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ABSTRACT

We seek to understand the origin of radial migration in spiral galaxies by analysing in detail the

structure and evolution of an idealized, isolated galactic disc. To understand the redistribution

of stars, we characterize the time evolution of properties of spirals that spontaneously form in

the disc. Our models unambiguously show that in such discs, single spirals are unlikely, but

that a number of transient patterns may coexist in the disc. However, we also show that while

spirals are transient in amplitude, at any given time the disc favours patterns of certain pattern

speeds. Using several runs with different numerical parameters we show that the properties

of spirals that occur spontaneously in the disc do not sensitively depend on resolution. The

existence of multiple transient patterns has large implications for the orbits of stars in the

disc, and we therefore examine the resonant scattering mechanisms that profoundly alter

angular momenta of individual stars. We confirm that the corotation scattering mechanism

described by Sellwood & Binney is responsible for the largest angular momentum changes in

our simulations.

Key words: galaxies: evolution – galaxies: formation – galaxies: kinematics and dynamics

– galaxies: spiral – galaxies: structure.

1 IN T RO D U C T I O N

As stellar galactic discs form and evolve, the processes governing

their development leave behind a multitude of traces. Massive stars

pollute the interstellar medium (ISM) through supernova explosions

and stellar winds, endowing subsequent generations of stars with

distinct chemical signatures. Similarly, dynamical perturbations,

whether they are secular (spiral arms or bars) or due to the hierar-

chical build-up of mass, sculpt the kinematic properties of stellar

populations. Together, these signatures provide a ‘fossil record’ of

a disc’s evolution through cosmic time.

Galaxy formation models attempt to match their predictions to

this fossil record and attempt to reconstruct the disc’s history. For

the past thirty years, an implicit assumption has been made in such

modelling: stars remain in the same part of the disc forever (e.g.

Tinsley 1975; Matteucci & Francois 1989; Boissier & Prantzos

1999; Chiappini, Matteucci & Romano 2001). This simple assump-

tion carries enormous power as it allows one to reconstruct the time

evolution of a given quantity (such as metallicity and star formation

rate) at a particular radius from present-day, single epoch observa-

⋆E-mail: roskar@physik.uzh.ch

†RCUK Fellow.

tions. Such ‘static’ modelling has been successful in illuminating

several critical aspects of disc formation such as the need for in-

fall of low-metallicity gas to solve the G-dwarf problem (Tinsley

1975). Over the past several years, however, this assumption of

stars remaining near their birth radii has been firmly shaken by the

realization that rapid stellar migrations of several kpc are possible

(Sellwood & Binney 2002, hereafter SB02).

The idea that stars may not remain near their birth radii is not new.

Wielen (1977) suggested that stellar orbits diffuse in velocity space

consequently inducing a drift in the galactocentric radius for an en-

semble of stars. This was followed up by Wielen & Fuchs (1985) and

applied to the determination of the Sun’s birthplace (Wielen, Fuchs

& Dettbarn 1996). In Wielen (1977) the diffusion is a relatively slow

process driven by random scattering by giant molecular clouds –

for observationally constrained velocity dispersions, variations in

galactocentric radius of at most few kpc are expected. Instead, in

the mechanism described by SB02, migrations of several kpc may

take place in a few hundred Myr due to very efficient exchange of

angular momentum at the corotation resonance (CR).

This exchange of energy and angular momentum at the CR oc-

curs without changing the orbital radial actions therefore retaining

the orbital circularity. In addition, the mechanism operates most

efficiently for stars on the most circular orbits. These two properties

lead to the peculiar result that migrations of several kpc in a Milky
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Way (MW)-size disc are possible without substantial accompanying

increase in random motion. The increase in velocity dispersion with

age of stars (see e.g. Holmberg, Nordström & Andersen 2009 for

the solar neighbourhood) constrains heating processes and thereby

also the magnitude of spiral perturbations, so the ability of the CR

to redistribute stars substantially without heating excessively is a

critical aspect of the CR mixing process. Because the SB02 mech-

anism involves the CR, the spiral amplitudes must be transient if

redistribution rather than trapping is to occur. In the absence of

other perturbations, a steady spiral traps stars on horseshoe orbits –

however, if a spiral’s amplitude grows and decays on a time-scale

comparable to one-half the libration period of a horseshoe orbit, the

spiral will merely deposit the star on the other side of the resonance

and vanish before pulling it back (SB02).

Unlike steady spirals that can heat the disc only at the Lindblad

resonances (Lynden-Bell & Kalnajs 1972), transient spirals can

also heat the disc away from the principal resonances (Barbanis

& Woltjer 1967; Binney & Lacey 1988; Jenkins & Binney 1990).

Consequently, a single spiral can heat the disc enough to prevent

any further asymmetric structure formation in just a few rotations

(Sellwood & Carlberg 1984). Star formation provides a natural

cooling mechanism, continually peppering the disc with young stars

born with the galactic velocities of their parent gas clouds. Sellwood

& Carlberg (1984) found that in the presence of such cooling,

transient spirals keep the disc in a quasi-stable state at a Toomre

Q ∼ 2, which allows for their continual regeneration.

The realization that stars in galactic discs may migrate radially

across significant distances has in recent years completely changed

the discourse on spiral galaxy evolution. Following SB02, several

other theoretical works have further illuminated the complexities

that radial mixing introduces for stellar population studies. Lepine,

Acharova & Mishurov (2003) investigated the effect of corotation

scattering on the disc metallicity gradient. Roškar et al. (2008a,

hereafter R08a) showed that radial migration could drastically alter

the stellar population properties of outer discs and provided an ex-

planation for the observed gradients across the surface brightness

profile break in NGC 4244 (de Jong et al. 2007). R08a predicted

that discs with broken exponential profiles should show an inflec-

tion in the mean age profile corresponding to the break radius. This

has subsequently been confirmed indirectly by surface photometry

(Azzollini, Trujillo & Beckman 2008; Bakos, Trujillo & Pohlen

2008) and directly by integral-field spectroscopy (Yoachim, Roškar

& Debattista 2010; Yoachim et al. 2012) and resolved-star counts

(Radburn-Smith 2012), providing further evidence that radial mix-

ing occurs in external galaxies.

Using the same simulations, Roškar et al. (2008b, hereafter R08b)

extended the analysis of R08a and investigated the repercussions of

stellar migration for a range of stellar population studies: the so-

lar neighbourhood age–metallicity relation (AMR) and metallicity

distribution function (MDF); the evolution of metallicity gradients

and the reconstruction of star formation histories from present-

day observations of stellar populations in external galaxies. They

found that >50 per cent of stars on mostly circular orbits in the

solar neighbourhood of their model have come from elsewhere and

that migration flattens the AMR and broadens the MDF. They also

found that the reconstruction of a star formation history becomes

problematic in the presence of migration especially at large radii

where the mass in migrated stars approaches or exceeds the cumu-

lative amount of stars formed in situ. R08a,b therefore established

the notion that regardless of the method used to observe a galactic

disc (unresolved photometry, photometry of resolved stars, spec-

troscopy of individual stars in the MW) radially migrated stars

substantially alter the combined properties of the observed sample,

thereby possibly strongly biasing the outcome of any subsequent

modelling.

Schönrich & Binney (2009a,b) included a probabilistic prescrip-

tion of radial migration in a chemical evolution model constrained

by MW observables and found that, similarly to R08b, the MDF

is broadened and the AMR flattened as a result of migration. They

found also that most observational properties and peculiarities of

the thick disc can be explained by radial migration. Loebman et al.

(2011) explored the formation of the thick disc via radial migration

in the N-body models of R08a,b and similarly found that simulated

trends tend to agree qualitatively with observed thick disc properties

from the Sloan Digital Sky Survey (SDSS; Ivezić et al. 2008; Lee

et al. 2011). Minchev & Famaey (2010) and Minchev et al. (2011,

2012) argued that apart from corotation scattering as presented by

SB02, combined effects of multiple nearby resonances from several

different patterns may also be important in driving the redistribu-

tion of stars. Their results implied that substantial mixing is possible

even if the spiral structure is not transient. Brunetti, Chiappini &

Pfenniger (2011) measured the diffusion coefficients in idealized

bar-unstable discs and found the CR of the bar to be driving the

diffusion, though their models were collisionless and as such did

not allow for recurrent spiral activity.

