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Abstract 

The purpose of piston rings in combustion engines is to provide an effective seal between the combustion 
chamber and the crankcase while allowing rapid linear movement of the piston. In this paper a review of 
around 50 experimental studies and 30 theoretical studies is presented. Papers describing experimental 
studies report lubricating film thicknesses between 0 µm to 20 µm, while papers describing theoretical results 
for fully flooded analyses tend to report smaller values (0 µm to 9 µm). Theoretical studies including starvation 
phenomena normally give even thinner films, typically between 0 µm and 5 µm. The paper presents a 
discussion of these discrepancies. 
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1 INTRODUCTION 

The use of internal combustion engines is extensive and 
constitutes one of the main sources of mechanical 
energy. The purpose of piston rings is to provide an 
effective seal between the combustion chamber and the 
crankcase while allowing rapid linear movement of the 
piston. The lubrication of the ring interface with the liner is 
critical and published studies on this topic are to be found 
from the early part of the 20th century up to the current 
time.  

 

2 REVIEW OF EXPERIMENTAL AND THEORETICAL 
PUBLISHED DATA 

A review of measured and simulated results oil film 
thickness data has been completed by the authors and is 
presented in Table 1 and Table 2. The techniques used 
for experimental measurements are based on electrical 
resistance, optical means, inductance / eddy currents, 
capacitance, fluorescence, strain gauge and ultrasound. 
The simulation models can be divided in simplified 
simulations, assuming fully flooded boundary conditions 
for the solution of Reynolds equation, and more complex 
approaches using starved or partially flooded conditions. 
This second option is more realistic since the availability 
of oil to fill the space between ring and liner is limited by 
the oil left by the previous ring passing a given point on 
the cylinder. 

 The results in Table 1 and Table 2 present oil film 
thickness (OFT) data for the top compression ring. The 
maximum and minimum value within the studies are 
reported. The minimum oil film thickness is normally of 
interest in order to calculate wear. In this case the 
maximum oil film thickness is also included in order to 
see the range of values that are reported. On the other 
hand, when the symbol ( * ) appears, it refers to the 
conditions marked in the same row with ( * ).  When an 
additional symbol is needed in a specific row the symbol 
(†) is used.  

2.1 Grouping the data 

The sizes of the cylinders included in these tables are 
broadly similar. Hence, it is assumed that the order of the 
oil film thickness should be similar. Looking at Table 1, it 
is possible to divide the results in two groups, those 
engines whose maximum oil film thickness is high, for 

example above 6-10 microns and those engines which 
have maximum oil film thickness is in the range of 2 to 5 
µm.  In the first group there are more than 20 studies 
reporting high values of oil film thickness and many of 
which report also small values. This implies that there is a 
good chance that oil film thickness can go up to 15-20 
microns since those studies include also very small 
values. 

On the other hand the theoretical studies can be divided 
into those assuming fully flooded boundary conditions, 
which tend to have higher values (from 6 to 9 microns 
approximately) and those assuming starved conditions 
which tend to have a maximum value in the range 2 to 4 
microns. It has been shown by [1] that the piston rings are 
frequently not operating in fully flooded conditions in the 
mid-stroke location so it can be concluded that theoretical 
simulations predict a maximum value of 2 to 4 µm. 

 

3 DISCUSION 

3.1 Discrepancies and relation with experimental 
techniques. 

There seems to be a discrepancy in the calculated values 
and the measured values of published studies. While 
theoretical simulations predict 2 to 4 µm maximum oil film 
thickness in the top ring, experimental measurements are 
often higher than these values. A deeper analysis of the 
measurements is needed. There are some differences 
depending on the experimental technique used. Some 
experimental results made with laser induced 
fluorescence and flash induced fluorescence are close to 
theoretical predictions. However, two of the studies using 
the fluorescence technique [2, 3] still record higher values 
in the range of 18-23 µm. Ultrasound technique also gives 
higher values up to 11 µm as shown in [4]. However it is 
important to consider that the same research team has 
published an improved methodology that recorded smaller 
values of the oil film thickness [5] but these values are still 
higher than typical theoretical predictions. The eddy 
current method and resistance method also give very high 
values also although the size of the engine used for the 
eddy current based investigation is substantially bigger 
than for the other studies [6, 7]. Takiguchi et al. artificially 
imposes a minimum oil film thickness of 0.5 microns in 
their measurements, as a way to calibrate the “0” in their 
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measurement system. This has the effect of shifting down 
their measurements to the lowest possible values. 
However, while doing this, the highest values are still of 
11 µm [8].  

