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Abstract 
 

Even newborn infants are able to extract structure from a stream of sensory inputs 

and yet, how this is achieved remains largely a mystery.  We present a connectionist 

autoencoder model, TRACX2, that learns to extract sequence structure by gradually 

constructing chunks, storing these chunks in a distributed manner across its 

synaptic weights, and recognizing these chunks when they re-occur in the input 

stream. Chunks are graded rather then all-or-none in nature. As chunks are learnt 

their component parts become more and more tightly bound together. TRACX2 

successfully models the data from five experiments from the infant visual statistical-

learning literature, including tasks involving forward and backward transitional 

probabilities, low-salience embedded chunk items, part-sequences, and illusory 

items. The model also captures performance differences across ages through the 

tuning of a single learning rate parameter. These results suggest that infant 

statistical learning is underpinned by the same domain general learning mechanism 

that operates in auditory statistical learning and, potentially, in adult artificial 

grammar learning.  
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1. Introduction 

 

We live in a world in which events evolve over time. Consequently, our senses are 

bombarded with information that varies sequentially through time. One the greatest 

challenges for cognition is to find structure within this stream of experiences ([1]; 

[2]). Even newborn infants are able to do this ([3]; [4]), and yet, how this is achieved 

remains largely a mystery.  

 Two possibilities have been suggested (see [5], [6], Theissen (this issue) for 

detailed discussions). The first, often referred to as statistical learning, involves 

learning the frequencies and transitional probabilities (TPs) of an input signal to 

construct an internal representation of the regularity boundaries between elements 

encountered (e.g., [7]; [8]). The second possibility, often referred to as chunking, 

suggests that elements that co-occur are simply grouped together – or chunked – 

into single units, stored in memory and recalled when necessary [9]. Over time, 

these chunks can themselves be grouped into super-chunks or super-units. 

According to this view behaviour is determined by the recognition of these chunks 

stored in memory and associated with particular responses (e.g., [5]; [9]; [10]). 

What distinguishes these accounts is that the former argues that it is the 

probabilistic structure of the input sequence that is represented and stored (e.g., 

TPs), whereas the later argues that specific co-occurring elements are stored, rather 

than the overarching statistical structure. Ample evidence in support of both of 

these views has been reported in the literature. 
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 We will argue that both transitional probability learning (statistical learning) 

and chunking co-exist in one system implementing a single learning mechanism, 

which can transition smoothly between two apparently distinct modes of behaviour. 

The appearance of two modes of learning is an illusion because only a single 

mechanism underlies sequential learning; namely, Hebbian-style learning in a 

partially recurrent distributed neural network. Such a system encodes exemplars 

(typical of chunking mechanisms) while drawing on co-occurrence statistics (typical 

of statistical learning models). An important corollary of this approach is that 

chunks are graded in nature rather than all-or-none. Moreover, interference effects 

between chunks will follow a similarity gradient typical of other distributed neural 

network memory systems. 

Chunks were historically thought of as all-or-nothing items ([9], [11]).  However, 

recent work (for example on the gradedness of the morphological features of 

compound word, [12], [13]) shows that this is not the case. When we encounter the 

words "smartphone", "carwash", or "petshop", we still clearly hear the component 

words.  We hear them less in words like "sunburn" and "heartbeat".  We hear them 

hardly at all in "automobile." How long did it take for people to stop hearing "auto" 

and "mobile" when they heard or read the word "automobile"? Like "automobile", it 

is likely that in a few years the current generation will no longer hear "smart" and 

