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Abstract

Training a multilayer perceptron (MLP) with algorithms employing global search strategies
has been an important research direction in the field of neural networks. Despite a number
of significant results, an important matter concerning the bounds of the search region—
typically defined as a box—where a global optimization method has to search for a potential
global minimizer seems to be unresolved. The approach presented in this paper builds
on interval analysis and attempts to define guaranteed bounds in the search space prior
to applying a global search algorithm for training an MLP. These bounds depend on the
machine precision and the term “guaranteed” denotes that the region defined surely encloses
weight sets that are global minimizers of the neural network’s error function. Although
the solution set to the bounding problem for an MLP is in general non-convex, the paper
presents the theoretical results that help deriving a box which is a convex set. This box is
an outer approximation of the algebraic solutions to the interval equations resulting from
the function implemented by the network nodes. An experimental study using well known
benchmarks is presented in accordance with the theoretical results.
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1. Introduction

Multi-layer perceptrons are feed forward neural networks featuring universal approximation
properties used both in regression problems and in complex pattern classification tasks.
Actually, an MLP is a means used to encode empirical knowledge about a physical phe-
nomenon, i.e., a real world process. This encoding is done in terms of realizing a function
F that is close enough to a target function d = f(x) representing the underlying process.
The target function is rarely formulated in analytical terms but it is defined as a set of
input-output values {xl, dl}, 1 6 l 6 p, which is the training set resulting from observations
of the underlying process.

More formally, an MLP is used to implement a model F (x,w) about a physical process
which is a mapping F : Rn × Rm → Rk whose values F (xl,w) have minimum distance
from their corresponding dl, where xl = (x1,l, x2,l, . . . , xn,l)

> and w = (w1, w2, . . . , wm)>.
Given that xl are known, this minimum distance depends on the values of the weights w.
This formulates a problem of parametric model identification on the basis of the training
set composed of the inputs and their corresponding outputs. Determining the values of the
weights is done by an iterative process commonly known as network training, which consists
in minimizing some cost function E : Rk → R of the network output.

The dominant approach when training feedforward neural networks has been to adopt
local search in the weight space using some gradient descent technique in order to minimize
the output error function. Adaptation of the weights is done with the well known error
back-propagation (BP) algorithm. A detailed review of BP and other training algorithms
based on gradient descent can be found in Haykin (1999). However, local search techniques
are, in the general case, unable to detect with certainty a global or a “good” local minimum,
and consequently the corresponding minimizer, as they may stuck in “bad” local minima.
Researchers in the area of neural networks have tried to overcome this defect by proposing
efficient weight initialization techniques (Adam et al., 2014; Nguyen and Widrow, 1990).
Moreover, a number of effective search strategies have been proposed (Magoulas et al., 1997,
1999) which concern definition or adaptation of relevant parameters of the search procedure
such as the step-size, the momentum term etc.

The counter approach to local search is to use global search of the free parameter space.
The techniques based on global optimization can be either exact or heuristic (Horst and
Pardalos, 1995). Exact global optimization methods can be roughly defined as deterministic
or stochastic (Pàl, 2010). Deterministic global search techniques perform exhaustive search
of the weight space and they guarantee to locate a global minimizer (Tang and Koehler,
1994). However, often the time needed for this task is unacceptable, especially for real life
applications, and usually it is achieved with excessive use of computational resources. This
is mainly due to the size of the parameter space which grows with the number of free pa-
rameters (weights) of the neural networks. An alternative approach to deterministic search
has been the use of stochastic global search methods which are based on random sampling
of the search space adopting random or adaptive random search strategies. Such meth-
ods include Monte Carlo techniques (Brooks, 1958; Caflisch, 1998) and multistart methods
(Boender et al., 1982). On the other hand, heuristic methods include simulated annealing
(Engel, 1988; Kirkpatrick et al., 1983) and techniques based on evolutionary computation
such as the genetic algorithm (GA) (Castillo et al., 2000; Montana and Davis, 1989), Par-
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ticle Swarm Optimization (PSO) (Gudise and Venayagamoorthy, 2003; van den Bergh and
Engelbrecht, 2000) and differential evolution algorithms (Ilonen et al., 2003).

Although these methods possess several desirable characteristics and have proven to be
effective in several applications, they cannot guarantee—in the general case—that they are
able to detect a global minimizer in the first run. Moreover, their performance, in terms
of the overall search time, depends on the scale of the problem. To a large extent, this is
due to inappropriate initial conditions because the search space is only heuristically known
(Parsopoulos and Vrahatis, 2010). A common technique to reduce the uncertainty about
the search space and enhance the efficiency of these methods is to define the region of the
search space to be “as large as possible”. A survey of global optimization techniques used
for neural network training can be found in Duch and Korczak (1998) as well as in Pla-
gianakos et al. (2001, 2006). Finally, it is worth noting that a number of research work has
focused on combining local and global search in order to aleviate the disadvantages of local
seach methods or in order to decrease the overall search time in the case of global search
of the weight space (Bagirov et al., 2009; Caprani et al., 1993; Ng et al., 2010; Shang and
Wah, 1996; Voglis and Lagaris, 2009; Xu, 2002).

A common characteristic to all global search procedures used for training MLPs is that
the bounds of the search region are intuitively defined. This approach, often, proves to be
inadequate to support training MLPs with global optimization methods. Hence, defining
effective bounds of the search space is a cornerstone for using global search strategies in
real life applications of feedforward neural networks. The approach presented in this paper
is based on concepts of interval analysis and attempts to define guaranteed bounds of the
search space prior to applying a global search procedure for neural network training. The
term “guaranteed” denotes that the bounds of the region defined surely enclose weights that
are global minimizers of the error function. Once the box is defined, it is up to the global
optimization method to explore the region identified by the proposed approach in order to
find the set of weights that minimize the error function of the multilayer perceptron.

The rest of the paper is organized as follows. Section 2 is devoted to a detailed descrip-
tion of the problem background and the motivation for the proposed approach. Section 3
presents the solution proposed to tackle this problem. In Section 4 we derive the theoretical
results for bounding the feasible solution set of the problem and discuss these results. In
Section 5 we validate the proposed method on real world problems and discuss the experi-
mental results. Finally, Section 6 summarizes the paper with some concluding remarks.

2. Problem Formulation in a Global Optimization Context

Hereafter, we consider feed forward neural networks having 3 layers with n, h, and o nodes
in the input, the hidden and the output layers, respectively. It has been proved that stan-
dard feedforward networks with only a single hidden layer can approximate any continuous
function uniformly on any compact set and any measurable function to any desired degree of
accuracy (Cybenko, 1989; Hornik et al., 1989; Kreinovich and Sirisaengtaksin, 1993; White,
1990). Hence, it has general importance to study 3-layer neural networks. On the other
hand, as it will be shown, the assumption regarding the number of layers is not restrictive,
given that the weights of each layer are treated with respect to the output range of the
previous layer and the input domain of the next one. Hence, it is straightforward to extend
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this analysis to networks with multiple hidden layers. Moreover, despite the variety of acti-
vation functions found in the literature (Duch and Jankowski, 1999), in this paper we have
retained the most common assumptions adopted for MLPs. This means that the nodes in
the hidden layer are supposed to have a sigmoid activation function which may be one of
the following:

logistic sigmoid :σ1(net) =
1

1 + e−αnet
, (1a)

hyperbolic tangent :σ2(net) = tanh(β net) =
eβ net − e−β net

eβ net + e−β net
, or (1b)

σ2(net) =
2

1 + e−2β net
− 1,

where net denotes the input to a node and α, β are the slope parameters of the sigmoids.
Hereafter, let us assume that α = β = 1 and note that this assumption has no effect on the
theoretical analysis presented in this paper. Nevertheless, for application purposes using
different values for the slope parameters has an affect on the results obtained, as it will be
explained later in Subsection 3.2. In addition to the previous assumptions, let us suppose
that the nodes in the output layer may have either one of the above sigmoid activation
functions or the linear one. Finally, we assume that all nodes in the hidden layer use the
same activation function and the same stands for the output layer nodes.

With respect to the above assumptions the function computed by a feed forward neural
network can be defined as F : Rn × R(n+1)h × R(h+1)o → Ro, where F (X,W1,W2) denotes
the actual network output, X ∈ Rn refers to the input patterns, W1 ∈ R(n+1)h is the matrix
of the input-to-hidden layer connection weights and biases, and W2 ∈ R(h+1)o denotes the
matrix of the hidden-to-output layer connection weights and biases. Moreover, let us denote
T ∈ Ro the target output of the function approximated by the network. Obviously, if any of
the parameters, X,W1,W2, and T is interval valued then the network is an interval neural
network (Hu et al., 1998).

The process of neural networks training aims to solve the following optimization problem:

arg minW1∈R(n+1)h,W2∈R(h+1)o‖F (X,W1,W2)− T‖q (2)

for some appropriate norm ‖ · ‖q, considering that the ideal minimum of ‖ F (X,W1,W2)−
T ‖q is 0, which means that F (X,W1,W2) = T.

As said above, training the network is defining the values of the elements of the matrices
W1 and W2 that solve the previous unconstrained minimization problem. The domain of
these weights is not known in advance and so, in practice, the global optimization procedures
used to solve this problem search for the global minimum in a box Dw ⊂ R(n+1)h×R(h+1)o.
This means that the initial unconstrained global optimization problem is arbitrarily con-
verted to an ad-hoc bound constrained optimization one. The bounds of this box and
therefore its size are defined intuitively. Such a choice may lead to unsuccessful training or
give a computationally expensive solution that is impractical to use in real life problems.
The argument that the box Dw is intuitively defined is supported by a number of examples
found in the literature.

For instance, Saraev (2012) gives an example of interval global optimization for training
a network that approximates the function z = 0.5 sin

(
πx2

)
sin (2πy) and defines the initial
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box to be [w]0 = [−10, 10]s, where s is the number of unknown weights. The results re-
ported in the paper indicate that the global optimization technique succeeded in training
the network using this initial box. However, the author does not provide any justification
on how the initial search box was defined.

Another example is given by the approach formulated by Jamett and Acuña (2006)
to solve the problem of weight initialization for an MLP based on interval analysis. These
researchers argue that their approach “solves the network weight initialization problem per-
forming an exhaustive global search for minimums in the weight space by means of interval
arithmetic. The global minimum is obtained once the search has been limited to the es-
timated region of convergence.” For the experimental evaluation proposed in Jamett and
Acuña (2006) the interval weights are initially defined as wide as necessary, with widths up
to 106.

In Hu et al. (1998) the authors consider a 3-layer interval neural network and they pro-
pose to adjust the interval weights with the use of the Newton interval method solving a
system of nonlinear equations of the h(n+ o) unknown weights. This is possible under the
hypothesis that the network is, what they call, a Type 1 interval neural network, i.e., a
network for which the number lo of nonlinear equations, formed using all available patterns
xk, 1 6 k 6 l, satisfy the inequality lo 6 h(n + o). When this inequality is not true they
propose to use an interval branch-and-bound algorithm to solve the minimization problem
related to the network training. However, the authors do not provide any kind of concrete
experiment where interval global optimization is actually used for training the network.

In addition to the above, one should mention the problems related to the initializa-
tion and the bounds of the search region reported with heuristic and population based
approaches when solving global optimization problems and more specifically when training
MLPs. For instance, Helwig and Wanka (2008) showed that when PSO is used to solve prob-
lems with boundary constraints in high-dimensional search spaces, many particles leave the
search space at the beginning of the optimization process. This commonly known problem
of “particle explosion” (Clerc and Kennedy, 2002) for PSO in high-dimensional bounded
spaces highlights the importance of defining bound handling procedures.

