BRITISH JOURNAL of NUTRITION

The effects of flavanone-rich citrus juice on cognitive function and cerebral blood flow: an acute, randomised, placebo controlled crossover trial in healthy young adults

Journal:	British Journal of Nutrition
Manuscript ID	BJN-RA-16-0544.R3
Manuscript Type:	Research Article
Date Submitted by the Author:	n/a
Complete List of Authors:	Lamport, Daniel; University of Reading, School of Psychology and Clinical Language Sciences Pal, Deepa; University of Reading, Psychology & Clinical Language Sciences Macready, Anna; University of Reading, Nutrition and Food Sciences Barbosa-Boucas, Sofia; University of Reading, Psychology and Clinical Language Sciences Fletcher, John; PepsiCo, None Williams, Claire; University of Reading, School of Psychology & Clinical Language Studies Spencer, Jeremy; University of Reading, Food & Nutritional Sciences Butler, Laurie; University of Reading, Psychology and Clinical Language Sciences
Keywords:	Flavonoid, juice, cognition, cognitive, cerebral blood flow
Subject Category:	Behaviour, Appetite and Obesity

SCHOLARONE™ Manuscripts

1	The effects of flavanone-rich citrus juice on cognitive function and cerebral blood flow:
2	an acute, randomised, placebo controlled crossover trial in healthy young adults
3	Daniel J Lamport ¹ , Deepa Pal ¹ , Anna L Macready ² , Sofia Barbosa-Boucas ¹ , John M
4	Fletcher ³ , Claire M Williams ¹ , Jeremy PE Spencer ² , Laurie T Butler ¹
5	¹ School of Psychology and Clinical Language Sciences, University of Reading, Reading, UK
6	RG6 6AL
7	² Molecular Nutrition Group, School of Chemistry, Food and Pharmacy, University of
8	Reading, Reading, UK, RG6 6AP
9	
10	³ PepsiCo, 100 Summit Lake Drive, Valhalla, New York, 10595, USA
11	
12	Correspondence: Professor Laurie T Butler
13	Email: l.t.butler@reading.ac.uk
14	Tel: +44 (0) 118 378 7543
15	
16	Short title: Flavanone rich juice, cognition & CBF
17	
18	Keywords: Flavonoid, juice, cognition, cognitive, cerebral blood flow, fMRI
19	
20	This research was funded by PepsiCo Inc.
21	ClinicalTrials.gov identifier: NCT01312597

Abstract

22

2324252627282930313233

3435

One plausible mechanism underlying flavonoid-associated cognitive effects is increased
cerebral blood flow (CBF). However, behavioural and CBF effects following flavanone-rich
juice consumption have not been explored. The aim was to investigate whether consumption
of flavanone-rich juice is associated with acute cognitive benefits and increased regional CBF
in healthy young adults. An acute, single-blind, randomised crossover design was applied
with two 500ml drink conditions; high flavanone (HF; 70.5mg) and an energy, vitamin C
matched zero flavanone control. Twenty four healthy young adults aged 18-30 underwent
cognitive testing at baseline and two hours post drink consumption. A further sixteen healthy
young adults were recruited for fMRI assessment whereby CBF was measured with arterial
spin labelling during conscious resting state at baseline, and two and five hours post drink
consumption. The HF drink was associated with significantly increased regional perfusion in
the inferior and middle right frontal gyrus at two hours relative to baseline and the control
drink. In addition, the HF drink was associated with significantly improved performance on
the Digit Symbol Substitution Test at two hours relative to baseline and the control drink, but
no effects were observed on any other behavioural cognitive tests. These results demonstrate
that consumption of flavanone-rich citrus juice in quantities commonly consumed can acutely
enhance blood flow to the brain in healthy young adults. However, further work is required to
establish a direct causal link between increased cerebral blood flow and enhanced
behavioural outcomes following citrus juice ingestion.

42 1. Introduction

43	Studies investigating the neuro-protective effects of foods and beverages containing
44	flavonoids suggest that they may lead to benefits for memory and learning by improving
45	neuronal functioning and promoting neuronal protection and regeneration ⁽¹⁾ . In rodents,
46	dietary flavanone supplementation (e.g. hesperidin) over several weeks is associated with
47	significant improvements in spatial working memory. Moreover, these cognitive
48	improvements correlate with increased expression of signalling proteins involved in learning
49	and memory, and increased brain derived neurotrophic factor (BDNF) in the
50	hippocampus ^(2,3) . These are important findings since increased expression of BDNF is
51	associated with benefits for cognitive function in humans such as slower onset of
52	Alzheimer's disease ⁽⁴⁾ . This supports the presence of mechanistic pathways by which citrus
53	fruit based flavanones may have positive effects on the brain.
Γ 4	Epidemiological data showing an association between flavanone consumption and
54	
55	crystallized intelligence ⁽⁵⁾ is supported by positive effects from several human intervention
56	studies indicating cognitive benefits in adults following chronic consumption of flavanone-
57	rich fruits and vegetables, for reviews see ^(6,7) . For example, improved memory function in
58	older adults with mild cognitive impairment (MCI) has been observed following daily
59	consumption of concord grape juice (CGJ) for twelve weeks ⁽⁸⁾ and sixteen weeks ⁽⁹⁾ . Of
60	particular relevance here is a recent finding that eight weeks daily consumption of flavanone-
61	rich orange juice was associated with improvements in executive function and episodic
62	memory in healthy older adults aged 60-81 years ⁽¹⁰⁾ . This indicates that consumption of fruit
63	juices which contain flavanones as the predominant flavonoid may lead to benefits for the
64	human brain, even in healthy adults.
65	Neuro-imaging studies in young human adults have demonstrated that consumption of
66	flavanol-rich cocoa can acutely enhance peripheral and cerebral blood flow (CBF) ^(11,12) .
67	Furthermore, promising associations have been observed between increased neuronal activity
68	and behavioural benefits following chronic flavanol-rich cocoa supplementation. Enhanced
69	activation in the dentate gyrus (measured with a fMRI blood oxygenation level-dependent
70	(BOLD) signal) and simultaneous improvements in spatial working memory were reported in
71	healthy older adults following consumption of flavanol-rich cocoa for three months relative
72	to a low flavanol control ⁽¹³⁾ .

