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Abstract—Existing adaptive predictive methods often use mul-
tiple adaptive mechanisms as part of their coping strategy in non-
stationary environments. We address a scenario when selective
deployment of these adaptive mechanisms is possible. In this case,
deploying each adaptive mechanism results in different candidate
models, and only one of these candidates is chosen to make
predictions on the subsequent data. After observing the error of
each of candidate, it is possible to revert the current model to the
one which had the least error. We call this strategy retrospective
model correction. In this work we aim to investigate the benefits
of such approach. As a vehicle for the investigation we use an
adaptive ensemble method for regression in batch learning mode
which employs several adaptive mechanisms to react to changes
in the data. Using real world data from the process industry
we show empirically that the retrospective model correction is
indeed beneficial for the predictive accuracy, especially for the
weaker adaptive mechanisms.

I. INTRODUCTION

With the current advances in data storage, database and data
transmission technologies, mining streaming data has become
a critical part of many processes. Many models which are
used to make predictions on streaming data are static, in the
sense that they do not learn on current data and hence remain
unchanged. However, there exists a class of models, online
learning models, which are capable of adding observations
from the stream to their training sets. In spite of the fact
that these models utilise the data as it arrives, there can still
arise situations where the underlying assumptions of the model
no longer hold. We call such settings dynamic environments,
where changes in data distribution [1], change in features’
relevance [2], non-symmetrical noise levels [3] are common.
It has been shown that many changes in the environment
which are no longer being reflected in the model contribute to
the deterioration of model’s accuracy over time [4]–[7]. This
requires constant manual retraining and readjustment of the
models which is often expensive, time consuming and in some
cases impossible - for example when the historical data is not
available any more. Various approaches have been proposed
to tackle this issue by making the model adapt itself to the
possible changes in environment while avoiding its complete
retraining. Here we define adaptation as changes in model
parameters and or structure in response to changes in the data
stream.

Typically there are several possible ways or adaptive mech-
anisms (AMs) to adapt a given model. Recently attention has
focused on selective or flexible deployment of differing AMs,
which has been shown to result in the superior performance

[8]. In this scenario, the adaptation is achieved by deploying
one of multiple AMs, which changes the state of the existing
model. At this time it is not known whether the choice of AM
is optimal for the incoming data. However after the subsequent
data is fully observed, it becomes possible to retrospectively
identify the optimal AM. It is then possible to revert the current
model to the model which is created by deploying this optimal
AM. We call this strategy a retrospective model correction.
This work provides analysis of retrospective correction in a
system with multiple adaptive mechanisms. To the best of our
knowledge, this idea hasn’t been explored in the context of
adaptation. Here we investigate whether, and for which cases
retrospective correction is beneficial for predictive accuracy.

We focus on the batch prediction scenario, where data
arrives in large segments called batches. This is a common
industrial scenario, especially in the chemical, microelec-
tronics and pharmaceutical areas [9]. For the experiments
a regression algorithm which uses an ensemble of locally
weighted experts to make a prediction was constructed. The
local experts approach is a popular (described for example
in [10]) way of aggregation of multiple models’ predictions.
Using local experts allows one to investigate a number of
adaptive mechanisms, such as adding/removing experts and
changing experts’ local weights. In addition, the local expert
models may include their own adaptation mechanisms. At the
time when the true values become available, the model can
then be adapted.

The main finding of this work is that in our settings, in the
majority of cases the retrospective model correction strategy
improves the predictive accuracy of the model. The magnitude
of improvement differs depending on the adaptive mechanism
and the dataset, with weaker AMs benefiting the most.