Understanding radial migration is particularly relevant at the

present time because of the upcoming surveys designed to study

the detailed structure of the MW disc. Studies using data from the

SDSS (e.g. Ivezić et al. 2008; Jurić et al. 2008) and its follow-

up surveys such as Sloan Extension for Galactic Understanding

and Exploration (SEGUE; Yanny et al. 2009; de Jong et al. 2010;

Lee et al. 2011) as well as results using data from Radial Velocity

Experiment (RAVE; Ruchti et al. 2011; Wilson et al. 2011) have

already pushed the current models to their limits in trying to explain

the various observed trends and interdependencies in the thick and

thin discs. In the coming years, spectroscopic surveys, such as High

Efficiency and Resolution Multi-Element Spectrograph (HERMES;

Freeman & Bland-Hawthorn 2008) and Apache Point Observatory

Galactic Evolution Experiment (APOGEE; Prieto et al. 2008), will

obtain high-resolution spectroscopy of millions of stars, allowing

finally for ‘chemical tagging’ of stars into their birth clusters (Free-

man & Bland-Hawthorn 2002). Such observations will in principle

allow for a direct measurement of stellar radial migration in the

MW (Bland-Hawthorn, Krumholz & Freeman 2010). At the same

time, the Gaia mission will provide a complete 6D map of a 10-kpc

sphere centred on the Sun (Perryman et al. 2001), and follow-up

spectroscopic surveys will yield vast amounts of complementary

chemical abundance data. Finally, the Large Synoptic Survey Tele-

scope (LSST; LSST Science Collaborations 2009) will similarly

provide ground-based photometry of the entire sky. To distil these

vast data sets and apply them to galactic archaeology, a clear un-

derstanding of the radial mixing processes is essential.

In this paper, we explore in detail the properties of self-

propagating spiral structure and the causes of the resulting radial

migration in simulations from R08a,b and Loebman et al. (2011).

We first quantify the spiral structure that forms spontaneously in

our simulations and use this analysis as a basis for understanding

the causes of radial migration. We also perform a set of numerical

tests to explore the robustness of our results to choices of numeri-

cal parameters and stochasticity. The paper is organized as follows:

in Section 2 we discuss the details of our models; in Section 3

we quantify the spiral structure in our fiducial simulation; in Sec-

tion 4 we explore the causes of radial mixing; in Section 5 we

present several tests of the effects of numerical parameters on the

C© 2012 The Authors, MNRAS 426, 2089–2106
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generation of spiral structure and finally, we state our conclusions in

Section 6.

2 SI M U L ATI O N S

The initial conditions for all of the runs presented here are generated

as described in Kaufmann et al. (2006, 2007), and consist of spheri-

cal distributions of dark matter (DM) and gas following a Navarro–

Frenk–White (NFW; Navarro, Frenk & White 1997) density profile.

The random velocities of the DM particles are initialized to ensure

equilibrium by means of the distribution function obtained from an

inversion of the NFW density profile (Kazantzidis, Magorrian &

Moore 2004). The gas is initialized to the same mass distribution

with a temperature profile to yield an approximate hydrostatic equi-

librium. The gas is also given a spin consistent with values obtained

from collisionless cosmological simulations (Bullock et al. 2001;

Macciò et al. 2007), i.e. λ = (J/G)
√

|E|/M5 = 0.039, where J is

the total angular momentum, E is the total energy of the system and

M is the mass. The angular momentum follows a radial profile of

j ∝ r, where j is the specific angular momentum. In the fiducial run

we use 106 particles per component, resulting in DM particle mass

of 106 M⊙ and initial gas mass of 1.4 × 105 M⊙.

The simulations were run using the code GASOLINE (Wadsley,

Stadel & Quinn 2004), a hydrodynamics extension of the parallel

multistepping N-body code PKDGRAV (Stadel 2001). The tuning of

the subgrid star formation and feedback prescriptions are described

extensively in Stinson et al. (2006). Here we summarize the im-

portant features. A gas particle becomes eligible for star formation

when its density exceeds 0.1 cm−1 and its temperature dips below

15 000 K. If eligible, the gas particle converts some of its mass into

a star particle at a rate given by

dρ⋆

dt
= c⋆

ρgas

tdyn

, (1)

where c⋆ is the star formation efficiency (set to 0.05 in all of the sim-

ulations), ρgas is the gas density and tdyn is the local dynamical time.

Star particles form with one-third of the initial gas particle mass (in

the fiducial simulation this translates to star particle masses of 4.7 ×
104 M⊙) and to avoid unreasonably small particle masses, gas par-

ticle masses are limited to one-fifth of their initial mass. When a

particle crosses this threshold its mass is distributed among neigh-

bouring particles, resulting in an overall decrease of the number of

gas particles with time. Each star particle represents an entire stel-

lar population and therefore a spectrum of stellar masses described

by the Miller–Scalo initial mass function (Miller & Scalo 1979).

The evolution of massive stars is followed and a feedback cycle is

initiated to reflect the explosion of Type II supernovae. At typical

particle masses of ∼104 M⊙, the supernova energy is injected into

the ISM ‘in bulk’, i.e. individual explosions are not modelled. The

effect of the supernova explosions is modelled on the subgrid level

as a blast wave propagating through the ISM. We track ISM metal

enrichment from Type II and Type Ia supernovae as well as from

asymptotic giant branch (AGB) stars.

The complete set of parameters used for the simulations discussed

in this paper is listed in Table 1. Our fiducial run has been studied

extensively and we used it previously for results presented in R08a,b.

The baryonic particles in the fiducial run use a softening length hs =

50 pc. We tested the softening dependence of our results with runs

S1, S3 and S4 (hs = 25, 100 and 500 pc, respectively). We also

tested the effect of varying particle numbers in runs R1, R3 and R4

with 0.5 × 106, 2 × 106 and 4 × 106 particles in each component,

respectively. We ran a further test of the effects of the mass resolution

Table 1. Simulation parameters.a

Name Ngas Ndark hs (kpc)

Fiducialb 106 106 0.05

S1 106 106 0.025

S3 106 106 0.1

S4 106 106 0.5

SDM 106 107 0.05

T2c 106 106 0.05

T3c 106 106 0.05

R1 5 × 105 5 × 105 0.05

R3 2 × 106 2 × 106 0.05

R4 4 × 106 4 × 106 0.05

R1-T2d 5 × 105 5 × 105 0.05

aAll runs have Mvir = 1012 M⊙, λ = 0.039

and c = 8.0.
bThis is our fiducial run that was presented

previously in R08a,b.
cRuns T2 and T3 are identical to the fidu-

cial run S2/R2 but use different random seeds

when generating the initial conditions.
dRun R1-T2 is identical to run R1 but initial-

ized with a different random seed.

of the DM halo by running a simulation with 10 times the number

of DM particles (run SDM). All runs were carried out for 10 Gyr.

The opening angle $ used for simplifying gravity calculations

was 0.7 for all runs. The code uses a multistepping scheme with the

condition that a particle’s time-step %tgrav = η(ǫ/a)1/2, where η =

0.175, ǫ is the gravitational softening length and a is the accelera-

tion. For the gas particles, the time-step must also satisfy %tgas =

ηcouranth/[(1 + α)c + βµmax], where ηcourant = 0.4, h is the smoothed

particle hydrodynamics (SPH) smoothing length, α = 1 is the shear

coefficient and β = 2 is the viscosity coefficient. µmax is described

in Wadsley et al. (2004). The SPH quantities were calculated on

a kernel using 32 nearest neighbours. The cooling in all runs is

calculated without taking into account the metal content of the gas.

Additional simulations where we vary the physical parameters of

the initial haloes (mass, angular momentum) will be presented in

Paper II of this series.

The strength of these idealized models lies in the fact that there

is no initial stellar component, so none of the properties of the disc

is chosen a priori. As soon as the simulation begins, the gas is al-

lowed to cool in the potential well of the DM, and as it reaches

densities and temperatures conducive to star formation (as set by

our star formation parameters) it spawns stars. Because of the spin,

the gas naturally settles into a rotationally supported disc in the

centre of the halo, giving rise to a galactic disc composed of a mix

of stars and gas. Thus, although all of the simulations presented

here are idealized in the sense that the discs evolve in isolation the

simulations also depart sharply from most other work using ideal-

ized discs because we do not construct equilibrium disc models,

as is usually done in studies focusing on dynamical effects (e.g.

Debattista et al. 2006). Instead, our models grow discs sponta-

neously without any biases regarding disc structure or stellar pop-

ulation properties. The spontaneous growth is particularly impor-

tant for the development of self-limiting structure and subsequent

secular evolution (e.g. Sellwood & Carlberg 1984). We are there-

fore able to follow the temporal evolution of stellar populations

and make direct comparisons between simulated properties and ob-

served galaxies with unprecedented detail.

Real discs of course do not form in such a simple way, but our

simulations are meant only to mimic the formation of discs after

C© 2012 The Authors, MNRAS 426, 2089–2106
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the last major merger. For massive galaxies (M ≥ 1011 M⊙) disc

formation is not dominated by filamentary accretion after z ∼ 2

(Kereš et al. 2005; Brooks et al. 2009). Minor mergers may influence

the morphology of the disc (e.g. Kazantzidis et al. 2008), but the

majority of the disc fuel comes from quiescent cooling of gas from

the halo.

