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Abstract

A distance test for normality of the one-dimensional marginal distribution of sta-
tionary fractionally integrated processes is considered. The test is implemented by
using an autoregressive sieve bootstrap approximation to the null sampling distri-
bution of the test statistic. The bootstrap-based test does not require knowledge
of either the dependence parameter of the data or of the appropriate norming
factor for the test statistic. The small-sample properties of the test are examined
by means of Monte Carlo experiments. An application to real-world data is also
presented.
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1 Introduction

Testing whether a sample of observations comes from a Gaussian distribution is a prob-

lem that has attracted a great deal of attention over the years. This is not perhaps

surprising in view of the fact that normality is a common maintained assumption in

a wide variety of statistical procedures, including estimation, inference and forecast-

ing procedures. In model building, a test for normality is often a useful diagnostic

for assessing whether a particular type of stochastic model may provide an appropri-

ate characterization of the data (for instance, non-linear models are unlikely to be an

adequate approximation to a time series having a Gaussian one-dimensional marginal

distribution). Normality tests may also be useful in evaluating the validity of different

hypotheses and models to the extent that the latter rely on or imply Gaussianity, as is

the case, for example, with some option pricing, asset pricing, and dynamic stochastic

general equilibrium models found in the economics and finance literature. Other ex-

amples where normality or otherwise of the marginal distribution is of interest, include

value-at-risk calculations (e.g., Cotter (2007)) and copula-based modelling for multivari-

ate time series with the marginal distribution and the copula function being specified

separately. Kilian and Demiroglu (2000) and Bontemps and Meddahi (2005) give fur-

ther examples from economics, finance and econometrics where testing for normality is

of interest.

Although most of the voluminous literature on the subject of testing for univari-

ate normality has focused on the case of independent and identically distributed (i.i.d.)

observations (see Thode (2002) for an extensive review), a small number of tests which

are valid for dependent data have also been considered. The latter include tests based

on the bispectrum (e.g., Hinich (1982); Nusrat and Harvill (2008); Berg, Paparoditis,

and Politis (2010)), the characteristic function (Epps (1987)), moment conditions im-

plied by Stein’s characterization of the Gaussian distribution (Bontemps and Meddahi

(2005)), and classical measures of skewness and kurtosis involving standardized third

and fourth central moments (Lobato and Velasco (2004); Bai and Ng (2005)). A fea-

2



ture shared by these tests is that they all rely on asymptotic results obtained under

dependence conditions which typically require the autocovariances of the data to decay

towards zero, as the lag parameter goes to infinity, sufficiently fast to be (at least)

absolutely summable. It has long been recognized, however, that such short-range de-

pendence conditions may not accord well with the slowly decaying autocovariances of

many observed time series.

The purpose of this paper is to discuss a test for normality which may be used in

the presence of not only short-range dependence but also long-range dependence and an-

tipersistence. The defining characteristic of stochastic processes with such dependence

structures is that their autocovariances decay to zero as a power of the lag parameter

and, in the case of long-range dependence, slowly enough to be non-summable. Models

that allow for long-range dependence have been found to be useful for modelling data

occurring in fields as diverse as economics, geophysics, hydrology, meteorology, and

telecommunications; a summary of some of the empirical evidence on long-range de-

pendence can be found in the collection of papers in Doukhan, Oppenheim, and Taqqu

(2003).

The normality test we consider here is based on the Anderson–Darling distance

statistic involving the weighted quadratic distance of the empirical distribution func-

tion of the data from a Gaussian distribution function (Anderson and Darling (1952)).

Unlike tests based on measures of skewness and kurtosis, which can only detect devia-

tions from normality that are reflected in the values of such measures, normality tests

based on the empirical distribution function are known to be consistent against any

fixed non-Gaussian alternative. The Anderson–Darling test also fares well in small-

sample power comparisons for i.i.d. data relatively to the popular correlation test of

Shapiro and Wilk (1965) and the moment-based tests of Bowman and Shenton (1975)

and Jarque and Bera (1987) (see, e.g., Stephens (1974) and Thode (2002, Ch. 7)).

Furthermore, the Anderson–Darling test is superior, in terms of asymptotic relative

efficiency, to distance tests such as those based on the (unweighted) Cramér–von Mises

and Kolmogorov–Smirnov statistics (Koziol (1986); Arcones (2006)).
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Our analysis extends earlier work by considering the case of correlated data from

stationary (in the strict sense) fractionally integrated processes, which may be short-

range dependent, long-range dependent or antipersistent depending on the value of

their dependence parameter. Unfortunately, however, inference based on conventional

large-sample approximations is anything but straightforward in such a setting because

the weak limit of the null distribution of the test statistic, as well as the appropriate

norming factor, depend on the unknown dependence parameter of the data and on the

particular estimators of location and scale parameters that are used in the construction

of the test statistic.

As a practical way of overcoming these difficulties, we propose to use the bootstrap

to estimate the null sampling distribution of the Anderson–Darling distance statistic

and thus obtain estimates of P -values and/or critical values for a normality test. Our

approach relies on the autoregressive sieve bootstrap, which is based on the idea of

approximating the data-generating mechanism by an autoregressive sieve, that is a

sequence of autoregressive models that increase in order as the sample size increases

without bound (Kreiss (1992); Bühlmann (1997)). The bootstrap-based normality test

is easy to implement and requires knowledge (or estimation) of neither the value of the

dependence parameter of the data nor of the appropriate norming factor for the test

statistic. Furthermore, the bootstrap scheme is the same under short-range dependence,

long-range dependence and antipersistence.

We note that Beran and Ghosh (1991) and Boutahar (2010) obtained results

relating to the asymptotic behaviour of moment-based and distance-based statistics

under long-range dependence, but did not discuss how operational tests for normality

might be constructed. To the best of our knowledge, the problem of developing an

operational normality test which is valid for data that are neither independent nor

short-range dependent has not been tackled in the existing literature.

The plan of the paper is as follows. Section 2 formulates the problem and in-

troduces the test statistic and the class of stochastic processes of interest. Section 3

discusses the autoregressive sieve bootstrap approach to implementing the distance test
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of normality. Section 4 examines the finite-sample properties of the proposed test by

means of Monte Carlo experiments. Section 5 presents an application to a set of U.S.

economic and financial time series. Section 6 summarizes and concludes.