Moreover, when dealing with neural network training, one should take into account the
remarks reported by Gudise and Venayagamoorthy (2003) regarding the selection of pa-
rameters for PSO. The authors report that during their experiments in order to determine
the optimal PSO parameters they found that “A small search space range of [−1, 1] did not
provide enough freedom for the particles to explore the space and hence they failed to find
the best position”. So, they gradually increased the size of the search space from [−1, 1] to
[−200, 200] and they observed that a search space range of [−100, 100] was the best range
for having optimal performance of the PSO algorithm. Finally, when no limits were set on
the search space range, the convergence rate of PSO decreased and there appeared to be
even cases of no convergence.

According to the above examples, it is obvious that the outcome of training an MLP
with global optimization is unpredictable as there is no information concerning the region
where a global minimum of the error function is located. To the best of our knowledge
this statement is true no matter the type of the global optimization procedure used. So,
researchers and practitioners in the field proceed using random (intuitively defined) bounds
which result in trial and error training strategies. This paper argues that it is possible to
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derive the bounds of the search region for this type of global optimization task. It will be
shown that the box defined by these bounds is guaranteed to enclose some global minimizers
of the network output error function. This permits to obtain a value for the global minimum
which is at least equal to the “machine ideal global minimum”, that is the best value for
the global minimum that can be computed within the limits set by the machine precision.
The results obtained in this paper apply to any type of global optimization procedure used
to train an MLP.

3. Bounding the Weight Space Using Interval Analysis

The idea underlying our analysis is to consider the bounds of the range of each node in the
output, the hidden and the input layer respectively. These bounds are implicit constraints
imposed by the type of the activation function for the nodes in the output and the hidden
layers. Moreover, explicit constraints are imposed by the values of the input patterns for the
input layer. Performing local inversion of the activation function at the level of each node
and using the constraints on its inputs imposed by the output of the previous layer results
in formulating suitable linear interval equations. The subsequent analysis of the solution
sets of these equations permits to derive the bounds of a box enclosing the region where
some global minimizers of the network output error function are located. The approach
proposed leads to defining a suitable approximation Dw of the feasible set S for the error
function of the network.

3.1 The Interval Analysis Formalism

Interval arithmetic has been defined as a means of setting lower and upper bounds on
the effect produced on a computed quantity by different types of mathematical errors.
The efficiency of methods built on interval arithmetic is related to these bounds, which
need to be as narrow as possible. Thus, the major focus of interval analysis is to develop
interval algorithms producing sharp solutions when computing numerical problems. A real
interval, or interval number, is a closed interval [a, b] ⊂ R of all real numbers between (and
including) the endpoints a and b, with a 6 b. The terms interval and interval number are
used interchangeably. Whenever a = b the interval is said to be degenerate, thin or even
point interval. An interval [a, b] where a = −b is called a symmetric interval. Regarding
notation, an interval x may be also denoted [x], or [x, x], or even [xL, xU ] where subscripts

L and U stand for lower and upper bounds respectively. Notation for interval variables
may be uppercase or lowercase (Alefeld and Mayer, 2000). Throughout this paper we will
use the notation [x] whenever we refer to an interval number, while notation [x, x] will be
used when explicit reference to the interval bounds is required. Moreover, an n-dimensional
interval vector, that is a vector having n real interval components ([v1] , [v2] , . . . , [vn])>,
will be denoted [v] or even [v, v]. Finally, uppercase letters will be used for matrices with
interval elements as for an n×m interval matrix [A] = ([aij ]) i=1,2,...,n

j=1,2,...,m
.
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Generally, if [x] = [x, x] is a real interval then the following notation is used:

rad([x]) = (x− x) /2, is the radius of the interval [x],

mid([x]) = (x+ x)/2, is the midpoint (mean value) of the interval [x],

|[x]| = max{|x|, |x|}, is the absolute value (magnitude) of the interval [x],

d([x]) = x− x, is the diameter (width) of the interval [x],

IR, denotes the set of closed real intervals,

IRn, denotes the set of n−dimensional vectors of closed real intervals.

Let � denote one of the elementary arithmetic operators {+,−,×,÷} for the simple
arithmetic of real numbers x, y. If [x] = [x, x] and [y] = [y, y] denote real intervals then the
four elementary arithmetic operations are defined by the rule

[x] � [y] = {x � y |x ∈ [x], y ∈ [y]}.

This definition guarantees that x�y ∈ [x] � [y] for any arithmetic operator and any values x
and y. In practical calculations each interval arithmetic operation is reduced to operations
between real machine numbers. For the intervals [x] and [y] it can be shown that the above
definition produces the following intervals for each arithmetic operation:

[x] + [y] = [x+ y, x+ y],

[x]− [y] = [x− y, x− y],

[x]× [y] =
{

min
(
xy, xy, xy, xy

)
,max

(
xy, xy, xy, xy

)}
,

[x]÷ [y] = [x]× 1

[y]
, with

1

[y]
=

[
1

y
,

1

y

]
, provided that 0 /∈

[
y, y
]
.

The usual algebraic laws of arithmetic operations applied to real numbers need to be re-
considered regarding finite arithmetic on intervals. For instance, a non-degenerate (thick)
interval has no inverse with respect to addition and multiplication. So, if [x], [y], and [z]
are non-degenerate intervals then,

[x] + [y] = [z] ; [x] = [z]− [y],

[x]× [y] = [z] ; [x] = [z]× 1

[y]
.

The following sub-distributive law holds for non-degenerate intervals [x], [y], and [z],

[x]× ([y] + [z]) ⊆ [x]× [y] + [x]× [z].

Note that the usual distributive law holds in some particular cases; if [x] is a point interval,
if both [y] and [z] are point intervals, or if [y] and [z] lie on the same side of 0. Hereafter,
the multiplication operator sign × will be omitted as in usual algebraic expressions with
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real numbers. Interval arithmetic operations are said to be inclusion isotonic or inclusion
monotonic or even inclusion monotone given that the following relations hold,

if [a], [b], [c], [d] ∈ IR and [a] ⊆ [b], [c] ⊆ [d]

then [a] � [c] ⊆ [b] � [d], for � ∈ {+,−,×,÷}.

The property of inclusion isotony for interval arithmetic operations is considered to be
the fundamental principle of interval analysis. More details on interval arithmetic and its
extensions can be found in Alefeld and Mayer (2000); Hansen and Walster (2004), and
Neumaier (1990).

Standard interval functions ϕ are extensions of the corresponding real functions F =
{sin(),cos(),tan(),arctan(),exp(),ln(),abs(),sqr(),sqrt()} and they are defined via their range,
i.e., ϕ([x]) = {ϕ(x)|x ∈ [x]}, for ϕ ∈ F , (Alefeld and Mayer, 2000). Given that, these real
functions are continuous and piecewise monotone on any compact interval in their domain
of definition, the values ϕ([x]) can be computed directly from the values at the bounds of
[x]. For non-monotonic functions such as the trigonometric ones the computation is more
complicated. For instance, sin([0, π]) = [0, 1] which differs from the interval [sin(0), sin(π)].
In these cases, the computation is carried out using an algorithm (Jaulin et al., 2001).
Finally, it must be noted that the standard interval functions are inclusion monotonic.

Let f : D ⊂ R→ R be a real function and [x] ⊆ D an interval in its domain of definition.
The range of values of f over [x] may be denoted by R(f ; [x]) (Alefeld and Mayer, 2000)
or simply f([x]). Computing the range f([x]) of a real function by interval analysis tools
practically comes to enclosing the range f([x]) by an interval which is as narrow as possible.
This is an important task in interval analysis which can be used for various reasons, such
as localizing and enclosing global minimizers and global minima of f on [x], verifying that
f([x]) ⊆ [y] for some given interval [y], verifying the nonexistence of a zero of f in [x] etc.

Enclosing the range of f over an interval [x] is achieved by defining a suitable interval
function [f ] : IR→ IR such that ∀[x] ∈ IR, f([x]) ⊂ [f ]([x]). This interval function is called
an inclusion function of f . What is important when considering an inclusion function [f ] is
that it permits to compute a box [f ]([x]) which is guaranteed to contain f([x]), whatever
the shape of f([x]) (Jaulin et al., 2001). Note that the so-called natural inclusion function
is defined if f(x), x ∈ D is computed as a finite composition of elementary arithmetic
operators {+,−,×,÷} and standard functions ϕ ∈ F as above. The natural inclusion
function of f is obtained by replacing the real variable x by an interval variable [x] ⊆ D,
each operator or function by its interval counterpart and evaluating the resulting interval
expression using the rules in the previous paragraphs. The natural inclusion function has
important properties such as being inclusion monotonic and if f involves only continuous
operators and continuous standard functions it is convergent (see Jaulin et al., 2001).

3.2 Weights of Hidden-to-output Layer Connections

Let us compute the bounds of the intervals of the weights for any output node. As we will
see the procedure described herein does not depend on the number of inputs to the node
but merely on the type of its activation function.
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The output zk of the k-th node in the output layer is given by

zk = σ

 h∑
j=1

wkjyj + wkb

 , (3)

where yj is the output of the j-th node in the hidden layer. During training the output zk
may be any value in the range of the sigmoid activation function σ used by the output layer
nodes. So, zk ∈ [0, 1] for the logistic sigmoid and zk ∈ [−1, 1] for the hyperbolic tangent.

The activation functions defined in (1) are bijective and so they are invertible. Using
the inverse σ−1 of the activation function σ on both sides of (3) gives:

σ−1(zk) = σ−1

σ
 h∑
j=1

wkjyj + wkb


and finally the equation,

h∑
j=1

wkjyj + wkb = σ−1(zk). (4)

The inverse of the activation functions are

for the logistic sigmoid : σ−11 = −ln
1− x
x

, and

for the hyperbolic tangent : σ−12 = atanh(x) =
1

2
ln

(
1 + x

1− x

)
.

The output of each activation function is an interval. So, the values of the inverse of the
activation functions are,

for the logistic sigmoid : σ−11 ([0, 1]) = [−∞,+∞],

for the hyperbolic tangent : σ−12 ([−1, 1]) = [−∞,+∞].

For nodes with sigmoid activation functions when the output value is one of the exact bounds
of the intervals [0, 1] or [−1, 1], then the corresponding node is saturated. This implies that
connection weights take very large values. However, in practice this is rarely achieved and
as Rumelhart et al. (1986) note: “The system cannot actually reach its extreme values of
1 or 0 without infinitely large weights. Therefore, in a practical learning situation in which
the desired outputs are binary {0, 1}, the system can never actually achieve these values.
Therefore, we typically use the values of 0.1 and 0.9 as the targets, even though we will
talk as if values of {0, 1} are sought.” This consideration is adopted for the values of the
output layer nodes in various practical pattern recognition applications of MLPs as well as
in research papers such as Sprinkhuizen-Kuyper and Boers (1999); Yam and Chow (2001).

This means that a node with a sigmoid activation function becomes saturated with
input values much greater than −∞ and drastically smaller than +∞, and its output is still
considered to be 0 (or −1), and 1, respectively. Hence, as far as saturation of the node is
concerned, for practical use instead of the interval [−∞,+∞] one may consider a substitute
[−b, b], where b > 0. In consequence, the node output is not any of the “ideal” intervals
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[0, 1] or [−1, 1] but merely some approximation such as [0 + ε, 1− ε] or [−1 + ε, 1− ε] where
ε depends on the value of b and, obviously, it should satisfy the precision required for the
problem.