73	However, other chronic flavanol interventions have failed to report concomitant cognitive
74	benefits in the presence of enhanced neuronal activation. For example, increased steady state
75	evoked potentials (assessed using Steady State Probe Topography) in posterior parietal and
76	central-frontal regions were observed in middle-aged adults following thirty days daily
77	consumption of 250mg or 500mg cocoa flavanol drinks relative to placebo, however, there
78	were no effects for behavioural measures of spatial working memory ⁽¹⁴⁾ . Similarly, enhanced
79	activation was observed in various brain regions during performance of an attention
80	switching task following five days consumption of 172mg cocoa flavanols. However,
81	changes in the BOLD signal were not associated with performance on the attention switching
82	$task^{(12)}$.
83	To summarise, the evidence suggests that flavonoid consumption can enhance vasodilation in
84	the periphery and lead to increased blood flow in specific regions of the brain in the acute
85	postprandial period. Daily flavonoid consumption over several weeks is associated with
86	cognitive benefits, but as yet, there is only weak evidence supporting a coupling between
87	increased CBF with improved performance on neuropsychological tests. The current research
88	builds upon these findings by investigating whether the aforementioned positive cognitive
89	effects of daily flavanone consumption over several weeks ⁽¹⁰⁾ are supported by acute
90	cognitive benefits in the immediate postprandial phase. It is reasonable to hypothesise that
91	acute cognitive benefits are underpinned by changes in CBF. Therefore, in addition to
92	assessing behavioural outcomes, the present research examined the effects of flavanone-rich
93	juice on CBF using fMRI arterial spin labelling (ASL). We chose a commercially available
94	citrus-based juice given that flavanones are naturally found in high concentrations in citrus
95	fruits such as orange and grapefruit. This also reflects the quality and quantity of juice
96	consumed by the general population. In sum, the aim of the present research was to
97	investigate the effects of flavanone-rich juice on acute cognitive function and CBF in healthy
98	young adults by adopting a placebo matched, crossover, randomized, single-blind, design.
99	2. Experimental Methods
100	Different participants were recruited for the behavioural cognitive arm (n=28) and the ASL
101	imaging arm (n=16) of the study (see Table 1), however, inclusion and exclusion criteria
102	were identical for both arms. Participants were not permitted to take part in both arms. At the
103	time of designing the study, there was an absence of published data concerning the effects of
104	flavanone consumption in humans on cognitive function, cardiovascular outcomes, or

105	cerebral blood flow. Therefore, we considered it important to create an experimental design
106	in which cognitive and cerebral blood flow effects could be examined in isolation. For,
107	example, it is important to establish if effects on CBF are observed independently of
108	behavioural effects. Furthermore, in light of the absence of experimental support for a
109	specific behavioural task sensitive to flavanone consumption in humans, it was considered
110	that a range of cognitive functions should be assessed. Incorporating a comprehensive
111	cognitive battery into the fMRI sequencing schedule posed significant practical difficulties.
112	Therefore, a decision was taken to recruit separate cohorts for the behavioural and imaging
113	arms. Healthy young adults aged 18-30 years were recruited from the University of Reading
114	and surrounding area via community advertising with posters, leaflets and emails. Twenty
115	four participants (four males) completed the behavioural cognitive arm (four participants
116	dropped out due to work commitments or illness) and all sixteen participants completed the
117	ASL arm (eight males). Inclusion criteria were BMI 19-25kg/m² and fluent English speaker
118	whilst exclusion criteria were signs of mild cognitive impairment (Mini Mental State
119	Examination Score <26), smoking, alcohol consumption >15 units/week, orange juice
120	consumption >250ml/day, fruit/vegetable consumption >4 portions/day, caffeine intake >3
121	drinks/day, actively pursuing weight loss through a dietary intervention, clinical diagnosis of
122	mental illness, neurological disease, chronic fatigue, kidney disease, liver disease, thyroid
123	dysfunction, diabetes mellitus, myocardial infarction or hypertension, and consumption of
124	medication for lipids, hypertension, hypotension or anticoagulation. Recruitment commenced
125	March 2011 and terminated August 2011. Our sample size was based on previous research
126	reporting significant cognitive effects of berry flavonoids in older adults with sample sizes
127	ranging from nine to twenty one (8,9,15) and improvements in CBF following cocoa flavanols in
128	sixteen young adults ⁽¹²⁾ .
120	
129	[Table 1 here]
130	2.1 Design
131	An acute single-blind, randomised cross-over design was applied with two drink conditions;
132	high flavonoid (HF) and control (CT). Cognitive behavioural testing and ASL measurements
133	were performed prior to and post consumption of the drink at each visit (see procedure). The
134	500ml HF drink was a commercially available 100% juice (Tropicana Ruby Breakfast Juice,
135	PepsiCo Inc.) which naturally contained 70.5mg flavonoids (42.15mg hesperidin, 17.25mg
136	naringin, 6.75mg narirutin, 4.3mg caffeic acid; analysed by the University of Reading),

