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Abstract

This paper evaluates the use of several parametric and nonparametric forecast-
ing techniques for predicting tourism demand in selected European countries. We
find that no single model can provide the best forecasts for any of the countries
in the short-, medium- and long-run. The results, which are tested for statisti-
cal significance, enable forecasters to choose the most suitable model (from those
evaluated here) based on the country and horizon for forecasting tourism demand.
Should a single model be of interest, then, across all selected countries and horizons
the Recurrent Singular Spectrum Analysis model is found to be the most efficient
based on lowest overall forecasting error. Neural Networks and ARFIMA are found
to be the worst performing models.
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1 Introduction

Tourism in the 21st century has experienced continued expansion and diversification,
becoming one of the largest and fastest-growing economic sectors in the world. Among
the most favourite destinations, Europe is considered the most prominent one, receiving
the highest amount of tourists arrivals (563 million), representing 52% of the global tourist
arrivals and generating an income of more than e368 billions in 2013 (UNWTO, 2014).
However, despite Europe being the region with the most arrivals, it is not the region that
is growing at the fastest rate. According to UNWTO (2014), regions such as Asia and the
Pacific, and Africa that have traditionally had a lower rate of arrivals are experiencing the
highest growth in recent years. These developments might be due to the global financial
crisis and the ongoing European debt crisis that Europe has suffered the most from (e.g.,
see Antonakakis et al., 2015a,b). Since the European Union has placed a lot of emphasis
on the tourism sector as a source of economic prosperity for its member countries (Lee and
Brahmasrene, 2013), the need of accurate forecasts of tourism demand is of paramount
importance.

The importance of accurate tourism demand forecasting has been already established
in the literature since the 1980s, especially given the perishable nature of tourism (see,
for example Uysal and O’Leary, 1986; Law and Au, 1999; Law, 2000). Indicatively, we
maintain that destination countries require substantial investments in infrastructure and
promotional activities, hence accurate tourist arrivals forecasts are necessary in the effort
of safeguarding positive returns on investment (Chatziantoniou et al., 2016). Furthermore,
accurate tourist arrival forecasts are important for policy makers as they can serve as a
tool for policy decisions, which aim at boosting economic development, wellbeing and
employment, particularly for tourism destination countries (Palmer et al., 2006; Song and
Witt, 2006; Gounopoulos et al., 2012). In addition, accurate forecasts are also important
at industrial level (e.g. airlines, tour operators, hotels, etc.), as for example, they allow
firms to produce more accurate budgets.

Moreover, various time horizons are relevant to decision making in the tourism sec-
tor. For example, short-term forecasts are required for scheduling and staffing, while
medium-term forecasts for planning tour operator brochures and long-term forecasts for
investment in aircraft, hotels and infrastructure. To that end, the purpose of this study
is to evaluate both the short-, medium- and long-run forecasting accuracy of tourism de-
mand based on several parametric and nonparametric forecasting techniques in selected
European countries, namely, Austria, Cyprus, Germany, Greece, Netherlands, Portugal,
Spain, Sweden and the United Kingdom.

In contrast to previous studies, that compare different classes of the same model or
a few different classes of models, this study employs nine alternative parametric and
non-parametric techniques, thereby complementing all previous studies in an attempt to
uncover the best forecasting method of tourist arrivals in Europe. In particular, the models
employed include the Autoregressive Moving Average (ARIMA), Exponential Smoothing
(ETS), Neural Networks (NN), Trigonometric Box-Cox ARMA Trend Seasonal (TBATS),
Fractionalized ARIMA (ARFIMA) and both Singular Spectrum Analysis algorithms, i.e.
recurrent SSA (SSA-R) and vector SSA (SSA-V). In addition, we also consider the efficacy
of simpler forecasting techniques such as Moving Average (MA) and Weighted Moving
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Average (WMA) in relation to the advanced econometric techniques.
Given that there exists a wide variety of forecasting techniques in addition to those

considered here, it is pertinent to present justification for our choices. Firstly, the use
of simple models such as MA and WMA are useful alongside the broad range of econo-
metric techniques to determine exactly how better off the complex techniques can be at
forecasting tourist arrivals in Europe. Secondly, with the exception of SSA, MA and
WMA models, all other models are provided via the forecast package in R as automatic
forecasting techniques (Hydman and Khandakar, 2008). As such, the results of this paper
can shed light on the appropriateness of these popular automated forecasting techniques
at predicting European tourist arrivals. In addition, ARIMA is universally accepted as a
mandatory benchmark in forecasting studies especially where new alternatives are intro-
duced as viable options for predicting a given variable. Whilst ETS, NN, and ARFIMA
are already widely used and popular, the same cannot be said of TBATS which was in-
troduced by De Livera et al. (2011) before being incorporated in the forecast package. In
brief, the TBATS technique uses a new method that greatly reduces the computational
burden in the maximum likelihood estimation when forecasting complex seasonal time se-
ries such as those with multiple seasonal periods, high-frequency seasonality, non-integer
seasonality, and dual-calendar effects (De Livera et al., 2011). TBATS has been used to
forecast energy consumption (Silva and Rajapaksa, 2014), the price of gold (Hassani et al.,
2015) and housing downturns (Zietz and Traian, 2014) in previous studies. Thirdly, all
the aforementioned techniques are classical methods, and SSA is able to provide a com-
pletely different modelling approach as SSA is a filtering technique. In brief, the use of
SSA enables us to identify the impact of signal extraction and denoising in comparison
to the classical forecasting approach with regard to predicting European tourist arrivals.
Fourthly, this study marks the introductory and successful application of both TBATS
and SSA-R for tourism demand forecasting. Finally, the models considered in this study
represent both parametric and nonparametric approaches. The parametric models rely
on assumptions such as normality and stationarity which are both likely to be violated in
9/10 European tourist arrivals series considered here (see, Tables 1 and 2). In the event
of such violations, it is interesting to note how parametric forecasts which could require
data transformations compare with nonparametric forecasts from SSA which requires no
prior assumptions about the data generating process.

