can provably realise as F (r) = SE(r) for some E ⊂ Rn are the two
straight lines F (r) = 0 (already covered by the previous case), and the straight line F (r) = nr, with
E given either by the compact set of Corollary 2.21 or the non-compact set of Theorem 2.22.
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r = 1/p

s

sα,2

n

−n

d− n

0 1
2 1

Figure 1: Schematic showing the region in the rs-plane in which the graph of SE(r) = sE(1/r) must
lie. The dashed line in the lower triangle is the graph of SE for a set E with Hausdorff dimension
0 < d < n, for instance a Cantor set from Theorem 4.5. The dotted line in the upper triangle

represents a lower bound F (r) = min{2rsα,2, sα,2} for SE for a fat Cantor set E = G
(n)
α,β from

Example 4.7 and Proposition 4.10.

Q3: Under what conditions on E and p is E “threshold null” (i.e. (sE(p), p)-null)? For
the case m(E) = 0 we gave a complete classification of the possible threshold nullity behaviours in
Corollary 2.15, which we demonstrated was sharp by providing a zoo of examples in Theorem 4.5.
The only other general results we know of concerning threshold nullity are the following:

• If E is countable then it is (sE(p), p)-null for 1 < p < ∞, with sE(p) = −n/p′ (cf. Corol-
lary 2.16).

• If E = A \Q, where A has non-empty interior in which the countable set Q is dense, then E
is not (sE(p), p)-null for 1 < p <∞, with sE(p) = n/p (cf. Theorem 2.22).

• If E is a compact d-set or a d-dimensional hyperplane for 0 < d < n, then it is (sE(p), p)-null
for 1 < p <∞, with sE(p) = (d− n)/p′ (cf. Theorem 2.17).

• If m(E) = 0 and dimH E = n, then E is (sE(p), p)-null for 1 < p <∞, with sE(p) = 0.

• If sE(p) = n/p, as for the sets in Corollary 2.21 and Theorem 2.22, then if E is (sE(p0), p0)-null
for some 1 < p0 <∞ then E is also (sE(p1), p1)-null for every 1 < p1 < p0.
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A Tensor products and traces

In this section we collect some results on the Sobolev regularity of tensor-product distributions.
Propositions A.1 and A.2 give lower and a upper bounds, respectively, for the regularity of a tensor-
product distribution in terms of the regularity of the factors. They are simple consequences of the
results proved in [22] in the more general setting of Triebel–Lizorkin spaces and the so-called spaces
of dominating mixed smoothness. We improve them slightly in the Hilbert space case p = 2 by
exploiting Plancherel’s theorem. The consequences of these results for (s, p)-nullity are summarised
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Table 2: A summary of our results. The first part of the table reviews the dependence of sE(p) on
general properties of E, and the second part catalogues the examples introduced in §4.2 and §2.4.

Conditions on E ⊂ Rn (E 6= ∅, Borel) Nullity threshold sE(p) Threshold-null?

E with non-empty interior sE(p) = +∞
E with empty interior −n/p′ ≤ sE(p) ≤ n/p
Countable E sE(p) = −n/p′ Yes Cor. 2.16
0 ≤ dimHE < n sE(p) = (dimHE − n)/p′ Th. 2.12
d-set, Lipschitz d-dim. manifold sE(p) = (d− n)/p′ Yes Th. 2.17
E = ∂Ω, with Ω open, int(Ωc) 6= ∅ −1/p′ ≤ sE(p) ≤ 0 Th. 2.18
E = ∂Ω, with Ω open C0,α −1/p′ ≤ sE(p) ≤ −α/p′ Th. 2.18
E = ∂Ω, with Ω open Lipschitz sE(p) = −1/p′ Yes Th. 2.18
dimH(E) = n, m(E) = 0 sE(p) = 0 Yes Th. 2.12
m(E) > 0 sE(p) ≥ 0 Lem. 2.3
E = open \ countable dense sE(p) = n/p No Th. 2.22

Examples

Cantor set E
(n)
d,p∗

, 1 < p∗ <∞ sE(p) = (d− n)/p′ Only if p ≤ p∗ Th. 4.5

Cantor set F
(n)
d,p∗

, 1 ≤ p∗ ≤ ∞ sE(p) = (d− n)/p′ Only if p < p∗ Th. 4.5

Fat Cantor set G
(n)
α,β sE(p) ≥ min{sα,p, sα,2} Prop. 4.10

Super-fat Cantor set K
(n)
γ,δ sE(p) ≥ min{1/p, 1/p∗} No for p ≥ p∗ Prop. 4.9

Polking set Kp∗ sE(p) ≥ min{n/p, n/p∗} No for p ≥ p∗ Th. 2.20
Union of Polking sets sE(p) = n/p No Cor. 2.21
Rn \Qn sE(p) = n/p No Th. 2.22

in Proposition 2.9 and in the subsequent paragraph. In studying (s, p)-nullity of Cartesian-product
sets, we also make use of classical trace operators and standard bounds on the Hausdorff dimensions
of products: see Proposition A.3. Note that we do not consider “mixed” tensor products of Sobolev
distributions with different integrability parameter p, so we fix 1 < p <∞ for the whole section.