137	225kcal, 48.5g sugars, 4g protein, 0g fat, 3.5g fibre, and 150mg vitamin C. The Tropicana
138	Ruby Breakfast Juice contained juices from oranges and grapefruits. The 500ml CT drink
139	was a commercially-available concentrated cordial product (Lemon Barley Squash,
140	Sainsbury's, UK) which was prepared with 240mls of concentrate and 260mls of mineral
141	water (Buxton Spring still mineral water) containing zero flavonoids, 230kcal, 48g sugars,
142	0.7g protein, 0g fat, 0.3g fiber, and 130mg vitamin C. Our dose of 70.5mg flavonoids could
143	be considered low relative to previous research ⁽⁶⁾ , however, it is important to examine
144	whether cognitive benefits are associated with consuming concentrations of flavanones which
145	are present in the habitual diet. Therefore, the 500ml juice serving provided an acceptable
146	balance between a suitable flavonoid concentration and an achievable volume of
147	consumption within the context of the habitual diet. The drinks were stored at 4°C and
148	prepared and served by the experimenter. Each 500ml portion was served in two 250ml
149	opaque flasks and consumed through an opaque straw, thus participants could not see the
150	drink and remained blinded. The randomisation order was determined by an independent
151	statistician. For the behavioural cognitive arm, twelve participants consumed the HF drink at
152	visit 1 and twelve consumed the CT drink at visit 1, whilst for the ASL arm eight participants
153	consumed the HF drink at visit 1 and eight consumed the CT drink at visit 1.
154	2.2 Procedure
155	In summary, participants attended three separate visits; one screening visit and two test day
156	visit. The behavioural arm test days included two cognitive test time points (baseline and two
157	hour post) and the ASL arm visit days included three time points (baseline, two hour post and
158	five hour post). The screening visit and each test day visit were separated by a one week
159	washout. Initially telephone screening interviews were performed and volunteers who met the
160	washout. Initially telephone screening interviews were performed and volunteers who met the
	inclusion criteria were invited to attend the University of Reading Hugh Sinclair Nutrition
161	
161 162	inclusion criteria were invited to attend the University of Reading Hugh Sinclair Nutrition
	inclusion criteria were invited to attend the University of Reading Hugh Sinclair Nutrition Unit for a screening visit. At screening, data on height, weight, health status, medication and
162	inclusion criteria were invited to attend the University of Reading Hugh Sinclair Nutrition Unit for a screening visit. At screening, data on height, weight, health status, medication and blood pressure was collected and participants completed the Mini Mental State Examination
162 163	inclusion criteria were invited to attend the University of Reading Hugh Sinclair Nutrition Unit for a screening visit. At screening, data on height, weight, health status, medication and blood pressure was collected and participants completed the Mini Mental State Examination (MMSE), a diet and lifestyle questionnaire and a fruit and vegetable questionnaire, data from
162 163 164	inclusion criteria were invited to attend the University of Reading Hugh Sinclair Nutrition Unit for a screening visit. At screening, data on height, weight, health status, medication and blood pressure was collected and participants completed the Mini Mental State Examination (MMSE), a diet and lifestyle questionnaire and a fruit and vegetable questionnaire, data from which was used to corroborate the inclusion/exclusion criteria. For each test day visit,
162 163 164 165	inclusion criteria were invited to attend the University of Reading Hugh Sinclair Nutrition Unit for a screening visit. At screening, data on height, weight, health status, medication and blood pressure was collected and participants completed the Mini Mental State Examination (MMSE), a diet and lifestyle questionnaire and a fruit and vegetable questionnaire, data from which was used to corroborate the inclusion/exclusion criteria. For each test day visit, participants arrived at 08:00 having fasted from alcohol for 48 hours and all other food and
162 163 164 165 166	inclusion criteria were invited to attend the University of Reading Hugh Sinclair Nutrition Unit for a screening visit. At screening, data on height, weight, health status, medication and blood pressure was collected and participants completed the Mini Mental State Examination (MMSE), a diet and lifestyle questionnaire and a fruit and vegetable questionnaire, data from which was used to corroborate the inclusion/exclusion criteria. For each test day visit, participants arrived at 08:00 having fasted from alcohol for 48 hours and all other food and drink (except water) for twelve hours. At screening, participants were provided with low-

170	products, caffeinated energy drinks and vegetables except potatoes) and were provided with
171	standardised typed instructions identifying which foods to avoid. The evening prior to each
172	test day, participants consumed (at home) a low fat standardized chicken and rice meal
173	provided by the research team (350kcal, 6.9g fat of which 3g saturates, 52.1g carbohydrate of
174	which 9.7g sugars, 19g protein, 1.4g fiber, 0.9g salt) to avoid second-meal cognitive
175	effects ⁽¹⁶⁾ . On each test day participants were required to orally confirm that they had adhered
176	to the aforementioned dietary restrictions. Following a fifteen minute rest, blood pressure
177	measurements were taken (on behavioural visit days only) on the left upper arm by a
178	validated blood pressure monitor (Omron MX2 automatic digital upper arms BP monitor,
179	Milton Keynes, UK) and recorded as the average of three consecutive measurements. At
180	08:30 hrs, participants consumed a standardised breakfast within fifteen minutes (88g
181	croissant, 25g cream cheese and 120ml bottled mineral water containing 51g fat, 14g protein,
182	64g carbohydrates, 777kcal). For the behavioural test days, baseline cognitive testing
183	commenced at 08:45 hrs, followed by consumption of the drink (either HF or CT) at 09:45
184	hrs. Participants were informed that the drink was a fruit-based beverage available in most
185	UK supermarkets and which must be consumed within fifteen minutes. Blood pressure was
186	measured at 11:40 hrs (behavioural arm only) and lunch, identical to breakfast in both content
187	and amount, was provided fifteen minutes prior to the two-hour post-drink cognitive battery
188	which commenced at 12:00 hrs. An assessment at this time point was based on previous data
189	demonstrating cognitive effects 2 hours following an acute flavonoid dose ¹² . For the ASL
190	visit days, the timings were identical to the behavioural cognitive visit days, such that ASL
191	measurements were performed at 08:45 hrs (baseline), 12:00 hrs (two hours) and 15:00 hrs
192	(five hours). The behavioural cognitive visits took place in individual cubicles at the
193	University of Reading Hugh Sinclair Nutrition Unit and the ASL visits took place at the
194	Centre for Integrative Neuroscience and Neurodynamics (CINN). Participants remained
195	within the Nutrition Unit or the CINN for the entire test visit during which only water
196	consumption was permitted (notwithstanding the test day foods and drinks). Participants
197	received a £120 honorarium upon completion. This study was conducted according to the
198	guidelines laid down in the Declaration of Helsinki and all procedures involving human
199	subjects were approved by the School of Psychology and Clinical Languages Ethics
200	Committee. Written and verbal informed consent was obtained and formally recorded.