The paper is structured as follows; related work is presented
in the Section II, Section III presents mathematical formulation
of the framework of a system with multiple adaptive elements
in batch streaming scenario. Section IV introduces our al-
gorithm, which was used for the experimentation, describes
the adaptive mechanisms which form the adaptive part of the
algorithm and gives a short overview of Recursive Partial Least
Squares (RPLS) [11], a base model for our algorithm. Section
V introduces the datasets from the chemical processing indus-
try on which the experiment were performed, the experimental
methodology and results. We conclude by giving our final
remarks in Section VI.
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II. RELATED WORK

Recently, especially for industrial processes, many regres-
sion methods which explicitly consider the adaptation of the
model, such as [8], [12]–[26], have been proposed. Adaptivity
is usually achieved by building a predictive model using a)
the latest historical data and/or b) the historical data which is
the most similar to the current data. Adaptive methods often
use multiple models to make the final prediction, either by the
weighted combination of their outputs([12]–[18], [22]–[24],
[26]); known as ensemble models, or, more rarely, selecting
one of them ([19], [22], [25]). Most of the models, or experts,
are built on the subsets of historical data which represent
different degrees of relation to the current data.

Ensemble methods date as far back as 1960’s, when it
was shown that combining multiple predictive models may
give better results than using single models [27]. One of the
advantages of ensemble methods is their ability to model
local dependencies in the data, a classical example being
[10]. This is achieved by weighting the models’ predictions
on a data instance by the location of this instance in the
input space. Local ensemble learning was applied to regression
ensembles in [12], [23], [24], [26], [28], [29]. These methods
first identify the disjoint segments of the historical input space
where the process produced outputs described by a common
model, sometimes also called receptive fields. Then they build
a model for each receptive field using Partial Least Squares
(PLS) [30] or Support Vector Regression [31]. The models
therefore describe different regions of the input space. The
final prediction is a weighted average of all of the experts.
Here, for each new data instance, the weights of experts
depend on the location of the observed instance and in some
cases the prediction. The AM used in [28] is based on
change of models’ local weights depending on their error. This
model was extended in [12] to include adaptation of the base
models using RPLS and further in [29] further extends the
model to include creation of additional experts. [24], [26] uses
adaptation of base models and adaptive weighting with [23]
additionally introducing adaptive offset correction. Another
local ensemble method, with a moving window and weights
change AMs is described in [13].

Also popular in the literature are global regression en-
sembles [14]–[17]. These typically assign weights to experts
based on their general performance, irrespective of the location
of the input. Global ensemble methods use similar AMs to
those described above. For instance, [14] adapts to changes
by creating new experts and changing their weights. [17]
includes AMs such as adaptation of base models via a moving
window, changing experts weights and adding new experts.
[16] additionally employs a boosting like instance weighting
mechanism for resampling the training data. Both [16] and
[17] may remove experts as well. [18] describes a method
which uses an ensemble of univariate regressors for multivari-
ate regression. It includes weighting of models and forgetting
factor AMs. [32] proposes a time difference ensemble based on
the distance between the current input and historical inputs.

This method can use either moving window or just-in-time
(creation of a model from most relevant instances) approaches
for adaptation. [32] also uses just-in-time model creation with
global performance based adaptive weighting.

From the analysis above we can see that there are many
adaptive mechanisms which can be applied with ensemble
methods. The mechanisms target different characteristics of
the model; the error, the current location in the input space
(or output space), and the temporal distance. The SABLE
framework chosen here also includes such functionality. Most
of the described work above have a common characteristic
that whatever the AMs, they are applied at every time step
in the same manner. In contrast the approaches proposed in
[8], [16], [17], [22], [29], [32], [33] change the order of
the adaptation. In particular, [29] creates new experts when
existing ones are not built on the relevant data, [16], [17] create
new experts when the predictive error on an instance is above
a set threshold. In [32] the predictive accuracy is assessed to
switch between two predictive models. Again the, predictive
accuracy is used to choose between just-in-time model creation
and offset update in [22]. [33] presents a plug and play
architecture for preprocessing, adaptation and prediction which
foresees the possibility of using different adaptation methods
in a modular fashion, but does not address the method of AM
selection. [8] introduces the Simple Adaptive Batch Learning
Ensemble (SABLE) approach, the flexible adaptive framework
which includes recursive update of the experts, update of their
weights and creation/merger/removal of the experts. It explores
several adaptation strategies, which are described in Table I.