"phone" when they hear the word "smartphone". This simple observation involving 

the graded nature and gradual lexicalisation of chunks is at the heart of the 

chunking mechanism in TRACX2. 
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 In TRACX [14] we showed that a connectionist autoencoder, augmented with 

conditional recurrence, could extract chunks from a stream of sequentially 

presented inputs. TRACX had two banks of input units, which it learnt to autoencode 

onto two banks of identical output units. Sequential information was encoded by 

presenting successive elements of the sequence, first on the right input bank, then 

on the left input bank on the next time step. Thus, the sequence of inputs was 

presented in a successive series of right-to-left inputs, with learning occurring at 

each time step. However, if the output autoencoding error was below some pre-set 

threshold value (indicating successful recognition of the current pair of input 

elements), then, on the next time step, instead of the input to the right input bank 

being transferred to the left input bank, the hidden unit representation  was put into 

the left input bank. The next item in the sequence was, as always, put into the right 

input bank. Weights were updated and the input sequence would then proceed as 

before. The result of this was that TRACX learnt to form chunks of elements that it 

recognised as co-occurring (see [14] for full details). TRACX successfully captured a 

broad range of data from the adult and infant auditory statistical learning literature 

(e.g., [15]; [16]; [17]; [18]). Moreover, it outperformed existing models of both 

chunking, notably, PARSER ([19]; [10]) and statistical learning (SRNs, [20] ). Finally, 

the model was able to scale up to more realistic linguistic corpora, in particular, the 

Brent & Cartwright [21] data.   

 In the present article, we introduce TRACX2, an updated version of TRACX, 

which removes the use of an all-or-nothing error threshold that determines whether 

or not the items on input are to be chunked.  This effectively removes a mechanism 
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 a conditional jump (i.e. an if-then-else) statement  that is not natural to neural 

network computation. In TRACX2, the contribution of the hidden-unit activation 

vector to the left bank of input units is graded and depends on the level of learning 

already achieved. We then use TRACX2 to model a total of seven experiments, two 

classic experiments from the infant auditory statistical learning literature that we 

previously modelled with TRACX ([14]) and five from the infant visual statistical 

learning literature. Visual statistical learning paradigms involve showing infants 

sequences of looming coloured shapes with varying degrees of statistical regularity 

embedded in the sequences. It was first developed as a visual analogue of the 

auditory statistical learning experiments ([22]) and has yet to be captured by any 

modelling paradigm. 

 In summary, the aim of this article is: (1) to describe the TRACX2 

architecture, (2) to model a range of representative phenomena characteristic of 

infant visual statistical learning with the TRACX2 architecture and, as a result, (3) to 

demonstrate that behaviours typically taken as evidence of either a chunking or 

statistical learning mechanisms can be accounted for by a single learning 

mechanism. 

2. The TRACX2 Architecture 

 

TRACX2 was initially introduced by French and Cottrell [23].  This recurrent 

connectionist model consists of an autoencoder with two identical banks of inputs 

units, two identical banks of output units (each of which is the same size as each of 

the banks of input units), and a bank of hidden units with the same dimensions as 
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one of the input/output unit banks (Figure 1). In the current implementation, the 

model is trained using the backpropagation algorithm.  

 

========== Insert Figure 1 about here ======= 

 

The key to understanding TRACX2 is to understand the flow of information within 

the network. Over successive time steps, the sequence of information is presented 

item-by-item into the right-hand bank (RHS) of input units. The left-hand bank 

(LHS) of input units is filled with a blend of the right-hand input and the hidden unit 

activations at the previous time step. This mixture is determined by Equation 1: 

LHSt+1 = (1- tanh(Δt))*Hiddenst  +  (tanh(Δt))*RHSt        (Eq 1) 

where Δt is the absolute value of the maximum error across all output nodes at time 

t, LHSt is the activation across the left-hand  bank of input nodes, Hiddenst are the 

hidden-unit activations at time t, and RHSt is the activation across the right-hand 

bank of input nodes.  Finally,  determines the weight of the contribution of the 

internal representation at time t to the left-hand bank of inputs at time t+1.  Unless 

otherwise stated, for all simulations in this paper we have set  to 1. If at time t, Δt is 

small, this means that the network has learnt that the items on input are frequently 

together (otherwise Δt could not be small). The contribution to the left-hand bank of 

input units at time t+1 of the hidden-unit activations, which constitute the network's 

internal representation of the two items on input at time t, is, therefore, relatively 

large and the contribution from the right-hand inputs will be relatively small. 