2 Assumptions and Test Statistic

Suppose Xn := {X1, X2, . . . , Xn} are consecutive observations from a stationary stochas-

tic process X := {Xt}t∈Z satisfying

Xt − µ =
∞∑
j=0

ψjεt−j, t ∈ Z, (1)

for some µ ∈ R, where {ψj}j∈Z+ is a square-summable sequence of real numbers (with

ψ0 = 1) and {εt}t∈Z is a sequence of i.i.d., real-valued, zero-mean random variables

with variance σ2 ∈ (0,∞). The objective is to test the null hypothesis that the one-

dimensional marginal distribution of X is Gaussian,

H0 : F (µ+ γ
1/2
0 x)− Φ(x) = 0 for all x ∈ R, (2)

where γk := Cov(Xk, X0) = σ2
∑∞

j=0 ψj+|k|ψj for k ∈ Z, F is the distribution function

of X0, and Φ denotes the standard normal distribution function. Notice that (2) holds

if ε0 is normally distributed. Conversely, (2) implies normality of the distribution of ε0,

which in turn implies Gaussianity of the causal linear process X (see, e.g., Rosenblatt

(2000, Sect. 1.1)).

To allow for different types of dependence, it will be maintained throughout that

the transfer function ψ(z) :=
∑∞

j=0 ψjz
j, z ∈ C, associated with (1) satisfies

ψ(z) = (1− z)−dδ(z), |z| < 1, (3)

for some real |d| < 1
2
, where δ(z) :=

∑∞
j=0 δjz

j, z ∈ C, and {δj}j∈Z+ is an absolutely

summable sequence of real numbers such that δ(0) = 1 and δ(1) 6= 0. Under (1) and (3),

X is a fractionally integrated process with dependence (memory/fractional differencing)

parameter d. Using the power series expansion

(1− z)−d =
∞∑
j=0

Γ(d+ j)

Γ(d)Γ(1 + j)
zj, |z| < 1, d 6= 0,
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where Γ denotes the gamma function, it is not difficult to see that, for d 6= 0,

ψj =

j∑
s=0

δj−sΓ(d+ s)

Γ(d)Γ(1 + s)
, j > 1,

and so ψj ∼ {δ(1)/Γ(d)}jd−1 as j →∞, under the additional assumption that j1−dδj →

0 as j → ∞ if 0 < d < 1
2

(Hassler and Kokoszka (2010)); the tilde signifies that the

limiting value of the quotient of the left-hand side by the right-hand side is 1. Hence,

since γk ∼ cγ |k|2d−1 as |k| → ∞ for d 6= 0, with cγ := {σδ(1)}2Γ(1−2d)/{Γ(d)Γ(1−d)},∑∞
k=−∞ γk = ∞ for 0 < d < 1

2
and X is long-range dependent; if −1

2
< d < 0, then∑∞

k=−∞ γk = 0 and X is antipersistent. Short-range dependence corresponds to d = 0,

with
∑∞

k=−∞ γk = {σδ(1)}2. The class of stochastic processes defined by (1) and (3)

is rich enough to include a wide range of processes having slowly decaying autocovari-

ances. A well-known example are autoregressive fractionally integrated moving average

(ARFIMA) processes with δ(z) = ϑ(z)/ϕ(z), ϑ(z) and ϕ(z) being relatively prime

polynomials of finite degree with ϕ(z) 6= 0 for |z| 6 1 (see, e.g., Palma (2007, Sect.

3.2)).

The test for the hypothesis in (2) considered here is based on the Anderson–

Darling distance statistic

A :=

∫ ∞
−∞

{F̂ (X̄ + γ̂
1/2
0 x)− Φ(x)}2

Φ(x){1− Φ(x)}
dΦ(x), (4)

where F̂ (x) := n−1
∑n

t=1 I(Xt 6 x), x ∈ R, is the empirical distribution function of Xn,

X̄ := n−1
∑n

t=1Xt, γ̂k := n−1
∑n−|k|

t=1 (Xt+|k| − X̄)(Xt − X̄) for |k| < n, and I denotes

the indicator function. Note that A may be expressed as

A = −1− n−2
n∑
t=1

(2t− 1) [log Φ(Yt) + log{1− Φ(Yn−t+1)}], (5)

where Yt := γ̂
−1/2
0 (Xn:t− X̄) and Xn:t is the t-th order statistic from Xn (cf. Anderson

and Darling (1954)).

As is well known, the asymptotic null distribution of distance statistics such as

A is closely related to the weak limit, as n tends to infinity, of (a suitably normalized
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version of) the random function K̂(x) := F̂ (x) − Φ(γ̂
−1/2
0 (x − X̄)), x ∈ R (see, e.g.,

Shorack and Wellner (1986, Ch. 5) for the case of i.i.d. data). However, unless one is

dealing with the classical problem of testing a simple null hypothesis (µ and γ0 known)

for i.i.d. data, inference is complicated by the presence of both estimated parameters

in K̂ and dependence in Xn. To complicate matters further in our setup, the norming

factor needed in order to obtain weak convergence of K̂, and hence of the distribution

of A, as well as the weak limits themselves, depend on the value of the dependence

parameter d and on the estimators of µ and γ0 used in the construction of K̂ (see

Beran and Ghosh (1991); Ho (2002); Kulik (2009)). For example, when ε0 is normally

distributed, the random function K(x) := F̂ (x) − Φ(γ
−1/2
0 (x − µ)), x ∈ R, converges

weakly to a non-degenerate Gaussian process at the usual
√
n rate for d = 0 (Doukhan

and Surgailis (1998)) and to a semi-deterministic Gaussian process at the slower rate

n(1−2d)/2 for 0 < d < 1
2

(Dehling and Taqqu (1989); Giraitis and Surgailis (1999)).

Replacing µ and γ0 by estimates improves the rate of convergence under long-range

dependence, with K̂ converging at rate
√
n for 0 6 d < 1

3
(Beran and Ghosh (1991)).

This dependence of the appropriate norming factor and of the weak limit of K̂ on the

unknown value of the parameter d, combined with the complicated covariance structure

of the relevant limiting processes, make inference based on conventional large-sample

asymptotics for A extremely cumbersome. It is worth remarking that similar difficulties

also arise in the case of moment-based skewness and kurtosis statistics (cf. Boutahar

(2010); Ho (2002)).