Similarities may be found between retrospective correction
and weight update backtrack mechanism, a key feature of
Resilient Propagation neural network learning algorithm [34].
In fact, this mechanism can be considered as a special case
of retrospective correction. To the best of our knowledge, the
general notion and analysis of retrospective model correction
strategy presented in the current work have not been given in
the adaptation context before.

III. FORMULATION

A. Predictive model

We assume that the data is generated by a process which
can be formulated as

y = ψ(x) + E, (1)

where ψ is an unknown function, E is unknown error,
x = {x1, ..., xm} is an input data instance and y is the output
value. Then we consider the predictive method at a time t as
a function

ŷ = ft(x,Θf ), (2)

ŷ being the predicted output and Θf set of parameters of f .

B. Adaptation

We assume that we are operating in the batch streaming
scenario, and receive a new input dataset, also called a batch,
xt, at time t. The predictive model ft generates prediction
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Fig. 1. Adaptation with multiple AMs. Optional inputs are shown with dashed
lines.

vector ŷt. Subsequently observations of the output, yt, become
available, so that V t = {xt,yt}. Then we consider an adap-
tive mechanism as an operator which generates an updated
prediction function based on V t and other optional inputs.
This can be written as

g(ft, ŷt,V t,Θg) : ft → ft+1. (3)

Here ft and ŷt are optional arguments and Θg is the set of
parameters of g.

We assume that we have multiple, different AMs
{∅, g1, ..., gh} = G available. Datasets V 1, ...,V T arrive at
timesteps t = 1, ...T . At each timestep any gt ⊂ G can
be executed. We call a sequence g1, ..., gT an adaptation
sequence. In this formulation, we consider the combinations of
different AMs as a separate new AM. Note that we also include
the option of applying no adaptation at any particular stage
denoted by the ∅. In this way, any combination of the AMs
can be represented as a separate new AM. Figure 1 illustrates
the proposed adaptation scheme.

C. Retrospective Model Correction

Deploying each possible AM, gt ∈ G, at timestep t − 1,
produces different candidate models; Ft = f0t , f

1
t , ..., f

H
t . One

of these will be chosen as an active model for prediction of
the values for the next batch:

ft = fαt , α ∈ {0 · · ·H}. (4)

Once the true values of the batch, yt+1, are known, it becomes
possible to assess the performance of all the candidate models,
using a desired criterion, for example mean absolute error
(MAE), mean squared error (MSE) or others. Denoting this
criterion ε, we can calculate:

ε0t = 〈f0t (xt), yt〉, · · · , εHt = 〈fHt (xt), yt〉 (5)

and if there exists a model which outperformed the current
model, replace the current model with it as:

ft = fβt , where β = argmin(εi)
i

i = 0 · · ·H. (6)

Figure 2 shows a real example (from the Catalyst dataset,
described in the Section V-B) of the effect retrospective model
correction can have, where the graphs show the error after
deploying different AMs. At time t, fα results in a predictive
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Fig. 2. Retrospective model correction effects. Each AM are is represented
with a different color.

MAE of 0.062. The subsequent predictions into t + 1 result
in MAE’s varying from about 0.01 to 0.045 (depending on
the next AM). However, by retrospectively changing the AM
chosen at time t the predictions into t + 1 results in MAE’s
less than or equal to 0.01.

IV. ALGORITHM

To perform experiments, we are using an adaptive method,
SABLE1, which is inspired by the ILLSA method [12].
SABLE operates on batches of data. An expert can be created
from each batch of data. The experts are trained using PLS
(see Section IV-D) as a base method. PLS was chosen because
it is widely used for predictions in process industry where
our datasets originate from, features inherent dimensionality
reduction and has a recursive version (i.e. RPLS). The final
prediction is the weighted sum of predictions of all experts
where the weights are calculated as described below. When
comparing to ILLSA, the novel elements of SABLE are that
it is a batch learning algorithm, the proposed batch learning
routine, the mechanism of recalculation of expert weights and
the ability to modify the ensemble by adding additional ex-
perts during algorithm’s operation, as well as merging similar
experts. We list the main parts and adaptive mechanisms of
SABLE in the following sections.

