
Investigations on path indexing for graph
databases

Jonathan M. Sumrall1, George H. L. Fletcher2, Alexandra Poulovassilis3, Johan
Svensson1, Magnus Vejlstrup1, Chris Vest1, and Jim Webber1

1 Neo Technology, {max.sumrall,johan, magnus.vejlstrup, chris.vest,

jim.webber}@neotechnology.com
2 Eindhoven University of Technology, g.h.l.fletcher@tue.nl

3 Birkbeck, University of London, ap@dcs.bbk.ac.uk

Abstract. Graph databases have become an increasingly popular choice
for the management of the massive network data sets arising in many
contemporary applications. We investigate the effectiveness of path in-
dexing for accelerating query processing in graph database systems, using
as an exemplar the widely used open-source Neo4j graph database. We
present a novel path index design which supports efficient ordered access
to paths in a graph dataset. Our index is fully persistent and designed
for external memory storage and retrieval. We also describe a compres-
sion scheme that exploits the limited differences between consecutive
keys in the index, as well as a workload-driven approach to indexing.
We demonstrate empirically the speed-ups achieved by our implemen-
tation, showing that the path index yields query run-times from 2x up
to 8000x faster than Neo4j. Empirical evaluation also shows that our
scheme leads to smaller indexes than using general-purpose LZ4 com-
pression. The complete stand-alone implementation of our index, as well
as supporting tooling such as a bulk-loader, are provided as open source
for further research and development.

1 Introduction

Massive graph-structured data collections are increasingly common in modern
application scenarios such as social networks and linked open data. Consequently,
there has been a flurry of development of graph database systems to support
scalable analytics on massive graphs. The selection and manipulation of paths
forms the core of querying graph datasets. However, the feasibility of a path-
centric approach to indexing massive graphs is an open problem and, to date, no
study has been performed on the benefits of path indexing for processing graph
queries in industry-strength graph databases. To our knowledge, this work is
the first to provide a design and implementation of a path index specifically
for graph databases, as well as an empirical study of the performance of such
indexes.

Related Work. The study of path indexing has a long history, with a rich
variety of strategies developed in the context of object-oriented [3] and XML

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Birkbeck Institutional Research Online

https://core.ac.uk/display/74204792?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 J. M. Sumrall et al.

[16] databases, and more recently in the indexing of graph data [17]. Related
work includes approaches to creating structural summaries of semi-structured
data, such as DataGuides [8], T-index [12], AK-index [11] and DK-index [4].
IndexFabric [6] indexes paths in tree-structured data by representing every path
in the tree as a string and storing it in a Patricia tree. GraphGrep [14] uses a
hash-based method to find occurrences of paths within subgraphs of a graph.
For a more detailed review of previous approaches to indexing graph-structured
data, we refer the reader to [15]. To our knowledge, the novel approach to path
indexing that we present in this paper has not been studied or applied before in
the context of any actively supported graph database system.

Contributions. We introduce a path-oriented index for graph-structured
data and highlight its benefits for accelerating graph query processing, focusing
on the processing of path queries. Our index implementation, which is based
on the venerable B+tree data structure, has been custom-built from scratch
specifically to be based in external memory and to support and leverage the
path structures found in graph datasets. The complete index implementation,
as well as supporting tooling such as a bulk-loader, are available open source for
further research and development.4

We show that use of our index yields, on average, orders of magnitude
faster query processing times compared with Neo4j5, a popular open-source
native graph database which offers features such as being fully transactional
and supporting a declarative graph query language, Cypher. We stress that
our performance studies here compare our standalone index with a fully-fledged
graph DBMS. Hence, the performance figures must be interpreted in this light.
Nonetheless, the significantly faster query processing times achieved by our in-
dex is a clear indication that our solution warrants further investigation towards
practical deployment in graph DBMSs. We also highlight the design and bene-
fits of a simple yet highly effective path-centric compression scheme used in our
index. We note that, to our knowledge, the proposed approach to path indexing
is not found in any current graph database system, and thus the contributions
of this paper and their potential for practical impact extend beyond our specific
demonstration here by comparison to Neo4j.

Organization. In the next section we define our graph data model and
path queries. In Section 3 we describe our path index implementation, including
index design, initialization and compression. In Section 4 we present an empirical
evaluation of our implementation. We conclude in Section 5 with a summary of
our contributions and directions of further work.

