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Abstract 

 Recent research has shown that proprioception relies on distorted representations of 

body size and shape. By asking participants to localise multiple landmarks on their occluded 

hand, perceptual maps of hand size and shape can be constructed and compared to actual 

hand structure. These maps are different from the actual size and shape of the occluded hand, 

revealing underestimation of finger length and overestimation of hand width. Here we tested 

whether the same distorted body model underlies proprioceptive imagery (i.e. imagining the 

hand at a specific location, and in a different posture than it actually is). In Experiment 1, 

participants placed their left hand under an occluding board (real condition) or imagined their 

left hand under the board (imagined condition). Highly similar distortions were found in both 

conditions. Furthermore, results across the two conditions were strongly correlated. In 

Experiment 2, participants completed the real condition and two imagined conditions. In the 

imagined-fist condition, participants held their left hand in a fist, in their lap, while in the 

imagined-flat condition, participants held their left hand flat, with palm down, in their lap. In 

both imagined conditions, participants were asked to imagine their left hand lying flat, with 

palm down, under the occluding board. A similar pattern of distortions was found in all three 

conditions. These results suggest that both proprioception and proprioceptive imagery reply 

on a common stored model of the body's metric properties.  
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Introduction 

 The ability to form mental images of stimuli in their absence is a fundamental 

component of human cognition. It facilitates action planning and decision-making, and 

provides a revealing window into the contents of mental representations (Kosslyn, 

Thompson, & Ganis, 2006). Imagery has been investigated most thoroughly in the case of 

vision, for example in the seminal studies of Kosslyn and colleagues (Kosslyn, Ganis, & 

Thompson, 2001; Kosslyn et al., 2006). Numerous studies have also described imagery in 

other modalities, including audition (e.g., Zatorre et al., 1996), touch (e.g., Schmidt, Ostwald, 

& Blankenburg, 2014), gustation (e.g., Kobayashi et al., 2004), olfaction (e.g., Bensafi et al., 

2003), vestibular sensations (e.g., zu Eulenburg, Müller-Forell, & Dieterich, 2013), and 

action (e.g., Decety et al., 1994; Parsons, 1987). A general finding across modalities is that 

imagery relies on mental and neural representations subserving perception and action, 

functioning in effect as a “weak form of perception” (Pearson, Naselaris, Homles, & Kosslyn, 

2015, p. 590). 

Here, we investigated mental imagery for proprioception, that is the ability to imagine 

one’s limbs in a different posture or location than they are actually in. Many studies of motor 

and kinaesthetic imagery have, of course involved a proprioceptive component. For example, 

in studies of imagined walking (e.g., Decety, Jeannerod, & Preblanc, 1989) the limbs are 

certainly imagined to change posture. Similarly, in Parsons’ (1987, 1994) classic hand 

rotation task, participants judge whether a picture is of a right or a left hand. Research has 

suggested that participants perform this task by mentally rotating their hand from its current 

posture to match the seen hand (Parsons, 1987). Indeed, when the posture of the participant’s 

own hand does not match that of the picture, responses are slowed (Shenton, Schwoebel, & 

Coslett, 2004; Funk, Shiffrar, & Brugger, 2005; Ionta, Fourkas, Fiorio, & Aglioti, 2007). The 
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focus of these studies, however, has been on the ability to imagine movement of the body, not 

on proprioception. To our knowledge, no research has specifically focused on the ability to 

imagine the limbs at a specific location different from their actual location. 

 There are reasons to think that investigating imagery for precise location may be 

particularly informative. For example, in a classic study, Kosslyn, Ball, and Reiser (1978) 

showed that the time taken to mentally scan between landmarks on a previously seen map 

was directly proportional to the distance between landmarks. This showed that mental 

imagery preserves precise metric information about imagined objects. Indeed, recent fMRI 

studies have shown that visual perception and imagery rely on shared representations of 

location in higher-order visual cortices (Cichy, Heinzle, & Haynes, 2012; Stokes, Saraiva, 

Rohenkohl, & Nobre, 2011). 