As a practical way of circumventing the problems mentioned above, we propose

to use an autoregressive sieve bootstrap procedure to obtain P -values and/or critical

values for the normality test based on A. The principal advantage of the sieve bootstrap

is that it can be used to approximate the sampling properties of A without knowledge or

estimation of the dependence parameter. Moreover, because bootstrap approximations

are constructed from replicates of A, there is no need to derive analytically, nor to

make assumptions about, the appropriate norming factor for A or its asymptotic null

distribution.
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3 Autoregressive Sieve Bootstrap Approximation

The autoregressive sieve bootstrap is motivated by the observation that, under (1), (3)

and the additional assumption that δ(z) 6= 0 for |z| 6 1, X admits the representation

∞∑
j=0

φj(Xt−j − µ) = εt, t ∈ Z, (6)

for a square-summable sequence of real numbers {φj}j∈Z+ (with φ0 = 1) such that

φ(z) :=
∑∞

j=0 φjz
j = (1 − z)d/δ(z) for |z| < 1 (with φj ∼ {δ(1)Γ(−d)}−1j−d−1 as

j → ∞ when d 6= 0). The idea is to approximate (6) by a finite-order autoregressive

model and use this as the basis of a semi-parametric bootstrap scheme. If the order of

the autoregressive approximation is allowed to increase simultaneously with n at an ap-

propriate rate, the distribution of the process in (6) will be matched asymptotically (cf.

Kreiss (1992); Bühlmann (1997); Kapetanios and Psaradakis (2006); Poskitt (2008)).

It is important to point out that, as discussed in Poskitt (2007), the autoregressive

representation (6) provides a meaningful approximation even if δ(z) has zeros in the unit

disc |z| < 1. In this case, the transfer function φ(z) associated with (6) may be viewed

as arising, not from the inversion of ψ(z), but as the limit of
∑p

j=0 φpjz
j (φp0 := 1) as

p tends to infinity, where, for any integer p > 0, (−φp1, . . . ,−φpp) are the coefficients

of the best (in the mean-square sense) linear predictor of X0 based on {X−1, . . . , X−p}.

Since γ0 > 0 and γk → 0 as |k| → ∞ under (1) and (3), (φp1, . . . , φpp) are uniquely

determined as the solution of the set of equations
∑p

j=0 φpjγk−j = 0 (k = 1, . . . , p)

(Brockwell and Davis (1991, Corollary 5.1.1)), and are such that
∑p

j=0 φpjz
j 6= 0 for

|z| 6 1 and Var[
∑p

j=0 φpj(X−j − µ)]→ σ2 as p→∞.

The bootstrap procedure used to approximate the sampling properties of the

statistic A under the normality hypothesis is as follows. For an integer p > 0 (chosen as

a function of n so that p−1+n−1p→ 0 as n→∞), let (φ̂p1, . . . , φ̂pp) and σ̂p be estimators

(based on Xn) of the coefficients and the noise standard deviation, respectively, of an

autoregressive model of order p for Xt − X̄. Bootstrap replicates X∗ := {X∗t }t∈Z of X
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are then defined via the recursion

p∑
j=0

φ̂pj(X
∗
t−j − X̄) = σ̂pε

∗
t , t ∈ Z, (7)

where φ̂p0 := 1 and {ε∗t}t∈Z are i.i.d. standard normal random variables (indepen-

dent of Xn). Finally, the bootstrap analogue A∗ of A is defined as in (4) but with

X∗n := {X∗1 , X∗2 , . . . , X∗n} replacing Xn. The conditional distribution of A∗, given Xn,

constitutes the sieve bootstrap approximation to the null sampling distribution of A.

It is worth noting that, by requiring ε∗t in (7) to be Gaussian, X∗ is constructed

in a way which reflects the normality hypothesis under test even though X may not

satisfy (2). This is important for ensuring that the bootstrap test has reasonable power

against departures from normality (cf. Hall and Wilson (1991); Lehmann and Romano

(2005, Sect. 15.6)). The estimator (φ̂p1, . . . , φ̂pp, σ̂p) used in (7) to define X∗ may be

the Yule–Walker estimator or any other asymptotically equivalent estimator (e.g., the

least-squares estimator).

Recalling that A may be expressed as in (5), consistency of the sieve bootstrap

estimator of the null sampling distribution of A follows from Lemma 1, Theorem 2 and

Remark 2 of Poskitt (2008) under a suitable assumption about the rate of increase of p.

More specifically, let ρ(H,H∗) := {
∫ 1

0
|H−1(u)−H∗−1(u)|2du}1/2 stand for the Mallows–

Wasserstein distance between the distribution function H of A and the conditional

distribution function H∗ of A∗ given Xn (where g−1(u) := inf{x : g(x) > u} for any

non-decreasing function g). Then, if X satisfies (1) and (3), the distribution of ε0 is

Gaussian, and p → ∞ and (log n)−νp = O(1) as n → ∞ for some ν > 1, we have

ρ(H,H∗) → 0 with probability 1 as n → ∞. We note that, although Poskitt (2008)

considers a bootstrap scheme in which ε∗t in (7) is drawn from the empirical distribution

of the residuals ε̂t :=
∑p

j=0 φ̂pj(Xt−j−X̄) (t = p+1, . . . , n), standardized to have mean 0

and variance 1, it is not difficult to see that the arguments in the proof of his Theorem 2

go through with little or no change when εt and ε∗t are Gaussian.

The bootstrap estimator of the P -value for a test that rejects for large values of A

is P ∗A := 1−H∗(A), and so normality is rejected at a given level of significance α ∈ (0, 1)
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if P ∗A 6 α. Since convergence with respect to ρ implies weak convergence (Bickel and

Freedman (1981, Lemma 8.3)), the bootstrap P -value P ∗A is asymptotically equivalent

to the P -value based on the null sampling distribution of A under the conditions stated

above. While H∗ is unknown, an approximation (of any desired accuracy) can be

obtained by Monte Carlo simulation. Specifically, if (A∗1, . . . ,A∗m) are copies of A∗,

obtained fromm independent bootstrap pseudo-samples X∗n from (7), then the empirical

distribution function of (A∗1, . . . ,A∗m) provides an approximation to H∗. Hence, P ∗A may

be approximated by P̂ ∗A := m−1
∑m

i=1 I(A∗i > A), so that P̂ ∗A → P ∗A with probability 1

as m→∞. A bootstrap critical value of nominal level α for A is given by H∗−1(1−α),

which may be approximated by inf{x ∈ R : m−1
∑m

i=1 I(A∗i 6 x) > 1− α}.