Put differently, this study provides the most comprehensive forecasting comparison
among several parametric and non-parametric techniques of international tourist arrivals
in Europe. Note that, in this paper, as discussed, we follow an univariate approach
to forecasting tourist arrivals. There are two reasons for this: First, as indicated by
Antonakakis et al. (2015a,b), on average tourism is a leading indicator for the economies
under consideration. In light of this, it is only rational that we try and develop univariate
forecasting models for tourist arrivals, which allows us to forecast the same independent of
other macroeconomic variables that possibly affects tourist arrivals. Second, the tourism-
growth literature (see, for example Arslanturk et al., 2011; Balcilar et al., 2014, and
references cited therein for detailed literature reviews) indicates that there are possibly
large number of variables that can affect both tourism and growth simultaneously. Given
this, at this stage, we avoided possible selection bias in choosing such variables for these
countries. However, we leave this as a possible venue of future research, which we discuss
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further in the conclusion.
Our findings reveal that no single model can provide the best forecasts for any of the

countries considered here in the short-, medium- and long-run. Moreover, forecasts from
NN, ETS, ARFIMA, MA and WMA models provide the least accurate predictions for
European tourist arrivals, yet interestingly ARFIMA forecasts are better than the power-
ful NN model and in certain cases the MA and WMA forecasts succeed in outperforming
both ARFIMA and NN forecasts. SSA-R, SSA-V, ARIMA and TBATS are found to be
viable options for modelling European tourist arrivals based on the most number of times
a given model outperforms the competing models in the above order. The paper also
computes information on the ability of the forecasts to predict the correct direction of
change in the data which adds value to the overall results. Thus, the nature in which the
results have been presented enables forecasters to choose the most suitable model (from
those evaluated here) based on the country, horizon and direction of change criteria for
forecasting tourism demand. Should a single model be of interest, then, across all selected
countries and horizons the SSA-R model is found to be the most efficient based on lowest
overall forecasting error.

The remainder of the paper is organised as follows. Section 2 reviews the most re-
lated studies on forecasting methods of tourist arrivals. Section 3 discusses the various
parametric and non-parametric forecasting techniques employed in this study. Section
4 presents the data used and the measures employed for evaluating forecast accuracy.
Section 5 presents the empirical results. Finally, Section 6 concludes this study.

2 Literature Review

Along with the phenomenal growth in demand for tourism in the world over the past
two decades, there is a growing interest in tourism forecasting research. The empirical
literature on forecasting tourism demand shows that there is not a single model that has
superior predictive ability. Rather, a number of different parametric and non-parametric
time-series models, as well as, various econometrics models have been applied in this
crowded strand of the tourism literature. Although no consensus has been reached so far,
regarding the model with the best forecasting accuracy, the literature reveals that the
ARIMA-type models are the most widely used ones.

Starting from these models, one of the early studies is this by Dharmaratne (1995)
who compares a number of ARIMA-type models to forecast tourist arrivals in Barbados.
The study concludes that ARIMA-type models are capable of producing valid forecasts
but specifically the ARIMA(2,1,1) is the best performing model.

Furthermore, a number of authors compare ARIMA-type models with other time-
series or econometric models (see, inter alia Goh and Law, 2002; Kulendran and Witt,
2003; Chu, 2004; Kim and Moosa, 2005; Vu and Turner, 2006; Wong et al., 2007; Chu,
2008; Brida and Risso, 2011; Wan et al., 2013).

More specifically, Goh and Law (2002) apply Seasonal ARIMA (SARIMA) and Mul-
tivariate ARIMA (MARIMA) models, and compare their forecasting accuracy against a
number of exponential smoothing models, moving average models, as well as, a random
walk model (naive model). The authors argue that both the SARIMA and MARIMA
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models outperform all remaining models across a number of forecasting accuracy criteria.
Furthermore, Kulendran and Witt (2003) use a number of ARIMA specifications, a

causal structural time-series model (STSM), a basic structural model (BSM), as well as,
the naive model of no change. The findings suggest that the ARIMA models exhibit
superior predictive ability in the short-run forecasts; however, none of the models could
outperform the naive model in the medium-run forecasts. Vu and Turner (2006) second
the findings by Kulendran andWitt (2003), as they also compare ARIMAmodels against a
BSM for the case of Thailand and find that the ARIMAmodels showed a better forecasting
accuracy.

Chu (2004) further examines whether a cubic polynomial model could outperform
other linear and nonlinear forecasting models, such as a regression-base model, two naive
models, ARIMA-type models and a sine wave nonlinear model, which have been estimated
in the earlier studies of Chan (1993) and Chu (1998a,b). The study focuses on tourist
arrivals in Singapore and the findings suggest that the cubic polynomial model cannot
outperform either the ARIMA-type models or the combined forecasts.