2.3 Cognitive Battery

202	The 45-minute cognitive battery consisted of the following tests administered in the
203	respective order: Freiburg Vision Test (v3.6.3), Word Recall (immediate), Logical Memory
204	(immediate recall), Sequence Learning Task, Digit Symbol Substitution (DSST), Stroop Test,
205	Letter Memory Test, Go-NoGo Task, Spatial Delayed Recall, Word Recall (delayed), and
206	Logical Memory (delayed). Where multiple versions of a test were required (see below),
207	parallel versions were presented in a counterbalanced order across conditions and visits. The
208	Freiburg Vision Test assesses visual acuity ⁽¹⁷⁾ for which there are two dependent variables:
209	Landholt C and Vernier Threshold. To acquire the Landhold C measurement participants
210	were required to identify the orientation of a horseshoe symbol using the numbers 1-9 on the
211	keyboard keypad (excluding 5). The presentation size of the horseshoe and thus the ease of
212	identifying the orientation randomly varied across trials. Landholt C was subsequently
213	calculated according to the number of correct responses relative to the presentation size. To
214	acquire the Vernier Threshold, participants viewed a stimulus which consisted of two 1cm
215	lines with one directly above the other. Participants pressed the left scroll key if the line
216	above was to the left of the line below, and the right scroll key if the line above was to the
217	right of the line below. The degree to which the lines were aligned varied randomly across
218	trials. The Vernier Threshold was subsequently calculated according to the number of correct
219	responses relative to the horizontal distance between the two lines ⁽¹⁷⁾ . Verbal Recall involved
220	computerised, individual presentation of thirty words. A response was required (using the
221	keys 'M' for yes, 'Z' for no) according to one of five questions which required visual,
222	phonetic or semantic processing of the target word (e.g. "is the word in capitals", "does the
223	word rhyme with" or "is the word a type of"). Upon cessation of the presentation, oral
224	recall of the target words was required (the dependent variable). Within each version of the
225	test, each word was accompanied by the same question for all participants whilst the order of
226	presentation varied randomly. Equal versions were created and matched for frequency,
227	familiarity, imageability, meaningfulness, word length and syllables. Delayed Word Recall
228	involved one attempt to orally recall the words presented thirty minutes prior during
229	Immediate Word Recall. The Logical Memory Test (Wechsler Memory Scale – Revised)
230	requires oral recall of a short paragraph. The paragraphs were presented via cassette tape. The
231	dependent variables for immediate and delayed recall were the number of correctly recalled
232	units. The Sequence Learning Task ⁽¹⁸⁾ required participants to immediately press the keys 'V,
233	B, N or M' according to the appearance of a stimulus (a 2mm white dot for 200ms) in one of
234	four 3.5cm x 2cm boxes on the screen. Unbeknownst to participants, the order of stimulus
235	presentation followed a set sequence (one block), thus this test assesses the ability to learn a

236	sequence. The duration of each repetitive sequence varied from 2-4 trials. Each test
237	presentation contained six blocks, with each block consisting of 100 trials. The dependent
238	variable was number of correct responses. The DSST ⁽¹⁹⁾ is a pen and paper test which
239	contains a key of nine digit-symbol pairs and an accompanying list of digits. Under each
240	listed digit a space is provided to enter the corresponding symbol. Participants entered as
241	many symbols as possible over 90 seconds. The dependent variable was the number of
242	correct responses. The computerised Stroop Test ⁽²⁰⁾ required participants to identify the
243	colour in which a word was presented. There were 120 randomly presented stimuli, each for
244	1650ms, consisting of 60 congruent and 60 incongruent trials (a congruent trial being when
245	the meaning of the word matched the colour in which it was presented). Participants
246	responded with the keys 1-4 which represented the colours green, blue, red and yellow
247	respectively. The dependent variable was reaction time (for correct responses only). The
248	Letter Memory Task ⁽²¹⁾ involved serial 2000ms presentation of individual letters. The number
249	of letters per trial varied randomly between 5, 7, 9 and 11 for a total of twelve trials and 48
250	letters. For each trial, at the termination of the presentation phase participants were required
251	to orally recall the final four letters from the presentation. The dependent variable was the
252	total number of correct responses defined as recalling the correct sequence in its entirety. The
253	Go-NoGo is a computerised task assessing inhibition and sustained attention. The present
254	version was adapted from the Go-NoGo paradigm ⁽²²⁾ . Participants were required to respond
255	to sixty stimuli using one of three specified keyboard keys; 'p' 'q' or 'space bar'. The stimuli
256	consisted of X, Y or a number 'lure'. Initially, there was a 25 stimuli 'Pre-Potent Go' phase.
257	During the Pre-Potent Go phase, X and Y were presented alternately, with the participant
258	required to press 'q' when X appeared and 'p' when Y appeared. The X and Y were known
259	as the 'Go' trials. The Go-NoGo phase followed the Pre-Potent Go phase. During the Go-
260	NoGo phase, the 'Go' trials were interspersed with 'NoGo' trials; these appeared as numbers
261	lures. Pressing the space bar was the required response upon viewing a number lure. During
262	the Go-NoGo phase \boldsymbol{X} and \boldsymbol{Y} were presented randomly, interspersed with number lures, such
263	that the predictable alternating sequence was disrupted. Responses were required only if a Y
264	appeared after an X or vice-versa, and therefore the participant must inhibit the established
265	pre-potent response in all other trials. Reaction Time for correct responses was the dependent
266	variable. The Spatial Delayed Recall Test required participants to recall the location of a
267	white dot on the screen. Each trial commenced with a fixation cross followed by presentation
268	of a white dot for 50ms in a random location. The white dot was replaced by a randomly
269	generated number between 90-99 at which point participants were asked to orally subtract

270	three from this number continuously for eight seconds. Once eight seconds had elapsed the
271	number disappeared and the participant was required to indicate (by touching the screen) the
272	location at which the white dot had previously appeared. There were sixteen trials in total and
273	the dependent variable was the distance from the target (mm).
274	2.4 fMRI protocol
275	Scanning was performed at the CINN, University of Reading, UK using a 3.0 Tesla Siemens
276	MAGNETOM Trio MRI scanner with a 12-channel Head Matrix coil. The ASL images were
277	acquired using the PICOREQ2T sequence with the following parameters: number of
278	slices=18, slice thickness=5.0mm, inter-slice gap=1.25mm, TR=2500ms, TE=11ms,
279	TI1=700, Saturation Stop Time=1600, TI2=1800, perfusion mode=PICORE Q2T (pulsed). A
280	high resolution whole-brain three dimensional anatomical image was also acquired using an
281	MPRAGE gradient-sequence with 176 x 1mm thick slices (1*1*1 voxels size, TE: 2.52ms,
282	TR: 2020ms, TI: 1100ms, FOV: 250x250, slice thickness: mm2, Flip Angle: 9deg). FMRI
283	data processing was carried out using FEAT (FMRI Expert Analysis Tool) Version 5.98, part
284	of FSL (FMRIB's Software Library; www.fmrib.ox.ac.uk/fsl). ASL volumes from each
285	scanning session were all registered to the corresponding individual's high resolution
286	structural image using rigid body transformations. In a second step, the images were
287	registered to the Montreal Neurological Institute (MNI) template brain using a 12 degrees of
288	freedom affine transformation algorithm. To allow voxelwise comparisons, each CBF map
289	was individually processed using perfusion signal modelling, which models the differences
290	between control images and tagged (spin labelled) images within a time series. A CBF map
291	was produced for each participant, drink (HF and CT) and time point (baseline, two hours
292	and five hours).
293	2.5 Statistical Analysis
294	All analysis and data processing was performed by independent researchers who did not
295	participant in any of the test day procedures and remained blinded to condition. Cognitive test
296	and blood pressure-dependent variables were assessed with a 2x2 repeated measures
297	ANOVA (Drink x Time). Significant main effects and interactions were explored with post
298	hoc t-tests applying Bonferroni corrections for familywise error. Analysis of the cognitive
299	and blood pressure data was performed with SPSS Statistics 21. FMRI data processing was
300	carried out using FEAT (FMRI Expert Analysis Tool) Version 5.98 part of FSI (FMRIR's