 Given that Kosslyn and colleagues (1978) showed that visual imagery preserves 

precise metric spatial relations, we investigated whether the same is true for proprioceptive 

imagery. We employed a paradigm we recently developed to construct perceptual maps of 

hand size and shape underlying proprioception (Longo & Haggard, 2010). Participants use a 

long baton to indicate the perceived location of landmarks (i.e., fingertips and knuckles) of 

their occluded hand. By comparing the relative locations of judgments of different landmarks, 

perceptual maps of hand size and shape can be constructed and compared to actual hand 

form. These maps show massive distortions, which are highly stereotyped across people, for 

example, overall underestimation of finger length and overestimation of hand width. Longo 

and Haggard (2010) interpreted this result as suggesting that immediate proprioceptive 

signals are combined with a distorted mental representation of body size and shape, which 

they called the body model. This task is unusually suited to studies of mental imagery in that 
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it does not require any stimulation to be delivered to the judged body part, or even for that 

part to exist at all. Indeed, Longo, Long, and Haggard (2012) used this paradigm to map the 

phantom hand of a person born without a left arm.  

In this study, we tested whether proprioceptive imagery preserves precise metric 

relationships among landmarks, analogous to that seen in visual imagery by Kosslyn and 

colleagues (1978), and if so, whether it utilises the same distorted body model as actual 

proprioception. In Experiment 1, we used the pointing task developed by Longo and Haggard 

(2010) to construct perceptual hand maps both when the hand was on table, underneath the 

occluding board (real condition), and when the participant merely imagined the hand as being 

there (imagined condition). Based on previous imagery research, which has found that 

imagery preserves metric relations, we predicted the same stereotyped pattern of distortions 

(i.e., an underestimation of finger length and overestimation of knuckle spacing) in both 

conditions. In Experiment 2, we controlled for the posture and the position of the participant's 

actual hand in the imagined condition, asking participants to hold their left hand in their lap 

flat, with fingers straight, and palm down (imagined-flat condition), or in the shape of a fist 

(imagined-fist condition). For comparison, we also included a real proprioceptive condition.  

 

Experiment 1 

Methods 

Participants.  Thirteen individuals (5 females) aged between 18 and 51 years old (M: 

28.57) participated. All were right-handed as assessed by the Edinburgh Handedness 

Inventory (Oldfield, 1971), M: 70.96; range: 47.37 – 100. Data from one additional 

participant could not be analysed due to random responses. 
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Design & Procedure. Figure 1 shows the experimental setup. Participants sat at a 

table and made judgments about the perceived location of different parts of their left hand in 

two conditions. The real condition was similar to our previous studies using this paradigm 

(Longo & Haggard, 2010, 2012a, 2012b; Longo et al., 2012). Participants sat with their left 

hand resting on the table approximately aligned with their body midline. The hand was then 

covered by a 40 x 40 cm board which rested on four pillars (6 cm high). Participants used a 

baton (35 cm length; 2 mm diameter) held in their right hand to indicate the perceived 

location of landmarks on the dorsum of their occluded hand. The imagined condition was 

similar except that the participant’s left hand rested in their lap, with palm up, while they 

imagined it lying flat on the table, with palm down, in a position and posture similar to the 

real condition. Like in the real condition, participants were asked to indicate where they felt 

each landmarks was located. In both conditions, participants wore a black cloth which 

covered their body from neck downwards. 
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Figure 1: Experimental setup. Left panel: The real condition. Participants placed their hand underneath 

an occluding board and used a long baton to indicate the perceived location of the tip and knuckle of 

each finger. Right panel: The imagined condition. Participants rested their hand in their lap with palm 

facing up while imaging their hand to be underneath the occluding board, in a posture and location 

similar to the real condition. They made judgments of the perceived location of landmarks on the 

mental image. 
 