By limiting the processes included in our models, we can perform

a cleaner analysis1 of the disc dynamics. Because of lower computa-

tional cost compared to fully cosmological simulations, we are also

able to attain higher resolution. At the fiducial resolution, for exam-

ple, the discs have ∼2.5 million star particles by 10 Gyr – typical

hydrodynamic cosmological simulations of 1012 M⊙ galaxies have

a few times fewer disc particles.2 However, by allowing our discs

to form spontaneously without a pre-defined stellar component,

we can follow the evolution of stellar populations self-consistently

throughout the simulation.

3 A NATO M Y O F S P I R A L S

We begin by dissecting the spiral structure in our fiducial simula-

tion to show that spirals are responsible for the migration of stars.

For several decades, idealized N-body simulations have produced

self-limiting, transient spirals arising from various sources of in-

stability, such as Poisson noise, discontinuities in the distribution

function (Sellwood & Kahn 1991) or stimulation by the central bar

(Debattista et al. 2006). Studies of the evolution of transient spiral

structure have largely been confined to the realm of carefully tuned

N-body experiments, sometimes with an addition of gas hydrody-

namics or an ad hoc cooling mechanism (Sellwood & Carlberg

1984). Cooling is essential for the persistence of transient spirals

because spirals are naturally self-destructive: when they form, they

also very efficiently heat the disc. Controlled and carefully tuned

N-body experiments are vital for understanding the orbit response

of the underlying disc to perturbing wave propagation, but do not

adequately address how spontaneously recurring patterns may af-

fect stars in a real disc. SB02 (their figs 10–12) provide a hint and

show that an unconstrained collisionless simulation produces an

array of spirals, identified by local maxima in the power spectrum

of m = 2 perturbations. In this section, we seek to expand on such

analysis by also considering the temporal evolution of patterns.

In our simulations, the stellar discs are cooled naturally by on-

going star formation. Stars are initially on kinematically cool orbits

inherited from their parent gas particles, continuously infusing the

disc with a population susceptible to supporting instabilities. The

spiral structure manifests, as we show below, in a complicated array

of patterns and pattern speeds that evolve as the disc grows. Fig. 1

shows the Toomre Q ≡ σ Rκ/3.36,G parameter as a function of

radius at several different times, where σ R is the radial velocity

dispersion of the stars, κ is the epicyclic frequency, , is the surface

density of stars and G is the gravitational constant. The bottom

panel shows , and σ R separately. The recurring spirals are possible

because the disc establishes a marginally stable state, with Q ∼ 2

in the main part of the disc at all times.

1 We analyse the simulations using our own IDL routines as well as

the publicly available PYTHON-based PYNBODY package: http://code.google.

com/p/pynbody/
2 Cosmological simulations may have larger numbers of particles in the

system, but most comprise the other galactic components like the bulge and

halo and relatively few are found in the disc component.

Figure 1. Top: Toomre Q parameter as a function of radius at four different

times in the fiducial run. Bottom: stellar surface density (black) and radial

velocity dispersion (red). Line types correspond to the same times as in the

upper panel.

In order to study the spiral structure, we centre the system on the

potential minimum and divide the particles into concentric equal-

width radial bins. We then expand the stellar particle distribution in

a Fourier series given by

,(r,φ) =

∞
∑

m=0

cm(r) e[−imφm(r)], (2)

where r is the radius, m is the pattern multiplicity, and φm(r) is the

phase of the mth mode at radius r. The complex coefficients cm(r)

are given by

cm(r) =
1

M(r)

N
∑

j=1

mj eimφj , (3)

where M(r) is the total mass in the radial bin, mj is the particle mass,

φj is the angle between the particle’s position vector and the x-axis

and N is the total number of particles in the bin satisfying r < rj <

r + δr. Strictly speaking, this type of decomposition will identify

any type of azimuthal m-fold symmetry, but our assumption is that

strong components identified in this way with low m will be due

either to a bar or spirals. The bar can be separated from spirals by

virtue of its constant phase as a function of radius; however, beyond

the central few kpc we can reasonably expect this method to identify

spirals.

Fig. 2 shows stellar density maps with contours of m = 1 through

m = 4 Fourier components, obtained using equations (2) and (3),

demonstrating that our method can reliably identify and account for

the underlying disc structure. It is also apparent from Fig. 2 that there

C© 2012 The Authors, MNRAS 426, 2089–2106
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Figure 2. Stellar density maps for the fiducial run at several times. Contours of overdensities reconstructed from the Fourier coefficients for m = 1 to m = 4

are overlaid in red. Contours are drawn at the −50, −20, −5, 5, 20 and 50 per cent (under)overdensities; negative contours are shown with dashed lines. We

also require that each radial bin has at least 1000 particles to avoid noise that may arise in regions with low particle numbers. All panels are the same physical

scale.

Figure 3. Global Fourier amplitudes of the stellar particles for m = 1

through m = 5 Fourier components.

are often distinct spirals present at different radii and that each spiral

often has a narrowly defined peak overdensity. The overdensities

we measure vary with time but the normalized amplitude of the m =

2 mode A2 ≡ |c2| ≤ 0.4 at all times for all runs, compatible with the

observations of Rix & Zaritsky (1995). Overdensities at the level of

a few per cent are difficult to see by eye in the stellar surface density

map, but are easily identified with a Fourier decomposition.

In a spontaneously evolving disc, we expect patterns of all mul-

tiplicities to exist, and they all could perturb the orbits of stars. In

Fig. 3 we show the global Fourier amplitude as a function of time

for m = 1 through m = 5 Fourier components. The m = 2 mode

dominates at all times in this simulation. We therefore focus our

dynamical analysis on the m = 2 mode, though we cannot exclude

that the other components also contribute some small fraction to the

angular momentum redistribution in the disc.

The greatest impact of spiral structure on the orbits of stars occurs

at resonances, which are narrow regions in phase space satisfying

m(/φ − /p) = lκ , where m is the pattern multiplicity, /φ and κ

are the azimuthal and radial frequencies of the orbit and /p is the

spiral’s pattern speed. If m = 2, setting l to ±1 gives the inner and

outer Lindblad resonances (ILR and OLR), and l = 0 corresponds

to the CR. To identify resonances, we must therefore obtain /p,

which can be achieved using our Fourier decomposition.

We can estimate the instantaneous /p at radius r simply by per-

forming numerical differentiation /p = ∂

∂t
φm(r) or, equivalently,

obtaining a linear fit to φm(r) as a function of time. This method

is reliable if there is a single steady perturbation at the radius in

question, and studies of bars usually employ this method to recover

the bar pattern speed (e.g. Debattista & Sellwood 2000; Dubinski,

Berentzen & Shlosman 2009). We find, however, that for our pur-

poses this is insufficient because spirals of varying strengths and

C© 2012 The Authors, MNRAS 426, 2089–2106
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pattern speeds are present at all radii, and this method only ever

identifies the most prominent pattern.

To reliably identify multiple pattern speeds in the disc, we require

a different method. Ideally, the method would not only allow us to

identify patterns at a given time interval, but it would also give us

information about the evolution of these patterns with time. How-

ever, because the coefficients cm(r) are calculated at each output,

they comprise a time series and we can obtain a further discrete

Fourier transform of this series, given by

Ck,m(r) =

S−1
∑

j=0

cj (r,m)wj e2πijk/S, k = 0, . . . , S − 1

(Press et al. 1992), which yields the Fourier coefficients at discrete

frequencies /k, and cj(r, m) is the coefficient at time t = t0 + j%t,

radius r and multiplicity m. S is the number of samples, in this case

the number of outputs at which we evaluate the structure. We use a

Gaussian window function,

wj (x) = e−(x−S/2)2/(S/4)2

,

to avoid high-frequency spectral leakage (using other window func-

tions such as the Hanning window has no appreciable effect). The

frequency sampling is determined by the length of the baseline and

%t, the time between samples (outputs),

/k = 2π

k

S%t
m, k = 0, 1, . . . ,

S

2
,

where /Ny ≡ /k =S/2 is the Nyquist frequency. We are here faced

with a choice between spectral resolution and the ability to identify

‘instantaneous’ pattern speeds. If the baseline used is too long, the

power spectrum will show a large number of patterns not all of

which are important for the disc at any particular time. We find

that at our time-step resolution of 10 Myr, using a 1-Gyr (100 time-

steps) baseline gives satisfactory spectra, though the resolution is

still rather coarse at ∼3 km s−1 kpc−1. This sampling rate gives a

Nyquist frequency of /Ny = 153 km s−1 kpc−1 for m = 2 structure.