On the other hand, looking at the more recent theoretical 
analysis, a new study proposes a modified boundary 
condition for the simulations that seems to give a higher 
value of the predicted oil film thickness, although authors 
do not discuss the discrepancy, instead they consider 
different ring sizes [9]. 

3.2 Initial thoughts 

In general, experimental results are slightly higher or 
much higher than theoretical predictions.  It is clear that 
either the experimental measurements are failing to 
properly measure the gap between ring and cylinder or 

the theoretical models are not taking into account some 
effects that happen in the real world. 

Some theoretical models are very comprehensive. These 
models tend not only to give small values of oil film 
thickness, but trials with at least one commercial package 
appear to indicate that the oft values cannot go as high as 
those sometimes measured. This arises because the 
hydrodynamic pressure to support the ring load, when 
operating with such large gaps, cannot be generated. 
Experience also shows that liners and rings are worn out 
during operation, this also would not be possible if oil film 
thicknesses are as high as sometimes is reported. These 
issues suggest that experimental measurements may not 
give a complete picture. 

 

Year Ref. Authors OFT 

Min 

(µm) 

OFT 

Max 

(µm) 

Cylinder 

size 

(Litres) 

RPM LOAD OIL Temp °C Ring 

Pack 

Sensor 

1961 [10] Furuhama, Sumi  0.7 14 0.4 Rig 1900     Resistance 

1969 [11] Greene  3.8 24 Rig 1200     Optical 

1972 [12] Wing, Saunders  0 5 

12* 

0.6 Diesel 1330 

*1300 

6 BHP 

*0 

Shell 
Rotella T30 

100-160 
Rings 

3 R. Inductance 

1974 [13] Hamilton, Moore  0.4-
2.5 

7.0 0.6 Diesel 200-950     Capacitance 

1975 [14] Allen, Dudley et al.  9.1* 16.8 Diesel *1000 

2200 

     

1975 [15] Hamilton, Moore  0.5 7 0.6 Diesel 1500   72   

1975 

 

[16] Parker, Stafford et 
al.  

0.3 19.4 

 

Perkins  1000     Capacitance 

1976 [17] Wakuri, Ono et al.  0.7* 4.5 Flat Rig *267 

857 

    Optical, 
interferometry 

1977 [18] Brown, Hamilton  2* 15 0.6 Diesel *100 

400 

    Capacitance 

1978 [19] Brown, Hamilton  4.5  0.6 Diesel 200     Capacitance 

1978 [20] Moore, Hamilton  2 4 0.6 Diesel 1500 4.6 BHP SAE30 

119.5cSt 
(38C) 

11.9cSt 
(99C) 

48 4 R. Capacitance 

1979 [21] Moore  0.3* 2.5 2.2 Diesel *1000 

1800 

*8.3 BHP 

38 BHP 

   Capacitance 

1980 [22] Moore, Hamilton  0.2 

1.2* 

 Diesel 1500-
2250 

3.3 BHP 

*18 BHP 

   Capacitance 

1981 [23] Moore, Hamilton  0.5-
2.7 

 0.6/? 
Diesel 

950 0.84 BHP     

1981 [24] Moore  0.8-
2.5 

 0.5 Diesel 750 3.13 BHP    Capacitance 

1983 [25] Dow, Schiele et al.  0.7 4.5 Rig    90  Inductance 

1983 [26] Shin, Tateishi et 
al.  

0.7 14 

8* 

2.3 1300 0% 

*100% 

SAE30 

10.5cSt 

60-120 4 R. Capacitance on 
ring, long sensor 

1983 [27] Furuhama, Asahi 
et al.  