2 Graphs and path queries

Data Model. Although modern graph DBMSs such as Neo4j support a richer
property graph data model, we restrict our attention to just the path structure
of graphs. In particular, we adopt a basic model of finite, edge-labeled, directed

4 https://github.com/jsumrall/Path-Index
5 http://neo4j.com/docs/stable/

Investigations on path indexing for graph databases 3

graphs G = 〈N,E,L〉 where: N is a finite set of nodes; L is a finite set of edge
labels; and E ⊆ N × L×N is a set of labeled directed edges.

Given a graph G, our interest is in indexing paths in G. The simplest paths
are edges between adjacent nodes. In particular, for each edge (s, `, t) ∈ E, we
say there is a path of length one from s to t (resp., from t to s) having label `
(resp., `−1).6

In general, for k > 0, let pathsk(G) denote the set of all vectors of nodes
(n1, . . . , nj+1) ∈ N × · · · ×N︸ ︷︷ ︸

j+1 times

, for 1 6 j 6 k, such that there is a path of length

one from ni to ni + 1 in G, for each 1 6 i 6 j. The label-path of a given path
(n1, `1, n2), (n2, `2, n3), . . . , (nj , `j , nj+1) is the sequence of edge labels `1`2 · · · `j
along the path.

As an example, consider a graph Gex with node set {sue, tom, zoe, chem101}
and edge set

{(sue, takesCourse, chem101), (zoe, teacherOf, chem101),

(tom, takesCourse, chem101), (sue, knows, tom), (tom, knows, zoe)}.

Then there are two distinct paths in Gex of length two from sue to zoe, with
respective label-paths knows · knows and takesCourse · teacherOf−1.

Queries. We focus on the evaluation of path queries, which are specified by
projections on label-paths over L. Given a label-path ` = `1`2 · · · `k and, for
some r ≥ 0, a list of indices i1, . . . , ir each in the range [1, k + 1], the semantics
of evaluating πi1,...,ir (`) on G is the set of all vectors of nodes (m1, . . . ,mr) ∈
N × · · · ×N︸ ︷︷ ︸

r times

such that there is a path (n1, `1, n2), (n2, `2, n3), . . . , (nk, `k, nk+1)

in G with mj = nij for each 1 ≤ j ≤ r.
As an example, the following query selects all node pairs (x, z) such that x

takes a course taught by z:

π1,3(takesCourse · teacherOf−1).

It evaluates to the result set {(sue, zoe), (tom, zoe)} on the graph Gex above.
Here, we consider the execution of path queries of length at most k, for some

fixed k. Compilation strategies for arbitrary graph queries targeting our path
indexes is outside the scope of this paper and is a topic of ongoing study. In
particular, preliminary work along these lines is reported by Fletcher et al. [7]
which studies the use of path indexing for accelerating regular path queries on
graphs.

3 Path Indexing

In this section we describe our path indexing approach, focusing on the require-
ments, design, initialization and compression of our path indexes. The main

6 `−1 denotes the inverse of edge label `, which we just treat as normal edge label.

4 J. M. Sumrall et al.

objective is to maintain an index on the set pathsk(G) of a graph G, for some
fixed k, so as to accelerate the execution of path queries. A secondary goal is to
design methods for optimizing the index structure, so as to reduce the overall
size of the index and the cost of building, using and updating it. The size of
pathsk(G) may exceed the amount of internal memory available and hence the
index design must target external memory. For detailed discussion of the design
space considered and the design choices made, we refer the reader to [15].

3.1 Index design

Path keys. Given a graph G, our path index maintains an index on the set
pathsk(G), for some fixed k. Members of this set need to be represented in a
standard fashion, using a scheme such that specific elements of a path can be
identified, different paths can be compared to each other, and paths can be
serialized. This indexible form of a path is called a key.

To make a transformation from label-paths to keys, we first assign an or-
dering to the elements of L. Under this ordering, we convert each label to an
integer value in the range 1, . . . , |L|. As noted above, we also consider the inverse
of labels: for a label identified by integer i, the inverse of the label is assigned
the value |L| + i. A k-label-path can now be uniquely identified by a vector
(v1, . . . , vk) where each vi is in the range 1, . . . , 2|L|. Based on this vector rep-
resentation of label-paths, a unique integer is assigned to each label-path: the
label-path’s identifier. These identifiers are stored in a mapping dictionary, im-
plemented using a hash map. During query evaluation, the mapping dictionary is
consulted to identify the corresponding identifier for that particular label-path.