We can now construct a power spectrum at each radius given by

P (/k, r) =
1

W

[

|Ck(r)|2 + |CS−k(r)|2
]

, k = 1, 2, . . . ,
S

2
− 1,

where W ≡ S
∑S

j=0 wj is the normalization factor taking into

account the windowing function (Press et al. 1992). We assume that

the periodic changes will be due to the phase, rather than amplitude

variations, thus giving us pattern speeds (Sellwood & Athanassoula

1986). The resulting combined power spectrum across the whole

disc gives us information about the strengths of patterns as a function

of radius, and is shown in Fig. 4. The contours in the panels on the

left show the frequency power spectrum as a function of radius,

while the right-hand panel shows the integrated power over the

whole disc at each frequency.

The pattern speeds in the given segment of the disc evolution can

now be obtained by extracting the peaks from the radially integrated

frequency spectrum. We measure the peaks by fitting Gaussians to

the local maxima in the integrated spectrum. To reliably identify

overlapping features in the spectrum we use an iterative procedure,

which progressively removes the most prominent peaks identifying

lesser peaks on subsequent passes. In this way, we identify the three

most important patterns. We use the Gaussian fit parameters to

estimate peak amplitudes and pattern speeds. The horizontal lines

in the left-hand panel of Fig. 4 correspond to the pattern speeds

obtained in this way and illustrate that this method can recover the

major pattern speeds well. The solid and dashed black lines show

/c, the circular frequency, and /c ± κ/2 – ILR, CR and OLR

Figure 4. Left: power spectrum of m = 2 frequencies as a function of radius

in the disc, for the time interval 6–7 Gyr. The solid black line marks /c, while

the dashed black lines mark /c ± κ/2. The three main spiral patterns are

identified by coloured horizontal lines. Right: the global frequency spectrum.

Contour levels vary in logarithm from 5 × 10−10 to 1 × 10−6.

resonances exist for stars on nearly circular orbits where the pattern

speed lines intersect one of these loci, from left to right, respectively.

Fig. 4 reveals the richness of spiral structure in a spontaneously

evolving disc. The range of radii that may be influenced by reso-

nances from any of these patterns spans essentially the entire disc.

However, Fig. 4 only tells us about the patterns present in a given

time interval – we would like to know how these patterns evolve

with time.

To extract time information from our data, we repeat the above

procedure at equally spaced time intervals. We show such a result

in Fig. 5. The dominant frequencies are shown as a function of

time, identified using the procedure outlined above, with individual

point sizes reflecting the normalized amplitude of each perturbation.

Each point on the plot uses a baseline of 1 Gyr of data to generate

the power spectrum as discussed above, so that at each time t the

patterns shown reflect disc evolution from t − 1 Gyr to t. Hence,

adjacent points represent overlapping data and the point sizes reflect

a time-averaged amplitude. The instantaneous amplitudes vary on

Figure 5. Perturbation frequencies in the disc as a function of time obtained

via the WFFT (see text). Point sizes reflect the normalized amplitude of each

perturbation. Colour denotes the ratio of corotation radius to the disk surface

density break radius.
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much shorter time-scales as the spirals flicker in and out of exis-

tence. Colours of the points correspond to the ratio of each pattern’s

corotation radius to the radius of the disk surface density break,

which marks the transition to the outer disk.

It is striking that the perturbation at /p ∼ 20–30 km s−1 kpc−1

dominates through most of the disc’s lifetime. This perturbation is

very steady except for a brief decrease at 5.5 Gyr and a subsequent

strong growth peaking at 7.5 Gyr. The brief period of decreased

power can also be identified in the panels of Fig. 2, which show that

between 5 and 6 Gyr the patterns become significantly disordered.

Fig. 5 also shows that perturbations with larger frequencies are

significantly more short-lived. We can identify three separate strong

perturbations with /p > 50 km s−1 kpc−1, the most persistent of

which survives for ∼2 Gyr.

The time evolution of pattern speeds and amplitudes shown in

Fig. 5 provides a new look at the temporal evolution of the disc. We

double checked that the signal extracted using the windowed fast

Fourier transform (WFFT) method is indeed real by performing an

independent analysis using a continuous wavelet transform (CWT),

because it is specifically tailored to recover the time evolution of fre-

quencies in a signal. The CWT yields qualitatively identical results

to the WFFT – however, we found it less cumbersome to quantify

the results (i.e. determine pattern speeds and amplitudes) using the

WFFT.

While Fig. 5 shows the evolution of frequencies, it does not allow

one to infer the amplitude variations of individual patterns because

the WFFT is performed on 0.5 Gyr intervals. Therefore, while we do

see variation in the sizes of the points, corresponding to amplitude

changes, there is a possibility that we are hiding shorter time-scale

fluctuations.

We attempt to reconstruct the amplitude variation of individual

patterns directly by using a band-pass filter in frequency space

and then using the inverse Fourier transform to obtain the time

series of Fourier coefficients representing the density perturbation.

The band pass is centred roughly on the desired frequency and is

10 km s−1 kpc−1 wide. The choice of width is somewhat arbitrary,

but we find that the patterns are reasonably well separated with this

choice.

Fig. 6 shows the resulting amplitude variations for the three prin-

cipal patterns found in Fig. 4. The oscillatory amplitude transience

of spirals on Gyr time-scales in our run is clearly visible. Note that

Figure 6. Amplitude variation as a function of time for the three main

patterns identified in Fig. 4. The amplitudes are obtained by using a band pass

of 10 km s−1 kpc−1 centred on each frequency and at a radius corresponding

to the corotation radius at 7 Gyr (i.e. identified using the power spectrum

of Fig. 4). Because the amplitudes of the faster patterns are quite different,

we use the left y-axis for the 20–30 km s−1 kpc−1 pattern (red line), and the

right y-axis for the other two (green and blue lines).

apart from the slowest pattern, the pattern speeds are also evolving

on ∼Gyr time-scales (see Fig. 5). However, while the evolving pat-

tern speeds mean that resonances associated with these patterns are

sweeping through the disc, our system does not produce a multitude

of strong features of a wide range of pattern speeds at any given

time. Thus, the transience in the system described here might be

somewhat different from that found in other works.

4 A N G U L A R M O M E N T U M EX C H A N G E S AT

C O ROTAT I O N I N T H E SI M U L AT I O N S

In the previous section, we demonstrated that the disc in our simu-

lation harbours a variety of spiral patterns of various pattern speeds.

We now discuss how these patterns influence the orbits of stars. In

particular, we try to understand whether the radial migration in our

growing, unconstrained disc can be explained by the CR scattering

described in SB02 alone, or whether we must invoke more complex

mechanisms to explain the observed behaviour.

Fig. 7 illustrates the diversity of individual stellar orbital histories

in the disc. These orbits were chosen from a random set of particles

that are found beyond 3 kpc at the end of the simulation, in order to

illustrate the range of possible orbital histories. It is clear from these

examples that stars may migrate rapidly while retaining a nearly

circular orbit, and that a circular orbit does not imply a radially

static history. In fact the instantaneous appearance of an orbit says

very little about the star’s history, as it is evidently possible to

even circularize a significantly eccentric orbit (see e.g. the upper

right-hand panel).

In Fig. 8 we show the changes in angular momentum as a func-

tion of initial particle angular momentum.3 For the bottom panel,

the perturbations dominating the disc during this time are the same

ones we identified in Fig. 4. Note that the baseline used to obtain

the frequency power spectrum is 1 Gyr, but the time-scale on which

we consider %jz versus jz is 0.5 Gyr, where jz = [r × v]z and %jz =

jz(t2) − jz(t1). If we use a 1-Gyr baseline (which corresponds to

>4 rotation periods at 5 Gyr and 8 kpc) we find that the signature

of spiral scattering in the %jz versus jz plane becomes too smeared

to be useful. On the other hand, a 0.5-Gyr baseline is insufficient

to reliably identify pattern speeds in the power spectrum, so we

are forced to accept this small inconsistency. The higher frequency

perturbations may evolve considerably during ∼1 Gyr, but the res-

onance loci are not a particularly steep function of R (Fig. 4) so

we can still obtain approximate locations of resonances. In Fig. 6

we can see that during 6.5–7 Gyr we may expect the disc to be

largely dominated by the growth of the 45 km s−1 kpc−1 pattern.

However, during the 5.3–5.5 Gyr time interval, we see that the two

faster patterns are growing at the same time. It is also apparent from

Fig. 5 that around this time the faster pattern dominates the overall

perturbation amplitude in the main part of the disc. We therefore

choose this second time interval to look for non-linear effects stem-

ming from resonant coupling of multiple perturbations (e.g. Quillen

2003; Minchev & Famaey 2010).

In both cases, the dominant pattern causes the characteristic anti-

symmetric shape in %jz versus jz associated with CR orbit swapping

(SB02). The few dominant patterns we identify cannot explain the

full structure seen in either panel, however. In Fig. 4 we can see that

some amount of power is present in subtler patterns not picked up

by our automated algorithm, such as at ∼30 and ∼60 km s−1 kpc−1.