Another study that confirms the superiority of the ARIMA-type models is this by Kim
and Moosa (2005) who compare the SARIMA model against a regression-based model
and Harveys structure time-series model. They also compare the forecasting accuracy of
these models based on both aggregate and disaggregate data. Their results suggest that
the SARIMA models perform better than the other two models. They also claim that
disaggregate data offer better predictive ability compared to aggregate data.

Furthermore, Chu (2008) uses nine time-series models, including two naive models,
ARIMA-type models (ARIMA, SARIMA and ARFIMA), as well as, regression-based
models. Chu (2008) finds that the ARFIMA model that exhibits the highest forecasting
accuracy both in the short-run and in the long-run, nevertheless, the SARIMA is the best
performing model in the medium-run. In a subsequent paper, Chu (2009) confirms his
previous findings, suggesting that the ARFIMA model performs better compared to other
ARIMA specifications.

More recently, Wan et al. (2013) use a SARIMA model and compare it against a
seasonal moving average model and a Holt-Winter model. Their findings show that the
SARIMA model is the best performing under all three different h-step-ahead forecasting
horizons (where h is one-month, three-months and twelve-months ahead).

Other authors have tried to combine ARIMA-type models with ARCH-type models.
Indicatively, Coshall (2009) combines the ARIMA with the GARCH models and compares
their forecasting accuracy against the Holt-Winters additive and multiplicative exponen-
tial smoothing, as well as, a naive model. The results show that the Holt-Winters models
perform better in the one and three year-ahead forecasts, whereas the ARIMA-GARCH
model yields the best forecasts for the two years-ahead horizon. However, forecasts based
on the combined models between the ARIMA-GARCH and the Holt-Winters models pro-
vide the most accurate forecasts in almost all sample countries and horizons.

Furthermore, Brida and Risso (2011) compare two SARIMA-ARCH models and show
that overall SARIMA-ARCH-type models are able to generate accurate forecasts. In
particular, the SARIMA(2,1,2)(0,1,1)–ARCH(1) produces the best forecasts.

Despite the fact that a wealth of studies demonstrates the superior predictive ability
of the ARIMA-type models, there are studies that cannot subscribe to this belief.For in-
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stance, Song et al. (2003) consider six econometric models (including a regression-based
model, a WickensBreusch Error Correction Model (ECM), Johansens ECM, an Autore-
gressive Distributed Lag Model (ADLM), an unrestricted Vector Autoregressive Model
(VAR), a Time Varying Parameter model) and two time-series models (ARIMA and naive
model of no change) and produce forecasts for one up to four years-ahead. The results
show that there is not a single model that outperforms all others across all different fore-
casting horizons. In particular, the Time Varying Parameter model is the best performing
model for the one and two years ahead; nevertheless, for the longer-term forecasts it is
the regression-based model that has the best forecasting accuracy.

Similarly, Wong et al. (2007) compare the ARIMA models with several other time-
series and econometric models, such as the ADLM, ECM and VAR. The authors cannot
confirm the superiority of the ARIMA models or any other model over the others, for
all sample countries. What is more, the authors suggest that in some cases the best
forecasting accuracy can be obtained with combined forecast models.

Chu (2011) also uses AR, ARFIMA and SARIMA models and compares them against
the forecasting power of a piecewise linear model for Macaus tourism demand. Focusing
on four different forecasting horizons (spanning from 6 months to 24 months), they claim
that the piecewise linear model is able to outperform all other benchmark models for all
forecasting horizons.

More recently, Kim et al. (2011) cannot confirm the superior forecasting accuracy of
the ARIMA-type models. More specifically they consider SARIMA models and compare
them with autoregressive models (AR), Harveys structural time series model, state space
exponential smoothing models and a forecasting model with bootstrap bias-corrected AR
parameters. They report that the latter model has superior predictive ability.

At the same time, there are studies which did not consider the ARIMA models at
all. For instance, Lim and McAleer (2001) use a number of Holt-Winters and Browns
exponential smoothing models, such as the single and double exponential smoothing,
non-seasonal and seasonal exponential smoothing, as well as, additive and multiplicative
Holt-Winters seasonal smoothing.Theyreport that the Holt-Winters multiplicative sea-
sonal model outperforms all other specifications for the majority of the countries under
examination. They note that, in some cases, the Holt-Winters additive seasonal model
yields the best forecasts.

Along the same lines, Wong et al. (2006) do not consider any ARIMA model but
rather concentrate on various VAR models, including both unrestricted and Bayesian
(BVAR) models. They conclude that the univariate BVAR model outperforms all other
specifications, including the standard and the general BVAR models. Similarly, Song and
Witt (2006) focus only on VAR models and maintain that these models are capable of
producing valid forecasts at both the medium- and long-run.

Furthermore, there are studies which turn their attention to biological algorithms in an
effort to achieve greater forecasting accuracy for tourism demand. One of the first studies
is this by Law and Au (1999) who use a supervised feed-forward neural network to forecast
tourist arrivals in Japan. Their findings show that the use of the neural network model
is able to outperform the forecasts produced by regression-based models, naive models or
even those produced by exponential smoothing and moving average models.

Cho (2003) also use neural network models and compares them against ARIMA and
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exponential smoothing models. This study confirms the superior character of the neural
network model, which was the model that showed the best forecasting accuracy. Burger
et al. (2001), in an earlier study, also show that aneural network model can outperform
the ARIMA models, as well as, various exponential smoothing, regression-based and naive
models.