A. Building of Experts’ Descriptors

The relative performance of experts varies in different parts
of the input/output space. In order to quantify this a descriptor
is used. Descriptors of experts are distributions of their weights
with the aim to describe the area of expertise of the particular
local expert. They describe the mappings from a particular
input, xm, and output, y to a weight, denoted Di,m(xm, y),
where m is the m-th input feature2 and i is the i-th expert.
The descriptor is constructed using a two-dimensional Parzen

1SABLE was previously described in [8], Sections 4, 5, 6. To make this
work self contained, we partially repeat the description of the algorithm again
in this section.

2For the base methods which transform the input space, such as PLS, the
transformed input arguments are used instead of original ones.



window method [35] as:

Di,m(xm, y) =
1

||V tr
i ||

||V tr
i ||∑

j=1

w(xj)Φ(xm, y, µmj ,Σ) (7)

where V tr
i is the training data of the i-th expert, ||V tr

i ||
is the number of instances it includes, w(xj) is the weight
of sample point’s contribution which is defined below, xj
is the jth sample of V tr

i , Φ(µmj ,Σ) is a two-dimensional
Gaussian kernel function with mean value µ = (xmj , yj) and
variance matrix Σ ∈ <2×2 with the kernel width, σ, at the
diagonal positions. σ, is unknown and must be estimated as a
hyperparameter of the overall algorithm.3

The weights w(xj) for the construction of the descriptors
(see Eq. 7) are proportional to the prediction error of the
respective local expert:

w(xj) = exp(−(ŷj − yj)2) (8)

Finally, considering that there are M input variables and
I models, the descriptors may be represented by a matrix,
D ∈ <M×I called the descriptor matrix.

B. Combination of Experts’ Predictions

During the run-time phase, SABLE must make a prediction
of the target variable given a batch of new data samples. This
is done using a set of trained local experts F and descriptors
D. Each expert makes a prediction ŷi for a data instance x.
The final prediction ŷ is the weighted sum of the local experts’
predictions:

ŷ =

I∑
i=1

vi(x, ŷi)ŷi (9)

where vi(x, ŷi) is the weight of the i-th local expert’s predic-
tion. The weights are calculated using the descriptors, which
estimate the performance of the experts in the different regions
of the input space. This can be expressed as the posterior
probability of the i-th expert given the test sample x and the
local expert prediction ŷi:

vi(x, ŷi) = p(i|x, ŷi) =
p(x, ŷi|i)p(i)

ΣIj=1p(x, ŷj |j)p(j)
, (10)

where p(i) is the a priori probability of the i-th expert4,
ΣIj=1p(x, ŷj)p(j) is a normalisation factor and p(x, ŷi|i) is the
likelihood of x given the expert, which can be calculated by
reading the descriptors at the positions defined by the sample
x and prediction ŷi:

p(x, ŷi|i) =

M∏
m=1

p(xm, ŷi|i) =

M∏
m=1

Di,m(xm, ŷi). (11)

Eq. 11 shows that the descriptors Dm are sampled at the
positions which are given on one hand by the scalar value xm

3In this research we assume an isotropic kernel weighted by the variance
is sufficient for simplicity and also to reduce the number of parameters to be
estimated.

4Equal for all local experts in our implementation, different values could
be used to prioritize experts.

of the m-th feature of the sample point x and on the other hand
by the predicted output ŷi of the local expert corresponding to
the ith receptive field. Sampling the descriptors at the positions
of the predicted outputs may be potentially ineffective because
the predicted value is not necessarily similar to the correct
target value. However the correct target values are not available
at the time of the prediction. The rationale for this approach is
that the local expert is likely to be more accurate if it generates
a prediction which conforms with an area occupied by a large
number of true values during the training phase.

To reduce the number of redundant experts, at time t
those that deliver similar predictions on batch V t are merged,
making use of the linear base model. If the base model is
non linear and merging is not straightforward, then a pruning
strategy as in [28] can be considered. There, the weight vectors
of all experts on a batch of data are pairwise compared and
if their similarity is higher than a defined threshold, one of
the experts is removed. Prediction vectors can also be used to
measure the similarity between different experts.