Conversely, if Δt is large, meaning that the items on input have not been seen 
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together often, the hidden-layer's contribution at time t+1 to the left-hand input 

bank will be relatively small and that from the right-hand inputs will be relatively 

large. Finally, at each time step, the weights are updated to minimise the output 

autoencoder error. 

 In layman's terms, this means that as you experience items (visual, auditory, 

tactile) together over and over again, these items become bound to each other more 

and more strongly into a chunk. At first, a chunk is weak (e.g., "smartphone"), but if 

it is encountered frequently, it gradually develops into a tightly bound chunk in 

which we no longer perceive its component parts.  

3. Modelling infant statistical learning 

In this section we report on a total of seven different simulations using TRACX2 of 

infant statistical learning behaviour, two from classic studies in the auditory domain 

( [11]; [12]), and the remainder from the visual domain. All weights were initially 

randomised between  -1 and 1. The Δ value determining the amount of new input vs. 

hidden unit representation presented at input was determined by the maximum 

absolute error over all output units. So, for example, if Desired Output = [0.1, 0.5, 

0.4]  and Actual Output = [0.3, 0.9, 0.3], then, the absolute difference between the 

two is  [0.2, 0.4, 0.1], and the max-abs-diff over the three units is Δ=0.4. Note that for 

updating weights in the network, we used the standard summed-squared-error 

typical of Backpropagation networks.  There was no momentum term, but a 

Fahlman offset of 0.01 was used.  We used a Tanh squashing function to determine 

the hidden and output unit activations.  Finally, all simulations are averages over 30 

runs. 
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We used  (the learning rate) as a proxy for development, with  set to 

0.0005 for newborns, 0.0015 for 2 month-olds, 0.0025 for 5-month-olds, and 0.005 

for 8-month-olds. There was a bias node on the input and hidden layers and 

momentum was always set to 0. The key developmental hypothesis here is that, 

with increasing age, infants are progressively better at taking up information from 

an identical environment. This is consistent with the well-established finding that 

the average rate of habituation increases with increasing age during infancy (e.g., 

[24]; [25] ; [26]  ). Finally, as has been used repeatedly elsewhere, we take network 

output error as a proxy for looking time in the infant ([27] ; [28] ; [29] ; [30]; [31]; 

[32]; [26]). The idea here is that the amount of output error correlates with the 

number of cycles required to reduce the initial error, which corresponds to the 

amount of time or attention that the model will direct to a particular stimulus. 

 

The first two simulations are replications by TRACX2 of results reported in French 

et al. [14] and French and Cottrell [23]. We show that TRACX2 captures the key 

phenomena in auditory statistical learning (i.e., [11] and [12]). Next, we model the 

seminal Kirkham et al. [22] visual statistical learning experiment demonstrating that 

age-related effects in the efficacy of learning can be accounted for by a simple and 

plausible parameter manipulation in TRACX2. We then show that TRACX2 can 

capture statistical learning in newborns, as well as their dependency on the 

complexity of the information stream ([4]). Next, we show that TRACX2 captures the 

processing of backward transitional probabilities ([18]; [33] ) in much the same way 

as 8-month-olds ([34]). Finally, we show that, like 8-month-olds ([35]; [36]), 
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TRACX2 forms illusory conjunctions, normally taken as evidence of a statistical (TP) 

learning mechanism, but also shows decreased salience of embedded chunk items, 

normally taken as evidence of a chunking mechanism. It, therefore, reconciles two 

apparently paradoxical infant behaviours within a single common mechanism.  

 

3.1 Auditory statistical learning 

Saffran, Aslin & Newport [15] is a seminal paper on infant syllable-sequence 

segmentation. Six different words were used, each with 3 distinct syllables from a 12-

syllable alphabet. A random sequence of 90 of these words (270 syllables) with no 

immediate repeats or pauses between words was presented twice to 8-month-old infants. 

After this familiarisation period, the infants heard a word from the familiarisation 

sequence and a partword from that sequence. A head-turn preference procedure was used 

to show that infants had a novelty preference for partwords. The conclusion of the 

authors was that the infants had learnt words better than partwords. We simulated this 

experiment with TRACX2 and a typical SRN
1
 using the same number of words drawn 

from a 12-syllable alphabet. The familiarisation sequence was the same length as the one 

that the infants heard. Both models learnt words better than partwords. Note also that, 

although the SRN performance seems to deviate more from infant performance than that 

of TRACX2, we did not carry out a systematic search for the optimal SRN parameters, so 

it may be possible that better SRN performance could be achieved with different 

parameters. 