In the implementation of the bootstrap procedure in practice, replicates X∗n may

be obtained according to (7) by setting X∗−p+1 = · · · = X∗0 = X̄, generating n + b

replicates X∗t , t > 1, for some large integer b > 0, and then discarding the initial b

replicates to eliminate start-up effects (this procedure, with b = 500, is used in the

sequel). The order of the autoregressive sieve may be selected as the minimizer of

Akaike’s information criterion AIC(p) := log σ̂2
p + 2n−1p over 1 6 p 6 pmax for some

suitable maximal order pmax. Under mild regularity conditions, a data-dependent choice

of p based on AIC is asymptotically efficient, in the sense defined by Shibata (1980),

for all |d| < 1
2

(Poskitt (2007, Theorem 9)); furthermore, it satisfies, with probability

1, the growth conditions required for the asymptotic validity of the sieve bootstrap as

long as pmax grows to infinity with n so that (log n)−hpmax is eventually bounded for

some h > 1 (Psaradakis (2016, Proposition 2)). Alternative criteria for order selection

that may be used include, among many others, the Bayesian information criterion

BIC(p) := log σ̂2
p + n−1p log n and Mallows’ criterion MC(p) := σ̂−2∞ σ̂2

p − 1 + 2n−1p,

where σ̂2
∞ := 2π exp(C+n−10

∑n0

i=1 log Ii). Here, Ii := (2πn)−1|
∑n

t=1Xt exp(−ωit
√
−1)|2

is the periodogram ordinate of Xn at the Fourier frequency ωi := 2πi/n, C = −Γ′(1)

is Euler’s constant, and n0 := b(n − 1)/2c, b·c denoting the greatest-integer function.

The quantity σ̂2
∞ is a non-parametric estimator of σ2 motivated by the observation that

σ2 = 2π exp{(2π)−1
∫ π
−π log Λ(ω)dω}, where Λ is the spectral density of X. Like AIC,
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MC is an asymptotically efficient selection criterion.

We conclude this section by remarking that the linear structure imposed by (1)

and (3) may arguably be considered as somewhat restrictive. However, since non-

linear processes with a Gaussian one-dimensional marginal distribution appear to be a

rarity (see, e.g., Tong (1990, Sect. 4.2)), the focus on linear dependence is not perhaps

unjustifiable when the objective is to test for normality. In any case, the results of Bickel

and Bühlmann (1997) suggest that linearity may not be too onerous a requirement in

the sense that the closure (with respect to the total variation metric) of the class of linear

processes is quite large; roughly speaking, for any stationary non-linear process, there

exists another process in the closure of linear processes having identical sample paths

with probability exceeding 0.36. This suggests that the autoregressive sieve bootstrap

is likely to yield reasonably good approximations within a class of processes larger than

that associated with (1) or (6).

4 Simulation Study

In this section, we present and discuss the results of a simulation study examining

the small-sample properties of the distance-based test of normality under various data-

generating mechanisms.

4.1 Experimental Design and Simulation

In the first set of experiments, we examine the performance of the test based on A

under different types of dependence by considering artificial data generated according

to the ARFIMA process

M1: (1− 0.7L)Xt = (1− 0.3L)(1− L)−dεt, d ∈ {−0.4,−0.25, 0, 0.25, 0.4},

where L denotes the lag operator and {εt} are i.i.d. random variables. (Note that

the stationary solution of M1 satisfies (1) with µ = 0, ψ1 = 0.4 + ζ1 and ψj =

0.7ψj−1 − 0.3ζj−1 + ζj for j > 2, where ζj := Γ(d + j)/{Γ(d)Γ(1 + j)} for j > 1

and d 6= 0.) The distribution of εt is normal (labeled N in what follows), lognormal
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(labeled LN), or a member of the family of generalized lambda distributions having

quantile function F−1ε (u) = λ1 + λ−12 {uλ3 − (1− u)λ4}, 0 < u < 1; the parameter values

used in the experiments are taken from Bai and Ng (2005) and can be found in Ta-

ble 1. The distributions S1–S3 are symmetric, whereas A1–A3 and LN are asymmetric.

Throughout this section, {εt} are standardized to have mean 0 and variance 1.

Table 1: Parameters of a Generalized Lambda Distribution and Selected Descriptive
Statistics

λ1 λ2 λ3 λ4 skewness kurtosis
N – – – – 0.0 3.0
S1 0.000000 -1.000000 -0.080000 -0.080000 0.0 6.0
S2 0.000000 -0.397912 -0.160000 -0.160000 0.0 11.6
S3 0.000000 -1.000000 -0.240000 -0.240000 0.0 126.0
A1 0.000000 -1.000000 -0.007500 -0.030000 1.5 7.5
A2 0.000000 -1.000000 -0.100900 -0.180200 2.0 21.1
A3 0.000000 -1.000000 -0.001000 -0.130000 3.2 23.8
LN – – – – 6.2 113.9

In the second set of experiments, we assess the robustness of the test based on A

with respect to departures from the linearity assumption underlying the autoregressive

sieve bootstrap by using artificial data from the models

M2: Xt = 0.5Xt−1 − 0.3Xt−1εt−1 + εt,

M3: Xt = (0.9Xt−1 + εt)I(|Xt−1| 6 1)− (0.3Xt−1 − 2εt)I(|Xt−1| > 1),

M4: Xt = 0.5Xt−1 + εtεt−1.

M2 is a bilinear model, M3 is a threshold autoregressive model, and M4 is an au-

toregressive model with one-dependent, uncorrelated noise. In all three cases, {Xt} is

short-range dependent and does not admit the representation (1) or (6). Furthermore,

the distribution of Xt is non-Gaussian even if εt is normally distributed. In addition,

we consider artificial data generated according to
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M5: Xt = Φ−1(Fξ(ξt)), ξt = β |ξt−1|+ εt, β ∈ {−0.5, 0.5},

where Fξ is the distribution function of ξt. When εt is normally distributed, the thresh-

old autoregressive process {ξt} is stationary with

Fξ(x) =
{

2(1− β2)/π
}1/2 ∫ x

−∞
exp

{
−1

2
(1− β2)y2

}
Φ(βy)dy, x ∈ R,

for all |β| < 1 (see Anděl and Ranocha (2005)), and Xt is a standard normal random

variable for each t.