C. Adaptive Mechanisms

The SABLE algorithm allows the use of adaptive mecha-
nisms which are deployed as soon as the true values for the
batch are available, before predicting on the next batch. It is
also possible that none of them are deployed. The AMs are
described in the following sections.

1) Batch Learning: The simplest AM augments existing
data with the data from the new batch and retrains the
model. Given predictions of each expert fi ∈ F on V ,
Ŷ = {ŷ1, ..., ŷI} and measurements of the actual values, y,
V is partitioned into subsets in the following fashion:

k = argmin
i

(|ŷi,j − yj |), i = 1 · · · I, [xj , yj ] ∈ V k (12)

for every instance [xj , yj ] ∈ V . This creates subsets
V i, i = 1...I such that ∪Ii=1V i = V . Then each expert is
updated using the respective dataset V i. This process updates
experts only with the instances where they achieve the most
accurate predictions, thus encouraging the specialisation of
experts and ensuring that a single data instance is not used in
the training data of multiple experts. This AM will be denoted
as AM1 in the description of the experiments below.

2) Batch Learning With Forgetting: This AM is similar
to one described in Section IV-C1 but includes a forgetting
factor (see Section IV-D) which reduces the weight of the
experts historical training data, making the most recent data
more important. This AM will be denoted as AM2.

3) Recalculation of Descriptors: This AM recalculates the
local descriptors, D, using the new batch as described in the
Section IV-A. The previous weights are discarded. This AM
will be denoted as AM3.

4) Creation of New Experts: New expert fnew is created
from the new batch at time t. Then it is checked if any of the
experts from Ft−1∪fnew, where Ft−1 is the experts pool at the
time t−1, can be merged or pruned. Finally the descriptors of
all resulting experts are calculated as described in the Section
IV-A. This AM will be denoted as AM4.



The listed AMs are different from each other in terms of
how strongly they adapt the model. AM0, AM1 and AM3 have
relatively weaker, and AM2 and AM4 stronger effects.

D. Recursive Partial Least Squares

In our experiments we use RPLS as a base algorithm. The
advantages of this algorithm are that it can be updated without
requiring the historical data and that the merging of two
models can be easily realised. RPLS is extension of the Partial
Least Squares algorithm, both of which are popular in process
industry predictive modelling tasks. PLS projects the scaled
and mean centered multidimensional input data X ∈ Rn×m
and output data Y ∈ Rn×p, where n is the number of data
instances, m is the number of input variables and p is the
number of output variables, to separate latent variables as:

X = TP T + E (13)

Y = UQT + F . (14)

where T ∈ Rn×l, with l ≤ m denotes the number of latent
variables and U ∈ Rn×l represents the score matrices, P ∈
Rm×l and Q ∈ Rp×l represents the corresponding loading
matrices, and E and F are the input and output data residuals.
Then the score matrices T and U consist of so called latent
vectors:

T = [t1, ..., tl], where ti ∈ Rn×1 (15)

U = [u1, ...,ul], where ul ∈ Rn×1. (16)

where the column vectors p ∈ Rm×1 and q ∈ Rm×1 of the
loading matrices, P and Q, represent the contributions of the
input and output variables to the mutually orthonormal latent
vectors, t and u, respectively. Equations 15 and 16 constitute
the PLS outer model. Afterwards a regression model, which
is also called the PLS inner model, between the latent scores
is constructed:

U = TB + R, (17)

where B ∈ Rl×l is a diagonal matrix of regression weights
which minimizes the regression residuals, R. Then the esti-
mates of Y , Ŷ , can be expressed as:

Ŷ = TBQT , (18)

There are different methods to calculate the required vectors
t, p, u, q and b. One of the most popular ones, NIPALS [36],
updates latent vectors in an iterative way. After each iteration,
the explained covariance is removed from the data:

Xi+1 = Xi − tip
T
i (19)

Y i+1 = Y i − uiq
T
i . (20)