0.5-
3 

5-8 2.3 Diesel 1000-
1900 

0-100% 8.5cst 

10.5cst 

- 4 R. Capacitance on 
ring, long sensor 

1985 [28] Moore  0.5 2.5 

6.5* 

0.6 Diesel 1000 0.6kW 
per Cyl. 

SAE40 

SAE5W 

SAE10W40 

 4 R. 

*1 R. 

Capacitance 

1990 [29] Grice, Sherrington 
et al.  

 6-10 0.6 
Motored 

35 Motored - room 3 R. Capacitance 



1990 [30] Myers, Borman et 
al.  

0 20 1.2 Diesel     4 R. Capacitance 
TDC 

1991 [2] Richardson, 
Borman  

2 18 1.2 Diesel 2000  SAE30   Laser Induced 
Fluorescence 

1992 [31] Grice, Sherrington 
et al.  

1 8 0.6 Diesel 900-1650 Motored - 140 4 R. Capacitance 

1993 [32] Sanda, Saito et al.   5.5 

2.5* 

0.5 Petrol 800-1200 Motored 

*Full 

 

- 80 3 R. Laser Induced 
Fluorescence 

Scanning 

1993 [3] Phen, Richardson 
et al.  

 6 

23* 

14-
18† 

1.7 Diesel 700 

*1900 

†1900 

Motored SAE15w-
40 

(14.4cSt 
100C 

100cSt 
40C) 

89 

*52 

†89-52 

3 R. Laser Induced 
Fluorescence 

In situ calibration 

1995 [33] Mattsson  1 20 1.4 Diesel 1000-
2000 

0-80Nm 

per Cyl. 

- 80 3 R. Capacitance 

1995 [34] Taylor, Brown et 
al.  

 1.8 2.2  Diesel 

CAT1Y73 

1000-
1800 

Low 
20Nm per 
Cyl. 

15W/40 63-97 4 
rings 

Laser Induced 
Fluorescence 

1995 [35] Dearlove, Cheng  0.5 4 Test rig 
from liner 
sector  

Stroke 67 

100-600 Motored 49cP – 
357cP 

Room 1 R. Laser induced 
fluorescence 

1995 [36] Arcoumanis, 
Duszynski et al.  

1 10 Test rig 

Stroke 50 

200-600 Motored 

973N/m 

Load of 
R. 

- 25-100 1 R. Capacitance 

Fully flooded 

1995 [37] Inagaki, Saito et 
al.  

 3 0.4 Petrol 1500 Motored API SG 

ECII 

10w30 

(coumarin-
6 fluores.) 

80 3 R. Flash Induced 
Fluorescence 

1997 [38] Sanda, Murakami 
et al.  

0 4 

6* 

0.5  1000-
2000 

Full 

*Motored 

0.02 Pa s - 3 R. Laser Induced 
Fluorescence 
Scanning. 

1998 [39] Arcoumanis, 
Duszynski et al.  

 <5 0.7 Diesel 2000 40% 

(7.2 MPa) 

Many - 4 R. Laser Induced 
Fluorescence 

2000 [40] Yoshida, 
Kobayashi et al.  

1 2.5 0.5 Petrol 2500 Full - - 3 R. Laser Induced 
Fluorescence 

2000 [41] Seki, Nakayama 
et al.  

0.3 3.5 0.3 Diesel 2000 75% 

8 MPa 

SAE 30 80 3 R. Laser Induced 
Fluorescence 

2000 [8] Takiguchi, Sasaki 
et al.  

0.5* 

 

11* 

9*† 

1.2 Diesel 1600-
2800 

No load 

† Full 

10.87cSt 100-140 3 R. Capacitance on 
ring, *It assumes 
0.5 µm 

2001 [42] Ducu, Donahue et 
al.  

 1.93 1.5 Diesel 1300 40% - - - Capacitance 

2003 [43] Weimar, Spicher  2 5 0.5 Petrol 800-1500 - - 40-80 

oil 

3 R. Laser Induced 
Fluorescence 

2004 [44] Bolander, 
Steenwyk et al.  