301	Software Library, www.fmrib.ox.ac.uk/fsl). ASL volumes from each scanning session were
302	all registered to the corresponding individual's high resolution structural image using rigid
303	body transformations. In a second step the images were normalised to the Montreal
304	Neurological Institute (MNI) template brain using a 12 degrees of freedom affine
305	transformation algorithm. To allow voxelwise comparisons, we firstly processed each CBF
306	map individually using the perfusion signal modelling, which models the differences between
307	control and tag. We processed a CBF map for each participant, time point (pre and post) and
308	drink (HF & CT). These perfusion flow maps were then given as inputs for the 2nd level
309	analysis (t contrasts) which processed the difference between pre and post for each drink.
310	Specifically these t test contrasts compared the CBF maps at 2 and 5 hours post drink with
311	the pre drink baseline, and had the form of a simple subtraction defined as such: CBF 2 hrs -
312	CBF baseline, and CBF 5 hrs - CBF baseline. The output of this second step was contrast
313	images which corresponded to the actual increase in the perfusion flow post drink
314	consumption. Each of those contrast images was then entered into a 3rd level paired-sample t
315	test which compared the drink interventions. The resulting Z (Gaussianised T/F) statistic
316	image was then cluster thresholded with initial clusters determined using a voxelwise
317	uncorrected height threshold of Z>2.3 followed by a cluster significance threshold of $p < 0.05$
318	(corrected for multiple comparisons). Prior to analysis normality checks were performed on
319	all data and outliers were removed.
320	3. Results
320	o. Results
321	3. Results [Figure 1 here] 3.1 ASL CBF
322	3.1 ASL CBF
323	Figure 1 shows significantly greater regional perfusion in the inferior frontal gyrus and
324	middle frontal gyrus of the right hemisphere two hours following consumption of the HF
325	drink compared to the CT drink (988 voxels, co-ordinates: (X=37.9, Y=31.8, Z=17.8),
326	statistics threshold: Z=3.69, p<0.001. There were no significant differences in regional
327	perfusion between the HF and CT drinks five hours post consumption, and no significant
328	differences in global perfusion were observed between the two conditions at either time point.
329	3.2 Cognitive Tests
330	[Figure 2 here]

331	A significant Drink*Time interaction was observed for the DSST ($F^{1,23}=10.76$, p<0.01). As
332	shown in Figure 2, post hoc t-tests revealed that consumption of the HF drink resulted in a
333	significant improvement in DSST performance at two hours relative to baseline (t=3.84,
334	p<0.01), whereas no significant improvement in performance was observed following the CT
335	drink (t=0.05, p=0.96). Baseline DSST performance did not differ between the CT and HF
336	drinks (t=0.02, p=0.98). No significant interactions or main effects were observed for all
337	other cognitive tests (see Table 2).
338	[Table 2 here]
339	3.3 Blood pressure
340	The Drink*Time interactions were not significant for either diastolic (F ^{1,23} =1.19, p=0.29) or
341	systolic blood pressure (F ^{1,23} =0.5, p=0.49). However, main effects of Time revealed that both
342	systolic (F ^{1,23} =4.56, p<0.05) and diastolic (F ^{1,23} =13.38, p<0.01) blood pressure significantly
343	reduced at two hours relative to baseline (see Table 2). To further explore the main effect of
344	Time, post hoc t-tests revealed that consumption of the HF drink significantly reduced
345	diastolic blood pressure at two hours compared to baseline (t=3.43, p<0.01), whereas this
346	reduction did not reach significance following the CT drink (t=2.05, p>0.05).
347	4. Discussion
348	Acute improvement in a measure of executive function (DSST) and increased CBF in the
349	right frontal gyrus during conscious resting state were observed two hours following
350	consumption of 500ml of flavanone-rich citrus juice relative to a zero flavonoid, vitamin C
351	matched, equicaloric control drink. These data indicate that 70.5mg flavonoids (specifically
352	42.15mg hesperidin, 17.25mg naringin, 6.75mg narirutin, 4.3mg caffeic acid) can increase
353	CBF in healthy young adults. However, these data do not provide evidence for a direct
354	association between increased CBF and behavioural benefits. Firstly, cognitive testing and
355	CBF were not assessed simultaneously, and moreover, no effects were observed for the
356	majority of cognitive outcomes.
357	This is the first data to show regional specific increases in human CBF following a flavanone
358	dose. The frontal gyrus has been identified within a network of brain areas which are active
359	during conscious resting state ⁽²³⁾ which may explain the observed regional specific increased
360	perfusion. The inferior frontal gyrus has typically been implicated in tasks which require
361	inhibition, planning, decision making and other aspects of executive function ⁽²⁴⁾ , such as the