 

                                                        
1 A 24-12-24 architecture was used with a learning rate of 0.01 and momentum of 0.9 with a Fahlman 
offset of 0.1.  Bipolar (i.e., -1, 1) orthogonal encodings localist encodings were used for each of the 12 
syllables. 



 11 

========= Insert Figure 2 about here ======== 

  

However, in Saffran et al. [15] there was a confound – namely, words were heard three 

times as often as partwords. Aslin, Saffran & Newport [16] then designed an experiment 

that removed the unbalanced frequency of words and partwords. There were now four 3-

syllable words, two of which occurred twice as often in the familiarisation sequence as 

the other two. Thus, the partwords spanning the two high-frequency words would have 

the same overall frequency in the familiarisation sequence as the low-frequency words. 

The same head-turn preference procedure showed, again, that infants had a novelty 

preference for partwords. These authors’ conclusion was that the infants had learnt words 

better than partwords.  Once again, we designed a set of words exactly like those used in 

[16]. The length of the familiarisation sequence was also identical to that used in [16]. 

Figure 2 shows the performance of 8-month-old infants, TRACX2 and a simple recurrent 

network (SRN) on words and partwords from this sequence.  

We can also use these data to illustrate the role of the  parameter in TRACX2. 

This parameter controls the extent to which hidden unit representations are incorporated 

into the left-side input representations. If  is large, then  (error) has to be extremely 

small before the hidden layer begins to contribute to the left-hand-side input. Under these 

circumstances, the network will find it very hard, if not impossible, to form chunks larger 

than two successive items that can be encoded across the two banks of input units. In 

other words, if is too large, there will be little or no internal (i.e., hidden-unit) 

contribution to the left-hand-side input units. On the other hand, if  is too small, the 

contribution from the hidden layer to the left-hand bank of units will always be 
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significant, whether or not the previous two items on input had been seen together 

frequently by the network. This is largely irrelevant in many of the infant visual statistical 

learning experiments because "words" tend to consist of only two images. However, [16] 

and [15] use three-element words. As can be seen in Figure 2b, if  is too small or too big, 

then TRACX2 is unable to chunk 3-elements into a single word, and is therefore unable 

to differentiate 3-element words from part-words.  For all of the simulations reported in 

this article, we set  to 1, which allowed good chunking.   

 

3.2 Visual statistical learning 

Kirkham et al [22] developed a visual analogue of the auditory statistical learning tasks 

initially developed by Saffran, Aslin and colleagues [15]. Instead of listening to unbroken 

streams of sounds, infants were shown continuous streams of looming colourful shapes in 

which successive visual elements within a “visual word” were deterministic, but 

transitions between words were probabilistic (see Figure 3). Infants at three different ages 

were first familiarised to this stream of shapes, then presented with either a stream made 

up of the same shapes but with random transitions between all elements, or a stream 

made up of the identical visual words as during habituation. Kirkham et al. [18] found 

that infants from 2 months of age subsequently looked longer at the random sequence 

than the structured sequence (even though the individual elements are identical between 

streams) suggesting that the infants had learnt the statistical structure (TPs) of the training 

sequence. 

 

=========== insert Figure 3 about here ======= 
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 We modelled this experiment by training the model with a sequence of inputs 

containing the identical probability structure to that used to train infants. The training 

sequence was identical in length to that used by Kirkham [22]. The transitional 

probability within a visual word was p=1.0, and between visual words p=.33. Shapes 

were coded using localist, bipolar (i.e., -1, 1) orthogonal encodings in order minimise 

effects due to input similarity. As in the Aslin et al. [16] and Saffran et al. [15] 

simulations, the RHS and LHS input vectors were comprised of 12 units. Network 

performance was evaluated by averaging output error over all three of the possible two-

image ”visual words" in the sequence.  This was then compared to the average output 

error for a set of three randomly selected two-image “visual non-words” that were neither 

words nor part-words, and consequently, occurred nowhere in the training sequence. This 

is analogous to the word/non-word testing procedure used in auditory statistical learning 

studies (e.g., Saffran et al., [15]), and completely equivalent to testing the networks with 

a structured sequence (from which they would have extracted visual words) and a fully 

random sequence  (in which no previous words or part-words exist).  The model, like 

infants at all ages, looked longer at the randomised sequence than the structured sequence 

(Figure 3a). 