3 Throughout the paper we use the notation that specific angular momentum

is lowercase j and total angular momentum is capital J.
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Figure 7. Some examples of orbits from the fiducial simulation. Orbits are coloured according to time to make the temporal evolution more apparent, with

blue corresponding to early and red to late times. Stars can migrate inwards and outwards very rapidly without substantially increasing their eccentricities.

Some of the structure in Fig. 8 must therefore also be due to those

patterns, which may be in the process of growing or fading at ei-

ther end of the time interval we consider. Another possibility is that

patterns of higher multiplicity contribute to some of the angular

momentum exchange. The prominent feature seen in the very inner

part of the disc in the top panel is a short-lived weak bar instability.

Note the scale of %jz: in both panels the changes caused by the

dominant pattern approach 50 per cent of jz. The changes are espe-

cially drastic in the top panel, given the short time interval we are

considering.

4.1 Corotation crossing and chaos

A steady spiral perturbation does not result in angular momentum

exchange at the CR because stars are trapped on horseshoe orbits.

If the spiral is transient, however, the trapping does not occur and

stars can traverse from one side of the CR to another. We look for

such horseshoe orbits during the time interval 6.5–7 Gyr among the

particles with |%jz| > 200 (roughly the top 10 per cent of migrators)

around the CR with the 43 km s−1 kpc−1 pattern shown in the bottom

panel of Fig. 8. We plot the orbits of a random subset of these

particles in a frame corotating with the spiral in columns 1 and 3 of

Fig. 9. The orbits are coloured according to the relative strength of

the 43 km s−1 kpc−1 spiral at any given time, shown in the bottom

right-hand panel. The radius as a function of time is shown as a black

line in columns 2 and 4. In the corotating frame, a particle crossing

the CR also reverses direction. All particles cross the CR at almost

the same time, near the peak of the spiral amplitude, but the orbits are

otherwise largely unperturbed. Furthermore, all inward and outward

migrations are, respectively, correlated in azimuth. For example, see

the outward migrators in panels 1, 2 and 3 and the inward migrators

in panels 6 and 7. This hints at the CR being responsible for the

migration because one expects the particles trailing the spiral arm

to preferentially be pulled outward and vice versa for those particles

leading the arm.

In Fig. 10 we demonstrate that this is indeed the case by plot-

ting the density of inward and outward migrators (in red and blue,

respectively – darker colours indicate higher density) for the 5.3–

5.5 Gyr time interval (top panel) and 6.5–6.7 Gyr time interval (bot-

tom panel). Spiral overdensity, reconstructed from m = 2 through

m = 4 Fourier components, is shown in black contours. The first in-

terval is chosen because it is near the time when two of the patterns

are peaking simultaneously, while during the later time interval only

the 43 km s−1 kpc−1 spiral peaks. Note that we did not select these

particles specifically to isolate ones interacting with either spiral.

The only selection criterion is that in the given time interval they

are in the top 5 per cent of migrators. However, essentially all of the

migration in both time intervals is occurring around the CRs with

most of the inward and outward migrators, respectively, leading and

trailing the dominant spiral. Low densities of migrators extend to

other regions of the disc where other spirals play a role, but the ma-

jority of migration is taking place around the 43 km s−1 kpc−1 spiral,

as expected from Fig. 8. The dashed green circle corresponds to the

CR of the 43 km s−1 kpc−1 spiral and passes directly through the

centres of the highest density regions of migrators.

The top panel, showing the migrators for the time interval where

two of the faster patterns are peaking simultaneously, shows very

similar behaviour to the bottom panel where only one pattern is
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Figure 8. Distributions of %jz given initial jz for all particles in the sim-

ulation between 5.3 and 5.5 Gyr (top panel) and 6.5 and 7.0 Gyr (bottom

panel). The CRs of the main perturbations found at each time are marked by

vertical lines, with the colours in the top panel corresponding to the colours

in Fig. 4. The logarithmically spaced contour levels are the same for both

panels and correspond to mass density.

dominating. If the overlap of resonances was causing chaotic evo-

lution, it should manifest itself during such a time interval (the

dominant patterns are ∼65 and 30 km s−1 kpc−1). Around a radius

of 5 kpc in the top panel, the density of both inward and outward

migrators is saturated, implying that the migration is even more

dominated by a single pattern in this time interval. The physical lo-

cations of the migrators are strongly clustered around the individual

overdensity peaks. In this interval, there is also a weak oval feature

in the centre, driving some angular momentum exchange in the in-

ner part the disc (see the top panel of Fig. 8). The dashed green circle

in this panel corresponds to the CR of the 65 km s−1 kpc−1 spiral,

which is clearly where most of the angular momentum exchange

is occurring. Thus it is evident that even when multiple strong pat-

terns are present near their amplitude peaks, the majority of angular

momentum exchange occurs at very predictable locations, i.e. on

either side of overdensity peaks and at their CR. The migration in

this earlier time interval is stronger, hinting at the possibility that

different patterns may help feed each other’s CR zones. However,

as we show in the following paragraphs, we are unable to find clear

indications of non-linear or chaotic evolution.

In columns 2 and 4 of Fig. 9 we show the CWT power scalogram

of the x component of the orbits shown in columns 1 and 3. We

construct the power scalogram by using the Morlet–Grossmann

wavelet whose basis ‘mother’ wavelet is given by

00(t) =
1

√
(2π)

e−t2/2σ 2

e−iω0t .

See Daubechies (1990) for a thorough theoretical introduction to

wavelets and Torrence & Compo (1998) and Nener, Ridsdill-Smith

& Zeisse (1999) for a practical guide. We use the approach described

in the latter two for calculating our wavelet power scalograms. The

y-axis in the spectrograms in Fig. 9 represents wavelet scale, which

is proportional to the inverse of frequency. We can therefore follow

the time evolution of dominant frequencies by inspecting the most

prominent ridges in the scalogram. Note that we plot the logarithm

of the power, so many of the smaller features are orders of magnitude

weaker than the obvious dominant ridges. Chaotic systems can be

identified with this method because the ridges in the scalogram

show significantly irregular curvature and discontinuities (Chandre,

Wiggins & Uzer 2003; Gemmeke, Portegies Zwart & Kruip 2008).

Chandre et al. (2003) show that in chaotic systems, ridges in the

scalogram become shorter, bent and disordered. In our case, we

find in general mostly horizontal features extending across much of

the entire time interval during which migration takes place. As the

stars cross corotation and migrate in radius, the dominant frequency

has to change and this is reflected in the bend apparent in the main

ridge in all the panels. However, there is no evidence of significantly

scattered and bent ridges (see e.g. fig. 4 in Gemmeke et al. 2008

and fig. 13 of Chandre et al. 2003).

The lack of obvious evidence for chaos is particularly important

for particles that migrate significantly in a short amount of time. To

investigate this further, we looked at the orbits of the two particles

in the top row of Fig. 7, which migrate ∼5 kpc in 0.5 Gyr. These two

particles are chosen for their extreme rates of migration, where we

may also expect to detect hints of non-linear effects. In the left-hand

columns of the top two rows of Fig. 11 we show the orbits corotating

with the faster, ∼65 km s−1 kpc−1 pattern, and in the middle panels

the orbits are in the frame of the ∼40 km s−1 kpc−1 spiral. As in

Fig. 9, the orbits are coloured according to the relative strength of

the two spirals, whose amplitudes are shown in the bottom row. The

radius as a function of time for each particle is shown as a black

line in the rightmost column. Both particles cross the CR at almost

the same time near the peak of the spiral amplitude, similar to the

particles in Fig. 9. The two particles are first taken to the middle of

the disc by the faster pattern and happen to be deposited near the

CR and near the peak of the spiral pattern dominating there. They

are therefore quickly taken further outward by this second, slower

spiral. Thus, their rapid migration is simply due to two successive

CRs. As before, the wavelet transform power spectrum shown in the

rightmost column of Fig. 11 shows little evidence for significantly

chaotic evolution.

We look further for signs of non-linearity by calculating the

change in the Jacobi integral for a subset of the migrators. The

Jacobi integral, Ej = E − /pjz is conserved in the rotating frame

of a single, steady perturbation (Binney & Tremaine 2008). In our

system we do not expect Ej to be exactly conserved anywhere

since multiple patterns are always present in the disc, and the disc

potential itself is constantly changing due to accretion of fresh gas

and star formation. However, if single spirals are mostly responsible

for instantaneous changes in jz of individual stars, we would expect

that for short time intervals the distribution of %E/%jz − /p to be

peaked and centred at zero for particles in the vicinity of each of

the major CR regions. We select particles for these distributions by

determining the jz,CR, i.e. the angular momentum of circular orbits

at each CR, and then selecting the top 10 per cent of migrators with
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Figure 9. Columns 1 and 3: a selection of randomly selected orbits for a subsample of top 10 per cent of migrators on either side of the CR for the

43 km s−1 kpc−1 pattern in the time interval 6.5–7 Gyr. The orbits are in the frame corotating with the spiral. The colour corresponds to the relative spiral

amplitude, as shown in the bottom right-hand panel. All boxes measure 20 kpc in x and y. The direction of rotation is counter-clockwise. Note that the time of

CR crossing is easily identified as the orbit reverses direction. All CR crossings happen around the time of the spiral amplitude peak and are spatially correlated.