0 4 

0.2* 

Rig (60° 
Sector) 

Bore 137.2 

Stroke 66.7 

240 

*15 

- ISO VG46 room 1 R. Twin-Fiber Optic 
mounted in the 
rails 

2004 [45] Taylor, Evans  1 4.5 2.2 Diesel 

CAT1Y73 

1000-
1800 

20-190 
Nm 

Per Cyl. 

SAE50 

SAE30 

SAE10W 

100-200 

Pist. 

4 R. Laser 

Induced 
Fluorescence 

2006 [6] Tamminen, 
Sandström et al.  

1 19 8.7 Diesel 900 10-100% SAE40 85-120 

Pist. 

3 R. Inductance 



2007 [7] Saad, Kamo et al.  1 15 

11* 

2.3 Diesel  

Sing. Cyl. 

1400 56Nm 

*165Nm 

15w40 148 

93 

3 R. Voltage drop 
(resistance) 

2009 [46] Dhar, Agarwal et 
al.  

0.7 8.3 0.4 Diesel 1300-
1400 

Motored - 110 

Oil 

4 R. Capacitive 

2009 [47] Söchting, 
Sherrington  

5.5 14 0.9 Diesel 2000 60-160 
Nm 

SAE20 

SAE50 

SAE5W50 

90-115 3 R. Capacitive 

2010 [48] Dellis  0.5 4 

2.5* 

Test rig 

Moving 
liner 

400 3371N/m 

Load of 
R. 

0w30 

10w40 

0w20 

50 

*70 

1 R. Capacitive 

2012 [49] Avan, Spencer et 
al.  

0.2 1.5 Rig 

Bore 130 

Stroke 15 

10 Hz 

 

40-200 N 
(vertical) 

37cSt (40C) 

6.5cSt(100C 

85.6cSt 

22 1 R. Ultrasound 

2012 [4] Mills, Avan et al.  3.2 6 

11* 

0.2 Petrol 2230 90% 
(7Nm) 

*Idle 

15w40 >100 3 R. Ultrasound 

2013 [50] Bulsara, Bhatt et 
al.  

0 5 0.1  500 Motored 10w30 

64cSt 
(40C) 

Room 3 R. Contact to ring 
Strain Gauge  

2013 [51] Bulsara, Bhatt et 
al.  

0 5 

4* 

0.1 500 

*200 

Motored 10w30 

64cSt(40C) 

0.117†Pa s 

†Room 3 R. Contact to ring 
Strain Gauge 

2014 [5] Mills, Vail et al.  0 6 

5* 

0.4 Petrol 3200 25Nm 

*35Nm 

10w40 -  2 R. Ultrasound 

Deconvoluted 

Table 1 Compilation of published results of experimental measurements. Top compression ring. 

 

Year Ref Authors OFT 
Min 

OFT 
Max 

Cylinder 
size 

RPM LOAD OIL Temp Ring 
Pack 

Comment 

1959 [52] Furuhama  0.8 

2.3* 

2 

4.3* 

0.4 500 

*3000 

6180N/m 

R. Load 

20.5x10-8 

Kg s /cm2 

80 1 R. Fully Flooded, 
Oscillating Cyl. 

1979 [53] Ruddy, Dowson et 
al. 

 12 8.9 Diesel 

2-Stroke 

290 - - - 3 R. Starved 

1979 [54] Rohde, Whitaker 
et al. 

1 4.3 0.2 No 
head 

3000 Motored 6.89x10-3 
Pa s 

- 1 R. Fully Flooded 

1980 [55] Ruddy, Parsons et 
al. 

 11 - - - - - 1 R. Log scale. No 
commented. 

1980 [56] Rohde  2.5 0.6 1400 0.4-0.7 
MPa 

BMEP 

6.89x10-3 
Pa s 

- 1 R.   

1981 [57] Ruddy, Economou 
et al. 