 

3.3 Visual statistical learning in newborns 

Bulf, Johnson, and Vilenza [4] asked whether the sequence-learning abilities 

demonstrated by Kirkham et al [22] were present from birth. They tested newborns 

(within 3 days of birth) on black and white sequences of streaming shapes. In their “High 
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Demand Condition”, the sequence had the same statistical structure as in Kirkham et al 

[18]. That is, the sequences were made up of 3 visual words, each made up of two shapes 

with a constant transition probability of 1.0 defining the word, and transitional 

probabilities of .33 between words. They also introduced a “Low Demand Condition” in 

which the sequences were made up of only two words (each consisting of two shapes 

with internal transition probabilities of 1.0) leading to transition probabilities at word 

boundaries of 0.5 (instead of the .33 previously used). The reasoning here was that 

newborns had more limited information processing abilities and may therefore struggle 

with a more complex sequence, already proving to be a challenge for 2-month-olds. 

 

===========Insert Figure 4 about here ===== 

 

 Again, we modelled this study using TRACX2, in the same way as above, but by 

(1) reducing the learning rate to 0.0005, and (2) creating both high-demand and low-

demand sequences. In the low-demand condition (LDC), there were two pairs of images, 

each made up of two different images (i.e., a total of 4 separate images). In the high-

demand condition (HDC) there were three pairs of images, each made up of two different 

images (i.e., a total of 6 separate images).  In the simulation for both the high-demand 

and low-demand conditions, TRACX2 saw sequences of 120 words.  Statistics were 

averaged over 30 runs of the program, with each run consisting of 10 simulated subjects. 

Figure 4 shows both the infant data and the model results. As with the infants, TRACX2 

did not discriminate between the structured training sequence and the random sequence in 

the high demand condition (with the lower learning rate) but did discriminate between the 
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two sequences in the low demand condition.   

 

3.4 Learning backward transitional probabilities  

Tummeltshammer and colleagues [34] explored whether 8-month-olds could utilise 

backward transitional probabilities, as well as forward transitional probabilities, to 

segment the looming shape sequences. Backward transitional probabilities occur when 

there is a high probability that an item is preceded by something rather than the other way 

around ([18]; [33]). While the original TRACX model was able to capture the infant and 

adult data related to the processing of backward transitional probabilities in auditory 

sequences, SRNs were not able to do so ([10]). This is, therefore, an important test of the 

underlying learning architecture. For the simulations we used a sequence containing 48 

items taken from Table 1 of [30]. In the actual experiment with infants, this sequence was 

repeated only 3 times, but for our simulation we found that this did not produce sufficient 

learning and we used a training sequence that was produced by repeating this sequence 

25 times.  The learning rate was set at 0.005. Figure 5 shows that both 8-month-olds and 

TRACX2 are able to segment sequences involving predictable backward transitional 

probabilities as well as sequences containing forward transitional probabilities. 

======== Insert Figure 5 about here  ===== 

 

 

3.5 Learning embedded and illusory items. 

An embedded item is a group of syllables that occurs within a word, but never 

occurs independently (e.g., “eleph”, as in “elephant”; Thiessen et al., 2013). 
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Statistical (TP) learning accounts predict that, because learners represent the 

statistical relations between all pairs of adjacent elements, distinguishing 

components embedded in longer word should improve with greater exposure to the 

word. In contrast, chunking models predict that as learners become familiar with a 

word, they should become less able to distinguish sub-components embedded in 

that word ([17]). Thus, the recognition of illusory items and embedded items 

provide critical tests of the statistical learning and chunking accounts of sequence 

processing. 