Columns 2 and 4: the wavelet power spectrum of the x-component of the orbits is shown in colour contours. Note that most of the features are horizontal with

few bends and vary smoothly, indicating lack of significant chaotic evolution. The solid black lines show the radius R in the x–y plane as a function of time.

See the bottom left-hand panels for axis scales.

initial jz within 10 per cent of jz,CR. In essence, we are selecting

narrow strips of particles on either side of each CR line shown in

Fig. 8. Note that we determined the pattern speeds in the 6.5–6.7

case separately from those determined in Fig. 4 and there is a slight

discrepancy due to pattern speed evolution over Gyr time-scales.

The distributions for both time intervals are shown in Fig. 12. All

distributions are centred near zero, within our uncertainties of pat-

tern speed measurements of a few km s−1 kpc−1. The distributions

for the slower perturbations dominating in the outer disc are very

strongly peaked, as expected if most of the particles are only being

affected by a single spiral. The distributions for the faster perturba-

tions are broadened for several reasons. First, the spiral amplitudes

are variable which broadens their effective resonant frequencies.

Secondly, in the inner disc other weaker patterns may be affecting

the orbits. Still, it is striking that even in the 5.3–5.5 Gyr time inter-

val, which was chosen specifically because multiple strong patterns

are peaking at the same time (see also bottom panel of Fig. 10), the

distributions do not appear qualitatively any different than for the

quieter 6.5–6.7 Gyr time interval. The higher density of migrators

seen in Fig. 10 could be due to several factors. First, the disc den-

sity is significantly higher at the CR of the 60 km s−1 kpc−1 spiral.

The angular momentum exchange could further be facilitated by the

presence of other perturbations, essentially feeding the CR of the

dominant spiral. Nevertheless, even if the efficiency of migration is

boosted due to the presence of other patterns, the fact that the dis-

tributions shown in Fig. 12 are centred and peaked at zero implies

that the bulk of the angular momentum exchange still proceeds due

to the CR of the individual spirals and that chaotic orbital evolution

caused by the overlap of several resonances may not be the domi-

nant cause of migration in this system. Note that the shift to the left

from zero for the red distribution in the bottom panel of Fig. 12 is

just a few km s−1 kpc−1 and therefore well within the measurement

errors for /p.

Similarly, we examine the evolution of Ej for the two particles

shown in Fig. 11 that undergo very large migration over a short

time interval. In the bottom right-hand panel we show the fractional

changes in the Jacobi integral for these two particles. The frac-

tional change for the faster pattern is measured with respect to the

beginning of the time interval, whereas for the slower pattern we

measure it with respect to the end of the interval (this is because

initially the particles interact with the faster pattern and only later

with the slower pattern). Between 5 and 5.6 Gyr, Ej in the frame

of the 65 km s−1 kpc−1 pattern varies by <1 per cent. In the same

time interval, the energy E (shown in red) and angular momentum

(not shown for brevity) of these two particles change by 20 and

50 per cent, respectively. Between 5.6 and 6 Gyr, Ej in the frame

of the ∼40 km s−1 kpc−1 pattern (blue lines) is again roughly con-

stant, while energy and angular momentum continue to evolve and

change by 30 per cent and a factor of 2.5 by the end of the time

interval.
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Figure 10. Density of particles migrating significantly in the time intervals

5.3–5.5 Gyr (top) and 6.5–6.7 Gyr (bottom). The sole selection criterion is

that the particles are in the top 5 per cent in terms of their |%jz| in the

given time interval. The blue and the red colours show the outward and

inward migrators, respectively. The black contours show the surface density

of stars reconstructed from the m = 2 through m = 4 Fourier components.

The dashed green circles mark the CR of the dominant pattern in the given

time interval (65 km s−1 kpc−1 in the top panel and 45 km s−1 kpc−1 in the

bottom). The direction of rotation is counter-clockwise.

4.2 Orbital circularity and migration

We now focus on the issue of orbital circularity and heating in CR

migration. In Fig. 13, we show that the amount of angular momen-

tum exchange is directly related to the circularity of an orbit. This

is a crucial feature of corotation scattering, i.e. particles on the most

circular orbits are also the most susceptible to having their orbits

drastically altered. It follows that the largest changes in angular

momentum are those that are essentially kinematically untraceable,

because corotation scattering does not increase the random energy

of an orbit appreciably (Lynden-Bell & Kalnajs 1972; SB02). Parti-

cles are selected in the same way as for Fig. 12 (for brevity, we only

show the middle pattern that causes the largest amount of mixing).

From the rotation curve and the midplane potential, we calculate the

theoretical circular orbit locus in the (j, E) plane. Based on this locus

we calculate the maximum allowable angular momentum, jc(E), of

each particle based on its energy and express the circularity of its

orbit as jz/jc(E).

We calculate the mass weighted distribution of |%jz| as a function

of x ≡ jz/jc(E) which can be expressed as

f (x) =

N
∑

i=1

|%jz,i |miδ(x − xi), (4)

where the subscript i indicates individual particle quantities, m is

the mass and N is the total number of particles. The corresponding

cumulative distribution function is given by

F (x) =

∑η=x

η=0 f (η)
∑η=1

η=0 f (η)
(5)

and shown in Fig. 13. Note that even for particles on fairly eccentric

orbits, changes in jz are possible, but those are most likely occur-

ring at the Lindblad resonances. However, the contribution of those

stars to the overall changes in jz is miniscule. The particles with

jz/jc(E) > 0.95 account for over 50 per cent of the angular momen-

tum exchange. This follows since |%jz| is largest for those particles,

but also simply due to the fact that the disc is kinematically cool and

particles on mostly circular orbits are also most abundant. However,

the mass distribution (shown by the dashed line in the same panel)

is much less peaked than the angular momentum distribution, con-

firming that particles on circular orbits are most important for the

exchange of angular momentum.

Apart from being most efficient at relocating particles on the most

circular orbits, SB02 also showed that CR scattering also does not

appreciably heat the disc. In Fig. 14 we show a probability density

distribution of %[jz/jc(E)] given %R over the same time interval

studied in Figs 8 and 12. Positive values of %[jz/jc(E)] indicate

an increase in circularity or a ‘cooling’ of the orbit, while neg-

ative values correspond to heating. The majority of the particles

that migrate outwards suffer very minor heating, while the inward-

migrating particles heat slightly more. The particles moving the

farthest outward also get heated the least on average – this is the

key feature of CR scattering because it allows particles to expe-

rience multiple scatterings, thereby allowing for potentially very

large changes in radius during their lifetimes. Interestingly, roughly

10 per cent of the particles that migrate outward have their orbits

cooled by the spiral.

Note from the top panel of Fig. 8 that the most obvious and

dramatic feature in %jz versus jz occurs due to a resonance with the

43 km s−1 kpc−1 pattern that does not appear dominant in Fig. 5.

The ∼20 km s−1 kpc−1 spiral that dominates the power spectrum

on the other hand causes relatively little mixing. Determining the

dominance of patterns from Fig. 4 is somewhat misleading because

the power spectrum is constructed using the normalized Fourier

coefficients. Thus, although the slowest pattern appears to dominate,

it peaks in the far outer disc where the density is low and therefore

the perturbation does not involve much mass. The middle pattern

instead is also at an optimal point in the disc. The dashed line in

Fig. 1 shows the Toomre Q parameter at 8 Gyr, which is near the

interval we have been analysing. In the inner disc where the fast

pattern CR occurs, Toomre Q approaches values of 4 and above

– similarly in the outer disc, where the slow pattern CR occurs

Q increases rapidly and the disc density is very low (the break

occurs at ∼8 kpc but the CR is at ∼11 kpc). For the middle pattern

CR, Q is relatively low while the disc density on the other hand

is still reasonably high. Therefore the CR is well populated by

kinematically cool stars and the middle pattern can achieve the

most mixing.
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Figure 11. Columns 1 and 2: similar to Fig. 9 but for the two orbits shown in the top row of Fig. 7. The orbits are in the frame corotating with the inner spiral

(column 1) and the mid-disc spiral (column 2) in the time interval 5–6 Gyr, when they happen to migrate substantially. The colour corresponds to the relative

spiral amplitude, as shown in the bottom row. All boxes measure 20 kpc in x and y. The direction of rotation is counter-clockwise. Note that the time of CR

crossing is easily identified as the orbit reverses direction. Column 3: the top two rows show the wavelet power spectrum of the x-component of the orbits

in colour contours. The solid black lines show the radius R in the x–y plane as a function of time. The bottom panel in column 3 shows the fractional time

evolution of the Jacobi constant, Ej, in the frame of the two spirals (green and blue lines correspond to the 65 and 39 km s−1 kpc−1 patterns, respectively) and

energy, E (red lines). Because of different ranges of values, the left- and right-hand y-axes are used for Ej and E, respectively. Particles 1 and 2 are shown in

solid and dashed lines. When the particles are in the corotation region of a given pattern, Ej is conserved to ∼1 per cent, while E evolves by 30 per cent (though

not shown, angular momentum changes by a factor of 2.5).