 15 - Medium - SAE 40 

SAE 50 

- 4 R. Log scale 

Fully Flooded 

1982 [58] Richez, Constans 
et al. 

1.6 3.3 

6* 

0.8 Petrol 800 

*2400 

Motored 13 x10-3 
Kg/m/s 

- 3 R. Fully Flooded 

1983 [27] Furuhama, Asahi 
et al. 

2-5 9 2.3 Diesel 1000-
1900 

0-100% 8.5cst 

10.5cst 

- 4 R. Fully Flooded 

1983 [26] Shin, Tateishi et 
al. 

2 9 0.5  1000    4 R. Fully Flooded 

1992 [31] Grice, Sherrington 
et al. 

1 4 0.6 Diesel 900-1650 Motored - 140 4 R. Fully Flooded, 
bore distort. 

1995 [59] Ma, Smith et al. 0 5.5 0.6 Diesel 1500 5.5 MPa SAE20 150 

80 

4 R. Fully Flooded 

1995 [60] Ma, Smith et al. 0 7 0.6 Diesel 1500 5.5 MPa SAE20 150 

80 

4 R. Fully Flooded, 
ring twist 

1996 [61] Ma, Sherrington et 
al. 

0 2-4 0.6 Diesel 1500 - SAE20 150 4 R. Starved 



80 

1995 [34] Taylor, Brown et 
al. 

 4 2.2  Diesel 

CAT1Y73 

1000-
1800 

 20Nm 
per Cyl. 

15W/40 63-97 4 R. Partially 

1997 [38] Sanda, Murakami 
et al. 

1 3 

4* 

0.5 1000-
2000 

Full load 

*Motored 

0.02 Pa s - 3 R. Starved 

1997 [62] Ma, Sherrington et 
al. 

0.3 2 0.6 950 3.2MPa SAE30 150 

80 

3 R. Partially flooded 

1997 [63] Ma, Smith et al. 0.3 2.3 0.6 950 3.2 MPa SAE30 150 

80 

3 R. Partially flooded 

Bore distort. 

1998 [64] Liu, Xie et al. 1 4 

 

0.8 2000 3.5MPa 0.003 µm ? 

0.008 µm ? 

- 3 R. Starved, 

(13 µm with 
roughness, 
inconsistency) 

2000 [65] Sawicki, Yu 0.4 3 0.5 2000 - 0.0069 Pa 
s 

- 3 R. Fully flooded, 
cavitated 

2000 [66] Priest, Dowson et 
al. 

0.3-
0.6 

3-4.5 2.2  Diesel 

CAT1Y73 

1200 1.4 MPa 

BMEP 

SAE30 
4mPas-
13mPas 

- 4 R. Starved and 
cavitated 

2001 [67] Frølund, Schramm 
et al. 

1.5* 

0.2 

6.5* 

1.5 

0.4 Petrol 2500 66% SAE 
10W30 

*Cold 

Warmed 

3 R. Starved 

2002 [68] Tian 0.1 0.8 2.0 Diesel 1200 100% 10W50 137-160 3 R. Partially flooded 

2002 [69] Piao, Gulwadi 0.3 1.5 

3.5* 

8† 

0.5 Petrol 2000 

*†6000 

 

- - - 3 R. Partially flooded 

† liner ramp and 
ring inertia 

2003 [70] Gamble, Priest et 
al. 

0.3 3 

1.7* 

0.5  2500 0.5 MPa 

BMEP 

SAE30 - 3 
Rings 

Fully 

*Partially flooded 

2003 [71] Harigaya, Suzuki 
et al. 

0.5 7.5 

8.4* 

9.5† 

1.2 Diesel 1600 

†2800 

0% SAE30 132 

*102 

(ring) 

1 R. Fully flooded 

2005 [72] Bolander, 
Steenwyk et al. 

0 6.5 Rig (60° 
Sector) 

Bore 137.2 

Stroke 66.7 

30-300 1 – 8 Kgf SAE 30 

0.20 Pa s 

20 1 
Ring 

Fully flooded, 

Effects of speed, 
load 

2006 [6] Tamminen, 
Sandström et al. 