Given n1, n2 ∈ N and two distributions u1 ∈ D∗(Rn1), u2 ∈ D∗(Rn2), we define the tensor
product u1 ⊗ u2 ∈ D∗(Rn1+n2) as in [24, Chapter V] or [22, Proposition 1.3.1]. This definition
immediately extends to tensor products of finitely many distributions u1⊗· · ·⊗uN ∈ D∗(Rn1+···nN ).

Proposition A.1. Let N ∈ N, sj ∈ R, nj ∈ N, and uj ∈ Hsj ,p(Rnj ) for j = 1, . . . , N . Then

u1 ⊗ · · · ⊗ uN ∈ Hs,p(Rn1+···+nN ), for s < s∗, (17)

where

s∗ := max
{

0, min
j=1,...,N

sj
}

+

N∑
j=1

min{0, sj} = min
∅6=J⊂{1,...,N}

∑
j∈J

sj =


min

j=1,...,N
sj if sj ≥ 0 ∀j,∑

j s.t. sj<0

sj otherwise.

If either p = 2 or sj ∈ N0 for all 1 ≤ j ≤ N , then (17) holds also for s = s∗.

Proof. Assertion (17) is proved in [22, Propositions 2.3.8(ii) and 4.4.1]. The stronger result when
sj ∈ N0 for all 1 ≤ j ≤ N follows from the equivalence in this case between the norm in Hsj ,p(Rnj )
and norm in W sj ,p(Rnj ) (involving Lp norms of weak derivatives), see [22, Proposition 2.3.8(i)].

To prove the stronger result for p = 2 it suffices to consider the case with N = 2 components.
In this case, s∗ = min{s1, s2, s1 + s2} and the squared norm ‖u1⊗u2‖2Hs∗,2(Rn1+n2 )

can be controlled
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using the representation (1), the relation û1 ⊗ u2 = û1⊗ û2, Fubini’s theorem, and by bounding the
function (1 + |ξ1|2 + |ξ2|2)s∗ for all ξ1 ∈ Rn1 , ξ2 ∈ Rn2 , using the inequalities

(1 + |ξ1|2 + |ξ2|2)s1 ≤ (1 + |ξ1|2)s1(1 + |ξ2|2)s1 ≤ (1 + |ξ1|2)s1(1 + |ξ2|2)s2 for 0 ≤ s1 ≤ s2,

(1 + |ξ1|2 + |ξ2|2)s1 ≤ (1 + |ξ1|2)s1 ≤ (1 + |ξ1|2)s1(1 + |ξ2|2)s2 for s1 < 0 ≤ s2,

(1 + |ξ1|2 + |ξ2|2)s1+s2 = (1 + |ξ1|2 + |ξ2|2)s1(1 + |ξ1|2 + |ξ2|2)s2

≤ (1 + |ξ1|2)s1(1 + |ξ2|2)s2 for s1, s2 < 0.

This gives ‖u1 ⊗ u2‖Hs∗,2(Rn1+n1 ) ≤ ‖u1‖Hs1,2(Rn1 ) ‖u2‖Hs2,2(Rn2 ), from which the assertion follows.

Proposition A.2. Let N ∈ N, s ∈ R, nj ∈ N, and 0 6= uj ∈ S∗(Rnj ) for j = 1, . . . , N . If
u1 /∈ Hs,p(Rn1), then u1⊗· · ·⊗uN /∈ Ht,p(Rn1+···+nN ) for any t > s. If either p = 2 or s ∈ N0, then
u1 ⊗ · · · ⊗ uN /∈ Hs,p(Rn1+···+nN ).

Proof. Propositions 2.3.8(ii) and 4.4.1 in [22] show that, given sj ∈ N, j = 1, . . . , N , Ht,p(Rn1+···+nN )
⊂ Hs1,p(Rn1) ⊗αp · · · ⊗αp HsN ,p(RnN ) (defined as the completion of the algebraic tensor product
space under the norm αp of [22, Definition 1.3.1]) for t > s∗, where

s∗ := min
{

0, max
j=1,...,N

sj
}

+
N∑
j=1

max{0, sj} = max
∅6=J⊂{1,...,N}

∑
j∈J

sj =


max

j=1,...,N
sj if sj ≤ 0 ∀j,∑

j s.t. sj>0

sj otherwise.