362	DSST, for which improvements were observed in this study following the flavanone-rich
363	juice. However, the mechanisms underpinning the right hemispheric lateralisation are
364	unclear.
365	These data provide evidence that flavonoid sub-classes other than cocoa-flavanols can also
366	have acute effects on CBF within the immediate postprandial period. Increased global CBF
367	across grey matter was observed 2 hours after consumption of a 560mg flavanol drink
368	relative to a control drink ⁽¹²⁾ , however, regional blood flow was not assessed, most likely due
369	to the small sample size of healthy young adults (n=4). The same authors also reported that a
370	smaller flavanol dose (172mg) was associated with increased regional specific BOLD signal
371	intensity (including medial and lateral prefrontal cortex, parietal cortex, anterior cingulate
372	cortex and the cerebellum) 1.5 hours post consumption in 16 health young adults, although
373	the cocoa drink was consumed for 5 consecutive days prior to the fMRI scan. Direct
374	comparisons between the regions of interest reported by Francis et al. (12) and the present
375	study are restricted by differences in scanning methods (BOLD or ASL), the flavonoid sub-
376	class and dose (172mg cocoa flavanols or 70.5mg fruit flavanones), duration of consumption
377	(5 days or a single acute dose) and behavioural instructions during imaging; the present study
378	examined conscious resting state whereas Francis et al. (12) examined neural activity during an
379	executive function task. In addition, a limitation of the present study was the absence of
380	double blinding during data collection which could have introduced experimenter biases.
381	Critically though, data analysis was performed blinded by an independent researcher. Further
382	investigation of the acute effects of flavonoid consumption on regional CBF are required in
383	order to identify whether specific regions appear to particularly reactive to flavonoid
384	ingestion in the postprandial period. For example, increased perfusion in the anterior
385	cingulate cortex and central opercular cortex was recently observed two hours post
386	consumption of 494mg cocoa flavanols ⁽²⁵⁾ , however, behavioural tasks were not assessed.
387	Studies of neural activation following chronic daily consumption of fruit based flavonoids ⁽⁹⁾
388	and flavanol-rich cocoa flavonoids ^(13,14) indicate that areas of the brain implicated in memory
389	function such as the hippocampus, specifically the dentate gyrus, are especially sensitive.
390	The mechanisms by which flavonoids acutely induce vasodilation and enhance CBF are
391	thought to be via increased nitric oxide synthesis in the endothelium (eNOS). Nitric oxide
392	synthesis is a key regulator of angiogenesis and the dilation of cells, and is also synthesised
393	by neurons in response to neuronal activation (nNOS) ⁽²⁶⁾ . As such, nitric oxide is thought to
394	be crucial for the coupling between increased blood supply and neuronal activity ⁽²⁷⁾ .

Flavonoid ingestion in humans is known to enhance circulating nitric oxide species ⁽²⁸⁾ in
association with beneficial vascular outcomes such as increased flow mediated dilation and
augmented microcirculation ⁽¹¹⁾ . Therefore, it is plausible that flavonoid-induced increases in
the bioavailability of nitric oxide in the brain may lead to increased blood vessel and neuronal
efficiency and, subsequently, improvements in cognitive function. These vascular
mechanisms are tentatively supported by the observed reduction in systolic blood pressure
following the flavanone-rich juice in the present study, however it should be noted that this
was a subtle reduction (3mmHg). Having said that, a large reduction in blood pressure would
not be anticipated in this sample of healthy young adults. Research in adults with metabolic
syndrome shows that 550mg daily supplementation of the flavanone hesperidin for three
weeks can lead to increased flow mediated dilation and endothelial nitric oxide synthesis ⁽²⁹⁾ .
This is pertinent to the present findings given that hesperidin was the predominant flavanone
within the flavanone-rich citrus juice.
Research is required to directly examine the relationship between flavonoid consumption,
nitric oxide activity, CBF and cognitive function. Interestingly, increased nitric oxide status
in the plasma has been observed two hours post consumption of flavonoid-rich apples,
however, no effects were observed for cognitive function ⁽³⁰⁾ . Kean et al. ^[10] reported global
cognitive improvements in healthy older adults cognition following daily chronic
consumption of flavanone-rich orange juice (305mg/day) over eight weeks, however, nitric
oxide status was not examined. This sample of highly educated, healthy young adults, are
likely performing close to optimal functioning and therefore, there is greater potential for
acutely enhancing cognition in older adults who may be experiencing naturally occurring
ageing associated cognitive decline. This may explain why effects were not observed for the
majority of cognitive outcomes in the present study, particularly given the relatively small
flavanone dose (70.5mg). Previously, positive behavioural effects in healthy young adults
have only been observed following high doses of cocoa flavanols e.g. 573mg ⁽³¹⁾ and
550mg/994g ⁽³²⁾ . Additionally, it has been argued that flavonoid interventions are more likely
to benefit cognition during tasks of high demand ³² , therefore it is possible that the current
cognitive battery was not suitably challenging, however, there was no evidence of ceiling
effects.
It can be hypothesised that stronger behavioural effects may occur at a later time point given
that plasma flavanone metabolites following orange juice consumption have been observed to peak at six hours (33,34). Indeed, it is a limitation of the present study that cognitive function
peak at six nours 11 Indeed at its a limitation of the present study that cognitive function

was exclusively assessed two hours post consumption (in addition to baseline). Recently,
benefits for global cognitive function and subjective alertness were observed 2 and 6 hours
post consumption of a flavanone rich (272mg) 100% orange juice in healthy young adults,
with the effects being more pronounced (relative to the control drink) at 6 hours (35). Having
said that, presently, increased CBF was observed at two hours but not five hours, possibly
indicating that the time course by which the flavonoids in orange and grapefruit juice exert
their physiological effects may differ relative to 100% orange juice, although the mechanism
for this is unclear. Future acute interventions of flavonoid consumption should examine
plasma flavonoid metabolites concomitantly with cognitive outcomes to investigate whether
peak metabolite concentrations coincide with the hypothesised behavioural effects. Flavanone
metabolites are certainly of interest given that they are known to cross the blood brain
barrier ⁽³⁶⁾ . Future studies should carefully consider the time span over which circulating
flavonoid metabolites may impact cognitive outcomes. Anthocyanin metabolites have been
observed in urine up to 5 days following acute ingestion of blueberries ⁽³⁶⁾ . This has
implications for the current findings; the 24 hour dietary restriction may not have been
sufficient to account for potential confounding effects of habitual flavonoid intake, although
it is unclear whether the associated levels of circulating metabolites can acutely affect
cognition.
In conclusion, 500ml citrus juice containing 70.5mg flavonoids was associated with increased
regional perfusion in the right frontal gyrus in young healthy adults two hours following the
flavanone-rich juice in conscious resting state relative to the zero-flavonoid, equicaloric,
vitamin C matched control. This data demonstrates that fruit based flavonoids can acutely
enhance CBF in healthy adults. Behavioural improvements on a battery of cognitive tests
following the flavonoid-rich juice were only observed for one measure of executive function
(DSST) in a separate cohort of young adults. Therefore, the present data does not show a
clear association between increased CBF and behavioural benefits. Further research should
simultaneously examine cognitive performance and respective functional brain activation,
regional cerebral blood flow and concentrations of circulating nitric oxide species following
consumption of flavonoid-rich juices to further our understanding of underlying mechanisms.