Furthermore, Kon and Turner (2005) compare a neural network model against a basic
structural method in order to identify whether the former can outperform the forecasting
accuracy of the latter for the tourist arrivals in Singapore. The authors also use two more
models as benchmarks, namely, a naive model and a Holt-Winters model. The findings
show that a well structured neural network model can outperform all other models for
short-run forecasts.

Other recent studies that focus on biological algorithms include these by Palmer et al.
(2006), Hadavandi et al. (2011) and Pai et al. (2014). More specifically, Palmer et al.
(2006) develop an artificial neural network (ANN) to forecast tourism arrivals and they
claim that an ANN can perform better compared to the traditional statistical models.
In addition, Hadavandi et al. (2011) apply a genetic fuzzy system (GFS) and show that
biological algorithms are capable of producing successful forecasts for tourism arrivals.
Furthermore, Pai et al. (2014) use a fuzzy c-means model with least-square support vector
regression algorithm. They report that the use of such hybrid system is a promising
alternative for tourism arrivals forecasts compared to standard forecasting models, such
as ARIMA.

On the contrary, Claveria and Torra (2014) do not agree with these aforementioned
findings, showing that neural networks cannot outperform the ARIMA models, especially
for the short-run forecasts.

Summing up, the empirical literature has provided mixed results in terms of tourism
demand forecasting accuracy among the various employed models that reveal several
idiosyncratic features, both in terms of the forecasting horizons and countries of interest.

3 Forecasting Methods

3.1 Moving Average

This paper also considers simple forecasting processes such as moving average (MA) and
weighted moving average (WMA) in order to evaluate the efficacy of such simple fore-
casting techniques. According to Hyndman and Athanasopoulos (2013) an MA(q) model
exploits past forecast errors such that

yt = c+ et + θ1et−1 + θ2et−2 + . . .+ θqet−q, (1)

where et is white noise. Note that each value of yt can be thought of as a WMA.

3.2 Auto-Regressive Integrated Moving Average (ARIMA)

This paper exploits an optimized version of the ARIMA model which is found in the
forecast package in R. Those interested in a detailed description of the algorithm are
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referred to Hydman and Khandakar (2008). The number of seasonal differences, d, and
the the determination of its value is based on the Osborn-Chui-Smith-Birchenhall test
(Osborn et al., 1988) seasonal unit root test. Then, the Akaike Information Criterion
(AIC) of the following form is minimized to determine the values of p and q.

AIC = −2log(L) + 2(p+ q + P +Q+ k), (2)

where k = 1 if c 6= 0 and 0 otherwise and L is the maximum likelihood of the fitted model.
Then, the algorithm searches for the model which represents the smallest AIC from:

ARIMA(2,d,2), ARIMA(0,d,0), ARIMA(1,d,0) and ARIMA(0,d,1) which is selected as
the optimal ARIMA model. The decision on the inclusion or exclusion of the constant c
depends on the value of d. As seen in the next section, all time series considered in this
study have a seasonal unit root problem and therefore we provide a brief expansion of
the seasonal ARIMA model alone. In doing so we mainly follow Hydman and Khandakar
(2008). Accordingly, the seasonal ARIMA model can be expressed as:

Φ(Bm)φ(B)(1− Bm)D(1−B)dyt = c+Θ(Bm)θ(B)ǫt, (3)

where Φ(z) and Θ(z) are the polynomials of orders P and Q, and ǫt is white noise. If, c
6= 0, there is an implied polynomial of order d+D in the forecast function.

As explained in Hyndman and Athanasopoulos (2013) point forecasts can then be
obtained as follows. Begin by expanding the seasonal ARIMA equation so that yt is on
the left hand side with all other terms on the right. Then, rewrite the ARIMA equation
and replace t with T +h and finally, on the right hand side of this equation replace future
observations by their forecasts, future errors by zero, and past errors by the corresponding
residuals. Eventually, use the forecasting horizon h = 1 month ahead for example to
calculate all forecasts for that horizon.

3.3 Exponential Smoothing (ETS)

In brief, the ETS model considers the error, trend and seasonal components in choosing
the best exponential smoothing model from over 30 possible options by optimizing initial
values and parameters using the MLE for example and selecting the best model based
on the AIC. This ETS algorithm overcomes limitations from the previous models of ex-
ponential smoothing which failed to provide a method for easily calculating prediction
intervals (Makridakis et al., 1998). Those interested in a detailed description of ETS are
referred to Hyndman and Athanasopoulos (2013).

3.4 Neural Networks (NN)

The neural network models used in this paper are estimated using an automatic forecasting
model known as nnetar which is provided through the forecast package in R programming
code. For a detailed explanation on how the nnetar model is operated, see Hyndman and
Athanasopoulos (2013). The parameters in the neural network model are selected based
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on a loss function embedded into learning algorithm. The nnetar algorithm trains 25
networks by using random starting values and then obtains the average of the resulting
predictions to compute the forecast. It may be noted that in all cases the selected neural
network model has only k=1 hidden node, p=2 lags and we adopt annual difference
specifications. Thus, for these series it appears that simpler network models perform
better than more complex ones.