Responses were captured by a camera (Logitech Webcam Pro 9000) suspended 27 cm 

above the table. The photographs (1600 x 1200 pixels) were taken under the control of a 

custom Matlab (Mathworks, Natick, MA) script. Participants localised ten landmarks: the 

centre of the knuckle at the base of each finger and the tip of each finger (i.e., the most distal 

bit of the finger). On each trial, participants were verbally instructed which landmark to 

judge. They placed the tip of the baton on the board directly above the perceived location of 

that landmark. Participants were asked to take their time, be precise, avoid ballistic pointing 

and avoid using strategies such as tracing the outline of the hand. When the participant made 

their response, a photograph was taken and stored for offline coding. To avoid response 

biases, after each trial participants moved the tip of the baton to a dot at the edge of the board.  

Both before and after each block of the real condition, a photograph was taken 

without the occluding board to obtain measures of actual hand size, shape, and posture, and to 

ensure that the hand had not moved during the block. Clearly, no such pictures could be taken 

in the imagined condition. A 10 cm ruler on the table appeared in the photographs without the 

occluder, allowing conversion between pixels and cm. At the beginning of the experiment, a 

small black mark was made on the knuckle of each finger to facilitate coding from 

photographs. There were four blocks of 50 trials, two of each condition. Each block consisted 

of five mini-blocks of 10 trials (one trial for each landmark), presented in random order. The 

blocks were presented in ABBA order, with the initial condition counterbalanced across 

participants. 
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Analysis.  The analysis methods were similar to those we have used previously with 

this paradigm. The x-y pixel coordinates of each landmark were coded using a custom Matlab 

script and were averaged across trials within a block. This resulted in one map of the hand for 

each block. Distances between pairs of knuckles and between the tip and the knuckle of each 

finger were calculated and converted into cm. We then calculated the percent overestimation 

between pairs of landmarks as: 100 x (judged length – actual length) / actual length. 

The main statistical comparisons involve percent overestimation. In order to visualise 

the data, however, we also placed the maps from each condition into Procrustes alignment 

with actual hand shape. Procrustes alignment translates, rotates, and dilates maps of 

homologous landmarks in order to place them into optimal alignment (Bookstein, 1991; 

Rohlf & Slice, 1990). Because the fingers can rotate independently, they were rotated to a 

common posture before being put into Procrustes alignment. For each finger this posture was 

defined by the angle formed by the intersection of two lines – one running through the tip and 

the knuckle of that finger and another running through the knuckles of the index and little 

fingers. We calculated the average angle across participants for each finger of the actual 

hand, and then rotated the tip of each finger in every map (actual and judged), taking the 

knuckle as a pivot point. This resulted in hand maps having the same posture, allowing 

comparisons of shape. 

The hand shapes were then compared using Generalized Procrustes Superimposition 

(GPS) with CoordGen software, part of the Integrated Morphometrics Program (IMP; H. 

David Sheets, Canisius College, http://www.canisius.edu/~sheets/morphsoft.html). Because 

there were two experimental blocks of each condition, maps from each condition were first 

put into GPS and averaged, resulting in a single map for each participant for the actual hand 

and for judgments in each of the two experimental conditions. Then a second group-level 
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GPS was run, putting the judged maps from each condition into GPS alignment with actual 

hand shape. 

  

Results and Discussion 

Figure 2 shows grand average maps of actual and represented hand shape in the two 

conditions, placed into Procrustes alignment. Clear and well-organised spatial maps were 

apparent in both conditions, demonstrating that proprioceptive imagery supports organised 

spatial judgments which preserve spatial relations among landmarks. Consistent with our 

previous results, we found clear distortions, including: (1) overestimation of hand width, (2) 

underestimation of finger length, and (3) a radial-ulnar gradient of magnification of finger 

length underestimation. Crucially, these distortions were present in both the real condition 

and the imagined condition. 