To represent specific paths of G, the sequence of nodes along a path must also
be considered. Each node is differentiated from all other nodes in the graph by
a unique integer identifier (e.g. as generated by the graph DBMS; in the case of
Neo4j, this corresponds to the physical address of the node). Concatenating the
identifier of a path’s label-path with the identifiers of the nodes along the path,
a path can be represented as a vector consisting of first its label-path identifier
followed by its node identifiers. Therefore our data representation of a key is as
a series of integer values, and for a path of length k, the size of the key is k+1
integer values (of 8 bytes each).

Storage and search. We use a B+tree [5] as the underlying storage mech-
anism for keys. This allows keys to be stored and retrieved in sorted order effi-
ciently for large sets of keys which may exceed the amount of internal memory
in the system. It also allows for searching using any prefix of the keys stored in
the index, e.g. a label-path identifier. Moreover, our path index implementation
can also support alternative sort orderings of the paths, which may be desirable
for join processing as part of a fully-fledged query processor; further discussion
of this is can be found in [15].

Page design. Our index is designed to be disk-based, and therefore careful
attention has been paid to how the bytes of the internal and leaf pages of the
index are arranged. All pages contain a header with essential information in-
cluding sub-tree references and the number of elements in the page. Individual

Investigations on path indexing for graph databases 5

elements are assumed to be of equal size, and therefore delimiter values between
elements are not needed.

Figure 1 details the structure of internal pages and leaf pages. The internal
pages contain a 25 byte header, followed by references to children pages, followed
by the keys which sort the children pages. Leaf pages contain the 25 byte header,
followed by the keys. Since the header contains information about the number of
keys in the page, it is possible to directly navigate to specific keys by calculating
an offset value based on the size of the keys and the ordered position of the
desired key.

Header

25 B

Child Child

8 B 8 B

Key

(k + 2) ∗ 8 B

(a) Internal Page

Header

25 B

Key Key Key

(k + 2) ∗ 8 B (k + 2) ∗ 8 B (k + 2) ∗ 8 B

(b) Leaf Page

Fig. 1: Layout of the internal pages and leaf pages of the index.

3.2 Index compression

We recall that the first value of a key is a label-path id and the subsequent values
are node ids, i.e. a key is of the form pathID, nodeID1, nodeID2, nodeID3,
Within the index, keys are sorted lexicographically, first by pathID, then by
nodeID1, then by nodeID2, and so on. This ordering causes neighbouring keys
to be similar. Indeed, many keys will often have the same values of pathID and
nodeID1 in particular, since many neighboring keys have the same label-path ids
and the same starting node ids along the path. This is similar to the observation
of Neumann and Weikum [13] on efficiently storing RDF triples, and allows for a
similar compression scheme. The compression method we use involves not storing
the full key, but only storing the difference between successive keys. This results
in a high compression, as the change between keys is very often quite small.

For each value in a key, the delta (i.e., integer distance) to obtain this value
from the value in the same position in the previous key is calculated. Once each
delta is obtained, the minimum number of bytes necessary to store the largest
delta for this key is found. Each delta is then standardized in length to only
that minimum number of bytes. A header byte contains a value representing the
size of all these deltas. The largest possible delta would require 8 bytes and the
minimum delta we consider is 1 byte.

Often, the prefix of a key can be identical to that of the previous key in the
page, while the final value in the key can require a large delta. In the compression
scheme above, we allocate a number of bytes to store the large delta, but the

6 J. M. Sumrall et al.

delta for the first few values would be zero. To compress even further, the first
5 bits in the header can be used to signal when the corresponding value has a
delta of zero, essentially forming a gap in the series of deltas stored for this key.
We call these “gap bits”. By enabling a gap bit, we can avoid writing the delta
for that value altogether, and only write the values which have a non-zero delta.
An illustration of our compressed key structure can be found in Figure 2.

Gap Payload

2 Bits 6 Bits

Header

Delta

1-8 Bytes

Path ID

Delta

1-8 Bytes

Node ID

Delta

1-8 Bytes

Node ID

Fig. 2: Structure of a compressed key with gap bits for a path with k = 1.