References

- 1. Spencer JPE (2010) Beyond antioxidants: the cellular and molecular interactions of
- flavonoids and how these underpin their actions on the brain. *Proceedings of the Nutrition*
- 460 *Society* **60**, 244-60.
- 2. Menze ET, Tadros MG, Abdel-Tawed AM *et al.* (2012) Potential neuroprotective effects
- of hesperidin on 3-nitropropuinic acid-induced neurotoxicity in rats. *Neurotoxicology* **33**,
- 463 1265–1275.
- 3. Rendeiro C, Vauzour D, Rattray M et al. (2013) Dietary levels of pure flavonoids improve
- spatial memory performance and increase hippocampal brain derived neurotrophic factor.
- 466 *PLoS One* **8**, e63535.
- 4. Laske C, Stellos K, Hoffmann N et al. (2011) Higher BDNF serum levels predict slower
- 468 cognitive decline in Alzheimer's disease patients. *Int J Neuropsychop* **14**, 399-404.
- 5. Butchart C, Kyle J, McNeill G et al. (2011) Flavonoid intake in relation to cognitive
- function in later life in the Lothian Birth Cohort 1936. *Brit J Nutr* **106**, 141-148.
- 6. Lamport DJ, Dye L, Wightman JD et al. (2012) The effects of flavonoid and other
- polyphenol consumption on cognitive performance: A systematic research review of human
- experimental and epidemiological studies. *Nutrition and Aging* 1, 5-25.
- 7. Lamport DJ, Hoyle E, Lawton CL et al. (2011) Evidence for a second meal cognitive
- effect: glycaemic responses to high and low glycaemic index meals are associated with
- 476 cognitive the following morning. *Nutr Neurosci* **14**, 66-72.
- 8. Krikorian R, Nash TA, Shidler MD et al. (2010a) Concord grape juice supplementation
- 478 improves memory function in older adults with mild cognitive impairment. Br J Nutr 103,
- 479 730-734.

- 9. Krikorian R, Boespflug EL, Fleck DE et al. (2012) Concord grape juice supplementation
- and neurocognitive function in human aging. *J Agric Food Chem* **60**, 5736-5742.
- 482 10. Kean RJ, Lamport DJ, Dodd GF et al. (2015) Chronic consumption of flavanone-rich
- 483 orange juice is associated with cognitive benefits: an 8-week randomised double-blind
- placebo-controlled trial in healthy older adults. Am J Clin Nutr 101, 506-514.
- 485 11. Schroeter H, Heiss C, Balzer J et al. (2006) (-)-Epicatechin mediates beneficial effects of
- flavanol-rich cocoa on yascular function in humans. Proc Natl Acad Sci USA 103, 1024-9
- 12. Francis S, Head K, Morris PG et al. (2006) The effect of flavanol-rich cocoa on the fMRI
- response to a cognitive task in healthy young people. J Cardiovasc Pharmacol 47, S215-220.
- 489 13. Brickman AM, Khan US, Provenzano FA et al. (2014) Enhancing dentate gyrus function
- 490 with dietary flavanols improves cognition in older adults. *Nat NeuroSci* **17**, 1798-1803.
- 491 14. Camfield DA, Scholey A, Pipingas A et al. (2012) Steady state visually evoked potential
- 492 (SSVEP) topography changes associated with cocoa flavanol consumption. *Physiol Behav*
- **493 105**, 948-957.
- 494 15. Krikorian R, Shidler MD, Nash TA et al. (2010b) Blueberry supplementation improves
- 495 memory in older adults. J Agric Food Chem **58**, 3996-4000.
- 496 16. Lamport DJ, Saunders C, Butler LT et al. (2014) Fruits, vegetables, 100% juices and
- 497 cognitive function. *Nutr Rev* **72**, 774-789.
- 498 17. Bach M (1996) The Freiburg Visual Acuity Test automatic measurement of visual
- 499 acuity. *Optometry Vision Sci* **73**, 49–53.
- 18. Stadler MA (1995) Role of attention in implicit learning. J Exp Psychol Learn 21, 674-
- 501 685.

- 502 19. Wechsler D (1981) The psychometric tradition developing the Wechsler adult
- intelligence scale. Contemp Educ Psychol 6, 82-5.
- 20. Stroop JR (1935) Studies of interference in serial verbal reactions. J Exp Psychol 18,
- 505 643–662.
- 21. Morris N, Jones DM (1990) Memory updating in working memory: The role of the
- central executive. Br J Psychol 81, 111-21.
- 508 22. Garavan H, Ross TJ, Stein EA (1999) Right hemispheric dominance of inhibitory control:
- An event-related functional MRI study. *PNAS* **96**, 8301-8306.
- 23. Binder JR, Frost JA, Hammeke TA et al. (1999) Conceptual processing during the
- conscious resting state: a functional MRI study. *J Cogn Neurosci* 11, 80-93.
- 512 24. Aron AR, Robbins TW, Poldrack RA (2004) Inhibition and the right inferior frontal
- 513 cortex. *Trends Cogn Sci* **8**, 170–177.
- 514 25. Lamport DJ, Pal D, Moutsiana C et al. (2015). The effect of flavanol rich cocoa on
- cerebral perfusion in healthy older adults during conscious resting state: a placebo controlled
- crossover acute trial. *Psychopharmacol* **232**, 3227-3224.
- 517 26. Berdt DS, Hwang PM, Snyder SH (1990) Localization of nitric oxide synthesis indicating
- a neural role for nitric oxide. *Nature* **347**, 768-770.
- 519 27. Toda N, Ayajiki K, Okamura T (2009) Cerebral blood flow regulation by nitric oxide in
- neurological disorders. Can J Physiol Pharmacol 87, 581–594.
- 521 28. Loke WM, Hodgson JM, Proudfoot JM et al (2008) Pure dietary flavonoids quercetin and
- 522 (-)-epicatechin augment nitric oxide products and reduce endothelin-1 acutely in healthy men.
- 523 Am J Clin Nutr 88, 1018-25.