  

 
Figure 2: Generalised Procrustes alignment of landmark positions of the actual hand (blue) and perceptual hand 

maps in the real condition (orange), and in the imagined condition (green).  
 

 The left panel of Figure 3 shows percentage overestimation of finger length. 

Averaging across fingers, overall underestimation of finger length was apparent in both the 

real (M: 21.89%), t(12) = 3.55, p < 0.005, d = 0.98, and imagined (M: 24.74%), t(12) = 2.90, 
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p < 0.02, d = 0.81, conditions. There was no significant difference in the magnitude of finger 

underestimation across the two conditions, t(12) = 0.66, p = 0.52, dz = 0.18, which were 

strongly correlated, r(11) = 0.875, p < 0.0001. An analysis of variance (ANOVA) revealed a 

significant main effect of finger, F(1.94, 23.29) = 5.24, p < 0.02, ηp
2
 = 0.30. However, there 

was no main effect of condition, F(1, 12) = 0.43, n.s., nor an interaction between finger and 

condition, F(4, 48) = 0.70, n.s. 

The change in underestimation across fingers was quantified using least-squares 

regression. Percent overestimation was regressed on digit number (i.e., D1 = thumb, D5 = 

little finger, separately for each participant and condition. There was a clear radial-ulnar 

gradient of underestimation in the real condition (mean β = -3.92% / finger), t(12) = -3.54, p 

< 0.005, d = 0.98. This effect was only marginally significant in the imagined condition 

(mean β = -3.24% / finger), t(12) = -2.00, p = 0.069, d = 0.55, but there was no significant 

difference between the two conditions, t(12) = 0.81, p = 0.435, dz = 0.22. 

 The right panel of Figure 3 shows percentage overestimation of the spacing between 

pairs of knuckles. Taking the distance between the knuckles of the index and little fingers as 

an overall measure of hand width, clear overestimation of hand width was apparent in both 

the real (M: 70.57%), t(12) = 5.51, p < 0.0001, d = 1.53, and the imagined (M: 79.02%), t(12) 

= 5.04, p < 0.0005, d = 1.40, conditions. No significant difference in the magnitude of 

overestimation in the two conditions, t(12) = 1.72, p = 0.11, dz = 0.48, was found, 

overestimation across the two conditions being strongly correlated, r(11) = 0.961, p < 0.0001. 
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Figure 3: Left panel: Underestimation of finger length as a function of the five fingers in the real and the 

imagined conditions. Right panel: Underestimation of finger length (i.e., the data from the left panel collapsed 

across fingers) and overestimation of hand width (i.e., the distance between the knuckles of the index and little 

fingers). Error bars indicate one S.E.M. 
 

 

Experiment 2 

 In Experiment 1, we found that irrespective of the actual location of the hand, 

participants underestimated the length of their fingers, and overestimated the width of their 

hands. Although these results speak to the fact that participants can imagine their hands in a 

different location and posture than they actually are, it could be argued that asking 

participants to hold their hands open, with palm up, in their lap, during the imagined 

condition, might have facilitated responses. That is, could participants in the imagined 

condition have actually been pointing towards the location of landmarks on their actual hand 

on their lap? We consider this interpretation unlikely, given that the participant’s lap was not 

directly underneath the occluding board, because the hand was resting palm up in a relaxed 

posture, in contrast to the imagined hand which was palm down with fingers stringer. 

Nevertheless, to address this point, we ran a second study in which we manipulated the 

posture of the hand during the imagined condition. More specifically, in the imagined-flat 

condition we asked participants to hold their hand flat on their lap, with palm facing down 
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and fingers straight. In the imagined-fist condition, in contrast, we asked participants to hold 

their left hand in a fist in their lap. Irrespective of the actual hand posture, participants had to 

imagine their left hand lying flat, with palm down, under the occluding board. For 

comparison with Experiment 1, we also ran a real proprioceptive condition, in which we ask 

participants to place their hand flat, with palm down, under the occluding board.  