Henceforth, the interval [−b, b], for some b > 0, will be used instead of the [−∞,+∞]
for the input values of the sigmoid activation function of any node in the output, or in the
hidden, layer. With this assumption the intervals resulting for the inverse of the activation
functions of the output layer nodes are:

for the logistic sigmoid : σ−11 ([0 + ε, 1− ε]) = [−b1, b1], (5a)

for the hyperbolic tangent : σ−12 ([−1 + ε, 1− ε]) = [−b2, b2]. (5b)

So, b1 and b2 are such that σ1([−b1, b1]) = [0 + ε, 1 − ε] , [0, 1]ε and σ2([−b2, b2]) =
[−1 + ε, 1− ε] , [−1, 1]ε.

With these results (4) implies that

h∑
j=1

wkjyj + wkb ∈ [−b, b], (6)

where b = b1 or b = b2 depending on the type of the activation function used. Recall that
in Section 2 we assumed that the slope parameters α and β of the sigmoids are considered
to be equal to 1. If this assumption does not hold then it is easy to see that the bounds b1
and b2, defined here, need to be divided by α and β, respectively.

Taking into account the type of the activation function of the hidden layer nodes we
have that yj ∈ [0, 1] for the logistic sigmoid and yj ∈ [−1, 1] for the hyperbolic tangent.
However, we note that the above assumptions, regarding the approximations of the interval
[−∞,+∞], also hold for the sigmoid activation functions of the hidden layer nodes. So,
in practical situations, we consider that yj ∈ [0, 1]ε and yj ∈ [−1, 1]ε, where [0, 1]ε ⊂ [0, 1]
and [−1, 1]ε ⊂ [−1, 1]. Then, because of the inclusion monotonicity property of the interval
arithmetic operators and the activation functions, in the analysis presented in this paper,
for the interval equations we use the intervals [0, 1] and [−1, 1] instead of [0, 1]ε and [−1, 1]ε,
respectively. This means that any solution set or enclosure of a solution set determined,
herein, for an interval equation using the wider intervals [0, 1] and [−1, 1] also constitute
enclosures of the solution set of the same equation using the narrower ones, [0, 1]ε and
[−1, 1]ε.

Using all these results we may formulate the following two linear interval inequalities
for the unknown weights of the hidden-to-output layer connections:

h∑
j=1

[wkj ][0, 1] + [wkb] 6 [−b, b],

h∑
j=1

[wkj ][−1, 1] + [wkb] 6 [−b, b].

Hence, the interval [−b, b] determines an enclosure of the intervals [wkj ], 1 6 j 6 h. How-
ever, as the aim of this paper is to bound the box containing the values of wkj which solve
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Equation (4), instead of solving the above inequalities we may, equivalently, consider the
following equations and define approximations of the corresponding solution sets:

h∑
j=1

[wkj ][0, 1] + [wkb] = [−b, b], (7a)

h∑
j=1

[wkj ][−1, 1] + [wkb] = [−b, b]. (7b)

Before, examining solvability issues and the relation of the solutions to these equations with
the problem at hand, let us discuss, hereafter, some issues concerning the parameter b and
its relation to ε.

3.2.1 On the definition of the parameters b and ε

The previous analysis introduced the interval [−b, b] for the input values of a sigmoid
activation function. This interval may also be defined for other types of activation functions
and so its bounds depend on the type of the activation function. In the following sections we
will show that these bounds, actually, define the volume of the area in the network weight
space where global minimizers of the network’s error function are located. The analysis
presented in this paper does not rely on some specific values of the bounds of the interval
[−b, b]. Instead, the results obtained depend on the activation functions of the network
nodes and the calculation precision set for the problem. So, they have b’s as parameters.

As noted above, for sigmoid activation functions, the interval [−b, b] implicitly defines
the intervals [0, 1]ε or [−1, 1]ε which approximate the intervals [0, 1] or [−1, 1], respectively.
Conversely, by setting some specific value to ε and using the inverse of the activation
functions, one is able to define a value for b, and in consequence the width of the interval
[−b, b]. As this interval determines enclosures for the intervals [wkj ], 1 6 j 6 h, it is
obvious that its width determines the magnitudes of the corresponding dimensions of the
minimizers’ search area. Here, this search area is considered to be a hyper-box in the
weight space, determined by the intervals [−b, b], for all network nodes. On the other
hand, selecting some specific value for ε determines the numerical precision used by the
network output for solving the problem at hand. Therefore, an interval [−b, b] defines
some ε inducing some numerical precision for the problem, and vice-versa. The smaller the
area defined by small values of b the bigger the values of ε and so the lower the precision.
Conversely, the highest the precision for computing the network outputs the smaller the
values of ε and so the larger the search area defined by larger b’s.

This problem can be formulated in the following terms: ‘How large can ε be in order to
minimize b and in consequence the search area of global minimizers without compromising
the numerical precision for solving the problem’. Hence, some tradeoff between b (volume
of the search area) and ε (numerical precision) seems to be required here. The impact
of selecting a value for b, or equivalently for ε, on the numerical precision of the problem
mainly concerns the accuracy required for the network output in order to match the problem
requirements. In a classification context and for practical applications, this issue is probably
insignificant given that, typically, for such problems an approximate response of the order of
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ε = 0.1 is sufficient for the classification task. On the other hand, for function approximation
problems where accuracy of the network output is really a prerequisite, the output nodes
use linear activation functions as for these kind of problems networks perform regression
tasks (Hornik et al., 1989; White, 1990). As we will see, hereafter, such approximation
assumptions do not apply to linear activation functions. Moreover, for hidden nodes using
sigmoid activation functions, as we will see, approximating the intervals [0, 1] and [−1, 1] by
[0, 1]ε and [−1, 1]ε, respectively, where ε is of the order of the machine precision, is sufficient
for carrying out the neural computation. Actually, such an approximation is within the
numerical precision adopted for neural computations in various contexts.

The problem of numerical precision pertaining neural computations has been addressed
by several researchers. For instance, some of the earlier research include the work of Hoehfeld
and Fahlman (1992) who studied the possibility of training a network using the cascade-
correlation algorithm in a limited numerical precision learning context. Moreover, Holi and
Hwang (1993) addressed the question of the precision required in order to implement neural
network algorithms on low precision hardware. The authors performed a theoretical analy-
sis of the error produced by finite precision computation and investigated the precision that
is necessary in order to perform successful neural computations both for training a mul-
tilayer perceptron with back-propagation as well as for forward activation and retrieving.
A more recent work (Draghici, 2002) deals with the capabilities of neural networks using
weights with limited precision and the work of Vassiliadis et al. (2000) states that a repre-
sentation error of 2−10 provides a limit for a safe approximation error in neural functions
computations. Such an error is within the limits of machine precision and double precision
arithmetic. The most recent research focuses on the numerical precision required for deep
neural networks and their hardware implementation (Courbariaux et al., 2014; Gupta et al.,
2015; Judd et al., 2016).

The precision level used for a neural network and the problem at hand is a matter that
needs to be addressed prior to any implementation, either software or hardware. Follow-
ing the above literature, in this paper, we may state that double precision floating point
arithmetic proposed by the IEEE (754–2008) standard (Higham, 2002; IEEE, 2008) pro-
vides a very good precision level as required by modern neural computation applications
and hardware implementations. Hence, for the experimental evaluation of the proposed
approach the value of the machine epsilon, commonly known as double precision epsilon
(ε = 2.2204 × 10−16) is retained in this paper. This value of ε is the precision (eps) used
for the computing environment MATLAB (MATLAB-Documentation, 2014) as well as for
the majority of the programming languages according to IEEE (754–2008) standard. As a
consequence we have the following values for b:

for the logistic sigmoid : b1 = 36.0437,

for the hyperbolic tangent : b2 = 18.3684.

Note that, under the specific assumptions of Rumelhart et al. (1986) the intervals resulting
for the inverse of the activation functions of the output layer nodes are,

for the logistic sigmoid : σ−11 ([0.1, 0.9]) = [−2.1972, 2.1972],

for the hyperbolic tangent : σ−12 ([−0.9, 0.9]) = [−1.4722, 1.4722].
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The analysis presented in this subsection relies on the assumption that the activation func-
tion of the output nodes is the logistic sigmoid or the hyperbolic tangent. However, when
an MLP is used for function approximation or regression then usually linear activations are
used in the output nodes. In order to establish a unique formalism for our analysis we need
to define an interval of the type [−b, b] for a pure linear activation function of the network’s
output nodes.

The sample of the input data, by default, defines an interval [zk, zk] for the range of
values of the k-th output node. A pure linear activation function flin is invertible in its
domain. So, using inversion we obtain an interval of the type [ak, bk] = f−1lin ([zk, zk]) for the
input values of the linear activation function. Seemingly, such an interval is not symmetric
and so, in order to keep pace with the previous assumptions, we extend it to obtain a
symmetric interval of the type [−b, b]. This is achieved by setting b3,k = max{|ak|, |bk|}
and considering the interval [−b3,k, b3,k] instead of [ak, bk] which actually permits to adopt
the above assumptions and the ensuing conclusions. It is obvious that, during training
it depends on the optimization procedure to narrow the search space back to the initial
interval [ak, bk].

Note that, if sampling of the input space is performed with a distribution which is close
to the underlying distribution of the input space then the sample data are representative
of the real data and hence the output of any node is reliably set by the values derived from
the patterns. If sampling of the input space is not correct then the input data will provide
erroneous dimensions of the search area. However, this unfortunate outcome will happen
whatever the network or the training algorithm used.

The above considerations are necessary in order to tackle the hidden-to-output con-
nection weights using Equations (7a) and (7b) as the unique formalism for the problem.
Hereafter, whatever the activation function of the output nodes its range of values will be
considered a symmetric interval of the form [−b, b].

3.2.2 On the Solution of the Interval Equations

In interval analysis, the formal notation [A] [x] = [b] (or [A] x = [b]) of an interval linear
system, where [A] ∈ IRm×n is an m-by-n matrix of real intervals and [b] ∈ IRm is an
m-dimensional vector of real intervals, denotes different interval problems (Shary, 1995).
Respectively, the solution or solution set to this interval linear system has been defined in
a number of possible ways (Shary, 1997). The paper uses the so-called algebraic solution,
which is an interval vector [xa ] such that, when substituting into [A] [x] = [b] and executing
all interval arithmetic operations, results in the valid equality [A] [xa ] = [b]. Later, in Section
4, we will show the implication of an algebraic solution in deriving an outer approximation
of the solutions of Equations (7a) and (7b). For a theoretical justification of this choice see
Shary (1996, 2002) and references therein. An algebraic solution for the bounding of the
weight space is an interval vector of the form [wa

k ] = ([wa
k1], [w

a
k2], . . . , [w

a
kh], [wa

kb])
>, such

that each of the relations,

[wa
k1][0, 1] + [wa

k2][0, 1] + · · ·+ [wa
kh][0, 1] + [wa

kb][1, 1] = [−b, b],
[wa
k1][−1, 1] + [wa

k2][−1, 1] + · · ·+ [wa
kh][−1, 1] + [wa

kb][1, 1] = [−b, b],

corresponding to (7a) and (7b), respectively, is a valid interval equality.
A suitable approximation of the feasible solution set to the training problem (2) can be
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derived considering the bounds of the interval components of the algebraic solution to each
of the Equations (7a) and (7b). In the following section we are defining the bounds of an
algebraic solution to each of the aforementioned equations. This is accomplished by taking
into account the specific type of these equations and considering the algebraic solutions
(Shary, 1997) to these equations. Before proceeding to defining these algebraic solutions let
us consider two issues; one concerning solvability of Equations (7a) and (7b) and the other
dealing with effectively solving these equations.