Compression is applied to individual leaf pages, not across pages. Compress-
ing larger portions of the index would produce a smaller index, but at a cost of
greater complexity in maintaining the index under updates. By only compressing
individual pages, we can still traverse to any leaf page and immediately begin
reading keys. If larger portions of the index were compressed together, then those
additional portions would need to be fetched and decompressed before beginning
to read keys.

Compression is also not applied to pages representing internal pages in the
index. Internal pages account for a much smaller share of the total number of
pages in the index, as most pages are leaves. Further, we assume that internal
pages will be accessed often during traversals, and the additional decompression
time on these pages may not justify the possible space savings.

3.3 Index initialization: full vs. workload-based indexing

We have explored two approaches to populating the index. The first is to generate
and store all possible paths up to length k. We first perform an external merge
sort on the length-1 paths (i.e. the graph’s edge set E), and their inverses, and
bulk load them into our path index. With the k = 1 index constructed, the k = 2
index is constructed by performing a merge join on the opposing end nodes of
the length-1 paths. In general, the k = n+ 1 index is constructed by performing
a join on two full length-k1 and length-k2 indexes, where k1 + k2 = n+ 1 holds
true. For large values of k, this requires an extensive time and space commitment,
as we see below. The payoff is that the expected query execution time on any
arbitrary k-path query will be very low.

As an alternative to this off-line construction of all paths up to length k, it is
possible to index on demand (i.e. as a background process during query execution
time) only those paths needed to fulfill a given query workload, i.e. to index a
finite set of path queries of arbitrary length. Such an index is first initialized
with the length-1 paths, i.e. with the graph’s edge set E. Then, as encountered
in the query workload, longer paths (of arbitrary length) are dynamically built

Investigations on path indexing for graph databases 7

and added to the index by performing joins on the initial 1-paths and subsequent
longer paths which have already been indexed. We refer to the indexes for the
first method as full k indexes and the latter as workload-based indexes.

4 Evaluation

We now describe a set of experiments that investigate our index compression
scheme, index sizes, and query execution times using path indexing. All experi-
ments were performed on a 2.0GHz i7 processor with 8 GB of main memory and
a solid state drive, running OSX 10.10. Experiments were run on three differ-
ent datasets, drawn from different sources and of different sizes. Two datasets,
the Lehigh University Benchmark (LUBM) dataset [10] and the Linked Data
Benchmark Council (LDBC) dataset [2] are synthetic datasets, while the Ad-
vogato dataset [1] is a real-world dataset. All experiments were conducted using
the latest version of Neo4j available at the time, Neo4j 2.3.0-M01. We focus here
on our experiments with the LUBM and refer the reader to [15] for details of
the experiments with the other two datasets.

LUBM graphs model a university scenario (e.g., nodes represent universities,
departments, students, teachers, ...). We generated a graph with 50 universities,
containing approximately 6.8 million unique edges. We followed the same data
preparation steps as taken by Gubichev and Then [9], except our dataset was
not enriched with inferred facts derived from ontology rules. For example, nodes
of type Associate Professor do not also get the more general label Professor.
LUBM is provided with 14 different queries. Here, we use roughly the same
queries as used by Gubichev and Then [9], with substitutions for the length-0
queries. Our queries are listed in the Appendix.

4.1 Index compression evaluation

Evaluation of our compression scheme shows that it results in significantly re-
duced index sizes compared to the uncompressed index size. Further, our com-
pression method outperforms general-purpose LZ4 compression7 in terms of both
speed and scale of compression. A comparison of the size of indexes resulting
from each compression technique is shown in Table 1, while a comparison of the
speed of the compression techniques is shown in Table 2. The comparison was
undertaken by inserting sequentially increasing keys into the index and mea-
suring throughput time and final index size. The evaluation was undertaken for
indexes with key sizes of k = 1, 2, 3. However, the size of the k = 3 index with-
out compression and with the LZ4 algorithm was either too large for our test
system or took a significant amount of time. We also include here results for our
workload-based index, built using the query workload of the LUBM benchmark,
which significantly lowers storage overhead and compression time. Overall, the
comparison shows that our scheme outperforms the LZ4 algorithm in terms of
both speed and scale of compression.