 

Methods 

 Participants. Fifteen participants (10 females) aged between 20 and 42 years old (M: 

27.66) took part in the study. With the exception of one participant who was left-handed, all 

the other participants were right-handed as assessed by the by the Edinburgh Handedness 

Inventory (Oldfield, 1971), M: 77.04 ; range: -47.37 to 100. Two additional participants were 

tested, but excluded from the analysis due to inattentiveness and random pointing (N = 1), or 

moved their hand during 3 blocks (N = 1).  

 Design & Procedure. Procedures were similar to Experiment 1. The real condition 

was exactly as in Experiment 1. In the imagined-flat condition, participants were asked to 

hold their left hand flat on their lap, with the palm resting flat and with fingers straight. In the 

imagined-fist condition, they were asked to hold their left hand on their lap in the shape of a 

fist. As in the imagined condition of Experiment 1, in both imagined conditions participants 

were asked to imagine the hand lying flat, with palm down, and straight fingers, under the 

board. The coding and the analysis of data was similar to Experiment 1.  

 

Results and Discussion 

 Figure 4 shows grand average maps of actual and represented hand shape in the three 

conditions, placed into Procrustes alignment. Clear and well-organised spatial maps were 
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apparent in all three conditions, similar to Experiment 1. Overestimation of hand width, 

underestimation of finger length, and a radial-ulnar gradient were clearly present in all 

conditions. This pattern replicates the results from Experiment 1 and shows that the presence 

of these distortions in the imagery condition does not rely on the actual hand being in any 

single posture. 

 
Figure 4: Generalised Procrustes alignment of landmark positions of the actual hand (blue) and 

perceptual maps in the real condition (orange), the imagined-flat condition (green), and the imagined-

fist condition (red). 

 

The left panel of Figure 5 shows percent overestimation of finger length. Collapsing 

across the five fingers, there was clear underestimation of finger length in the real condition 

(M: 30.27%), t(14) = -8.36, p < 0.0001, d = 2.16, in the imagined-flat condition (M: -

35.66%), t(14) = -8.53, p < 0.0001, d = 2.20, and in the imagined-fist condition (M: -34.46%), 

t(14) = -8.38, p < 0.0001, d = 2.16. The amount of underestimation was strongly inter-

correlated across conditions, with clear correlations between the real and imagined-flat 

conditions, r(13) = 0.765, p < 0.001, the real and imagined-fist conditions, r(13) = 0.819, p < 

0.0005, and the two imagined conditions, r(13) = 0.897, p < 0.0001. An ANOVA revealed a 

significant main effect of finger, F(4, 56) = 27.48, p < 0.0001, ηp
2
 = 0.66. There was a 

marginal trend towards a main effect of condition, F(2, 28) = 2.90, p = 0.072, ηp
2
 = 0.17, and 

a significant interaction between finger and condition, F(8, 112) = 3.12, p < 0.005, ηp
2
 = 0.18. 

As can be seen in the left panel of Figure 5, this interaction was driven by less 
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underestimation of thumb length in the real condition than in either of the two imagery 

conditions. Generally, however, the same radial-ulnar gradient with underestimation 

increasing from the thumb to little finger was apparent in all three conditions. 

As in Experiment 1, this change across the hand was quantified using least-squares 

regression. Clear gradients were found in the real condition (mean β = -6.34% / finger), t(14) 

= -5.85, p < 0.0001, d = 1.51, in the imagined-flat condition (mean β = -3.63% / finger) = 

t(14) = -3.17, p < 0.01, d = 0.82, and in the imagined-fist condition (mean β = -3.06% / 

finger), t(14) = -4.09, p < 0.002, d = 1.06. 