The subsequent (i + 1)-th vectors are calculated by the re-
sulting new input and output data Xi+1 and Y i+1. Recursive
PLS, which uses NIPALS, updates the matrices P , T , Q,
U and B when the new data becomes available, on either a
sample-by-sample (incremental) or a batch basis. In this work
we are using batch adaptation. It works by applying PLS on
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Fig. 3. Exhaustive 4-step ahead search. The graphs show the error after
deploying different AMs.

the new batch and constructs new input and output matrices
as follows:

Xnew =

[
λP T

0

P T
1

]
(21)

Ynew =

[
λB0Q

T
0

B1Q
T
1

]
, (22)

where the matrices P 0, B0 and Q0 describe the old model
and P 1, B1 and Q1 the new one created from the most recent
batch. 0 ≤ λ ≤ 1 is the forgetting factor which determines how
much influence the historic data will have, with λ = 0 meaning
zero influence and λ = 1 meaning that the historical data has
the same influence as the new batch. After constructing the
new input and output data matrices, PLS is applied producing
the updated matrices. The condition for this update is that the
number of latent variables must be equal to the rank of X .
This condition can be practically met by finding a number of
latent variables a for which the error on the training data is
less than the defined threshold close to 0.

V. EXPERIMENTAL RESULTS

A. Methodology

For the more general analysis of AMs behaviour and how
they are affected by the correction mechanism we have per-
formed the limited 4-step ahead exhaustive deployment of all
AMs; at every batch we deploy separately all of the 5 AMs,
use the resulting models to predict the values from the next
batch, record the errors, then adapt the five models using 5
AMs for each of them, etc. for 4 batches ahead. After this
the model which gives the best performance on the original
batch was chosen as the basis for the next four steps. This
process is visualised on the Figure 3. Thus 625 (54) MAE
and standard deviations values and prediction vectors for every
batch are obtained. These represent exhaustive list of the last
4 AMs (e.g. AM0, AM0, AM0, AM0; AM0, AM0, AM0,
AM1;...) deployed to arrive at the current prediction. To assess
the usefulness of the retrospective correction mechanism for
the actual prediction on the dataset, we additionally use it for
configurations of SABLE, shown in the Table I. On each batch



TABLE I
EXPERIMENTAL CONFIGURATIONS OF SABLE.

Configuration
name

Description

Sequence0 Using AM0 on every batch. This means that only the
first batch of data is used to create an expert.

Sequence1 Using AM1 on every batch.
Sequence2 Using AM2 on every batch.
Sequence3 Using AM2 on every batch.
Sequence4 Using AM4 on every batch.
XVSelect Selecting AM based on the current data batch using the

cross-validatory as described in [8].
Optimal Selecting AM based on the subsequent data batch5 as

described in [8] .
Retrain A new model is trained from the current batch and the

old one is discarded. No data partitioning is used.

one of the AMs described in the Section IV-C or none of them
(which is denoted by AM0) can be deployed. We use the AM
configurations presented in Table I for AM selection.

We have performed our experiments on three datasets (Cata-
lyst, Oxidizer and Drier; described in detail in the next section)
from process industry with different batch sizes. As explained
in [33], there is a need for adaptation for the Oxidizer and
particularly for the Catalyst datasets, which is not apparent
with the Drier dataset. Choosing these datasets will allow us to
test AM sequences on data which exhibits different behaviours.
We chose three different batch sizes for each dataset, using
different SABLE parameters for each of them (for brevity
purposes we will show the batch size next to the dataset name
to indicate which batch size was used for the experiment -
i.e. Catalyst50 stands for Catalyst dataset with batch size of
50 samples). Batch sizes and parameters used are shown in
the Table II. These parameter combinations were empirically
identified as the best among the ones which have been tried.

To calculate the significance of differences between the
predictions of different configurations, the significance test
of difference of two estimators’ errors relying on the sample
covariance, as described in [37], Section 3.2 was used.