In the final set of experiments, we compare the distance test based on A to the

moment-based test discussed in Bai and Ng (2005). The latter is based on the statistic

B := n{τ̂−23 κ̂23 + τ̂−24 (κ̂4 − 3)2},

where κ̂r := n−1
∑n

t=1{γ̂
−1/2
0 (Xt − X̄)}r (r = 3, 4), and τ̂ 23 and τ̂ 24 are estimators of

the asymptotic variance of
√
nκ̂3 and

√
n(κ̂4 − 3), respectively, that are consistent

under normality. As in Bai and Ng (2005), τ̂ 23 and τ̂ 24 are constructed using a non-

parametric kernel estimator with Bartlett weights and a data-dependent bandwidth

selected according to the procedure of Andrews (1991). When {Xt} is a Gaussian

process with absolutely summable autocovariances, the asymptotic distribution of B is

chi-square with 2 degrees of freedom. (We note that the normality test of Lobato and

Velasco (2004) is also based on B, but their choice for τ̂ 23 and τ̂ 24 is different from that

of Bai and Ng (2005).) Following Bai and Ng (2005), the data-generating mechanism

is the autoregressive model

M6: Xt = ϕXt−1 + εt, ϕ ∈ {0, 0.5, 0.8}.

For each design point, 1000 independent realizations of {Xt} of length 500 + n,

with n ∈ {100, 200, 500}, are generated. The first 500 data points of each realization

are then discarded in order to eliminate start-up effects and the remaining n data

points are used to compute the value of the test statistic of interest. P -values for the

distance test are computed from m = 1000 bootstrap replicates of A. Unless stated
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otherwise, the sieve order is selected by AIC with pmax = b(log n)2c; the approximating

autoregressive model is fitted by least-squares, which is preferred over the Yule–Walker

method because it produces estimates that exhibit smaller finite-sample bias.

4.2 Simulation Results

The Monte Carlo rejection frequencies, under M1, of the distance test at 5% signifi-

cance level (α = 0.05) are reported in Table 2. The null rejection probabilities of the

test are generally insignificantly different from the nominal level across all values of the

dependence parameter. The test also performs well under non-Gaussianity, its rejection

frequencies improving with larger sample sizes and smaller values of the dependence

parameter. Asymmetry in the distribution of εt leads, perhaps unsurprisingly, to higher

rejection rates. For long-range dependent data, the test generally suffers a loss in power

compared to the short-range dependent or antipersistent cases, a loss which becomes

more pronounced the larger the value of d is. Psaradakis (2016) reports a similar finding

for bootstrap-based tests of distributional symmetry about an unspecified centre.
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Table 2: Rejection Frequencies of A Test Under M1

n = 100 n = 200 n = 500
distr.\d -0.40 -0.25 0 0.25 0.40 -0.40 -0.25 0 0.25 0.40 -0.40 -0.25 0 0.25 0.40
N 0.06 0.05 0.05 0.05 0.06 0.05 0.05 0.05 0.05 0.06 0.05 0.06 0.05 0.05 0.07
S1 0.48 0.44 0.25 0.12 0.12 0.75 0.70 0.41 0.14 0.09 0.98 0.97 0.75 0.16 0.11
S2 0.72 0.73 0.44 0.21 0.15 0.94 0.92 0.66 0.23 0.13 1.00 1.00 0.97 0.33 0.15
S3 0.88 0.85 0.61 0.31 0.21 0.99 0.99 0.88 0.37 0.21 1.00 1.00 1.00 0.58 0.24
A1 0.97 0.95 0.77 0.25 0.15 1.00 1.00 0.98 0.42 0.16 1.00 1.00 1.00 0.71 0.23
A2 0.90 0.86 0.64 0.29 0.20 0.99 0.99 0.91 0.43 0.21 1.00 1.00 1.00 0.69 0.32
A3 1.00 1.00 1.00 0.59 0.29 1.00 1.00 1.00 0.83 0.33 1.00 1.00 1.00 0.99 0.54
LN 1.00 1.00 1.00 0.78 0.41 1.00 1.00 1.00 0.94 0.54 1.00 1.00 1.00 1.00 0.82
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As a robustness check, we repeat the experiments setting pmax = 2b(log n)2c. The

rejection frequencies of a 5%-level distance test shown in Table 3 (for n = 200) reveal

that, irrespective of the value of the dependence parameter, there are no substantial

changes in the empirical level and power of the test as a result of the increase in the

maximal sieve order.

Table 3: Rejection Frequencies of A Test Under M1, n = 200, and AIC

pmax = b(log n)2c pmax = 2b(log n)2c
distr.\d -0.40 -0.25 0 0.25 0.40 -0.40 -0.25 0 0.25 0.40
N 0.05 0.05 0.05 0.05 0.06 0.05 0.04 0.04 0.06 0.06
S1 0.75 0.70 0.41 0.14 0.09 0.75 0.67 0.43 0.14 0.12
S2 0.94 0.92 0.66 0.23 0.13 0.92 0.95 0.66 0.21 0.15
S3 0.99 0.99 0.88 0.37 0.21 0.99 0.99 0.87 0.37 0.23
A1 1.00 1.00 0.98 0.42 0.16 1.00 1.00 0.97 0.45 0.18
A2 0.99 0.99 0.91 0.43 0.21 0.99 0.98 0.89 0.43 0.24
A3 1.00 1.00 1.00 0.83 0.33 1.00 1.00 1.00 0.83 0.35
LN 1.00 1.00 1.00 0.94 0.54 1.00 1.00 1.00 0.94 0.55

To assess the sensitivity of results with respect to the method used to determine

the order of the autoregressive sieve, we consider selecting the latter by minimizing

BIC and MC in addition to AIC. The rejection frequencies under M1 of a 5%-level

test based on A, with n = 200 and pmax = b(log n)2c, are reported in Table 4. It is

clear that there is little to choose between BIC, MC and AIC, the rejection frequencies

not being notably different across the three criteria for any given combination of noise

distribution and value of d. It is worth noting that results from experiments based on

artificial time series of length n = 100 and n = 500 from M1 confirm the robustness of

the properties of the distance test with respect to the choice of order selection criterion

and maximal sieve order.
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Table 4: Rejection Frequencies of A Test Under M1, n = 200, and pmax = b(log n)2c