Solvability of the above Equations (7a) and (7b) can be studied either considering each
equation as an 1 × (h + 1) system and using the results in Rohn (2003), or applying the
conclusions of Ratschek and Sauer (1982). Using the latter in our case is more appropriate
given that Ratschek and Sauer (1982) have considered the concept of the algebraic solution
to an interval linear equation (see also Shary, 1996). Hence, the conclusions concerning the
solvabilty of a single interval equation of the general form A1x1+A2x2+ · · ·+Anxn = B, as
denoted and studied in Ratschek and Sauer (1982), apply also in our case. The hypotheses
of Ratschek and Sauer (1982, Theorem 1) are satisfied and so the above Equations (7a) and
(7b) are solvable having eventually multiple solutions.

Solving a linear interval equation or defining an optimal enclosure of the solution set
is a matter addressed by several researchers; see for example Beaumont (1998); Hansen
(1969); Hansen and Sengupta (1981); Jansson (1997); Kreinovich et al. (1993); Neumaier
(1986); Rohn (1989, 1995); Shary (1995) and extensive references therein. However, there
is quite a little work done on solving an underdetermined linear interval equation. To the
best of our knowledge, for this matter Neumaier (1986) refers to the work of Rump (1983)
while the work of Popova (2006) proposes an algorithm which improves the approach used
in Hölbig and Krämer (2003) and Krämer et al. (2006). In addition, INTLAB (Rump,
1999) provides an algorithm for solving underdetermined linear systems of interval equations
which, however, does not seem to converge in all cases.

Finally, note that Ratschek and Sauer (1982) examined in detail the convexity of the
solution set of the equation A1x1 + A2x2 + · · · + Anxn = B if this equation is solvable.
According to Ratschek and Sauer (1982, Theorem 6) the solution set to each of the Equations
(7a) and (7b) is not convex. However, the approach proposed in the next section results in
defining an outer approximation which is a convex set.

3.3 Weights of Input-to-hidden Layer Connections

The output of the j-th node in the hidden layer used in the previous subsection is defined
by

yj = σ

(
n∑
i=1

wjixi + wjb

)
, (8)

where xi is the i-th input, i.e., the output of the i-th node in the input layer. Here, let us
assume that scaling is applied (Bishop, 1995) to the neural network inputs xi in order to
facilitate training (LeCun, 1993), and so xi ∈ [0, 1] or xi ∈ [−1, 1]. Moreover, the output yj
may be any value in the range of the sigmoid activation function σ used by the hidden layer
nodes. So, yj ∈ [0, 1] for the logistic sigmoid and yj ∈ [−1, 1] for the hyperbolic tangent.

All these hypotheses suggest that defining the intervals of the weights of the input-to-
hidden layer connections is a problem formulated exactly as the problem of defining the

14



Bounding Global Optimization Training via Interval Analysis

weights of the hidden-to-output layer connections of the previous subsection. In conse-
quence, we formulate the following equations:

n∑
i=1

[wji] [0, 1] + [wjb] = [−b, b] , (9a)

h∑
i=1

[wji] [−1, 1] + [wjb] = [−b, b] . (9b)

The same arguments as those in the previous subsection apply concerning the solvabil-
ity of Equations (9a) and (9b). In addition, solving these equations and defining outer
approximations of the corresponding solution sets is covered by the same analysis as in the
previous subsection.

4. An Algebraic Solution to Bounding the Weight Space

For the neural network training problem defined in (2), the solution set of each of the result-
ing Equations (7a), (7b) and (9a), (9b) is extremely difficult to be described analytically.
Hence, in this section, we derive an outer approximation (an enclosure) of an algebraic
solution, that is more practical to define and use. This enclosure is a convex polytope,
depending on the MLP architecture, and more specifically on the type of the activation
function of the network nodes, and is derived under the assumption that the neural net-
work inputs xi are scaled in the interval [0, 1] or [−1, 1]. First, the theoretical results are
derived and then the conditions for their applicability are discussed.

4.1 Theoretical Results

As seen in Subsection 3.2, above, an algebraic solution exists for each of the Equations (7a),
(7b) and (9a), (9b). Here, given an algebraic solution [wa ] we proceed with computing limit
values for the bounds of the interval components of [wa ]. In the sequel, given these limit
values we derive outer approximations of the solutions of Equations (7a), (7b) and (9a),
(9b).

In order to simplify their representation, we define the outer approximations of the
solutions as convex sets or convex polytopes. However, what really matters with these outer
approximations for each of the equations is that, they enclose the solutions containing the
connection weights which are the global minimizers of the problem defined by (2).

Theorem 1 Consider the equation,

[w1] [0, 1] + [w2] [0, 1] + · · ·+ [wn] [0, 1] + [wb] [1, 1] = [−b, b] . (10)

Then, whenever an algebraic solution is regarded for this equation, the following statements
are valid:

(i) For any variable [wi] = [wi, wi] , 1 6 i 6 n the maximum possible value of wi is 2b or
the minimum possible value of wi is −2b.

(ii) For the variable [wb] = [wb, wb] the maximum possible value of wb is b and the mini-
mum possible value of wb is −b.
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Proof First, let us note that for the product [x, y] [0, 1] the following equalities are valid
depending on the values of x and y:

[x, y] [0, 1] = [0, y] , if 0 6 x 6 y, (11a)

[x, y] [0, 1] = [x, 0] , if x 6 y 6 0, (11b)

[x, y] [0, 1] = [x, y] , if x 6 0 6 y. (11c)

In addition let [tj ] denote the product [wj ] [0, 1], for 1 6 j 6 n. Then, with respect to
the above Equalities (11) the sum of all terms [tj ] of the left hand side of Equation (10),
that is, [t1] + [t2] + · · · + [tn] may be written as the sum of three intervals of the form
[0, sk] + [−sl, 0] +

[
−sLm, sHm

]
defined as follows:

[t1] + [t2] + · · ·+ [tk] = [0, sk] , 0 6 k 6 n, (12a)

[t1] + [t2] + · · ·+ [tl] = [−sl, 0] , 0 6 l 6 n, (12b)

[t1] + [t2] + · · ·+ [tm] =
[
−sLm, sHm

]
, 0 6 m 6 n, (12c)

with k + l +m = n, sk > 0, sl > 0 and sLm, s
H
m > 0.

Statement (i)
Let i be an index such that for the interval [wi, wi] we have wi > 0. We will show that
wi ≯ 2b. Excluding the term [ti] let us consider that the above integers k, l, and m are
defined for the sum [t1]+[t2]+ · · ·+[ti−1]+[ti+1]+ · · ·+[tn]. This means that, 0 6 k 6 n−1,
0 6 l 6 n− 1, 0 6 m 6 n− 1, and k+ l+m = n− 1. In addition, [ti] =

[
ti, ti

]
with ti = wi

and

ti =

{
0 if 0 6 wi
wi if wi < 0.

Then Equation (10) becomes,

[0, sk] + [−sl, 0] +
[
−sLm, sHm

]
+ [ti, wi] + [wb, wb] = [−b, b] ,

or even, [
−sl − sLm − |ti|+ wb, sk + sHm + wi + wb

]
= [−b, b] .

This interval equation translates to:

sk + sHm + wi + wb = b, (13a)

−sl − sLm − |ti|+ wb = −b. (13b)

Furthermore, let us suppose that wi > b. Given that sk + sHm > 0 then (13a) holds true if
wb < 0 and wb 6 b − (sk + sHm + wi). Setting wi = b + x, where x > 0, then the previous
inequality gives that wb 6 b− (sk + sHm + b + x), or else, wb 6 −(sk + sHm)− x < 0.

On the other hand [wb, wb] is a valid interval if wb 6 wb. It follows that wb < 0. Using
(13b) we have that wb = −b + sl + sLm + |ti|. From this equation we deduce that the mini-
mum possible value for wb is −b attained when sl + sLm + |ti| = 0. In consequence we have
−b 6 wb 6 wb 6 −(sk + sHm)− x. So, −b 6 −(sk + sHm)− x. The last inequality gives that
−b + (sk + sHm) 6 −x, and finally, x 6 b − (sk + sHm). This suggests that x 6 b and the
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maximum value is attained when sk + sHm = 0. Hence, wi 6 2b. Note that wi = 2b when
[w1] = [w2] = · · · = [wi−1] = [wi+1] = · · · = [wn] = [0], wi = 0, and [wb] = [−b,−b].

Now, suppose that wi < −b and [wi] = [wi, wi]. Then following the same reasoning as
above we may infere that −2b 6 wi. In this case wb is a positive number that diminishes
the excess on the lower bound of the left hand side interval of the Equation (10) produced
by wi. Note that wi = −2b when [w1] = [w2] = · · · = [wi−1] = [wi+1] = · · · = [wn] = [0],
wi = 0, and [wb] = [b, b].

Statement (ii)
In order to prove this statement let us suppose that [wb, wb] is such that wb > b. In this
case wb = b + x with x > 0. Considering Equalities (12) we rewrite Equation (10) as,

[0, sk] + [−sl, 0] +
[
−sLm, sHm

]
+ [wb, wb] = [−b, b] ,

which gives,

sk + sHm + wb = b,

−sl − sLm + wb = −b.

The hypothesis wb = b + x with x > 0 implies that sk + sHm = b − wb = −x. This is
impossible given that, by definition, sk+sHm > 0. Hence, the only possibility for x is to have
x = 0 which means that wb 6 b. Using the same reasoning we may infer that −b 6 wb.

The above theorem defines maximum and minimum values for the bounds of any interval
parameter in Equations (7a) and (9a). Moreover, it suggests that in Equation (10) the
interval [wb] acts as a term that cuts off the excess in the upper or the lower bound of the
sum of the weight intervals. However, this is true only for either the upper or the lower
bound but not for both bounds at the same time. The following Theorem 2 constitutes a
generalization of statement (i) in the proof of Theorem 1.

Theorem 2 Suppose that the interval vector ([w∗1] , [w∗2] , · · · , [w∗n] , [w∗b ])
> is an algebraic

solution of Equation (10) of Theorem 1. If S ⊆ In = {1, 2, · · · , n} denotes a set of indices
{i1, i2, · · · , iq} such that all [w∗ij ] 6= 0, 1 6 j 6 q, then only one of the following two relations
can be true:

(i) − 2b 6
q∑
j=1

w∗ij < −b, or

(ii) b <

q∑
j=1

w∗ij 6 2b.

Proof The proof is obtained using the same reasoning as for Theorem 1.

Corollary 3 Suppose that the interval vector ([w∗1] , [w∗2] , · · · , [w∗n] , [w∗b ])
> is an algebraic

solution of the equation [w1] [0, 1] + [w2] [0, 1] + · · · + [wn] [0, 1] + [wb] [1, 1] = [−b, b]. Then
for any interval [w∗i ] both the upper and the lower bounds of this interval cannot exceed the
bounds of the interval [−b, b].

17



Adam, Magoulas, Karras and Vrahatis

Proof Suppose that there exists an index i such that for the interval [w∗i , w
∗
i ] both

inequalities w∗i < −b and b < w∗i hold true. That is [−b, b] < [w∗i , w
∗
i ]. Using the reasoning

of Theorem 1 in order to reduce the excessive effect produced by [w∗i , w
∗
i ] on the left hand

side of the interval of the equation we need to define [wb, wb] with wb > 0 and wb < 0 which
obviously is not a valid interval. Hence, it is impossible for some variable [wi, wi] to have a
solution such that [−b, b] < [w∗i , w

∗
i ].