- 524 29. Rizza S, Muniyappa R, Lantorno M et al. (2011) Citrus polyphenol hesperidin stimulates
- production of nitric oxide in endothelial cells while improving endothelial function and
- reducing inflammatory markers in patients with metabolic syndrome. J Clin Endocrinol
- 527 *Metab* **96**, E782-92
- 30. Bondonno CP, Downey LA, Croft KD et al. (2014). The acute effect of flavonoid-
- rich apples and nitrate rich spinach on cognitive performance and mood in healthy
- men and women. *Food Funct* DOI: 10.1039/c3fo60590f
- 31. Field DT, Williams CM, Butler LT (2011) Consumption of cocoa flavanols results in an
- acute improvement in visual and cognitive functions. *Physiol Behav* **103**, 255–260.
- 32. Scholey A, French SJ, Morris PJ et al. (2010) Consumption of cocoa flavanols results in
- acute improvements in mood and cognitive performance during sustained mental effort. J
- 535 *Psychopharmacol* **24**, 1505–1514.
- 33. Manach C, Scalbert A, Morand C (2004) Polyphenols: food sources and bioavailability.
- 537 *Am J Clin Nutr* **79**, 27-47.
- 34. Mullen W, Archeveque MA, Edwards CA et al (2008) Bioavailability and metabolism of
- orange juice flavanones in humans: impact of a full-fat yogurt. J Agr Food Chem 56, 11157-
- 540 11164.
- 35. Alharbi MH, Lamport DJ, Dodd G et al. (2015) Flavonoid rich orange juice is associated
- with acute improvements in cognitive function in healthy middle aged males. Eur J Nutr
- 543 DOI:10.1007/s00394-015-1016-9.
- 36. Youdim KA, Dobbie MS, Kuhnle G et al. (2003) J Interaction between flavonoids and
- the blood-brain barrier: in vitro studies. *Neurochem* **85**, 180-92.

Acknowledgemen	ts
----------------	----

547

548

549

550

551

This research was funded by PepsiCo Inc. The authors have no other conflicts of interest to declare. JMF, LTB & JPES designed the research. DJL, DP & AM analysed the data and prepared the manuscript. JMF, LTB & JPES reviewed and edited the manuscript. AM, SB & DP conducted the research.

Conflicts of Interest: None

Table 1 – mean participant characteristics for the behavioural cognitive arm and the arterial spin labelling (ASL) arm (standard deviation)

	Behavioural Cognitive	ASL Arm	p-value comparison
	Arm (n=24)	(n=16)	between arms
Age (years)	22 (2.2)	22 (1.9)	0.73
BMI (kg/m^2)	23.2 (3.9)	23.3 (1.7)	0.88
Years in education	16.9 (1.8)	16.6 (1.4)	0.53
$MMSE^{1}$ (max 30)	29.3 (1)	29.6 (0.5)	0.19
1Mini Mental State Examination		` ′	

553

Table 2 – Means and standard deviations for each cognitive test and blood pressure data at baseline and two hour post consumption for the control and high flavanone drinks

		Control Drink	High Flavanone	Drink*Time interaction (p-value)
DSST ¹	Baseline	77.4 (9.7)	75.9 (8.4)	0.003**
	2 hours	77.5 (9.6)	80.3 (8.9)	0.10
FVT Landholt C ²	Baseline	0.41 (0.03)	0.4 (0.02)	0.19
3	2 hours	0.42 (0.04)	0.4 (0.02)	0.65
FVT Vernier ³	Baseline	21.2 (23.3)	19.9 (20.1)	0.65
4	2 hours	19.6 (16.8)	21.3 (14.7)	
GoNo-Go ⁴	Baseline	315 (55)	310 (60)	0.86
5	2 hours	308 (62)	305 (57)	
Letter Memory ⁵	Baseline	77 (16.7)	74.6 (18.4)	0.89
	2 hours	77.1 (12)	74.1 (16.3)	
Logical Memory Imm ⁶	Baseline	17.5 (3.6)	18.3 (3.3)	0.97
	2 hours	15.4 (3)	16.1 (3.6)	
Logical Memory Del. ⁶	Baseline	16.1 (3.6)	15.8 (3.9)	0.48
_	2 hours	14.1 (3.8)	14.6 (3.3)	
Sequence Learning ⁷	Baseline	97.8 (1.5)	98 (1.6)	0.52
	2 hours	96.9 (2.1)	97 (2)	
Spatial Memory ⁸	Baseline	27.3 (15.8)	28.2 (18)	0.68
	2 hours	28.2 (15.4)	30 (20.6)	
Stroop ⁹	Baseline	654 (74)	647 (71)	0.71
•	2 hours	626 (84)	623 (67)	
Word Recall Imm ¹⁰	Baseline	7.3 (3.2)	7.3 (3.5)	0.11
	2 hours	7(2.7)	5.7 (2.5)	
Word Recall Del. 10	Baseline	5.2 (2.9)	5.2 (3.2)	0.15
	2 hours	4.5 (2.5)	3.2 (2.3)	
Diastolic BP ¹¹	Baseline	72 (8.4)	71.7 (7.5)	0.49
	2 hours	69.7 (7.8)	68.4 (7.5)	
Systolic BP ¹¹	Baseline	115.9 (12.4)	116.5 (12.4)	0.29
,	2 hours	115.3 (12.3)	113.8 (12.1)	
**p<0.01		()	()	

559

560

561

555

556

1Digit Symbol Substitution Test correct responses; 2 Freiburg Vision Test Landholt C a higher score indicates better vision; 3 Freiberg

Vision Test Vernier Threshold a higher score indicates better vision; 4 GoNo-Go reaction time (ms); 5 Letter Memory Accuracy; 6 Logical

Memory units recalled; 7 Sequence Learning correct responses; 8 Spatial Delayed Recall Test distance from target (mm), 9 Computerised

Stroop reaction time (ms); Word Recall number of words recalled; Blood Pressure mmHg.

Figure 1 Legend: Significantly greater regional perfusion occurred in the inferior frontal
gyrus and medial frontal gyrus of the right hemisphere two hours following the high
flavanone drink compared to the control drink. Activations are superimposed on axial slices
of the MNI template brain and represent perfusion flow in ml/100g tissue/min with yellow
indicating greater perfusion. The images were initially thresholded at Z>2.3 to identify
activation clusters and then a (corrected) cluster significance threshold of p<0.05 was applied.
Figure 2 Legend: Following a significant Drink*Time interaction (F ^{1,23} =10.76, p<0.01) post
hoc tests revealed that number of correct responses on the Digit Symbol Substitution Test
was significantly greater at two hours relative to baseline (t=3.84, p<0.01) following
consumption of the flavanone rich juice.

Figure 2 – Digit Symbol Substitution Test mean correct responses and standard errors for the control and high flavanone drink at baseline and two hour post consumption