3.5 Trigonometric Box-Cox ARMATrend Seasonal Model (TBATS)

The TBATS model is an exponential smoothing state space model with Box-Cox trans-
formation, ARMA error correction, Trend and Seasonal components. The result is a
technique which is aimed at providing accurate forecasts for time series with complex
seasonality. A detailed description of the TBATS model can be found in De Livera et al.
(2011).

3.6 Fractionalized ARIMA Model (ARFIMA)

The ARFIMAmodelling process provided through the forecast package in R automatically
estimates and selects p and q for an ARFIMA(p,d,q) model based on the Hydman and
Khandakar (2008) algorithm whilst d and parameters are selected based on the Haslett
and Raftery (1989) algorithm.

3.7 Singular Spectrum Analysis (SSA)

The basic SSA technique is well established and detailed in literature. Those interested
in a detailed description of the two main stages of SSA (i.e. Decomposition and Recon-
struction), are directed to Hassani (2007); Golyandina et al. (2001). Figure 1 presents a
summary of the basic SSA process. Thereafter the SSA-R and SSA-V forecasting algo-
rithms are concisely explained.

[Insert Figure 1 around here]

SSA-R

Let v2 = π2
1 + . . .+π2

r , where πi is the last component of the eigenvector Ui (i = 1, . . . , r).
Moreover, suppose for any vector U ∈ RL denoted by U▽ ∈ RL−1 the vector consisting of
the first L − 1 components of the vector U . Let yN+1, . . . , yN+h show the h terms of the
SSA recurrent forecast. Then, the h-step ahead forecasting procedure can be obtained by
the following formula

yi =

{
ỹi for i = 1, . . . , N∑L−1

j=1 αjyi−j for i = N + 1, . . . , N + h
(4)

where ỹi (i = 1, . . . , N) creates the reconstructed series (noise reduced series) and vector
A = (αL−1, . . . , α1) is computed by:

A =
1

1− v2

r∑

i=1

πiU
▽

i . (5)
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SSA-V

Consider the following matrix

Π = V▽(V▽)T + (1− v2)AAT (6)

where V▽ = [U▽

1 , ..., U
▽

r ]. Now consider the linear operator

θ(v) : Lr 7→ RL (7)

where

θ(v)U =

(
ΠU▽

ATU▽

)
. (8)

Define vector Zi as follows:

Zi =

{
X̃i for i = 1, . . . , K
θ(v)Zi−1 for i = K + 1, . . . , K + h+ L− 1

(9)

where, X̃i’s are the reconstructed columns of the trajectory matrix after grouping and
eliminating noise components. Now, by constructing matrix Z = [Z1, ..., ZK+h+L−1] and
performing diagonal averaging we obtain a new series y1, ..., yN+h+L−1, where yN+1, ..., yN+h

form the h terms of the SSA vector forecast.

4 The Data and Measures for Evaluating Forecast

Accuracy

4.1 The Data

This papers focuses on international tourist arrivals in European countries, namely, Aus-
tria, Cyprus, Germany, Greece, Netherlands, Portugal, Spain, Sweden and the United
Kingdom. The data on international tourist arrivals is obtained from Eurostat database.
The period spans from January 2000 until December 2013.

We begin our analysis by testing the data for normality, seasonal unit roots and break
points. From the descriptive statistics reported in Table 1, the Shapiro-Wilk (SW) test for
normality indicates that tourist arrivals in Austria is the only normally distributed series.
This suggests that when discussing central tendency and variation it is more appropriate
to consider the median and IQR for all majority of the series which are skewed whilst for
Austrian tourist arrivals the mean and standard deviation (SD) criterion is appropriate. In
addition, given that parametric models are used in this forecast evaluation it is important
to note that skewed tourist arrivals data does impact the statistical modelling procedure.
This is because, having data that is skewed is equivalent to having skewed errors for any
linear time series model, and as Hassani et al. (2013b) notes this leads to the need for
data transformations which are infamous for causing a loss of information.

During the 13 year period, the highest median tourist arrivals was reported in Italy
whilst the lowest median tourist arrivals had been in Cyprus. Based on the IQR, the most
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variation in tourist arrivals was recorded in Italy whilst the least variation was in Cyprus.
However, if we were to consider variation in monthly tourist arrivals based on the standard
deviation then again the results are consistent with those reported based on the IQR. As
majority of the tourist arrivals series are skewed, it is better to rely on the coefficient
of variation (CV) criterion to compare the variability between countries. Based on the
CV, Greece reports the highest variation in tourist arrivals whilst Netherlands reports
the lowest variation in tourist arrivals. The OCSB (Osborn et al., 1988) test for seasonal
unit roots indicates that except for the Dutch tourist arrivals series, all other series have
seasonal unit roots.

[Insert Table 1 around here]

Results from the Bai and Perron (2003) test for break points is reported in Table 2.
Between 2000 and 2013 the only country to experience two structural breaks in tourist
arrivals is Germany whilst Cyprus and Sweden has experienced no structural breaks during
this period. We use this information to determine training and validation sets for our
forecasting exercise which follows. As 2011 April is the last structural break experienced
by at-least one of the countries considered here, we use data from January 2000 - April
2011 for training and testing the forecasting models, and set aside as validation sets the
observations from May 2011 - December 2013 which is approximately 2.5 years. This is
done in order to ensure that no model has any undue advantage because both parametric
and nonparametric methods are considered in this study. It is well known that methods
such as SSA can handle non-stationarity well, and that it is less sensitive to structural
breaks as was shown recently in Silva and Hassani (2015) where the authors considered
the same ARIMA, ETS and Neural Network models from the forecast package alongside
SSA in an application on forecasting U.S. trade. Moreover, this approach will enable us
to ascertain whether structural breaks in the training samples have adverse effects on the
forecasts generated by these models.