7 https://github.com/jpountz/lz4-java

8 J. M. Sumrall et al.

Table 1: Index size.
Index Uncompressed LZ4 Path Index

k = 1 0.16 GB 0.053 GB 0.02 GB
k = 2 15.99 GB 3.67 GB 1.69 GB
k = 3 - - 41.58 GB

workload-based - - 0.1 GB

Table 2: Indexing time, rounded to the nearest minute.
Index Uncompressed LZ4 Path Index

k = 1 < 1 Minute 4 Minutes < 1 Minute
k = 2 28 Minutes 266 Minutes 27 Minutes
k = 3 - - 178 Minutes

workload-based - - 4 Minutes

4.2 Index size evaluation

The right-most column of Table 1 shows the index sizes. These results show that
the size of the index as k increases becomes a limiting factor to the usability of
the index. However, while the index sizes may be large, the evaluation time for
path queries using the index remains very low (see below). Moreover, although
the full indexes can grow to be quite large, the workload-based index has very
low overhead while still supporting efficient query processing, as we see next.

4.3 Query execution evaluation

We compare query execution time using our path index with that using Neo4j,
subject to the provisos discussed in the Introduction. Only the time needed
to retrieve the results is compared for each query: the time needed to open
and close the database or index, and to open and close a transaction event is
ignored. Six runs were conducted for each query, with each run consisting of
5 executions of the query. Between each run, the system’s caches were flushed.
The first execution after a cache flush was considered a “cold” run, with empty
caches, and the subsequent runs were considered “warm” runs, where caching is
likely to result in lower evaluation times. For each query therefore, we obtained
6 “cold run” timings and 24 “warm run” timings. For each set of cold-run and
warm-run timings of each query, we excluded 10% of the data from each end of
the range of recorded results, eliminating outliers due to nondeterminism in the
runtime environment. We report here the mean of the remaining values, focusing
on the warm run experiments. A full analysis, including both the warm and the
cold runs, can be found in [15].

Full indexes. We first consider path query performance on a full k = 3
index. Results are reported in Table 3, where we give the time to the first result
and the time to the last result. For both Neo4j and our path index, the time to
the first result is measured as the time from immediately before Neo4j’s or the

Investigations on path indexing for graph databases 9

Table 3: Average times (ms) to retrieve the first result and the last result in
Neo4j and in the Path Index.

Neo4j Index k = 3 Index k = 2 Index k = 1 Speedup

Q1
First Result 480 - - 0.19 2526x
Last Result 2080 - - 37 56x

Q2
First Result 2014 - - 1 2014x
Last Result 2014 - - 1 2014x

Q3
First Result 413 - - 0.05 8260x
Last Result 1352 - - 4 338x

Q4
First Result 774 - 0.8 173 967x
Last Result 3741 - 112 10932 33x

Q5
First Result 457 - 2 45 228x
Last Result 13303 - 1439 4645 9x

Q6
First Result 437 - 2 47 218x
Last Result 2225 - 107 2831 20x

Q7
First Result 8 2 2.4 - 4x
Last Result 2221 32 179 - 69x

Q8
First Result 1 1 2 - 1x
Last Result 5319 1992 493 - 2x

Q9
First Result 1 2 2 - 0.5x
Last Result 1378 8 179 - 172x

Q10
First Result 1 3 2 - 0.3x
Last Result 1392 4 16 - 348x

Avg
First Result 458 2 1 < 1 1444x
Last Result 3502 509 552 14 306x

path index’s find operation is executed, and the time immediately after the first
result is found. The time to the last result is measured as the time immediately
before Neo4j’s or the path index’s find operation is executed, until the time
immediately after the last result is found.

In addition to using the full-length k-paths in the index, queries are also
evaluated using the (k − 1)-paths in the index for Queries 4-10, for comparison
purposes. For example, looking at Query 7 in Table 3, we see under the column
labeled “Index k = 2” the time needed to evaluate Query 7 using the k = 2 and
k = 1 subpaths of the query and joining the results (using a merge join). This
gives us an indication of query evaluation times if the index only contained the
smaller subpaths and not the full k = 3 path. The column “Index k = 1” for
Query 7 is blank, as these experiments only show the times needed to perform a
single (merge) join to evaluate a given query. Evaluating Query 7 using only the
k = 1 paths is possible, but would require joining two subpaths first, and then
undertaking a sort merge join with the third subpath or performing a hash join
with the third subpath.