To prove the assertion it suffices to consider the case N = 2, in which case s∗ = max{s1, s2, s1 +s2}.
Setting s1 = s, it follows that if u1 ⊗ u2 ∈ Ht,p(Rn1+n2) then u1 ⊗ u2 ∈ Hs,p(Rn1) ⊗αp Hs2,p(Rn2)
for sufficiently small s2 (i.e. s2 ≤ min{0, s}, so that s∗ = s). Since αp is a so-called crossnorm [22,
equation (1.3.2)], this in turn implies that u2 ∈ Hs2,p(Rn2), and more importantly u1 ∈ Hs,p(Rn1),
which proves the assertion by contrapositive. The stronger result for the case s ∈ N0 comes from [22,
Proposition 2.3.8(i)].

To prove the stronger assertion for the case p = 2, we note that since u2 ∈ Hs2,2(Rn2) it holds
that û2 ∈ L2

loc(Rn2). Since û2 6= 0, there exist c0 > 0 and a bounded measurable set A ⊂ Rn2 with
positive measure m(A) such that |û2(ξ2)|2 ≥ c0 > 0 for a.e. ξ2 ∈ A. Then, if u1⊗u2 ∈ Hs,2(Rn1+n2),
the Plancherel and Fubini theorems give the following contradiction:

∞ > ‖u1 ⊗ u2‖2Hs,2(Rn1+n2 ) =

∫
Rn1

∫
Rn2

|û1(ξ1)|2|û2(ξ2)|2(1 + |ξ1|2 + |ξ2|2)sdξ2dξ1

≥ c0

∫
Rn1

∫
A
|û1(ξ1)|2(1 + |ξ1|2 + |ξ2|2)sdξ2dξ1

≥


c0

∫
Rn1

∫
A
|û1(ξ1)|2(1 + |ξ1|2)sdξ2dξ1, s ≥ 0,

c0

∫
Rn1

|û1(ξ1)|2(1 + |ξ1|2)sdξ1

∫
A

(1 + |ξ2|2)sdξ2, s < 0,

≥


c0 m(A) ‖u1‖2Hs,2(Rn1 ) =∞, s ≥ 0,

c0 m(A)
(

1 + sup
ξ2∈A

|ξ2|2
)s
‖u1‖2Hs,2(Rn1 ) =∞, s < 0.

To better interpret these results, we define the “maximal Sobolev regularity” of a distribution:

mp,n(u) := sup
{
s ∈ R, such that u ∈ Hs,p(Rn)

}
∈ R ∪ {±∞}, u ∈ S∗(Rn), 1 < p <∞, n ∈ N.
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Then, Propositions A.1 and A.2 combine to give a precise characterisation of the maximal Sobolev
regularity of a tensor-product distribution if the maximal Sobolev regularity of at least one of the
two factors is non-negative:

nj ∈ N, max
{
mp,n1(u1),mp,n2(u2)

}
≥ 0 ⇒ mp,n1+n2(u1 ⊗ u2) = min

{
mp,n1(u1),mp,n2(u2)

}
.

Moreover, if p = 2 or mp,n1+n2(u1 ⊗ u2) ∈ N0, then u1 ⊗ u2 belongs to Hmp,n1+n2 (u1⊗u2),p(Rn1+n2)
if and only if u1 ∈ Hmp,n1+n2 (u1⊗u2),p(Rn1) and u2 ∈ Hmp,n1+n2 (u1⊗u2),p(Rn2). A similar statement
holds for the tensor product of N distributions, if all except at most one have non-negative maximal
Sobolev regularity. If both u1 and u2 have negative maximal Sobolev regularity, the result is less
sharp:

nj ∈ N, max
{
mp,n1(u1),mp,n2(u2)

}
≤ 0

⇒ mp,n1(u1) +mp,n2(u2) ≤ mp,n1+n2(u1 ⊗ u2) ≤ min
{
mp,n1(u1),mp,n2(u2)

}
.

We point out that the lower bound here can be achieved. Indeed, if xj ∈ Rnj , j = 1, 2, then by (4)
mp,nj (δxj ) = −nj/p′, j = 1, 2, and mp,n1+n2(δx ⊗ δy) = −(n1 + n2)/p′ = mp,n1(δx) +mp,n2(δy).

So far we have related distributions defined on Euclidean spaces with different dimensions using
tensor products. To relate functions (with positive regularity exponent s) defined on an ambient
Euclidean space and on affine subspaces one can use traces. Using classical results on traces in
Triebel–Lizorkin spaces we can prove the following result.