Theorem 2 and Corollary 3, derived above, show the complexity of the set containing the
algebraic solutions of Equations (7a) and (9a). However, the following Corollary defines an
outer approximation of this solution set which is a convex set (polytope).

Corollary 4 The algebraic solutions of Equation (10) of Theorem 1 are enclosed in the
polytope defined by [−2b, 2b]n × [−b, b].

Proof Let the interval vector ([w∗1] , [w∗2] , · · · , [w∗n] , [w∗b ])
> be a solution of Equation (10).

Then for each [w∗j ], 1 6 j 6 n we have that [w∗j ] < [−2b, 2b]. Moreover [w∗b ] < [−b, b]. This
proves the Corollary.

Theorem 5 Consider the equation,

[w1] [−1, 1] + [w2] [−1, 1] + · · ·+ [wn] [−1, 1] + [wb] [1, 1] = [−b, b] . (14)

Then, whenever an algebraic solution is regarded for this equation, for any variable [wi] =
[wi, wi] , 1 6 i 6 n the maximum possible value of wi is b and the minimum possible value of
wi is −b. The same holds for the maximum possible value of wb and the minimum possible
value of wb.

Proof First note that any interval multiplied by [−1, 1] gives a symmetric interval. Actu-
ally, [x, y] [−1, 1] = [−m,m], where m = max{|x|, |y|}, for any interval [x, y]. If [tj ] denotes
[wj ] [−1, 1], for 1 6 j 6 n, then Equation (14) becomes [t1] + [t2] + · · · + [tn] + [wb, wb] =
[−b, b], with all [tj ] being symmetric intervals. So, the following two equalities must hold:

t1 + t2 + · · ·+ tn + wb = −b, (15a)

t1 + t2 + · · ·+ tn + wb = b, (15b)

with tj 6 0 and 0 6 tj for j = 1, 2, . . . , n.
Let i be an index such that for the interval [wi, wi] we have wi < −b and b < wi. Thus,

the term
[
ti, ti

]
> [−b, b].

Then (15a) is true if t1 + t2 + · · · + ti−1 + ti+1 + · · · + tn = 0 and wb > 0. In addition
(15b) is true if t1 + t2 + · · ·+ ti−1 + ti+1 + · · ·+ tn = 0 and wb < 0. The above suggest that
[wb, wb] defined so it is not a valid interval. In consequence the interval

[
ti, ti

]
6 [−b, b] and

so neither b < wi nor wi < −b. Hence, [wi, wi] 6 [−b, b].
For the interval [wb, wb] suppose that wb < −b. This means that wb = −b− x for some

x > 0. Under these assumptions (15a) holds true if t1+t2+ · · ·+tn = x, which is impossible
given that t1 + t2 + · · · + tn < 0. The reasoning is the same if we suppose that wb > b.
Hence the minimum possible value of wb is −b and the maximum possible value of wb is b.

The following corollary is a direct conclusion of Theorem 5.
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Corollary 6 The algebraic solutions of Equation (14) of Theorem 5 are enclosed in the
hypercube [−b, b]n+1.

Proof Let the interval vector ([w∗1] , [w∗2] , · · · , [w∗n] , [w∗b ])
> be a solution of Equation (14).

Then for each [w∗j ], 1 6 j 6 n we have that [w∗j ] 6 [−b, b]. The same stands for [w∗b ]. This
proves the Corollary.

Theorem 5 and Corollary 6 help defining a convex outer approximation of the set of algebraic
solutions to Equations (7b) and (9b).

4.2 Evaluation of the Theoretical Results

In the context of our minimization problem, solving the linear interval Equations (7a), (7b),
(9a) and (9b) is equivalent to defining a solution in the tolerance solution set of each of these
equations. This is achieved considering algebraic solutions for the following reasons. First,
such an interval solution is proven to exist (Ratschek and Sauer, 1982) for each of these
equations. Moreover, the algebraic solution of a linear interval system is a solution to the
corresponding linear interval tolerance problem (Shary, 1996, Proposition 1). Finally, our
aim is not to define exact bounds of the algebraic solution interval vector, but to identify
the bounds of an enclosure of the algebraic solution.

Recall that Shary (2002) defined the tolerance (or tolerable) solution set of an interval
equation F ([a], x) = [b] as the set formed by all point vectors x ∈ Rn such that for any
ã ∈ [a] the image F (ã, x) ∈ [b]. This can be written in one of the following two forms:

∑
tol

(F, [a], [b]) = {x ∈ Rn | (∀ã ∈ [a])(∃b̃ ∈ [b]) (F (ã, x) = b̃)},∑
⊆

(F, [a], [b]) = {x ∈ Rn |F ([a], x) ⊆ [b]}.

The theoretical results of the previous subsection permit to define suitable convex poly-
topes containing the algebraic solutions of Equations (7a), (9a) and hypercubes for the
algebraic solutions of Equations (7b), (9b). The algebraic solutions of the linear interval
Equations (7a), (7b) and (9a), (9b), enclosed in their respective convex sets, are also so-
lutions in the corresponding tolerance solution sets of these linear equations which may
well be the activation functions of any output node. We are now interested in examining
the relation of these convex sets with Equations (3) and (8). Let us consider the following
non-linear interval equations:

σ1

 h∑
j=1

[wkj ][yj ] + [wkb]

 = [0, 1], (16a)

σ2

 h∑
j=1

[wkj ][yj ] + [wkb]

 = [−1, 1], (16b)
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for any node k in the output layer using a sigmoid activation function, as well as the
equations:

σ1

(
n∑
i=1

[wji][xi] + [wjb]

)
= [0, 1], (17a)

σ2

(
n∑
i=1

[wji][xi] + [wjb]

)
= [−1, 1], (17b)

defined for any node j in the hidden layer using a sigmoid activation function. Note that,
[yj ] denotes the interval of the output values of the j-th node in the hidden layer and [xi]
denotes the interval of the values of the i-th component of the input patterns. The above
equations are the interval counterparts of Equations (3) and (8).

We will show that the convex polytopes, derived in the previous subsection, constitute
inner approximations of the tolerance solution sets for the interval Equations (16) and
(17), namely the convex polytope for the Equations (16) and (17) having [yj ] = [0, 1] and
[xi] = [0, 1] while the hypercube does it, for the same equations, when [yj ] = [−1, 1] and
[xi] = [−1, 1].

First, let us formulate the following Proposition regarding Equations (16a), (16b) and
(17a), (17b).

Proposition 7 The tolerance solution set corresponding to each of the Equations (16a),
(16b) and (17a), (17b) is unbounded.

Proof Let us consider Equation (16a) and a real vector w1 ∈ Rh+1 such that

σ1

 h∑
j=1

w1
j [yj ] + w1

h+1

 ⊆ [0, 1].

Then, there exists a real vector w2 ∈ Rh+1 for which w16̇w2, where the operator “6̇”
denotes the component-wise operator “6”. If instead of the real vectors we consider their
interval counterparts, that is, the degenerate interval vectors [w1] and [w2], it is obvious
that [w1] ⊆ [w2]. Then, given that the sigmoid σ1 is inclusion monotonic we have that

σ1

 h∑
j=1

w1
j [yj ] + w1

h+1

 ⊆ σ1
 h∑
j=1

w2
j [yj ] + w2

h+1

 ⊆ [0, 1].

Hence, for any real vector [w1] in the tolerance solution set there will always exist a “larger”
vector [w2] for which the output interval produced will enclose the output interval computed
for [w1]. So, the tolerance solution set of Equation (16a) is unbounded. The proof is similar
for the other equations.

It is obvious that the outcome of this Proposition is due to the asymptotic convergence of
each of the sigmoids to its extreme values, i.e., to 0, 1 or to −1, 1. Hence, if one aims in
finding a suitable inner approximation of each tolerance solution set, then one should define
an upper and a lower limit for the output of the corresponding sigmoid. Actually, this is
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how we proceeded in Subsection 3.2. Subsequently, the direct consequence of this approach
is to consider the solution set of some linear interval equation suitably defined to take into
account the input values of a node. So, for each of the non-linear Equations (16a) and (16b)
of some node in the output layer two linear interval equations, namely (7a) and (7b), are
defined depending on the type of the sigmoid used. In addition, for each of the non-linear
interval Equations (17a) and (17b) of any node in the hidden layer the two linear interval
equations derived are (9a) and (9b).

For any node with a sigmoid activation function there are two possible types of boxes, as
defined by Corollaries 4 and 6, depending on the intervals of the input values. Here, let us
examine the range of application of these boxes in terms of their usage in (16a), (16b) and
(17a), (17b). The convex polytope [−2b, 2b]h × [−b, b] is used whenever the input signals
are in the interval [0, 1]. Then, from (16a) and (16b) we derive the following relations:

σ1

 h∑
j=1

[−2b1, 2b1] [0, 1] + [−b1, b1]

 ⊆ [0, 1],

σ2

 h∑
j=1

[−2b2, 2b2] [0, 1] + [−b2, b2]

 ⊆ [−1, 1].

A direct conclusion of these relations is that the convex polytope [−2b1, 2b1]
h × [−b1, b1]

constitutes an inner approximation of the tolerance solution set of the non-linear interval
equation (16a). The same stands for the box [−2b2, 2b2]

h × [−b2, b2] and the non-linear
interval equation (16b). Obviously, the hypercubes [−b1, b1](h+1) and [−b2, b2](h+1) are
used instead of the corresponding convex polytopes when the input signals to a node are in
the interval [−1, 1]. The same reasoning applies to Equations (17a) and (17b).

Besides these conclusions other interesting results are derived, hereafter, for the above
convex polytopes. First, it is easy to verify that the following two equations hold true:

h∑
j=1

[−2b1, 2b1] [0, 1] + [−b1, b1] = (2h+ 1) [−b1, b1] ,

h∑
j=1

[−2b2, 2b2] [−1, 1] + [−b2, b2] = (2h+ 1) [−b2, b2] .

So, we have the relations:

σ1 ((2h+ 1) [−b1, b1]) ⊆ [0, 1],

σ2 ((2h+ 1) [−b2, b2]) ⊆ [−1, 1].

If we set λ = λ(h), a small number, 0 < λ � 1, depending on the number of inputs h of
the node then we may write that

σ1((2h+ 1)[−b1, b1]) = [0 + λ, 1− λ] = [0, 1]λ ⊆ [0, 1], and

σ2((2h+ 1)[−b2, b2]) = [−1 + λ, 1− λ] = [−1, 1]λ ⊆ [−1, 1].
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In consequenece, recalling the definition of the intervals [−b1, b1] and [−b2, b2], in Subsection
3.2, it is obvious that the following two relations hold true:

[0, 1]ε = [0 + ε, 1− ε] ⊂ [0 + λ, 1− λ] = [0, 1]λ, (18a)

[−1, 1]ε = [−1 + ε, 1− ε] ⊂ [−1 + λ, 1− λ] = [−1, 1]λ. (18b)

In consequence we may state that, for any node in the output layer using a sigmoid
activation function, having input signals in the interval [0, 1] and connection weights in the
convex polytope [−2b, 2b]h×[−b, b] then the range of output values are in the interval [0, 1]λ
or [−1, 1]λ for some λ smaller than the precision ε used for the problem.

When the inputs to a node are in the interval [−1, 1] then using the box [−b, b](h+1) we
arrive to similar results and formulate a similar statement. Finally, note that, using the
same reasoning we get exactly the same results for any node in the hidden layer bringing
out the validity of the theoretical results when used in (17a) and (17b) corresponding to
Equations (9a) and (9b).