5 N U M E R I C A L T E S T S

Spiral arms are amplified disturbances in discs, but the source of the

seed perturbation is not well understood. It is often assumed that

in isolated discs, the seed is noise in the density distribution (e.g.

Goldreich & Lynden-Bell 1965). In simulations like the ones pre-

sented here, the natural source of noise is the finite particle numbers,

which are in general several orders of magnitude smaller than the

number of stars in real galactic discs, though in real galaxies giant

molecular clouds are a similar source of ‘noise’. Numerical res-

olution studies abound in the literature, but most often attention

has been given to the requirements of collisionless cosmological

simulations to resolve DM substructure (e.g. Moore et al. 1998). In

the cases where disc secular evolution has been addressed specif-

ically, most resolution studies have addressed the resonant cou-

plings between DM haloes and bars, but again most often only col-

lisionless simulations were used (e.g. Debattista & Sellwood 2000;

Valenzuela & Klypin 2003; Holley-Bockelmann, Weinberg & Katz

2005; Weinberg & Katz 2007; Dubinski, Berentzen & Shlosman

2009). Spiral structure and in particular SPH simulations in iso-

lation are addressed less often, though recently Christensen et al.

(2010) presented a global disc resolution study focusing mostly on

the resolution dependence of subgrid star formation and feedback

prescriptions. Unfortunately, their high-resolution runs use approx-

imately the same resolution as the fiducial runs here, because their

work was meant as a guide for cosmological simulations where

the state-of-the-art uses comparable or slightly lower resolution.

Their results therefore cannot be used to ascertain the validity of

our results.

In this section, we discuss several numerical tests to explore the

robustness and variability of the spiral activity presented in the pre-

ceding sections. The main concern here is that the resulting spirals

may be dependent on the Poisson particle noise for their generation

and subsequent evolution. We performed runs with 0.5, 2 and 4

times the fiducial particle number of 106 particles per component

in the initial conditions. Softened gravity could be particularly rele-

vant to discs because it can potentially set the relevant perturbation

scales. We therefore ran several simulations with different choices

for the softening length. A possible source of numerical heating of

the disc is massive DM particles, so we also ran a simulation with

an order of magnitude more DM particles. We discuss each of these

in turn below.

5.1 Stochasticity

Sellwood & Debattista (2009) examined the effects of stochasticity

on the growth and pattern speed evolution of bars. They found that

small perturbations in the initial conditions could lead to divergent

behaviour, independent of the code used for the integration. Spirals

result from amplified disturbances and are intrinsically sensitive to
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Figure 12. Distributions of %E/%Jz − /p for particles with the largest

changes in Jz near the CRs of patterns identified from the Fourier analysis.

The top and bottom panels show the 5.3–5.5 and 6.5–6.7 Gyr time intervals,

respectively.

stochastic effects. It is therefore not possible to expect the pattern

speed and amplitude evolution to match exactly among the different

runs. To get some sense of the natural range of behaviour due

to stochasticity, we ran two simulations with identical numerical

parameters and initial conditions, but we altered the random seed

used in the generation of initial particle positions sampled from the

distribution function. The general disc properties that result from

10 Gyr of evolution are very similar, with inner scale lengths ranging

from 3.1 to 3.3 kpc.4

In Fig. 15 we show the evolution of the m = 2 Fourier amplitude

at four different radii in the disc for all runs. We show smoothed

m = 2 time series because otherwise the rapid oscillations of the

amplitudes make it difficult to discern their overall evolution. The

colours represent the amplitude at different radii. Bar/oval growth

can be identified in this representation whenever the black and blue

lines grow together. The middle and right-hand panels of the top row

show the stochasticity test runs (fiducial, T2 and T3) – apparently

the timing of the growth of spirals is very different between the three

4 These values were obtained using fits to surface density profiles. If we

instead fit midplane volume-density profiles, the resulting scale lengths are

∼2.5 kpc, in agreement with Jurić et al. (2008) values obtained for the MW

from SDSS data.

Figure 13. Cumulative distribution of jz/jc(E) weighted by |%jz| – see

equations (4) and (5) for a description of F(x). The dashed line shows the

cumulative distribution of jz/jc(E).

Figure 14. Probability distribution of the change in the ratio of jz/jc(E) for

the same particles used to construct the green distribution in the top panel

of Fig. 12 and in Fig. 13, interacting with the 42 km s−1 kpc−1 pattern over

the 6.5–7 Gyr time interval. The inner (outer) white contours enclose 50 per

cent (75 per cent) of the mass in each %R bin. Values are normalized such

that in the vertical direction,
∑

P dA = 1, where dA is the area of the bin.

runs with different random seeds. Run T2 does not grow a central

oval at all (the black and blue lines showing 2 and 4 kpc are almost

completely featureless), whereas the fiducial run and run T3 both

have episodes of bar/oval formation. In the fiducial run, this occurs

at ∼3, 4 and 6 Gyr, whereas for the T3 run it occurs at 3 and 6 Gyr.

In Fig. 16 we show the pattern speed evolution derived in the same

way as in Fig. 5 with the panels corresponding to panels in Fig. 15.

Very similar pattern speeds occur in all three discs, as shown by the

top row of Fig. 16. For example, the same outer (slow) pattern can be

seen in the three power spectra, starting at around 30 km s−1 kpc−1

and slowly decaying to 20 km s−1 kpc−1 by 10 Gyr. The pattern

speeds are qualitatively similar in all runs and presumably depend

upon the overall disc structure, which is relatively robust against

stochastic effects. The amplitude and timing of the spirals, on the

other hand, may vary considerably.

5.2 Softening

The second row of Fig. 15 shows the time evolution of the m =

2 perturbations at four different radii for the runs with different

C© 2012 The Authors, MNRAS 426, 2089–2106
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Figure 15. Fourier amplitudes as a function of time for the entire suite. The fiducial run is shown in upper left, followed by the stochasticity tests in the same

row. Second row shows runs with different softenings; the third row shows runs with different particle numbers. Bottom row shows runs SDM and R1-T2.

Different colour lines represent the amplitude at different radii – black, blue, green and red correspond to 2, 4, 8 and 12 kpc respectively.

values of the softening parameter. This suggests that the simulations

with hs ≤ 100 pc yield qualitatively similar spiral structure, though

S1 (leftmost panel) harbours somewhat more damped spirals, es-

pecially mid-disc (green line). Run S4 is clearly wildly different,

developing a large and persistent bar very early (in subsequent dis-

cussions we ignore this run). This comparison shows significant

variance in the timing of spiral activity, but the amplitudes at dif-

ferent radii for runs S1 and S3 appear very similar to the fiducial

run (upper left-hand panel). The second row of Fig. 16 shows the

corresponding pattern speed evolution and confirms that for runs

S1 and S3, the pattern speeds supported by the disc are very similar

to each other and to the fiducial run.

5.3 Particle number

The third row of Figs 15 and 16 shows the m = 2 amplitude and

pattern speed evolution for runs R1, R3 and R4 (0.5, 2 and 4 times

the fiducial particle number, respectively). Run R1 stands out in this

comparison, as the structure that develops is significantly weaker.

We investigated whether this is a manifestation of stochasticity and

ran a second simulation where the initial conditions were generated

using a different random seed (run R1-T2). The results are shown

in the right-hand panel of the bottom row – the evolution of this

experiment is essentially identical to R1, suggesting that the weaker

structure is not a stochastic effect.
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Figure 16. Pattern speed evolution as a function of time. Colours and point sizes are as in Fig. 5. Panels correspond to panels from Fig. 15.

The star formation rates are the same in all four runs. As a result,

the discs are composed of proportionally similar amounts of stars –

roughly 2, 1, 4 and 8 million for the fiducial, R1, R3 and R4 runs,

respectively.

In runs R3 and R4, the structure is much more similar to the

fiducial run. The timing of perturbation growth is slightly different,

but the frequencies are essentially the same for all four runs. The

consistency of these results affirms that the runs in our simulation

suite have sufficient numbers of particles to adequately model the

disc dynamics. Ideally, we would be able to perform simulations

with still higher particle numbers to truly test for convergence, but

due to computational cost such simulations were not feasible at this

time.