10 J. M. Sumrall et al.

Table 4: Workload experiment with paths constructed from the k = 1 index with
joined results inserted into the index (average time to last result, in ms).

Query Plan Index Index Neo4j Speed
Const- Query up
ruction

Q4 takesCourse ./ teacherOf−1 30289 119 3741 31x

Q5 memberOf ./ subOrganizationOf−1 129499 775 13303 17x

Q6 memberOf ./ subOrganizationOf 11113 39 2225 57x

Q7A undergraduateDegreeFrom ./ Query 6−1 769 < 1 2221 2221x

Q7B
P7B = subOrganizationOf−1 ./ memberOf−1

undergraduateDegreeFrom ./ P7B 15832 < 1 2221 2221x

Q8A hasAdvisor ./ Query4−1 836 2 5319 2659x

Q8B
P8B = teacherOf ./ takesCourse−1

hasAdvisor ./ P8B 2703 2 5319 2659x

Q9
P9 = worksFor ./ subOrganizationOf−1

headOf−1 ./ P9 8807 2 1378 689x

Q10
P10 = worksFor ./ subOrganizationOf
headOf−1 ./ P10 822 < 1 1392 1392x

Avg 22296 104 4124 1327x

Workload-based indexes. Experiments were also conducted on workload-
based indexes built at runtime, where the necessary k = 1 paths are joined to
form the paths of length 2 in the queries, or joined a third time to form the paths
of length 3. Table 4 shows the cost of building and using the workload-based
indexes. The alternatives A/B for Queries 7 and 8 arise from whether or not to
reuse paths already constructed in the index from previous query evaluations.

Summary. The above results demonstrate that both full and workload-based
path indexes have much lower evaluation times for all path queries compared
to Neo4j. Our experiments on the LDBC and Advogato datasets confirm and
further strengthen the results reported here, for both warm and cold runs (see
[15] for details).

5 Concluding remarks

This paper has presented a new and simple path indexing approach to improve
path query performance for graph database systems. Our empirical study has
demonstrated the significant potential of path indexes for graph databases. Keep-
ing in mind that Neo4j is a fully-fledged graph DBMS, our experiments show
that, for every query trialled, path indexing provides a non-trivial, often multiple
orders of magnitude, improvement in query evaluation time. We have demon-
strated the practicality of workload-driven path indexes, where the additional
time to first evaluate and store the results of a path query is relatively large, but
subsequent query times using the index provide significant speedups, amortizing
the index build cost over the lifetime of the query workload. Furthermore, our

Investigations on path indexing for graph databases 11

workload-based indexes are an order of magnitude smaller than the full index.
Our implementation includes supporting tools, e.g. for bulk loading the index
with paths from the graph in an efficient way. As indicated in the Introduction,
the complete codebase is available open-source for further study.

Our empirical results show that workload-based indexing offers the most
promise in terms of index size, index construction time, and query performance.
Further study of the design, engineering, and deployment in practical graph
database systems of these types of indexes is the natural progression of this
work. Additional experiments need to be conducted to identify how to best build
the index based on encountered queries. Possibilities include examining query
logs and building indexes based on frequent queries. Study of index maintenance
under mixed transactional workloads is another interesting direction of future
study, i.e. policies for updating the path indexes in the face of insertions and
deletions of edges in the data graph. Efficient index updates may be achieved by
supporting multiple indexes, supporting fast retrieval for multiple dimensions of
label-paths. Finally, another important direction for future research is compi-
lation strategies for richer query languages such as Cypher targeting our path
indexes as one of the alternative access paths available in the DBMS.

References

1. Advogato network dataset – KONECT, October 2014.
2. Renzo Angles et al. The linked data benchmark council. ACM SIGMOD Record,

43(1):27–31, May 2014.
3. Elisa Bertino et al. Object-oriented databases. In Elisa Bertino et al, editor,

Indexing Techniques for Advanced Database Systems, pages 1–38. Kluwer, 1997.
4. Qun Chen, Andrew Lim, and Kian Win Ong. D(k)-index. In Proc. SIGMOD ’03,

page 134, San Diego, California, USA, June 2003. ACM Press.
5. Douglas Comer. The Ubiquitous B-Tree. ACM Computing Surveys, 11(2):121–137,

June 1979.
6. Brian Cooper, Neal Sample, Michael J. Franklin, Gisli R. Hjaltason, and Moshe

Shadmon. A Fast Index for Semistructured Data. In Proc. VLDB ’01, pages
341–350, Roma, Italy, September 2001. Morgan Kaufmann Publishers Inc.