Illusory items – are pairs or triplets of elements that have never been 

encountered, but which have the same statistical structure (e.g., TPs) as other pairs 

or triplets that have been previously encountered (cf. [35]). For example, if tazepi, 

mizeru, and tanoru, are words presented in a speech stream, with TPs of p=.50 

between the successive syllables in these words, then tazeru would be a statistically 

matched illusory word because the TPs between the successive syllables in this new 

word match the TPs encountered previously. Statistical (TP) learning mechanisms 

would unable to distinguish between real and illusionary words because they are 

statistically equivalent. In contrast, chunking mechanisms will fail to recognise the 

new illusory word precisely because it has never been encountered before and is 

therefore not stored in memory.  

Fortunately, Slone & Johnson ([36]; [37]) have investigated whether infants’ 

learning mechanisms would lead to the reduced salience of embedded items or to the 

emergence of illusory chunks, as a means of testing whether chunking or statistical 

learning (TPs) underpins infant visual sequential statistical learning. To do this, they 
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presented 8-months-olds with sequences structured as depicted in Figure 6a. Infants in 

the “Embedded Pair Experiment” did not differentiate embedded pairs from part-pairs 

that crossed word boundaries, but both were differentiated from the word pairs. Infants in 

the “Illusory Item Experiment” did not differentiate the illusory triplets from the part 

triplets, but both were differentiated from the actual triplets. This is perplexing because 

the former result suggests that infants utilise chunking, whereas the latter results suggests 

that they engage in statistical (TP) learning.  

TRACX2 captures both of these results equally well.  Recall that the model is 

designed to produce the smallest error on the best learnt patterns.  If we consider output 

error to be a measure of visual attention (the higher the error, the longer the infant attends 

to that item), then we can say that TRACX2 is designed to orient to novel test patterns 

most (i.e., shows a novelty preference). A familiarity preferences is the inverse of a 

novelty preferences. This means that the smaller the error for an item, the longer the 

infant looks at that item. Thus, to model familiarity preferences we subtract the error on 

output from the maximum possible error and call this "Inverse Error" (Figure 6b). So, 

when modelling a familiarity preference, the greater TRACX2's Inverse Error, the longer 

the infant looking time is.   

Such shifts in orienting behaviour are common in infant visual orienting, and have 

been related to the complexity of the stimuli and the depth of processing  [38]; [39]; see 

also [40], for a process account of the familiarity-to-novelty shift in a neural network 

model of habituation). In sum, TRACX2 captures both the reduced salience of embedded 

chunk items and the appearance of illusory conjunctions within a single mechanism, 

thereby reconciling apparently paradoxical infant behaviours. 
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Discussion 

TRACX2 ([19]) is an updated version the TRACX architecture ([14]). As in the original 

architecture, TRACX2 is a memory-based chunk-extraction architecture. Because it is 

implemented as a recurrent connectionist autoencoder in the Recursive Auto-Associative 

Memory (RAAM) family of architectures ([41]; [42]), it is also naturally sensitive to 

distributions statistics in its environment. In TRACX2, we replace the arbitrary all-or-

none chunk-learning decision mechanism with a smooth blending parameter. TRACX2 

learns chunks in a graded fashion as a function of its familiarity with the material 

presented. An implication of this is that chunks are no longer to be thought of as “all-or-

none" entities.  Rather, there is a continuum of chunks whose elements are bound 

together more or less strongly. Finally, unlike some other chunking systems such as 

PARSER, TRACX2 also synthesises information across prior exemplars stored in 

memory.  

  TRACX2 was used to model a representative range of infant visual statistical 

learning phenomena. No previous mechanistic model of these infant behaviours exist 

(though see [43] for a Bayesian description of adult performance on visual spatial 

statistical learning]. As with the auditory learning behaviours, TRACX2 captures the 

apparent utilisation of forward and backward transitional probabilities, the diminishing 

sensitivity to embedded items in the sequence, and the emergence of illusory words. 