To further advance this reasoning suppose that the real matrices Ws
1 ∈ R(n+1)h and

Ws
2 ∈ R(h+1)o constitute a global minimizer of the minimization problem (2), i.e., the

distance ‖F (X,Ws
1,W

s
2)− T‖q 6 ε, where ε is the machine precision or the best precision

set for the problem. Also, suppose that p patterns are available for the problem, which means
that X = {x1, x2, . . . , xp} and the corresponding target outputs are T = {t1, t2, . . . , tp}. The
input patterns are n-dimensional vectors while the target outputs are o-dimensional. For
any input pattern xl, where 1 6 l 6 p, let zl be the o-dimensional network output for this
pattern, that is, zl = F (xl,W

s
1,W

s
2).

Now, if the norm q is such that 1 6 q and considering that the total network output
error is averaged over all patterns then we can set the network output error for the l-th
pattern to be (

∑o
k=1 |zk,l − tk,l|

q)1/q 6 ε. From this, for the k-th output node we may
consider that |zk,l − tk,l|q 6

∑o
k=1 |zk,l − tk,l|

q 6 εq. Hence, |zk,l − tk,l|q 6 εq, which gives
that |zk,l − tk,l| 6 ε. In consequence, tk,l − ε 6 zk,l 6 tk,l + ε. So, if tk,l = 0 or tk,l = −1
then zk,l ∈ [0, 0 + ε] or zk,l ∈ [−1,−1 + ε]. Similarly, if tk,l = 1 then zk,l ∈ [1 − ε, 1].
Hence, we may suppose that there exists some small positive constant, say λ, such that
0 + λ 6 zk,l 6 0 + ε, or, −1 + λ 6 zk,l 6 −1 + ε, and 1 − ε 6 zk,l 6 1 − λ. Then, we
may deduce that [0 + ε, 1 − ε] ⊂ [0 + λ, 1 − λ] and [−1 + ε, 1 − ε] ⊂ [−1 + λ, 1 − λ]. This
is exactly what has been derived above with relations (18). So, we deduce that the real
matrices Ws

1 ∈ R(n+1)h and Ws
2 ∈ R(h+1)o supposed to constitute a global minimizer of

the minimization problem (2) are, indeed, located in the corresponding convex polytope, as
defined above. The reasoning is similar if q is the infinity norm.

Following the above discussion we consider that it is legitimate to argue that the convex
polytopes identified by the proposed method are guaranteed, within the machine precision
accuracy, to enclose some global minimizers of the network output error function.

4.3 Discussion on the Theoretical Results

The proposed approach operates under the assumption that the input data to a destination
node are either in the interval [0, 1] or in [−1, 1]. Typically, this happens in pattern recog-
nition or classification applications; for example, this is the case for the interval used for
coding the corresponding components of the input patterns if the weights concern input-to-
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hidden layer connections. For a weight of a hidden-to-output layer connection this interval
is the range of values of the sigmoid activation function of the corresponding hidden node.
So, for an input data point in [0, 1], the initial interval for the value of the corresponding
weight is [−2b, 2b]; otherwise, if the value of the input data point is in [−1, 1] then the initial
interval for the corresponding weight is considered to be [−b, b]. In all cases, the interval
for the value of any bias weight is [−b, b].

Depending on the type of the activation function parameter b is denoted by b1 for the
logistic sigmoid, b2 for the hyperbolic tangent, and b3 for the pure linear activation function.
Moreover, recall that the specific value in each case is implementation dependent being a
function of the precision ε set for the problem. In this paper, we consider that ε is the
machine epsilon corresponding to double precision and so the specific values for b should
be b = b1 > 36.05 and b = b2 > 18.4, while the specific value for b = b3 is defined by the
problem data. Table 1 summarizes these results for a 3-layer perceptron having n, h and o
nodes in the input, the hidden and the output layers respectively, and two possible ranges,
[0, 1] and [−1, 1], for the input data coding.

The convex sets in Table 1 are defined according to the above theoretical results and
more specifically the conclusions of Corollaries 4 and 6. However, if one adopts a “broad
interpretation” of Corollary 3 it would be possible to consider narrower intervals for nodes
with inputs in the interval [0, 1]. So, instead of the interval [−2b, 2b] one would rather con-
sider the interval [−b, b]. Obviously with this argument the convex set defined, in this case,
is no longer a polytope, in general terms, but rather a hypercube. However, we should note
that this result is based on heuristic considerations, as the complexity of the structure of the
solution sets of Equations (7a) and (9a) leaves no space for such a theoretical conclusion.
The validity of this heuristic conjecture is tested in the following Section 5.

The values defined, previously, for b and the subsequent volumes of the convex poly-
topes, though formally proven, are relatively large. So, they may be not convincing re-
garding the advantage offered to the global optimization based training by the proposed
approach. Here, let us recall the assumption that, often, in practical applications, the out-
put values of a node are expected to be in the interval [0.1, 0.9] for the sigmoid activation
function or in the interval [−0.9, 0.9] for the hyperbolic tangent. Then according to Para-
graph 3.2.1 the corresponding values for b, denoted here by b∗, should be b∗1 > 2.2 ≈ 2.1972
and b∗2 > 1.5 ≈ 1.4722. Despite the apparent disagreement of the intervals [0.1, 0.9] and
[−0.9, 0.9] with the linear interval equations (10) and (14), respectively, the previous the-
oretical results are still valid. As an example, let us compute the bounds of the weights
for the k-th output node having a sigmoid activation function with output in the interval
[0.1, 0.9] and inputs yj in the interval [0.1, 0.9] supposing that any node in the hidden layer
has the logistic sigmoid activation function, as well. With these hypotheses Equation (7a)
becomes

h∑
j=1

[wkj ][0.1, 0.9] + [wkb] = [−b∗, b∗], (19)

where b∗ is the specific b as noted previously. In addition, due to inclusion monotonicity∑h
j=1[wkj ][0.1, 0.9] + [wkb] ⊆

∑h
j=1[wkj ][0, 1] + [wkb]. On the other hand, at the expense

of lower precision, we may have the equation
∑h

j=1[wkj ][0, 1] + [wkb] = [−b∗, b∗]. Then,
the solution set defined for this specific form of Equation (7a) is a tolerance solution set of
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the linear interval equation (19). In consequence, the convex polytope [−2b, 2b]h × [−b, b],
for any b = b∗1 > 2.2, is a tolerance solution set of the linear interval equation (19), and
constitutes an inner approximation of the tolerance solution set of the non-linear interval
equation

σ1

 h∑
j=1

[wkj ][yj ] + [wkb]

 = [0.1, 0.9], (20)

where [yj ] = [0.1, 0.9] for 1 6 j 6 h. It is obvious that this reasoning applies to any linear
interval equation, such as (7a), (7b), (9a) and (9b).

If the scaling assumption of the neural network inputs xi does not hold (this may happen
with function approximation or regression problems), it is still possible to solve the problem;
however, the solution does not comply with the algebraic formalism adopted in the previous
section. In this case, let us suppose that xi ∈

[
xi, xi

]
, for i = 1, 2, . . . , n where the value

of the functional χ
([
xi, xi

])
∈ [−1, 1] (see Ratschek and Sauer, 1982), which means that

the bounds of the interval
[
xi, xi

]
may have any value provided that xi 6 xi. For the bias

we have that the input is χ ([1, 1]) = 1, so the hypotheses of Ratschek and Sauer (1982,
Theorem 1) are satisfied and in consequence even in this case the Equations (9a) and (9b)
have a solution. However, it is clear that the resulting equation does not comply with the
formalism adopted in the previous subsection for the Equations (7a), (7b) and (9a), (9b).
Although a detailed coverage of this issue is considered out-of-the-scope of this paper, it can
briefly be stated that this situation can be dealt with by considering the work of Popova
(2006) and the algorithm proposed therein.

5. Testing

In this section we give some concrete examples of the approach presented above. Our ob-
jective is to perform some tests, using well known benchmarks, in order to show that the
convex sets, derived following the analysis of this paper, indeed enclose global minimizers
of the cost function associated with the output of the MLP used for each problem. To this
end, the interval global optimization software (GOP), provided by Pàl and Csendes (2009),
is used.

The reason for adopting an interval global optimization procedure instead of some ver-
sion of PSO or a GA-based approach is easily understood if one takes into account the
fact that interval global optimization is a deterministic approach which is guaranteed to lo-
cate the best available minimizers and the interval for the corresponding global minimum.
On the other hand, convergence capabilities of population based and heuristic approaches
depend on a number of heuristically defined random parameters. Hence, a proof of conver-
gence for these methods is either probabilistic (Bertsimas and Tsitsiklis, 1993; Eiben et al.,
1991), or it relies on empirical results (Pedersen, 2010). This means that, by using a global
search method of this class, it is practically impossible to verify that the boxes derived by
the proposed approach indeed contain the best available minimizers.
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Table 1: Approximation of the initial weight set

Activation function

Input Data Interval

[0,1] [-1,1]

HL: logistic sigmoid [−2b1, 2b1]
n∗h × [−b1, b1]

h [−b1, b1]
(n+1)∗h

OL: logistic sigmoid [−2b1, 2b1]
h∗o × [−b1, b1]

o [−b1, b1]
(h+1)∗o

HL: logistic sigmoid [−2b1, 2b1]
n∗h × [−b1, b1]

h [−b1, b1]
(n+1)∗h

OL: hyperbolic tangent [−2b2, 2b2]
h∗o × [−b2, b2]

o [−b2, b2]
(h+1)∗o

HL: logistic sigmoid [−2b1, 2b1]
n∗h × [−b1, b1]

h [−b1, b1]
(n+1)∗h

OL: linear [−2b3, 2b3]
h∗o × [−b3, b3]

o [−b3, b3]
(h+1)∗o

HL: hyperbolic tangent [−2b2, 2b2]
n∗h × [−b2, b2]

h [−b2, b2]
(n+1)∗h

OL: logistic sigmoid [−2b1, 2b1]
h∗o × [−b1, b1]

o [−b1, b1]
(h+1)∗o

HL: hyperbolic tangent [−2b2, 2b2]
n∗h × [−b2, b2]

h [−b2, b2]
(n+1)∗h

OL: hyperbolic tangent [−2b2, 2b2]
h∗o × [−b2, b2]

o [−b2, b2]
(h+1)∗o

HL: hyperbolic tangent [−2b2, 2b2]
n∗h × [−b2, b2]

h [−b2, b2]
(n+1)∗h

OL: linear [−2b3, 2b3]
h∗o × [−b3, b3]

o [−b3, b3]
(h+1)∗o

- HL : Hidden Layer
- OL : Output Layer
- n, h and o are the number of nodes in the input, hidden and output layer respectively
- b1 denotes the value of b in the case of the logistic sigmoid activation function
- b2 denotes the value of b in the case of the hyperbolic tangent activation function
- b3 denotes the value of b in the case of the linear activation function

5.1 Experimental Setup

In order to perform this experimental verification, we follow the next three steps:

1. Consider an MLP which is typically used for solving the corresponding problem.

2. Write the MATLAB code implementing the natural inclusion function of the MLP
mapping, (an example is given in Appendix A).

3. Use the GOP procedure to solve the minimization problem defined for this natural
inclusion function, where the bounds for the weights are set by the convex polytope
computed by the proposed approach.

Typically, GOP is used for solving a global optimization problem with bound constraints
and performs an exhaustive search of the initially defined set of boxes. The criterion used
to stop the search process is a tolerance level of the width of the interval computed as the
value of the inclusion function. So, given that in this paper we are interested only in veri-
fying the existence of global minimizers and not in effectively locating a global minimum,
as this happens when training the MLP, we specify a large value for the tolerance level of
the width of the inclusion function interval. Hence, we use GOP to obtain rough estimates
of the interval enclosing the global minimum of the network’s output error function.