[Insert Table 2 around here]

Reported in Table 3 are the parameters of the fitted models during the training process
for the selected European tourist arrivals series. It should be noted that the parameters
reported for ARIMA, ETS, NN, TBATS and ARFIMA are those relevant at the first
instance. This is because these parameters keep changing over any selected forecasting
horizon as the algorithms re-estimate a new model fit each time a new observation is
introduced. In contrast, the SSA-V and SSA-R model parameters once fitted remain
constant and do not vary. Thus, the SSA model is more stable and it will be interesting
to see how the constant SSA models compete with the varying models in the forecasting
exercise which follows.

[Insert Table 3 around here]

Whilst ARIMA, ETS, NN, TBATS, and ARFIMA models can be automatically es-
timated via the algorithms freely accessible through the forecast package in R, for SSA,
here we use the conventional method which requires an understanding of the theory un-
derlying the technique. As such, in order to enlighten the reader on how each SSA model
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was trained, as an example, below we present Figure 2 and briefly explain the process
involved in fitting the SSA(48,13) model for German tourist arrivals.

[Insert Figure 2 around here]

We begin by considering only the training data for German tourist arrivals. The first
step is to analyze the periodogram in order to identify the dominating frequencies. In
this case it is clear that the 12 month seasonal component is dominating tourist arrivals
in Germany with some comparatively small peaks visible around 2, 4 and 6 months as
well. Accordingly, we follow the method in Hassani (2007) and select L proportional to
the dominating frequency of 12. We then evaluate L = 24, 36, 48 and 60, and during each
evaluation we study the paired-eigenvectors to ascertain which decomposition provides the
best in-sample fitting. The paired-eigenvectors for Germany showed that beyond r = 13
there were no eigenvectors which represents the seasonal components of interest, i.e. 12,
6, 4, and 2 months. As such, in this case we choose SSA(48,13) as the fitted model for
Germany. This model is then used to calculate the out-of-sample forecasts. The same
steps are followed for the remaining time series.

As SSA is the only filtering technique used in this paper we find it pertinent to comment
with regard to the separation of signal and noise as achieved via SSA. The weighted
correlation (w-correlation) statistic can be used to present the appropriateness of the
various decompositions achieved by SSA (see, Table 3). As mentioned in Golyandina
et al. (2001), the w-correlation is a statistic which shows the dependence between two
time series. It can be calculated as:
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Y
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N

)
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k (i, j = 1, 2), wk=min{k, L,N − k} (here, assume L ≤ N/2).

The w-correlation is interpreted such that if its value between two reconstructed com-
ponents are close to 0, it confirms that the corresponding time series are w-orthogonal and
are well separable (Hassani et al., 2009), and thus confirms the noise is indeed random
even though residual randomness is not an explicit concern for nonparametric models.
Table 4 shows the w-correlations for all SSA decompositions by comparing the two com-
ponents of signal and noise. Here, we use as signal the reconstructed series containing
r components and select the remaining r (which does not belong to the reconstruction)
as noise. As evident, all w-correlations are close to 0 and this confirms that SSA has
successfully achieved a sound separation between noise and signal.

[Insert Table 4 around here]
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4.2 Measures for Evaluating the Forecast Accuracy

Root Mean Squared Error (RMSE)

The RMSE is used to measure the forecast accuracy. Recently it has been widely adopted
in forecasting literature, see for example, inter-alia, Hassani et al. (2009, 2013b); Hassani
and Silva (2015); Silva and Hassani (2015). Here, in order to save space, we only provide
the RMSE ratios of SSA to that of NN:

RMSE =
SSA

NN
=

(∑N
i=1(ŷT+h,i − yT+h,i)

2
)1/2

(∑N
i=1(ỹT+h,i − yT+h,i)2

)1/2
,

where, ŷT+h is the h-step ahead forecast obtained by SSA, ỹT+h is the h-step ahead forecast
from the NN model, and N is the number of the forecasts. If SSA

NN
is less than 1, then SSA

outperforms NN by 1- SSA
ETS

percent.

Direction of Change (DC)

The DC criterion is a measure of the percentage of forecasts that accurately predict the
direction of change (Hassani et al., 2013a). DC is an equally important measure, as the
RMSE, for evaluating the forecasting performance of tourism demand models, because it
is important that for example, when the actual series is illustrating an upwards trend,
the forecast is able to predict that upward trend and vice versa. Here, the concept
of DC is explained in brief, and in doing so we mainly follow Hassani et al. (2013a).
In the univariate case, for forecasts obtained using XT , let DXi be equal to 1 if the
forecast is able to correctly predict the actual direction of change and 0 otherwise. Then,
D̃X =

∑n
i=1DXi/n shows the proportion of forecasts that correctly identify the direction

of change in the actual series.