AIC BIC MC
distr.\d -0.40 -0.25 0 0.25 0.40 -0.40 -0.25 0 0.25 0.40 -0.40 -0.25 0 0.25 0.40
N 0.05 0.05 0.05 0.05 0.06 0.06 0.04 0.06 0.07 0.07 0.06 0.03 0.04 0.06 0.05
S1 0.75 0.70 0.41 0.14 0.09 0.75 0.71 0.38 0.135 0.10 0.71 0.70 0.36 0.13 0.12
S2 0.94 0.92 0.66 0.23 0.13 0.93 0.92 0.68 0.26 0.14 0.95 0.92 0.67 0.24 0.13
S3 0.99 0.99 0.88 0.37 0.21 0.99 0.99 0.88 0.39 0.23 0.99 0.98 0.86 0.35 0.21
A1 1.00 1.00 0.98 0.42 0.16 1.00 1.00 0.97 0.478 0.17 1.00 1.00 0.97 0.41 0.16
A2 0.99 0.99 0.91 0.43 0.21 0.99 0.99 0.91 0.45 0.20 1.00 0.99 0.89 0.40 0.19
A3 1.00 1.00 1.00 0.83 0.33 1.00 1.00 1.00 0.82 0.38 1.00 1.00 1.00 0.80 0.35
LN 1.00 1.00 1.00 0.94 0.54 1.00 1.00 1.00 0.95 0.59 1.00 1.00 1.00 0.95 0.51
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The distance test based on A also works very well for data-generating processes

which are not representable as (1) or (6). This can be seen in Table 5, which shows the

rejection frequencies of a 5%-level test under M2, M3 and M4. The rejection rate of

the distance test exceeds 57% for any design point with non-Gaussian noise, even for

the smallest sample size considered. In the case of artificial time series from M5, the

one-dimensional marginal distribution of which is Gaussian, the test has rejection rates

that do not differ substantially from the nominal level, as can be seen in Table 6.

Table 5: Rejection Frequencies of A Test Under M2-M4

n = 100 n = 200 n = 500
distr. M2 M3 M4 M2 M3 M4 M2 M3 M4
N 0.37 0.28 0.94 0.64 0.43 1.00 0.93 0.82 1.00
S1 0.68 0.65 0.99 0.93 0.91 1.00 1.00 1.00 1.00
S2 0.81 0.79 0.99 0.97 0.97 1.00 1.00 1.00 1.00
S3 0.87 0.89 1.00 0.99 0.99 1.00 1.00 1.00 1.00
A1 0.57 0.86 0.97 0.84 0.99 1.00 0.99 1.00 1.00
A2 0.71 0.86 0.99 0.91 0.99 1.00 1.00 1.00 1.00
A3 0.96 1.00 0.97 1.00 1.00 1.00 1.00 1.00 1.00
LN 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00

Table 6: Rejection Frequencies of A Test Under M5

β n = 100 n = 200 n = 500
0.5 0.053 0.057 0.052
-0.5 0.040 0.050 0.052

Let us finally turn to Table 7, which contains the rejection frequencies, at the 5%

significance level, of the tests based on A and B under M6. Unlike the distance test,

the moment-based test is prone to level distortion. The differences in the empirical

levels of the two tests notwithstanding, the distance test has a clear advantage under

non-normality, outperforming the moment-based test for every design point in our sim-

ulations. The differences are particularly striking for symmetric noise distributions,

cases in which the B test has little or no power to detect non-Gaussianity when ϕ 6= 0.
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Table 7: Rejection Frequencies of A and B Tests Under M6

n = 100 n = 200 n = 500
distr.\ϕ 0.0 0.5 0.8 0.0 0.5 0.8 0.0 0.5 0.8

A B A B A B A B A B A B A B A B A B
N 0.05 0.05 0.05 0.03 0.08 0.01 0.05 0.09 0.06 0.05 0.06 0.02 0.05 0.08 0.05 0.09 0.05 0.04
S1 0.50 0.06 0.27 0.01 0.13 0.00 0.78 0.13 0.43 0.04 0.15 0.00 0.99 0.53 0.76 0.22 0.16 0.02
S2 0.72 0.07 0.43 0.04 0.17 0.01 0.95 0.22 0.70 0.09 0.24 0.02 1.00 0.50 0.97 0.34 0.39 0.06
S3 0.89 0.09 0.64 0.04 0.30 0.01 1.00 0.20 0.89 0.11 0.37 0.03 1.00 0.37 1.00 0.33 0.62 0.09
A1 0.98 0.81 0.79 0.21 0.26 0.00 1.00 1.00 0.98 0.83 0.44 0.03 1.00 1.00 1.00 1.00 0.81 0.46
A2 0.92 0.22 0.66 0.10 0.28 0.01 1.00 0.52 0.90 0.35 0.44 0.06 1.00 0.87 1.00 0.79 0.76 0.36
A3 1.00 0.95 1.00 0.45 0.59 0.00 1.00 0.99 1.00 0.97 0.87 0.03 1.00 1.00 1.00 1.00 1.00 0.73
LN 1.00 0.84 1.00 0.73 0.81 0.02 1.00 0.94 1.00 0.93 0.97 0.16 1.00 0.99 1.00 0.97 1.00 0.88
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Since the comparison between the distance-based and moment-based tests is per-

haps somewhat unfair given that the latter relies on a conventional large-sample ap-

proximation to the null distribution of B, we also consider a bootstrap-based version of

the B test. Specifically, the same autoregressive sieve bootstrap procedure that is used

in the case of the distance test is employed to compute P -values and critical values for

a normality test based on B . The rejection frequencies, at the 5% significance level,

of the bootstrap-based B test for n = 200 are shown in Table 8 under the heading BB.

Although the test controls the probability of Type I error marginally better than its

asymptotic counterpart B, it is clearly dominated by the distance A test in terms of

power.