Proposition A.3. Let n1, n2 ∈ N, 1 < p <∞, s ∈ R, E1 ⊂ Rn1 and E2 ⊂ Rn2. If E1 is (s, p)-null
then E1 × E2 is (t, p)-null for

t ≥ s+ n2
p if s > 0, 1 < p ≤ 2,

t > s+ n2
p if s > 0, 2 < p <∞,

t ≥ s if s = 0,

t > s if s < 0 and E1, E2 Borel.

Proof. The case s = 0 follows from Lemma 2.3(v), while the case s < 0 can easily be deduced from
the relation between nullity and Hausdorff dimension in (9) and the inequality dimH(E1 × E2) ≤
dimH(E1) + n2 [18, equation (7.7)].

For the case s > 0, for any y ∈ Rn2 , §2.7.2 and §2.3.2 of [38] give continuity of the trace operator

Try : Ht,p(Rn1+n2)→ Hs,p(Rn1), s > 0,

{
t ≥ s+ n2

p if 1 < p ≤ 2,

t > s+ n2
p if 2 < p <∞,

defined on D(Rn1+n2) as the pointwise trace onto the subspace {(x1,x2) ∈ Rn1+n2 ,x2 = y} (which
is canonically identified with Rn1), and then extended to Ht,p(Rn1+n2) by density. If 0 6= u ∈
Ht,p(Rn1+n2) ⊂ Lp(Rn1+n2), by Fubini’s theorem there exists at least one y ∈ Rn2 such that
Try(u) 6= 0. If moreover suppu ⊂ E1×E2, by convolution with a sequence of mollifiers in D(Rn1+n2)
with decreasing support it is straightforward to show that supp(Try(u)) ⊂ E1. This proves the
assertion by contrapositive.

B A result on the non-equality of capacities

In this appendix (due to Simon Chandler-Wilde) we give a concrete example of an open set Ω ⊂ R
for which cap2,2(Ω) < Cap2,2(Ω). Specifically, we consider an open interval Ω = (−a, a) ⊂ R, where
a > 0. We recall that the space H2,2(Ω) ⊂ D∗(Ω) is defined by

H2,2(Ω) :=
{
u ∈ D∗(Ω) : u = U |Ω for some U ∈ H2,2

}
,
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‖u‖H2,2(Ω) := inf
U∈H2,2

U |Ω=u

‖U‖H2,2 .

It is straightforward to show that

cap2,2(Ω) = inf{‖u‖2H2,2(Ω) : u ∈ H2,2(Ω), u ≥ 1 a.e. on Ω}, (18)

Cap2,2(Ω) = inf{‖u‖2H2,2(Ω) : u ∈ H2,2(Ω), u = 1 a.e. on Ω} = ‖1‖2H2,2(Ω). (19)

An explicit formula for ‖u‖H2,2(Ω) in the case where Ω is an open interval has been given recently
in [11, Equation (26)]. For even functions u ∈ H2,2(Ω) this formula gives (note that we correct a
typographical error in [11, Equation (26)], replacing −φ′(a) in that formula by +φ′(a))

‖u‖2H2,2(Ω) = 2

(
|u(a)|2 + |u′(a)|2 + |u(a) + u′(a)|2 +

∫ a

0
(|u(t)|2 + 2|u′(t)|2 + |u′′(t)|2) dt

)
. (20)

From (20) and (19) it follows that Cap2,2(Ω) = ‖1‖2H2,2(Ω) = 4 + 2a. But using (20) we can for any

a > 0 construct a function u ∈ H2,2(Ω) which satisfies u ≥ 1 on Ω and has ‖u‖2H2,2(Ω) < 4 + 2a.

This, in the light of (18), demonstrates that cap2,2(Ω) < Cap2,2(Ω) for this particular Ω.

When a <
√

3 we consider the quadratic function u(t) = 1 + ε(a2 − t2), for some ε > 0 to be
specified. By (20) this function satisfies

‖u‖2H2,2(Ω) = 4 + 2a− 8a

(
1− a2

3

)
ε+O

(
ε2
)
, ε→ 0,

so that ‖u‖2H2,2(Ω) < 4 + 2a for sufficiently small ε, provided a <
√

3.

When a > 1 we consider the function (again with ε > 0 to be specified)

u(t) =

{
1, |t| ≤ a− 1,

1 + ε(a− |t|)(a− 1− |t|)2, a− 1 ≤ |t| < a,

which by (20) satisfies

‖u‖2H2,2(Ω) = 4 + 2a− 11

3
ε+O

(
ε2
)
, ε→ 0,

and again we have ‖u‖2H2,2(Ω) < 4 + 2a for sufficiently small ε.
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