The ratio of CR to the break radius (i.e. the colour of the points)

for the ∼30 km s−1 kpc−1 pattern in run R4 appears different from

t ∼ 6.5 Gyr onwards. These differences are not particularly drastic,

however, and the relative locations of the CR are consistent. The

speeds of the main patterns are similar to the runs in the top row

(fiducial, T1, T2). We also see an even slower pattern, probably due

to increased particle numbers, which make its detection in the far

outer disc possible.

Finally, because DM particles are constantly bombarding the disc,

we explored the possibility that their perturbations may influence

the generation of spirals. In the bottom left-hand panel of Fig. 15,

we show the m = 2 amplitude for run SDM, which was initialized

with 10 times as many DM particles. Other properties of the run
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Figure 17. The mean m = 2 amplitude over the whole simulation for all of

the runs in our suite. The error bars indicate the standard deviation. Points

are offset horizontally for readability.

were kept the same as in the fiducial run. Spiral amplitudes are very

similar to the fiducial run, although the innermost pattern seems to

be missing. In the corresponding panel in Fig. 16 the frequencies

as a function of time for the run SDM appear very similar to the

fiducial run. At most times, the dominant frequencies present in

both discs are essentially the same.

While we have achieved convergence with increasing mass reso-

lution, the discrepancy between our lowest resolution run, R1, and

the rest of the suite is puzzling. We tested for the effect of two-body

relaxation by increasing the softening and by increasing the number

of particles in the DM halo. We also tested for potential integration

issues stemming from different softenings between the baryons and

the DM (note that in all of our runs the DM and baryons use dif-

ferent softening, and this is standard practice in such simulations).

Making the baryon softening equal to the DM softening was the

only experiment that yielded results more in line with other runs.

5.4 Overall comparison

In the preceding subsections we investigated the detailed evolution

of spirals in our simulation suite, but how do these simulations

compare in their global properties? In Fig. 17 we show the mean

m = 2 amplitude, 〈A2〉, calculated over the duration of the entire

simulation, and its standard deviation represented by the error bars.

Stochasticity and choice of softening minimally impact the global

disc evolution, though all of the S-series runs have slightly smaller

〈A2〉, especially S4. A true outlier is R1, with lower 〈A2〉 than the

rest of the suite.

The properties of spirals are important in our understanding of

radial migration because of their effect on the distribution of stars

in the disc. We have seen in Figs 15 and 16 that while the range

of admissible pattern speeds is not sensitive to choices of numer-

ical parameters, the timing of the spirals can differ substantially.

Depending on the configuration of the disc, this could affect the

migration rates and ultimately the predictions we extract from these

models for studies of disc stellar populations. It is difficult to quan-

titatively assess the spiral structure, though we have attempted to do

so in Fig. 17 and found no appreciable differences in the suite apart

from run R1. However, we can quantitatively analyse the properties

of resulting stellar populations in a given region of the disc.

A natural region to examine is the model analogue to the solar

neighbourhood. In the top panels of Fig. 18 we show the distribu-

tions of formation radii for stars that are found within 7 < R (kpc) <

9 at the end of the simulation. This choice is particularly important

because we have addressed this same region in our previous works

(R08b; Loebman et al. 2011). The bottom panels show the corre-

sponding cumulative distributions. The solid black line in all panels

corresponds to the fiducial run – the left-hand, middle and right-

hand columns show the stochasticity, softening and resolution tests,

respectively.

The leftmost panels show that stochasticity has little overall effect

on the cumulative distributions of Rform – at 50 per cent the difference

is ≤0.5 kpc. Nevertheless, the distribution in the top panel shows

that the fiducial run may even overproduce the in situ stars.

In the remaining cumulative distributions, the overall variance

at 50 per cent does not exceed that of the stochasticity tests. Two

notable cases are apparent – the run S1 and run SDM. Run S1,

is more heavily dominated by in situ stars. This agrees with the

fact that this run develops weaker spiral structure in the final Gyr.

However, the appearance of the larger peak of in situ stars for the

run S1 may also simply be another manifestation of stochasticity –

when we recreate the same distributions 2 Gyr earlier, the run S1

follows almost exactly the fiducial distribution.

For run SDM, the peak of the Rform distribution is actually shifted

away from the solar neighbourhood. This implies even more drastic

mixing, and is indeed also apparent when we repeat the experiment

at 8 Gyr (as mentioned in the previous paragraph). Regardless of

these subtle variations, the fact that >50 per cent of solar neigh-

bourhood stars originated in other parts of the disc remain robust.

Contrary to what we might expect for run R1 given Figs 15–

17, where we found that it has weaker spiral structure on average

from other runs, we find here only a small difference in the solar

neighbourhood population. We would expect the resultant migration

to be much less than in the other runs. We therefore studied the

spiral structure in this run in more detail and found that while the

disc does not support strong spirals, it is permeated with weaker and

highly transient features. We find that the transience is much more

pronounced than in the other runs. Using a 1-Gyr baseline power

spectrum, as in Fig. 4, we find essentially a continuous spectrum

of patterns emerges, compared with few distinct features. This is

apparent also in Fig. 16, where many weak patterns at a variety of

pattern speeds are identified. The pattern speeds shift on short time-

scales, allowing even the weak structure to relatively efficiently

redistribute the stars.

6 C O N C L U S I O N S

Radial migration is rapidly becoming recognized as a critical pro-

cess in disc galaxies because of its wide-ranging implications. If this

process has been important for the MW, it most likely played a key

role in determining the mix of stars in the solar neighbourhood today

(SB02; R08a,b; Schönrich & Binney 2009a,b; Minchev & Famaey

2010; Lee et al. 2011; Loebman et al. 2011; Bird, Kazantzidis &

Weinberg 2012). On a broader scale, it has likely influenced the

stellar population gradients measured in the MW disc and other

galaxies (Boissier & Prantzos 2000; MacArthur et al. 2004; R08b;

Williams et al. 2009; Gogarten et al. 2010; Muñoz Mateos et al.

2011; Vlajić, Bland-Hawthorn & Freeman 2011), and contributed

substantially to the stellar density in the outermost disc regions

(Barker et al. 2007, 2011; de Jong et al. 2007; Azzollini et al. 2008;

Bakos et al. 2008; R08a; Roškar et al. 2010; Yoachim et al. 2010,

2012; Alberts et al. 2011).

In this paper, we have investigated in detail the origin of radial

migration by analysing the spontaneously forming spiral structure

and the resultant resonant angular momentum exchange. We found
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Figure 18. Top: histograms of Rform for particles with 7 < Rfinal (kpc) < 9. Bottom: corresponding cumulative distribution functions.

that the spiral structure is transient in amplitude, but appears to

support only a few discrete pattern speeds at any given time. This

means that some stars can be tossed from the CR of one pattern to

another, resulting in large changes in radius on relatively short time-

scales. Still, it is important to remember that extreme migrations of

many kpc over the course of a star’s lifetime are not the norm, they

comprise the tail of the distribution. This can be seen in Fig. 18 –

although ∼50 per cent of the stars do come from elsewhere, this

also means that the near-majority have formed in situ. The situation

changes with increasing radius, because the in situ star formation

decreases – thus, the tail of the distribution from the inner regions

makes up the majority of the stellar population at large radii.

We demonstrated in Section 4 that the largest angular momentum

exchanges occur at the corotation of important m = 2 spirals. An

important aspect of our result is the confirmation that the largest

angular momentum exchange happens for particles on the most

circular orbits – and that these particles do not get heated by the

spirals while they migrate (SB02). This is a crucial aspect of the

CR migration mechanism because it means that the process is not

self-limiting. Instead, it can continue especially for the particles mi-

grating the most, allowing for very large changes in radius for some

of the stars, but without betraying their journey by anomalous kine-

matics. We have also searched for signs of chaotic orbital evolution

in the vicinity of resonances, but found indication that stellar orbits

remain rather regular as they migrate radially. We have found this

to be the case even for very large migrations, and have shown that

such migrations are possible in a short amount of time if a particle

passes directly from the CR of one spiral to another (see Figs 9 and

11).

Our results show that the redistribution of stars in MW-type discs

on very short time-scales is inevitable if transient spiral structure

is present. Even in the case of run R1, where the mid-disc spirals

appear to be numerically suppressed, a large fraction of stars ending

up in the solar neighbourhood originated in the interior of the disc.

Therefore, our findings suggest that the effects of recurring, spon-

taneous spiral structure are a key component of disc evolution that

models simply must include if they wish to make predictions about

kinematic and chemical properties of stellar populations. Cosmo-

logical simulations which fail to form discs that can support spiral

structure may be missing critical aspects of disc evolution and there-

fore the detailed properties of resulting disc stellar populations must

be used with care. On the other hand, the inclusion of substructure

(e.g. Bird et al. 2012) is important not only because mergers can

heat and disrupt the disc, but also because they may trigger transient

structure. We hope that it should soon be possible to use state-of-

the-art cosmological simulations (e.g. Agertz, Teyssier & Moore

2011; Guedes et al. 2011) for detailed studies of radial migration.
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