Table 8: Rejection Frequencies of A, B, and BB Tests Under M6 and n = 200

distr.\ϕ 0.0 0.5 0.8
A B BB A B BB A B BB

N 0.05 0.09 0.07 0.06 0.05 0.05 0.06 0.02 0.05
S1 0.78 0.13 0.07 0.43 0.04 0.03 0.15 0.00 0.02
S2 0.95 0.22 0.10 0.70 0.09 0.05 0.24 0.02 0.04
S3 1.00 0.20 0.10 0.89 0.11 0.08 0.37 0.03 0.04
A1 1.00 1.00 0.98 0.98 0.83 0.90 0.44 0.03 0.26
A2 1.00 0.52 0.36 0.90 0.35 0.37 0.44 0.06 0.16
A3 1.00 0.99 0.97 1.00 0.97 0.98 0.87 0.03 0.56
LN 1.00 0.94 0.90 1.00 0.93 0.89 0.97 0.16 0.58

5 Real-Data Application

The bootstrap-based distance test for normality is applied to a large set of U.S. economic

and financial time series. The data set consists of 79 time series associated with the

financial markets (12 series), the labour market (22 series), prices (17 series), money

and credit (7 series), output, income and capacity (14 series), and surveys (7 series).

All time series are monthly, spanning the period 1971–2013, seasonally adjusted, and

(with the exception of survey series) transformed to stationarity by differencing either
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the raw series (indicated by ∆ in what follows) or their natural logarithms (indicated

by ∆ log). The data were downloaded from Haver Analytics (www.haver.com).

P -values for the normality test based on A are presented in Table 9. These are

computed from 10000 bootstrap replications, with the data-dependent sieve order p̂

determined as the minimizer of AIC over 1 6 p 6 b(log n)2c. For comparison, we

also report asymptotic P -values for the test based on B (with τ̂ 23 and τ̂ 24 computed

as in Section 4). Finally, we report a semi-parametric estimate d̂ of the dependence

parameter of each time series, obtained using the local Whittle estimator, that is, the

minimizer over |d| 6 0.499 of the objective function

log

(
`−1
∑̀
i=1

ω2d
i Ii

)
− 2d`−1

∑̀
i=1

logωi,

and ` is a positive integer chosen as a function of n so that `−1 + n−1`→ 0 as n→∞

(see Robinson (1995)). We set ` = b{16(−2.19ĉ)2}−1/5n4/5c, where ĉ is the least-squares

estimate of the third coefficient in the pseudo-regression of log Ii on (1,−2 logωi, ω
2
i /2),

i = 1, . . . , b0.3n8/9c (cf. Henry and Robinson (1996); Andrews and Sun (2004)).

Evidence in favour of non-Gaussianity in the U.S. economic time series is over-

whelming: the null hypothesis is rejected, at the 5% significance level, for 95% of the

series on the basis of the A test. Interestingly, non-normality is found to be a charac-

teristic feature for all six categories of time series. By comparison, the moment-based

B test leads to rejection of normality in only 30% of the cases. It must be borne in

mind, however, that the validity of the test based on B relies heavily on the assumption

of short-range dependence in the data. Such an assumption does not accord well with

the estimates of the dependence parameter shown in Table 9, on the basis of which

short-range dependence (d = 0) is rejected in favour of long-range dependence (d > 0)

for almost 80% of the time series under consideration. It is also worth recalling from our

earlier simulation study that, even for short-range dependent data, the moment-based

test appears to be considerably less successful than the distance-based test at detecting

deviations from Gaussianity. The non-normality of the marginal distribution of the

time series under consideration may, of course, be due to a variety of sources, includ-
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ing non-normal noise in a linear representation like (1), non-linearity, and conditional

heteroskedasticity.