 The right panel of Figure 5 shows overestimation of the spacing between the knuckles 

of the index and little fingers. Clear overestimation of hand width was apparent in the real 

condition (M: 86.12%), t(14) = 10.46, p < 0.0001, d = 2.70, in the imagined-flat condition 

(M: 96.53%), t(14) = 6.81, p < 0.0001, d = 1.76, and the imagined-fist condition (M: 83.97%), 

t(14) = 6.68, p < 0.0001, d = 1.73. The amount of overestimation was strongly inter-

correlated between conditions, with clear correlations between the real and imagined-flat 

conditions, r(13) = 0.751, p < 0.002, the real and imagined-fist conditions, r(13) = 0.804, p < 

0.0005, and the two imagined conditions, r(13) = 0.936, p < 0.0001. An ANOVA comparing 

the amount of overestimation in the three conditions did not reveal a significant effect, 

F(1.39, 19.45) = 1.52, p = 0.240, ηp
2
 = 0.098. 
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Figure 5: Left panel: Underestimation of finger length across the five fingers in each of the three 

conditions. Right panel: Underestimation of finger length (i.e., the data from the left panel collapsed 

across fingers) and overestimation of hand width (i.e., the distance between the knuckles of the index 

and little fingers). Error bars indicate one S.E.M. 

 

 

General Discussion 

 Similar perceptual maps of hand structure were obtained when participants judged the 

location of landmarks on their occluded hand using proprioception and when they merely 

imagined their hand underneath the occluder. Moreover, in both cases these maps were 

highly distorted, consistent with previous results (e.g., Longo & Haggard, 2010). Specifically, 

the maps featured: (1) overestimation of hand width, (2) underestimation of finger length, and 

(3) increased underestimation of finger length from the thumb to the little finger. The results 

of Experiment 2 showed that similar maps of imagined hand posture can be obtained, even 

when the actual posture of the hand is very different. In both experiments, the magnitude of 

distortions in real and imagined conditions was strongly correlated across participants. That 

these distortions were present in the imagined condition as well as the real condition suggests 

that both proprioception and proprioceptive imagery utilise a common stored body model. To 

our knowledge this is the first attempt to systematically test the properties of proprioceptive 

imagery. By looking at the distances between points rather than the localization of individual 

landmarks, which can be influenced by various factors such as distance from the body's 

medial axis, or visual depth, we show that proprioceptive imagery mimics actual 

proprioception, and that a stored representation of the body's metric properties informs both 

processes.  

 Research on kinaesthetic imagery has focused largely on the role of biomechanical 

constraints in shaping imagery. For example, it has been consistently shown that people are 
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slower to mentally rotate their hands or feet into awkward postures than into postures that are 

biomechanically easier to achieve (Parsons, 1987, 1994; Shenton et al., 2004; Funk et al., 

2005). For example, judging the laterality of a picture of the palm of a hand orientated 90
o
 

away from the medial axis (with the thumb pointing away from the body) is more difficult 

than for the same picture orientated towards the medial axis (Parsons, 1994). In contrast, little 

if any research has investigated whether imagery preserves precise metric information about 

the spatial configuration of the body. Our results demonstrate that metric relations about body 

parts, like biomechanical constraints on bodily movement, are preserved in mental imagery. 

In this sense, our results in proprioception mirror those of Kosslyn's classic studies (1973; 

Kosslyn et al., 1978) on scanning of visual images. 

 A central finding in research on visual imagery is that mental images preserve 

functional characteristics as actual vision (e.g., Kosslyn et al., 1978) and rely on common 

neural bases (e.g., Kosslyn, Thompson, Kim, & Alpert, 1995; Stokes et al., 2011). Analogous 

findings have been reported for several other modalities, including audition (e.g., Zatorre et 

al., 1996), touch (Schmidt et al., 2014), olfaction (e.g., Bensafi et al., 2003), and motoric 

behaviour (e.g., Decety et al., 1989; Parsons 1994). Our findings extend this result to 

proprioceptive imagery, showing that judgments about both actual and imagined limb 

positions rely on a common representation of body size and shape. Pearson and colleagues 

(2015), in a recent review, describe mental imagery as a “weak form” of actual perception. 