5 Empirical Results

Table 5 presents the empirical results from the univariate forecasting exercise. The first
observation is that no single model is able to provide the best forecast of inbound tourism
for all European countries across both the short and long run. Secondly, ETS, NN,
ARFIMA, MA and WMA models are unable to report the best forecast for any of the
countries, at least on one occasion and thus we are able to rule that these models are
irrelevant for forecasting European tourism demand. ARIMA, TBATS, and the two SSA
models appear to be lucrative based on the RMSE criterion. The findings pertaining
to the performance of NN and ETS model forecasts are consistent with the findings in
Hassani et al. (2015) where the same two models were seen providing the least favourable
forecasts for U.S. tourism demand forecasting. Also of interest is to note that very simple
forecasting methods such as MA and WMA report lower RMSE’s than NN and ARFIMA
models on at least one instance for all countries evaluated here. This further indicates that
the more advanced econometrics which govern NN and ARFIMA techniques are actually
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unable to develop sound models when faced with tourist arrivals data. The fact that
TBATS reports a better performance than NN and ETS in this case was expected as by
definition TBATS was developed for handling time series with complex seasonal patterns
(De Livera et al., 2011) and this application shows it is able to report a reasonable
performance whilst there is ample room for improvements to this algorithm.

[Insert Table 5 around here]

The bold font in Table 5 shows the model with the lowest RMSE at each horizon.
Overall, based on the the highest number of bold outcomes reported by a particular
model we can suggest that on average across all horizons the two SSA models are able to
provide the optimal univariate forecasts in comparison to forecasts from the other models.
More specifically, if one is interested in using a single model which can provide the most
accurate forecast of tourism demand for a particular country, then we can make the
following suggestions. When forecasting tourism demand in Germany, Greece, Cyprus,
Portugal, Sweden, and UK the SSA-R model can provide the best forecasts whilst for
Italy, Netherlands and Austria SSA-V model is the best option. For Spain the traditional
ARIMA model is seen providing the best forecasts on average. Furthermore, focusing on
the forecasts with the lowest RMSE at each horizon, then we maintain that this depends
on a mixture of forecasting models for a given country based on the horizon of interest.

Taking a closer look at the forecasting results for each country at each horizon in detail
uncovers the following. Firstly, we find that ARIMA provides the best forecasts for tourist
arrivals in Germany and Greece in both the very short and very long run whilst SSA-R
forecasts outperform the rest at h = 3, 6, 12 steps-ahead. For tourist arrivals in Spain,
forecasts from TBATS are found to be best at h = 1, 3, 24 steps-ahead whilst ARIMA
forecasts are seen reporting the lowest RMSE at h = 6, 12 steps-ahead. SSA-V forecasts
provide the lowest error for tourist arrivals in Italy at horizons of 1, 12 and 24 steps
ahead with SSA-R reporting the best forecast at 3 months ahead and ARIMA reporting
the best forecast at 6 months ahead. For tourist arrivals in Cyprus, SSA-V forecasts are
best in the very short run and SSA-R forecasts are best in the medium term (h = 3, 6)
whilst TBATS can provide the best forecasts in the long run (h = 12, 24). TBATS is seen
reporting the best forecast for the Netherlands at h = 1 step ahead with SSA-V providing
the best forecast at all other horizons. When forecasting tourist arrivals in Austria we
find that SSA-V can provide the best forecasts at horizons of 1, 3, 12 and 24 steps-ahead
with SSA-R providing the best forecast at h = 6 months ahead. For Portugal, ARIMA
can provide the best forecast in the very short run whilst SSA-R is best at providing the
better forecasts at all remaining horizons. For Sweden, forecasts from ARIMA are best at
horizons of 1 and 6 steps ahead whilst SSA-V forecasts are best at 3 and 12 steps ahead
with SSA-R providing the best forecast in the very long run. For UK once again ARIMA
provides the best forecast in the very short run whilst SSA-R provides the best forecasts
for the remaining horizons.

The results in Table 5 also make it clear that the SSA models appear to be best es-
pecially beyond h = 1 step-ahead as majority of the instances whereby SSA outperforms
the other models are in the medium - long term cases. These results are useful to practi-
tioners for various reasons. First, it enables them to easily determine which model is best
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in general overall for modelling and forecasting tourist arrivals in these selected countries
should one only wish to use a single model. Second, the results also enable practition-
ers to select which model is on average best for forecasting a particular horizon across
all countries. Third, a more closer look enables practitioners to pick the best model for
forecasting a chosen horizon for each individual country.

However, relying on the RMSE alone for determining the best forecasting model is
not statistically efficient. As such, we go a step further and test all our out-of-sample
forecasting results for statistical significance using both the modified Diebold-Mariano
(DM) test in Harvey et al. (1997) and the Kolmogorov-Smirnov Predictive Accuracy
(KSPA) test in Hassani and Silva (2015) which is better sized and more powerful than
the DM test. For this purpose we consider SSA-R forecasts as a benchmark and calculate
the RRMSE comparing forecasts from each other model against our chosen benchmark.
The choice of SSA-R as the benchmark model is a result of many positive aspects. First,
for the 10 countries considered in this study, forecasts from the SSA-R model report the
lowest average RMSE across all horizons in 6 out of the 10 cases which is equivalent
to 60% of all cases. Second, SSA-R forecasts report the highest number of the lowest
RMSEs at each horizon for all countries considered here. Thus, based on the criterion of
a loss function it is clear that in general the SSA-R is the best performing model overall.
However, instead of relying on the RMSE criterion alone, we also consider the Model
Confidence Set (MCS) of Hansen et al. (2011). The results show that across all horizons,
the SSA-R model is constantly ranked as either first, second or third in comparison to
the other nine models which provides added justification for its choice as a benchmark in
this study (the detailed results from Hansen et al.’s (2011) MCS test are available upon
request).