Table 9: P -values of the A and B Tests

series transformation A B p̂ d̂ se(d̂)
(A) Financial Market
10-Year Treasury Constant Maturity Rate ∆ 0.00 0.10 22 -0.03 0.06
1-Year Treasury Constant Maturity Rate ∆ 0.00 0.17 19 -0.10 0.06
3-Month Treasury Bill: Secondary Market Rate ∆ 0.00 0.16 20 -0.01 0.05
5-Year Treasury Constant Maturity Rate ∆ 0.00 0.16 22 -0.07 0.07
Effective Federal Funds Rate ∆ 0.00 0.12 38 -0.13 0.08
Moody’s Seasoned Aaa Corporate Bond Yield ∆ 0.00 0.04 15 0.01 0.05
Moody’s Seasoned Baa Corporate Bond Yield ∆ 0.00 0.12 5 0.16 0.07
Foreign Exchange rate (Yen per US Dolar) ∆ log 0.00 0.01 14 0.16 0.04
Foreign Exchange rate (Pound per US Dolar) ∆ log 0.00 0.12 3 -0.04 0.08
Foreign Exchange rate (Franc per US Dolar) ∆ log 0.00 0.01 11 0.05 0.05
SP 500 Composite Index (1941-43=10) ∆ log 0.00 0.05 11 0.03 0.07
SP Industrial Index (1941-43=10) ∆ log 0.00 0.04 22 0.02 0.07
(B) Employment, Hours, Earnings
All Employees: Construction ∆ log 0.00 0.00 38 0.49 0.07
All Employees: Durable goods ∆ log 0.00 0.05 36 0.43 0.08
All Employees: Financial Activities ∆ log 0.55 0.53 38 0.49 0.06
All Employees: Goods-Producing Industries ∆ log 0.00 0.12 37 0.49 0.07
All Employees: Government ∆ log 0.00 0.10 18 0.32 0.07
All Employees: Manufacturing ∆ log 0.00 0.05 36 0.44 0.08
All Employees: Mining and Logging: Mining ∆ log 0.00 0.16 38 0.24 0.07
All Employees: Nondurable goods ∆ log 0.00 0.33 38 0.22 0.09
All Employees: Retail Trade ∆ log 0.01 0.03 36 0.49 0.09
All Employees: Service-Providing Industries ∆ log 0.01 0.21 25 0.49 0.09
All Employees: Total nonfarm ∆ log 0.00 0.04 36 0.49 0.06
All Employees: Trade, Transportation and Utilities ∆ log 0.00 0.14 36 0.49 0.07
All Employees: Wholesale Trade ∆ log 0.02 0.22 37 0.49 0.06
Average Hourly Earnings of Production: Construction ∆ log 0.00 0.15 35 0.49 0.08
Average Hourly Earnings of Production: Goods-Producing ∆ log 0.00 0.00 33 0.49 0.08
Average Hourly Earnings of Production: Manufacturing ∆ log 0.00 0.00 34 0.49 0.08
Average Weekly Hours of Production: Goods-Producing ∆ 0.00 0.37 35 -0.06 0.07
Average Weekly Hours of Production: Manufacturing ∆ 0.00 0.35 36 -0.04 0.06
Average Weekly Overtime Hours: Manufacturing ∆ 0.00 0.27 35 -0.07 0.04
Civilian Employment ∆ log 0.00 0.04 37 0.35 0.06
Civilian Labor Force ∆ 0.00 0.24 37 0.28 0.08
Civilian Unemployment Rate ∆ 0.00 0.21 38 0.49 0.07
(C) Prices
Consumer Price Index: All Items ∆ log 0.00 0.00 18 0.49 0.07
Consumer Price Index: All Items Less Food ∆ log 0.00 0.02 15 0.41 0.07
Consumer Price Index: Apparel ∆ log 0.00 0.03 18 0.39 0.09
Consumer Price Index: Commodities ∆ log 0.00 0.19 17 0.18 0.06
Consumer Price Index: Durables ∆ log 0.00 0.00 37 0.28 0.05
Consumer Price Index: Medical Care ∆ log 0.00 0.09 36 0.49 0.08
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Consumer Price Index: Services ∆ log 0.00 0.07 31 0.49 0.09
Consumer Price Index: Transportation ∆ log 0.00 0.32 12 0.06 0.08
Personal Consumption Expenditures ∆ log 0.00 0.00 17 0.49 0.08
Personal consumption expenditures: Durable goods ∆ log 0.03 0.16 37 0.49 0.08
Personal consumption expenditures: Nondurable goods ∆ log 0.00 0.10 16 0.18 0.04
Personal consumption expenditures: Services ∆ log 0.00 0.00 36 0.49 0.09
Producer Price Index: Commodities: Metals ∆ log 0.00 0.06 20 0.00 0.09
Producer Price Index: Crude Materials ∆ log 0.00 0.04 38 -0.17 0.09
Producer Price Index: Finished Consumer Goods ∆ log 0.00 0.16 17 0.21 0.05
Producer Price Index: Finished Goods ∆ log 0.00 0.11 17 0.25 0.06
Producer Price Index: Intermediate Materials ∆ log 0.00 0.11 14 0.15 0.09
(D) Money and Credits
M1 Money Stock ∆ log 0.00 0.15 36 0.45 0.08
M2 Money Stock ∆ log 0.00 0.06 34 0.34 0.05
M3 Money Stock ∆ log 0.00 0.05 34 0.35 0.05
Commercial and Industrial Loans, All Commercial Banks ∆ log 0.01 0.08 36 0.49 0.04
Real Estate Loans, All Commercial Banks ∆ log 0.07 0.12 7 0.49 0.08
Real M2 Money Stock ∆ log 0.00 0.26 18 0.26 0.06
Total Nonrevolving Credit Owned, Outstanding ∆ log 0.00 0.34 38 0.49 0.07
(E) Output, Income and Capacity
Industrial Production: Business Equipment ∆ log 0.00 0.21 12 0.40 0.05
Industrial Production: Consumer Goods ∆ log 0.00 0.17 24 0.13 0.06
Industrial Production: Durable Materials ∆ log 0.00 0.08 36 0.28 0.07
Industrial Production: Final Products ∆ log 0.00 0.07 36 0.26 0.08
Industrial Production: Fuels ∆ log 0.00 0.42 36 -0.15 0.09
Industrial Production Index ∆ log 0.00 0.18 38 0.31 0.08
Industrial Production: Manufacturing ∆ log 0.00 0.18 38 0.23 0.08
Industrial Production: Materials ∆ log 0.00 0.09 37 0.30 0.07
Industrial Production: Nondurable Goods ∆ log 0.76 0.55 37 0.17 0.08
Industrial Production: nondurable Materials ∆ log 0.00 0.17 37 -0.08 0.08
Personal Income ∆ log 0.00 0.09 15 0.49 0.09
Real Personal Income ∆ log 0.00 0.10 17 0.37 0.09
Real personal income excluding current transfers ∆ log 0.00 0.14 14 0.36 0.10
Capacity Utilization: Manufacturing ∆ 0.00 0.22 38 0.14 0.08
(F) Surveys
ISM Manufacturing: Employment Index – 0.04 0.06 38 0.49 0.08
ISM Manufacturing: Inventories Index – 0.02 0.01 37 0.49 0.07
ISM Manufacturing: New Orders Index – 0.00 0.01 38 0.35 0.08
ISM Manufacturing: PMI Composite Index – 0.01 0.02 38 0.49 0.08
ISM Manufacturing: Prices Index – 0.11 0.03 17 0.41 0.09
ISM Manufacturing: Production Index – 0.00 0.03 38 0.28 0.09
ISM Manufacturing: Supplier Deliveries – 0.00 0.11 38 0.34 0.09

6 Conclusion

This paper considered an Anderson–Darling distance test for normality of the one-

dimensional marginal distribution of stationary, fractionally integrated processes. As
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a practical way of implementing the test, we proposed using an autoregressive sieve

bootstrap procedure to estimate finite-sample P -values and/or critical values. The

bootstrap-based test is valid for short-range dependent, long-range dependent and an-

tipersistent processes, and does not require knowledge or estimation of the dependence

parameter of the data or of the appropriate norming factor for the test statistic. Monte

Carlo simulations showed that the distance test has good size and power properties

in small samples, although it tends to lack power when the dependence parameter is

large and positive. Under short-range dependence, the distance test was found to be

more successful than the popular skewness/kurtosis test in detecting departures from

normality. An application to a set of U.S. economic and financial time series revealed

than non-Gaussianity is a prevalent feature of the data.
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Bühlmann, P. (1997): “Sieve bootstrap for time series,” Bernoulli, 3, 123–148.

Cotter, J. (2007): “Varying the VaR for unconditional and conditional environ-

ments,” Journal of International Money and Finance, 26, 1338–1354.

Dehling, H., and M. S. Taqqu (1989): “The empirical process of some long-range

dependent sequences with an application to U -statistics,” Annals of Statistics, 17,

1767–1783.

Doukhan, P., G. Oppenheim, and M. S. Taqqu (eds.) (2003): Theory and Ap-

plications of Long-Range Dependence. Birkhäuser, Boston.
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