0 6 8.7 Diesel 900    3 R. Ricardo 
RINGPAK 4.2 

2006 [73] Harigaya, Suzuki 
et al. 

0.4 

0.47
† 

2* 

5.5 

7.3† 

16* 

1.2 Diesel 1600 

†1600 

*800 

100% 

†0% 

*0% 

SAE 
10W50 

150 

†105 

*30 

1 R. Fully flooded 

2008 [74] Wannatong, 
Chanchaona et al. 

0.1 4 0.5 Diesel 1200 Full 

5.7MPa 

0.012  

Pa s  

(T_amb) 

100 

Liner 

3 R. Starved 

(6 µm Oil 
Control Ring) 

2013 [75] Morris, Rahmani 
et al. 

0.1 2.7  0.5 Petrol 2000 5.6 MPa 55.99 cSt 
(40C) 

9.59 cSt 
(100C) 

-* 3 R. Fully Flooded 
with *thermal 

2014 [76] Yuan, Feng et al. 0.5 3 0.3 Free 
Piston 
Gen. 

8.5 MPa - - 2 R.  

2015 [77] Taylor 0.5* 5.8 0.5 Petrol 2500 3.2 MPa SAE 
15W40 

100-150 3 R. Fully Flooded 

*Squeeze 

2015 [9] Shahmohamadi, 
Mohammadpour 
et al. 

0.7 10.8 0.5 1500 - - -  Inlet flooded with 
reversal and 
cavitation 

2015 [78] Usman, Cheema 
et al. 

0 6.5 

3* 

0.8 1000 6MPa 0.016Pa s 
(T_amb) 

100 1 R. Fully flooded, 

*Distortion 

Table 2 Compilation of published results of computer simulations. Top compression ring. 



3.3 Identifiable trends 

The compilation of a summary of almost 50 articles 
reporting measurements of oil film thickness in Table 1 
gives an opportunity to investigate some trends. One trend 
that is quite clear, is reported by eight of these studies, that 
an increase in the load of the engine will tend to reduce the 
maximum values of oil film thickness measured commonly 
in the stroke or in the upper part of the stroke [4, 5, 7, 8, 
12, 26, 32, 38]. However, a small number of investigations 
have also noted that sometimes the opposite effect also 
occurs, that is the OFT may increase when load increases 
[6, 8, 33, 47]. 

Analysis of OFT data has shown there is no correlation in 
the data between OFT and cylinder size, OFT and fuel 
type or OFT with the year of the study. However, it may be 
reasonable to anticipate that a more modern  design would 
tend to have smaller oil film thicknesses since it probably 
operates a less viscous lubricant (with more additives to 
reduce the wear caused by an increase in the asperity 
contacts). When all the data is presented in a single graph 
it is found that the distribution of measurements follow a 
log-normal distribution as shown in figure 1. 

  

Figure 1: Histogram of measurements and predictions of 
maximum OFT data. 

It is clear that, on average, predicted values of OFT cover 
a much smaller range than experimental measurements. 
This suggests that either (a) there are errors in many 
experimental measurements that lead to over evaluation of 
OFT, or (b) that there are real effects in experimental data 
that lead to the detection of large separations between 
rings and cylinders (such as limited ring conformity in out 
of round cylinders) or (c) that there is a fundamental error 
in simulations that evaluate OFT. These authors believe 
that the latter issue is very unlikely. Additionally, it does not 
appear to be possible to generate sufficient hydrodynamic 
pressure to support the prevailing loads with thick films in 
these systems. 

 
4 SUMMARY 

An extensive review of published data has been carried 
out. Experimental measurements of OFT tend to be 
greater than those predicted by simulations. It 
demonstrates that there is a consistent discrepancy 
between the range of the OFT data obtained in 
experimental and theoretical investigations that is not fully 
explained. Additionally, there are many experimental 
studies reporting that increasing load of the engine makes 
oil film thickness values in the upper stroke smaller, but a 
small number of investigations have also noted that 
sometimes the opposite effect also occurs. 
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