Moreover, GOP uses gradient information of the objective function to perform branch-
and-bound computations. In order to comply with this requirement we use the Mean-
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Squared-Error (MSE) for computing the distance between the actual network output and
the target output. However, using a differentiable distance function such as MSE is not
restrictive. Actually, the analysis provided throughout Section 4 makes no assumption re-
garding the type of the cost function of the network output. What really matters is that
the set of boxes defined by the proposed method surely encloses weight vectors that are
global minimizers, which means that the range of the error function computed on this set
of boxes is an interval enclosing its global minimum.

Note that for all examples the boxes are computed using for b1 and b2 the values pro-
posed in Paragraph 3.2.1. Obviously, one may set these values according to the precision
required for the problem at hand. However, in order to comply with the theoretical consid-
erations of the paper the values chosen for b1 and b2 should be such that the corresponding
sigmoid is driven to the saturation region.

5.2 Experiments and Results

5.2.1 A simple problem

The Single Neuron problem: Here, we consider the simplest possible case consisting
of a single neuron having one input, a bias and using the logistic sigmoid activation. The
advantage of proposing such a rudimentary example is the facility it offers in visualizing
its error function. In the following figures one may observe the form of the error functions
for two simple artificial mappings with weights in the intervals [−5.0, 5.0] and [−5.0, 5.0].
Using GOP it is easy to locate the global minima for each of these functions for various
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Figure 1: A simple neuron and the error functions for two artificial mappings

boxes of the weights. The results obtained for various trials are given hereafter.

Initial box for the weights: [−72.1, 72.1][−36.05, 36.05], tolerance = 0.001. Intervals com-
puted by GOP:

Function name: SINGLE NEURON MAPPING 1

The set of global minimizers is located in the union of the following boxes:

c1: [21.75680336914063, 37.45827910156252][20.27820312500000, 36.05010000000001]
c2: [21.54557275390626, 21.68639316406251][19.99656210937500, 20.27820312500000]
c3: [21.12311152343751, 21.40475234375001][19.71492109375000, 19.99656210937500]
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The global minimum is enclosed in:

[0.176989707623682269, 0.177214552453163560]

Function name: SINGLE NEURON MAPPING 2

The set of global minimizers is located in the union of the following boxes:

c1: [−1.44335920410156,−1.05610307617187][1.09140893554687, 1.40825507812500]
The global minimum is enclosed in:

[0.093025775813289955, 0.093289721540457949]

In these two cases, it is obvious that the location of the minimizers greatly differs from
one error function to the other. Moreover, in the case of the first error function the global
minimum is defined exclusively for positive values of the weights. This shows that the input
data greatly affect the location of the global minimum.

Let us now consider a narrower interval. Initial box for the weights: [−5.0, 5.0][−5.0, 5.0],
tolerance = 0.01. Intervals computed by GOP:

Function name: SINGLE NEURON MAPPING 1

The set of global minimizers is located in the union of the following boxes:

c1: [4.68750000000000, 5.00000000000000][4.21875000000000, 4.68750000000000]
The global minimum is enclosed in:

[0.215127653743816594, 0.219438417879982417]

Function name: SINGLE NEURON MAPPING 2

The set of global minimizers is located in the union of the following boxes:

c1: [−2.03125000000000,−0.62500000000000][0.85937500000000, 1.87500000000000]
c2: [−2.34375000000000,−2.18750000000000][2.03125000000000, 2.18750000000000]
The global minimum is enclosed in:

[0.089012518962891946, 0.093326904683555062]

In this trial, narrower intervals were used for the bounds of the weights. As far as the
first mapping is concerned, it’s easy to notice that, despite the larger value for the tolerance,
the intervals used do not enclose the previously detected global minimum. For the intervals
specified the so-called global minimum is a local one, despite being the best that GOP was
able to locate. For the second mapping, the intervals estimated for both the location of the
global minimizers as well as for the global minimum are larger, due to the higher tolerance
value, and enclose the intervals computed by GOP in the previous trial.

The main outcome of these examples is that they are consistent with the analysis pro-
vided in the paper. These trials provide “good” examples of boxes with global minimizers,
as well as “counter-examples” of boxes without global minimizers. The results confirm
that heuristic arguments, concerning the weight intervals, are inefficient, whenever global
optimization based training is considered for a neural network. Moreover, the convex set
defined by the proposed approach provides reliable estimation of these weight intervals.

For bound constrained problems the global optimizer GOP detects the best available
minimizers within the box defined for the error function and hence the interval estimate
of the corresponding global minimum. Given the size of the search space, in the following
experiments it has not been possible to perform exhaustive search of the global minimum
and so we tried to obtain rough estimations of the interval enclosing it.
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5.2.2 Problems – Networks with Logistic Sigmoid Activation Functions

The XOR problem: Let us consider a 2-2-1 network used for the XOR problem. The
purpose of this experiment is to allow us to verify the results of the proposed approach
against previous literature (see Hamey, 1995, 1998; Sprinkhuizen-Kuyper and Boers, 1999),
which has investigated analytically the local and global minima in the XOR problem. All
network nodes use the logistic sigmoid activation function, inputs to all nodes are in the
interval [0, 1] and the desired outputs are the bounds of the interval [0, 1]. The network is
fully connected and so there are 2 ∗ 2 + 2 ∗ 1 = 6 unknown weights as well as 2 + 1 = 3 bias
weights. The interval equation of the weights to any node in the network is one of (7a) or
(9a). Thus, if we set b = b1 = 36.05 we obtain,

[w1][0, 1] + [w2][0, 1] + · · ·+ [wn][0, 1] + [wb][1, 1] = [−36.05, 36.05]

and so, the initial box where global minimizers are expected to be located is

[−72.1, 72.1]2∗2 × [−36.05, 36.05]2︸ ︷︷ ︸
Hidden layer

× [−72.1, 72.1]2∗1 × [−36.05, 36.05]1︸ ︷︷ ︸
Output layer

.

The output provided by GOP for the above network is:

Function name: XOR

The set of global minimizers is located in the union of the following boxes:

c1: [−72.09999999999999, 72.09999999999999] · · ·
[−36.05000000000000, 36.05000000000000]
The global minimum is enclosed in:

[0.000000000000000000, 0.250000000000000000].

The results of this experiment confirm the theoretical conclusions regarding the location
of the global minimizers.

In addition to the previous experiment, it is tentative to examine, here, if the nar-
rower box, defined using a loose interpretation of Corollary 3, is likely to enclose the global
minimizers of the network output error. So, if the box [−36.05, 36.05]2∗2 × [−36.05, 36.05]2︸ ︷︷ ︸

Hidden layer

× [−36.05, 36.05]2∗1 × [−36.05, 36.05]1︸ ︷︷ ︸
Output layer

= [−36.05, 36.05]9 is used as the initial box then the

output provided by GOP is:

Function name: XOR

The set of global minimizers is located in the union of the following boxes:

c1: [−36.05000000000000, 36.05000000000000] · · ·
[−36.05000000000000, 36.05000000000000]
The global minimum is enclosed in:

[0.000000000000000000, 0.250000000000000000].

The result of this last experiment shows that a narrower box can be effectively used for
searching the global minimizers. Nevertheless, we should re-iterate that, as mentioned in

28



Bounding Global Optimization Training via Interval Analysis

Subsection 4.3, using such a narrower box lacks the necessary theoretical justification.
Finally, if we make the assumption that the outputs of the sigmoids are in the interval

[0.1, 0.9] the initial box is considered to be [−4.4, 4.4]6 × [−2.2, 2.2]3 which, according to
Table 1, is [−4.4, 4.4]2∗2 × [−2.2, 2.2]2︸ ︷︷ ︸

Hidden layer

× [−4.4, 4.4]2∗1 × [−2.2, 2.2]1︸ ︷︷ ︸
Output layer

. Then the output pro-

vided by GOP is:

Function name: XOR

The set of global minimizers is located in the union of the following boxes:

c1: [−4.40000000000000, 4.40000000000000] · · ·
[−2.20000000000000, 2.20000000000000]
The global minimum is enclosed in:

[0.000000000000000000, 0.160000000000000031].

Overall, the outcomes of the three experiments are in line with previous research (Hamey,
1995, 1998; Sprinkhuizen-Kuyper and Boers, 1999). Actually, Hamey (1998) applied to the
XOR problem a new methodology for the analysis of the error surface and showed that
starting from any point with finite weight values, there exists a finite non-ascending trajec-
tory to a point with error equal to zero. Moreover, Sprinkhuizen-Kuyper and Boers (1999)
proved that “the error surface of the two-layer XOR network with two hidden units has a
number of regions with local minima” and concluded that “from each finite point in weight
space, a strictly decreasing path exists to a point with error zero”. The conclusions of
these papers resulted following an exhaustive analysis of the error surface of the network
output. Finally, both papers conclude that for a 2-2-1 network using finite weights a global
minimum is reachable in the error surface of the XOR problem. This conclusion constitutes
a qualitative validation of the results obtained in this paper.

Finally, let us consider the case where a set of boxes does not contain a global minimizer.
An example of such a set of boxes is reported by GOP hereafter.

Function name: XOR

The set of global minimizers is located in the union of the following boxes:

c1:

[−72.09999999999999, 102.09999999999999][−72.09999999999999, 102.09999999999999]
[−72.09999999999999, 102.09999999999999][−72.09999999999999, 102.09999999999999]
[ 36.05000000000000, 136.05000000000001][ 36.05000000000000, 136.05000000000001]
[ 72.09999999999999, 102.09999999999999][ 72.09999999999999, 102.09999999999999]
[ 36.05000000000000, 136.05000000000001]
The global minimum is enclosed in:

[0.498825225561647045, 0.500000000000000111].

The IRIS classification problem: Let us consider a 4-5-3 network used for the IRIS
classification problem. This benchmark is known as Fisher’s IRIS problem. Based on the
values of sepal length and width, petal length and width, the class of IRIS plant needs
to be predicted. Inputs are scaled in the interval [0, 1], all network nodes use the logistic
sigmoid activation function and the desired outputs are binary {0, 1}. The network is fully
connected and so there are 4 ∗ 5 + 5 ∗ 3 = 35 unknown weights along with 5 + 3 = 8 bias
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weights. The interval equation of the weights to any node in the network is one of (7a) or
(9a) and so if we set b = b1 = 36.05 we have again,

[w1][0, 1] + [w2][0, 1] + · · ·+ [wn][0, 1] + [wb][1, 1] = [−36.05, 36.05].

So, one may consider the following initial box for searching the global minimizers,

[−72.1, 72.1]4∗5 × [−36.05, 36.05]5︸ ︷︷ ︸
Hidden layer

× [−72.1, 72.1]5∗3 × [−36.05, 36.05]3︸ ︷︷ ︸
Output layer

.

The output provided by GOP for the above network is:

Function name: IRIS

The set of global minimizers is located in the union of the following boxes:

c1: [−72.09999999999999, 72.09999999999999] · · ·
[−36.05000000000000, 36.05000000000000]
The global minimum is enclosed in:

[0.000000000000000000, 0.750000000000000000].