7. George H. L. Fletcher, Jeroen Peters, and Alexandra Poulovassilis. Efficient regular
path query evaluation using path indexes. In Proc. EDBT’16, pages 636–639, 2016.

8. Roy Goldman and Jennifer Widom. DataGuides: Enabling Query Formulation and
Optimization in Semistructured Databases. In Proc. VLDB ’97, pages 436–445,
Athens, Greece, August 1997. Morgan Kaufmann Publishers Inc.

9. Andrey Gubichev and Manuel Then. Graph pattern matching – do we have to
reinvent the wheel? In Proc. GRADES’14, pages 1–7, 2014.

10. Yuanbo Guo et al. LUBM: A benchmark for OWL knowledge base systems. J.
Web Semantics, 3(2-3):158–182, 2005.

11. R. Kaushik, P. Shenoy, P. Bohannon, and E. Gudes. Exploiting local similarity for
indexing paths in graph-structured data. In Proc. ICDE’02, pages 129–140, San
Jose, California, USA, 2002. IEEE Comput. Soc.

12. Tova Milo and Dan Suciu. Index Structures for Path Expressions. In Proc.
ICDT’99, pages 277–295, Jerusalem, Israel, January 1999. Springer-Verlag.

12 J. M. Sumrall et al.

13. Thomas Neumann and Gerhard Weikum. The RDF-3X engine for scalable man-
agement of RDF data. The VLDB Journal, 19(1):91–113, September 2009.

14. Dennis Shasha, Jason T. L. Wang, and Rosalba Giugno. Algorithmics and ap-
plications of tree and graph searching. In Proc. PODS ’02, page 39, Madison,
Wisconsin, June 2002. ACM Press.

15. Jonathan Sumrall. Path indexing for efficient path query processing in graph
databases. Master’s thesis, Eindhoven University of Technology, 2015.

16. Kam-Fai Wong, Jeffrey Xu Yu, and Nan Tang. Answering XML queries using
path-based indexes: A survey. WWW J, 9(3):277–299, 2006.

17. Xifeng Yan and Jiawei Han. Graph indexing. In Charu C. Aggarwal and Haixun
Wang, editors, Managing and Mining Graph Data, pages 161–180. Springer, 2010.

Appendix: LUBM Cypher Queries

Q1: MATCH (x)-[:memberOf]->(y) RETURN ID(x),ID(y)

Q2: MATCH (x)-[:memberOf]->(y)

WHERE x.URI = "http://www.Department0...Student207"

RETURN ID(x), ID(y)

Q3: MATCH (x)-[:worksFor]->(y) RETURN ID(x),ID(y)

Q4: MATCH (x)-[:takesCourse]->(y)<-[:teacherOf]-(z)

RETURN ID(x),ID(y),ID(z)

Q5: MATCH (x)-[:memberOf]->(y)<-[:subOrganizationOf]-(z)

RETURN ID(x),ID(y),ID(z)

Q6: MATCH (x)-[:memberOf]->(y)-[:subOgranizationOf]->(z)

RETURN ID(x),ID(y),ID(z)

Q7: MATCH (x)-[:undergraduateDegreeFrom]->(y)

<-[:subOrganizationOf]-(z)<-[:memberOf]-(x)

RETURN ID(x),ID(y),ID(z)

Q8: MATCH (x)-[:hasAdvisor]->(y)-[:teacherOf]->(z)<-[:takesCourse]-(x)

RETURN ID(x),ID(y),ID(z)

Q9: MATCH (x)<-[:headOf]-(y)-[:worksFor]->(z)<-[:subOrganisationOf]-(w)

RETURN ID(x),ID(y),ID(z),ID(w)

Q10:MATCH (x)<-[:headOf]-(y)-[:worksFor]->(z)-[:subOrganisationOf]->(w)

RETURN ID(x),ID(y),ID(z),ID(w)