Our results are consistent with this characterisation in the case of proprioceptive imagery, 

showing that it operates very much like actual proprioception, both in terms of allowing 

precise metric judgments about the locations of specific parts of the body and in showing 

massive distortions of body size and shape. 
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 What is the function of proprioceptive imagery? Like kinesthetic imagery, 

proprioceptive imagery may have a role in action planning. As important as planning 

movements, is planning the desired final configuration of the limbs. Indeed, much research 

on action planning suggests that many motor representations code primarily for the desired 

end state of actions, regardless of the specific movement pattern used to achieve that end state 

(Rizzolatti et al., 1988; Jeannerod, 1997). Proprioceptive imagery, by specifying the end state 

of a potential action, may thus be particularly useful for planning the eventual goal of an 

action, whereas kinesthetic imagery may be more useful for planning the specific means used 

to achieve this goal. Further, proprioceptive imagery may be useful for determining whether 

an action being considered is possible to perform. For example, the ability to grasp an object 

depends not only on the size of one’s hand, but also on the spacing between one’s fingers in a 

specific hand posture. Thus, to determine if an object is graspable, proprioceptive imagery 

could be used to imagine one’s hand in a grasping posture around the object. 

The origins of the distorted representation of the hand seen in this and previous 

studies remain uncertain. Longo and Haggard (2010) argued that since proprioceptive 

afferent signals only provide information about joint angles, the absolute localisation of the 

body in space requires that these signals are combined with a stored body model specifying 

the size and shape of the segments between joints. Together with a recent case-study of an 

individual born without a left arm (Longo et al., 2012), the present results provide strong 

evidence for this interpretation, showing that the distorted hand representation cannot be an 

artifact of afferent proprioceptive signals, since such signals are absent in the imagined 

condition. Thus, the distortions must arise from a central representation of body size and 

shape. Some evidence suggests that this body model is not specific to proprioception, as some 

aspects of these distortions appear in touch (Longo & Haggard, 2011), visual judgments of 
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body-part size (Longo & Haggard, 2012b), and visual memory for non-body objects (Saulton, 

Dodds, Bülthoff, & de la Rosa, 2015). For example, Saulton and colleagues (2015) found that 

when participants were asked to localize landmarks on previously-seen objects, somewhat 

similar distortions were apparent, suggesting that some aspects of these distortions may 

reflect perceptual biases extending beyond proprioception. However, there is also evidence of 

important differences between the distortions found for one’s own body compared to other 

objects. When participants judged the location of the fingertips and knuckles of a previously 

seen rubber hand, they showed clear underestimation of finger length, but no overestimation 

of hand width (Longo, Mattioni, & Ganea, 2015; for similar results, see Saulton et al., 2016). 

This suggests that while underestimation of finger length may reflect a quite general 

conceptual misrepresentation of hand structure (cf. Longo, 2015), the overestimation of hand 

width is more specific to the representation of one’s own body. Our finding of nearly 

identical overestimation of hand width in the real and the imagined conditions is in striking 

contrast to the lack of such overestimation when making judgments from visual memory 

about the same landmarks on a rubber hand. This suggests that visual memory of the hand 

cannot fully account for our results.  

In conclusion, we argue that an implicit representation of the hand underlies both 

actual proprioception and proprioceptive imagery. The fact that highly similar perceptual 

maps of hand structure are obtained whether localization judgments are based on actual 

proprioceptive signals of limb location or on imagery provides further evidence that the body 

model underlying position sense is stored centrally, and is not an artifact of proprioceptive 

afferent signals. Our results show that, as in the case of vision (Kosslyn et al., 1978), 

proprioceptive imagery maintains detailed metric information about the body. More 
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generally, our results add to a growing literature showing that across domains mental imagery 

relies on mechanisms shared with actual perception and action. 
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