B. Datasets

1) Catalyst Activation Dataset: This data set was used for
the NiSIS 2006 competition6. It includes 14 sensor measure-
ments like flows, concentrations and temperatures from a real
process. The target variable is the simulation of catalyst’s
activity inside the reactor. The description of the reaction
speed is taken from literature showing a strong non-linear
dependency on temperature. Further complicated processes
like cooling and catalyst decay contribute to changes in the
data. The data set covers one year of operation of the plant.
Many of the features exhibit high co-linearity and contain high
number of outliers. The data includes 5,867 data samples and
is presented to an algorithm in batches of 100 samples. We

5Note that this is not applicable in the real life situations, as at the time
t, the data V t+1 is not yet known. This configuration’s shows achievable
results using one step ahead optimal AM and will be used as a benchmark.

6http://www.nisis.risk-technologies.com/(S(ftalbreakikhjt34pd2xggfu))/
filedown.aspx?file=125

TABLE II
SABLE PARAMETERS FOR DIFFERENT DATASETS

Dataset Batch
size

Descriptor
mesh grid
size

Descriptor
update
weighing

RPLS
forgetting
factor

Expert gen-
eration ker-
nel base size

Catalyst 50 50x50 0, 1 0.5 1
Catalyst 100 100x100 0, 1 0.25 1
Catalyst 200 100x100 0, 1 0.5 1
Oxidizer 30 50x50 0.25, 0.75 0.5 1
Oxidizer 50 50x50 0, 1 0.25 0.01
Oxidizer 100 50x50 0, 1 0.25 0.01
Drier 50 50x50 0, 1 0.25 0.01
Drier 100 50x50 0, 1 0.5 0.1
Drier 200 50x50 0, 1 0.25 0.01

have removed two features with mostly missing and 0 values
during preprocessing. The number of latent vectors for PLS
was experimentally set to 12. Below we present the results
with batch sizes of 50, 100 and 200, denoted respectively as
Catalyst50, Catalyst100 and Catalyst200.

2) Thermal Oxidizer Dataset: This dataset deals with the
prediction of the concentration of exhaust gas during an in-
dustrial process where the task is to predict the concentrations
of NOx in the exhaust gases. The data set consists of 36
input features which are hard sensor measurements. They
are physical values like concentrations, flows, pressures and
temperatures measured during the operation of the plant. The
data set consists of 2,820 samples. This dataset is also affected
by issues like data outliers or missing values. We split it into
batches of 50 samples, 55 batches in total. The number of
latent vectors for PLS was experimentally set to 3. Below we
present the results with batch sizes of 30, 50 and 100, denoted
respectively as Oxidizer30, Oxidizer50 and Oxidizer100.

3) Industrial Drier Dataset: The target value of this dataset
describes the laboratory measurements of the residual humid-
ity of the process product. The dataset has 19 input features,
most of them being temperatures, pressures and humidities
measured in the processing plant. The original dataset consists
of 1,219 data samples covering almost seven months of the
operation of the process. It consists of raw unprocessed data
as recorded by the process information and measurement
system. Many of the input variables show problems common
in industrial data like measurement noise, missing values or
data outliers. We have removed 3 input features which mostly
consisted of missing data. The data is presented in batches
of 100 data samples. The number of latent variables for PLS
was experimentally set to 16. Below we present the results
with batch sizes of 50, 100 and 200, denoted respectively as
Drier50, Drier100 and Drier200.

C. Correction Mechanism’s Effect on Different AMs

Recall that at the timestep t − 1 there exists H different
candidate models, Ft = f0t , f

1
t , ..., f

H
t , and after the full

observation of Vt, the state of the model is reverted to
the result of retrospective correction, fβt . Let us assume
that a single AM g is applied to each f it ∈ Ft resulting
in Ft+1 = g(f0t ), g(f1t ), ..., g(fHt ) = f0t+1, f

1
t+1, ..., f

H
t+1.
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Applying each f it ∈ Ft to the next batch, Vt+1, results in
the errors ε0t+1...ε

H
t+1. We denote g(fβt ) = fβt+1, its error

εβt+1 = 〈fβt+1(xt+1), yt+1〉, and the prior probabilities of
gi providing the lowest MAE ωi. Then we consider the
improvement ratio:

ρ =
εβt+1

H∑
i=1

ωiεit+1/H

. (23)

This ratio compares the MAE when using the correction, to
MAE when not. In other words it quantifies the improvement
delivered by the retrospective correction.