Moreover, under the assumption that the output of the sigmoids are in the interval
[0.1, 0.9] the initial box is considered to be [−4.4, 4.4]35 × [−2.2, 2.2]8 which, according to
Table 1, is [−4.4, 4.4]4∗5 × [−2.2, 2.2]5︸ ︷︷ ︸

Hidden layer

× [−4.4, 4.4]5∗3 × [−2.2, 2.2]3︸ ︷︷ ︸
Output layer

. Then the output pro-

vided by GOP is:

Function name: IRIS

The set of global minimizers is located in the union of the following boxes:

c1: [−4.40000000000000, 4.40000000000000] · · ·
[−2.20000000000000, 2.20000000000000]
The global minimum is enclosed in:

[0.000000000000000000, 0.480000000000002480].

The results of these IRIS experiments are encouraging. Again, the results of the first
experiment roughly confirm the theoretical conclusions regarding the location of the global
minimizers, while the other experiment indicates that narrower boxes can be effectively
used for searching the global minimizers, eventually providing a narrower interval estimate
for the global minimum.

5.2.3 A Problem – Network with Hyperbolic Tangent Activation Functions

The British vowels recognition problem: Consider the 3-layer 10-20-11 network used
for the British vowels data recognition benchmark. This benchmark, known as Deterding
Data (Deterding, 1989), is a speaker independent recognition problem of the eleven steady
state vowels of British English using a specified training set of 10 lpc (linear prediction
coefficients) derived log area ratios. Inputs for this problem are scaled in the interval [−1, 1]
and all network nodes use the hyperbolic tangent sigmoid activation function. The network
is fully connected and so there are 10 ∗ 20 + 20 ∗ 11 = 420 unknown weights as well as
20 + 11 = 31 bias weights. In this case the interval equation of the weights to any node
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in the network is one of (7b) or (9b). Setting b = b2 = 18.04 one obtains the following
equation,

[w1][−1, 1] + [w2][−1, 1] + · · ·+ [wn][−1, 1] + [wb][1, 1] = [−18.4, 18.4].

So, the initial box where global minimizers are potentially located is the hypercube

[−18.4, 18.4](10+1)∗20︸ ︷︷ ︸
Hidden layer

× [−18.4, 18.4](20+1)∗11︸ ︷︷ ︸
Output layer

= [−18.4, 18.4]451.

The output provided by GOP for the above network is:

Function name: BRITISH VOWELS

The set of global minimizers is located in the union of the following boxes:

c1: [−18.40000000000000, 18.40000000000000] · · ·
[−18.40000000000000, 18.40000000000000]
The global minimum is enclosed in:

[0.000000000000000000, 11.000000000000000000].

Under the assumption that the output of the sigmoids are in the interval [−0.9, 0.9] the
initial box is expected to be [−1.5, 1.5](10+1)∗20︸ ︷︷ ︸

Hidden layer

× [−1.5, 1.5](20+1)∗11︸ ︷︷ ︸
Output layer

= [−1.5, 1.5]451. The

output provided by GOP for the above network is:

Function name: BRITISH VOWELS

The set of global minimizers is located in the union of the following boxes:

c1: [−1.50000000000000, 1.50000000000000] · · ·
[−1.50000000000000, 1.50000000000000]
The global minimum is enclosed in:

[0.000000000000000000, 8.910000000000142251].

The results of the first experiment confirm the theoretical conclusions regarding the lo-
cation of the global minimizers. In addition, the second experiment confirms the hypothesis
that the narrower box, derived using the interval [−0.9, 0.9] for the range of the hyper-
bolic activation functions, can be effectively used for searching the global minimizers of the
network learning error.

5.2.4 A Problem – Network with Hyperbolic Tangent and A Pure Linear
Activation Function

A sinusoidal function approximation problem: Consider the 3-layer 2-21-1 network
used for approximating the function y = 0.5 sin

(
πx21

)
sin (2πx2) defined in the original

paper of Nguyen and Widrow (Nguyen and Widrow, 1990) where they introduce their
weight initialization method. Inputs for this problem are in the interval [−1, 1], all nodes
in the hidden layer use the hyperbolic tangent sigmoid activation function and nodes in the
output layer are linear. The network is fully connected and so there are 2 ∗ 21 + 21 ∗ 1 = 63
unknown weights as well as 21 + 1 = 22 bias weights. The interval equation of the weights
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to any node in the hidden layer is (7b). Retaining for b = b2 = 18.04, as in the previous
benchmark, we have

[w1][−1, 1] + [w2][−1, 1] + · · ·+ [wn][−1, 1] + [wb][1, 1] = [−18.4, 18.4].

Moreover, the interval equation of the weights to any node in the output layer is,

[w1][−1, 1] + [w2][−1, 1] + · · ·+ [wn][−1, 1] + [wb][1, 1] = [−0.5, 0.5].

So, the initial box used for searching the global minimizers is

[−18.4, 18.4](2+1)∗21︸ ︷︷ ︸
Hidden layer

× [−0.5, 0.5](21+1)∗1︸ ︷︷ ︸
Output layer

.

The output provided by GOP for the above network is:

Function name: FUNCTION APPROXIMATION

The set of global minimizers is located in the union of the following boxes:

c1: [−18.40000000000000, 18.40000000000000] · · ·
[−0.50000000000000, 0.50000000000000]
The global minimum is enclosed in:

[0.000000000000000000, 0.048430679703413922].

5.3 Discussion and Open Problems

The above experiments provide substantial evidence regarding the validity of the theoretical
results, showing that the convex set computed by the proposed approach for each problem
contains some global minimizers of the network’s error function. In addition, it is easy to
see that there exist areas in the weight space which do not contain global minimizers.

In all cases the approach for evaluating the theoretical results was based on an interval
global optimization procedure. However, the theoretical analysis presented in Section 4
made no assumption regarding the global optimization procedure used to minimize the
error function of the MLP. Therefore, the set of boxes enclosing the global minimizers is
determined independently of the global optimization method used for training, and so it is
also valid for population-based or stochastic global search methods. It is worth noting here
that the results reported by Gudise and Venayagamoorthy (2003) constitute an experimental
verification of this statement when PSO is used to train an MLP. Moreover, the experimental
analysis provided in that paper, concerning the computational cost induced by the training
procedure in relation with the width of the search space, may be seen as an evidence of the
advantage offered by our approach.

An interesting point of the above experiments concerns the results obtained when the
boxes are defined under the assumption that the outputs of the sigmoid and the hyperbolic
tangent activation functions are [0.1, 0.9] and [−0.9, 0.9] instead of [0, 1] and [−1, 1]. These
results indicate that the weight boxes defined so, besides being thinner, also result in a
narrower interval enclosing the global minimum. We note here, without further details,
that the derivation of these boxes and the entailing results, may be justified using the
following theorem by Moore (1966) as formulated in Alefeld and Mayer (2000, Theorem 1).
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Theorem 8 Let f : D ⊂ Rn → R be continuous and let [x] ⊆ [x]0 ⊆ D. Then (under
mild additional assumptions) q(R(f ; [x]), [f ]([x])) 6 γ‖d([x])‖∞, γ > 0, and d([f ]([x])) 6
δ‖d([x])‖∞, δ > 0.

Here, q(·, ·) is the Hausdorff distance between intervals which measures the quality of the
interval inclusion function [f ] as an enclosure of the range of f over an interval [x]. This
Theorem states that if the inclusion function exists then the Hausdorff distance between
R(f ; [x]) and [f ]([x]) goes linearly to zero with the diameter d([x]) (Alefeld and Mayer,
2000). In addition the diameter of the inclusion function goes linearly to zero if d([x]) is
approaching zero. The values of parameters γ and δ are very important for defining thinner
boxes.

Regarding the previous comment it is important to note that considering narrower in-
tervals for the outputs of the nonlinear activation functions of the nodes cannot be done
arbitrarily. Actually, narrowing the intervals of the activation functions’ output values
causes a decrease in their level of saturation which translates to less sharp values for the
network outputs. Obviously, this introduces a degree of uncertainty to the network out-
puts and thereby to the network function itself. The importance of this outcome seems
to be problem dependent. If the underlying problem deals with pattern classification this
outcome may have no effect on the classification task and in the best case even increase
the generalization ability of the network. On the other hand when dealing with a function
approximation or regression problem defining less sharp values for the network outputs is
very likely to cause large deviations from the target outputs. To the best of our knowledge
there is no research report attempting to define any proper saturation level for the activa-
tion functions in order to fit any unknown function with infinite accuracy.

Finally, an issue that needs to be commented concerns the impact of the proposed
method on the global optimization procedure, in terms of computational complexity and
cost. As the results of the experiments underline, this issue has not been addressed in this
paper mainly for two reasons; first the objective of our paper is not to detect the global
minimizers of the network error function but merely to delimit the area where a global op-
timization procedure should search for them. Secondly, evaluating the computational cost
of our approach requires either a suitable mathematical formulation or significant compu-
tational effort in order to effectively measure the impact of our approach on specific global
optimization procedures. Definitely, this issue constitutes our main concern for continuing
this research.

6. Conclusion

The approach presented in this paper deals with computing guaranteed bounds for the region
where global optimization procedures should search for global minimizers when training an
MLP. In contrast to current practice, which defines these bounds heuristically, the proposed
approach relies on interval analysis and exploits both the network architecture and infor-
mation of the input patterns for shaping the search region. The resulting feasible domain
of the network’s output error function is rather complicated and so a suitable approxima-
tion is derived in the form of a convex polytope or a hypercube depending on the network
architecture and the problem at hand.

The analysis presented deals with 3-layer feed forward neural networks but the results
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can easily be extended to networks with more than one hidden layer. Moreover, this analy-
sis covers the widely used type of feed forward neural networks using some kind of sigmoid
activation function for the nodes in the hidden layer. Nodes in the output layer may use
either a sigmoid or a linear activation function. The conclusions derived are applicable to
both standard MLPs and interval feed forward neural networks.

The examples and the experiments given on well known benchmarks highlight the ap-
plication of the theoretical results formally derived in the paper. The results of the exper-
iments provide significant evidence that the global minimizers of the considered network
error functions fall within the bounds of the polytope defined by our method. Moreover,
the proposed approach is not restrictive in terms of the hidden layers considered for the
MLP or the bounds of the interval for node’s output values.

A thorough performance analysis of global optimization procedures with and without
using the proposed approach was not part of the objectives of this paper — this will be
considered in future work. Also, we are planning to investigate the possibility of dealing
with MLPs that use other types of activation functions as well as explore the applicability
of the results to other types of networks such as the radial basis function and the recurrent
networks.
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Appendix A. Sample Code for an MLP Natural Inclusion Function

Here, we give an example of the MATLAB code used for the natural inclusion function of
the function implemented by a 3-layer MLP for the XOR benchmark. It is straightforward
to obtain the natural inclusion function by simply replacing real variables by their interval
counterparts. So, all variables corresponding to the weights of the MLP, as well as the quan-
tities computed with these variables, are intervals. Interval computations are automatically
carried out using INTLAB (Rump, 1999).

% the following define the activation functions

avfHL = @(x)[1./(1+exp(-x))]; % for the hidden layer

avfOL = @(x)[1./(1+exp(-x))]; % for the output layer

% the code for the inclusion function

function y = evxor(W0)

% W0 is the vector of the weight intervals

% global network parameters and training data

global p t np n h o avfHL avfOL

W1 = reshape(W0(1:h*n,1),h,n);
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b1 = repmat(reshape(W0((h*n)+1:(h*n)+h*1,1),h,1),1,np);

W2 = reshape(W0((h*(n+1))+1:(h*(n+1))+o*h,1),o,h);

b2 = repmat(reshape(W0(h*(n+1)+o*h+1:end,1),o,1),1,np);

y = sum((t-avfOL(W2*avfHL(W1*p+b1)+b2)).^2)./np;

% end function
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