However, it is important to understand that TRACX2 is not simply internalising the 

overall statistical structure of the sequence, but encoding, remembering and recognising 
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previously seen chunks of information. This is a fundamentally different account of 

infant behaviours than has previously been proposed (see [49]), and fits better with the 

recent suggestion that much of infant statistical learning can be accounted for by a 

memory-based chunking model ([50]. 

 

TRACX2 can use frequency of occurrence or transitional probabilities equally well 

and fluidly to learn a task (as is the case with 8-month-olds; [51]). This would suggest 

that categorizing learning either as statistical or memory-based is a false dichotomy. Both 

classes of behaviours can emerge from a single mechanism. The different modes of 

behaviour appear depending on the constraints of the task, the level of learning and the 

level of prior experience. Moreover, the idea that infant looking time is determined by the 

recognition of regularly re-occurring items (chunks or individual items) is consistent with 

the recent evidence suggesting that local redundancy in the sequences is the prime 

predictor of looking away in infant visual statistical learning experiments ([52]).  

TRACX2 also suggests that there are no specialised mechanisms in the brain 

dedicated to sequence learning. Instead, sequence processing emerges from the 

application of fairly ubiquitous associative mechanisms, coupled with graded top-down 

re-entrant processing. Although there may be differences in the speed and richness of 

encoding across modalities, there is nothing intrinsically different in the way TRACX2 

processes visual or auditory information. This suggests than any modality-specific 

empirical differences observed can be attributed to encoding differences rather than core 

sequence-processing differences (see Arciuli, this issue, for further discussion of the 

implications of differences in encoding stimuli for the understanding of individual 
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differences on statistical learning tasks).  

 

In conclusion, we believe that chunking cannot be viewed as an all-or-nothing 

phenomenon, that learning from transitional probabilities should not be held in opposition 

to learning chunks.  Instead, graded chunks emerge gradually precisely because of the 

TPs present in the input. Chunks are learnt and, over the course of being learnt, their 

component parts become more and more tightly bound together. This is a fundamental 

principle of TRACX2.  The results of the present paper suggest that infant sequential 

statistical learning is underpinned by the same domain general learning mechanism that 

operates in auditory statistical learning and, potentially, also in adult artificial grammar 

learning. TRACX2, therefore, offers a parsimonious account of how infants find structure 

in time. 
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Figure Captions 

 

Figure 1. Architecture and information flow in TRACX2. In all simulations reported in 

this paper,  = 1, unless otherwise stated. When Δ is large (items not recognized as 

having been seen together before on input), almost all contribution to LHS comes from 

RHS.  When Δ is small (items recognized as having been seen together before on input), 

almost all contribution to LHS comes from the Hidden layer (Hid).   

 

Figure 2. (a) Proportions better listening to the part words than words in infants, 

TRACX2, and a standard SRN.  (b) Effect of varying the Tanh weighting parameter, , 

in learning three-syllable words. Error on output initially falls, reaches a minimum, 

and then rises again. 

 

Figure 3. (a) Illustration of visual sequences used to test infants (after Addyman & 

Mareschal, 2013). (b) Left-hand panel: Infant performance reported in [18] and, 

right-hand panel: TRACX2 performance with the familiar structured and novel non-

structured sequences. (Error is the maximum error of the network over all output 

units; SEM error bars.)  

 

Figure 4. Newborn performance as reported in [4] in left panel and TRACX2 

performance in right panel for familiar structured and novel non-structured 

sequence.  
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Figure 5.  Infant and TRACX 2 performance when trained on sequences with either 

forward to backward transitional probabilities. Left panel reproduced from [30] 

with permission. 

 

Figure 6. (a) Familiarisation and testing items for embedded pairs (left panel) and 

illusory items (right panel) (after [31] [32]). (b) Infant data (left-hand side of figure) 

and TRACX2 performance (right-hand side, SEM error bars).  Top row: familiarity 

preference, Experiment 1; Bottom row: Novelty preference, Experiment 2.  Figure 

permission pending. 
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LHS = (1- tanh(Δ))*Hiddens  +  (tanh(Δ))*RHS 
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