Figures 4, 5, 6 show the histograms of the improvement
ratio for each AM and average values of ρ. On the Catalyst50
(Figure 4), correction has noticeable positive impact for all of
the AMs except AM4, as seen by the skew in the distribution
towards values of ρ < 1. However, the improvement seen
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when using AM4 is not that apparent. The reason for this is
the nature of AM4 which is able to actively totally renew the
model by down weighting old experts and creating a new one,
hence minimizing the effect of the existing model before the
adaptation, which is what the correction mechanism modifies.

The result is not so clear for the Oxidizer30 dataset (Figure
5) but the distribution is still skewed to the left. This can be
attributed to the low volatility of the data. Among all three
datasets, Oxidizer30 is affected the least by the correction.

The distribution of ρ for Catalyst50 and Oxidizer30 is
concentrated around 1. This means for the majority of cases for
any AM, the improvement from the retrospective correction is
minimal. However, the results for the Drier50 dataset (Figure
6)shows a somewhat different behaviour. Here the majority
of batches for AM0 and AM3, and to lesser extent AM1
and AM2 are noticeably positively affected by the correction
strategy. This difference is caused by the fact that this dataset
is relatively stable and thus the most vulnerable to incorrect
AM choices. Finally the histogram for AM4 is similar to the
ones from previous datasets and is not noticeably affected by
the correction. Finally, we note that varying the batch size did
not have a significant effect on the conclusions drawn in the
datasets above and so these results are not presented.

D. Retrospective Model Correction Applied to SABLE Con-
figurations

Configurations of SABLE (Table I) with and without cor-
rection were then applied to all of the datasets. The results
of the experiments are described in the Tables III, IV, and V.
These results suggest that for the majority of cases, the error
values of the methods with added correction are significantly
lower than those that don’t use correction. The results of
corrected Sequence3, SimpleRetrain and Optimal are added
for completeness. We observe that these results are generally
consistent with our findings above, with few exceptions.
Exceptions can occur as these are results of a single AM
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sequence, whereas the results in the Section V-C are based
on many different sequences. As also noted in [8], XVSelect
provides the most accurate predictions in most of the cases.
Figure 7 shows the comparison of XVSelect’s predictions on
Oxidizer30, with and without retrospective correction.

VI. CONCLUSIONS AND DISCUSSION

The core aim of this paper was to investigate how retro-
spective model correction mechanisms affects the predictive
accuracy using a range of popular AMs. We have conducted
experiments on 3 datasets containing data from the process
industry which display diverse properties and rates of change.

Using the AM which minimizes the MAE on the current
batch (Optimal) always led to the lowest MAE. Thus, for our
setup, it made sense using Optimal as a benchmark. It must be
noted that it is possible that there exits an AM sequence which
minimizes the error even further. However it must be sought in
the set of all possible AM sequences, which is computationally
prohibitive (Ht).

Our experiments show that retrospective model correction
mechanism has a positive impact on the predictive accuracy of
the model in many cases. The effects vary depending on the
dataset and AM. We have established that the weaker AMs
like AM0, AM1 and AM3 benefit most from the correction
mechanism, while the most versatile AM4 is affected the least.
The results of predictions on the datasets using SABLE, an al-
gorithm with multiple AMs, are consistent with these findings.
The configurations which involve the sequences of weaker AM
and mixed sequences benefit from model correction the most.

Considering all of the above, we can conclude that while
using an algorithm with multiple adaptive mechanisms, saving
a limited history of model states and switching between
them when needed, which is essentially what the retrospective
model correction does, can be a simple and effective way of
improving predictive accuracy of the models. Saving model
states does not require saving the data and hence is inexpensive
in terms of data storage.

Future research will investigate retrospective modelling
combined with intelligent AM selection.
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