The RRMSE results are reported in Table 6. The RRMSE criterion can provide us
with the following information. Suppose that we wish to quantify how well a particular
model fares against the benchmark, then if we consider the average RRMSE between SSA-
R and ARIMA forecasts for Germany, the value of 0.93 indicates that SSA-R forecasts
are 7% better on average across all horizons than the ARIMA forecasts for same country.
In terms of statistically significant differences between forecasts, all forecasts from NN,
ARFIMA, MA and WMA models are found to have statistically significant differences
in comparison to forecasts from SSA-R. The score indicates the number of statistically
significant outcomes reported by SSA-R in comparison to other models for each country.
The percentage score indicates that across all countries the number of statistically sig-
nificant outcomes have always been at or above a minimum of 63% and thus indicates
the SSA-R results do in fact represent a considerable amount of statistically significant
outcomes in this study.

[Insert Table 6 around here]

In line with good statistical practice we also consider the direction of change (DC)
predictions of all forecasts. These are reported in Table 7. SSA-V forecasts interestingly
reports the largest number of highest average DC predictions across all horizons for the
countries considered in this study, whilst ARIMA is second best. The DC results for the
SSA-R forecasts are not the best but it is important to remember that the DC criterion
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should always be coupled with results from a loss function for the accuracy of forecasts
in order to make meaningful decisions. Practitioners can use the information in the DC
table in combination with the results in Tables 5 and 6 to determine which model to use
to obtain forecasts for a particular country based on the objective of the exercise. This
enables them to reach a compromise between the accuracy of forecasts in terms of the
lowest possible error and the best DC prediction.

[Insert Table 7 around here]

Given that in general SSA-R is found to be the most appropriate model out of those
evaluated here for forecasting European tourist arrivals, it is important to show how this
new approach can be useful to tourism forecasting practitioners. Recall that classical
time series models forecast both the signal and noise, however SSA is a model which can
perform the tasks of signal extraction and noise filtering. This in turn means that by
using SSA-R practitioners can not only decompose tourist arrivals to clearly understand
the dynamics underlying trend and seasonal fluctuations but also obtain separate forecasts
for each of these components. As an example, shown in Figure 3 are signals extracted via
SSA for German tourist arrivals. Given that the signals are separately identified they can
also be forecasted separately enabling better managerial decisions in both the short and
long run by focussing on the seasonal fluctuations expected in tourist arrivals.

[Insert Figure 3 around here]

6 Conclusion

The aim of this paper is to generate and evaluate international tourist arrival forecasts in
selected European countries. We focus on short-, medium- and long-run forecasts using
several parametric and nonparametric forecasting techniques. The countries under inves-
tigation are Austria, Cyprus, Germany, Greece, Netherlands, Portugal, Spain, Sweden
and the United Kingdom and the study period spans from January 2000 until December
2013. Previous studies mainly compare different specifications of a single model or use a
limited number of different classes of models. This study provides the most comprehensive
forecasting comparison among several parametric and non-parametric techniques, namely,
the ARIMA, ETS, NN, TBATS, ARFIMA, MA, WMA, SSA-R and SSA-V. Furthermore,
this is the first study to use the TBATS and SSA-R models for tourist arrival forecasting
purposes.

The results suggest that there is not a single model that its forecasting accuracy con-
sistently outperforms that of all other models for any of the countries under investigation
and any of the forecasting horizons. The implication of these results is that customize
model building is required in order to increase forecast accuracy over different countries
and periods, an issue already highlighted by Dharmaratne (1995). More specifically, based
on the RMSE, DC and DM tests, the SSA-R, SSA-V, ARIMA and TBATS models are
found to be viable options for modelling European tourist arrivals based on the number of
times that they outperform the competing models. Forecasts from NN, ETS, ARFIMA,
MA and WMAmodels provide the least accurate predictions for European tourist arrivals.
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In addition, these results enable forecasters to choose the most suitable model, based
on the country, forecast horizon and direction of change criteria, for forecasting tourism
demand. Should a single model be of interest, then, across all selected countries and hori-
zons the SSA-R model is found to be the most efficient based on lowest overall forecasting
error.

Overall, tourism serves as a key economic activity and a major source of income
for many European countries, which can have positive spillover effects to employment,
economic development and wellbeing. This fact stresses the need for accurate tourist
arrivals forecasts and the identification of the best forecasting models, especially due to
the perishable nature of the tourism product. Thus, we maintain that our findings have
important implications for tourism planning, entrepreneurs, investors, policy makers, tour
operators and others alike.

As previously, future research could be aimed at revisiting the robustness of our results
in multivariate nonlinear frameworks, which controls for additional exogenous variables
that affect tourism demand. Moreover, an avenue for future research is to examine whether
a combination of forecasts based on the aforementioned models provides any additional
gains in the forecasting accuracy of tourism demand. It is also important to cater to views
which oppose the use of econometric techniques. For example, some authors argue that
econometric forecasting techniques fail to produce realistic forecasts and that qualitative
indicators can enable more accurate forecasting. Future studies pertaining to multivariate
tourism demand forecasting in Europe should consider including qualitative indicators,
such as those which can be derived from a Delphi panel of tourism experts (see for
example, Lin and Song (2015)) and evaluate whether these forecasts can outperform
ARIMA, TBATS and SSA-R forecasts for European tourism demand.
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Table 1: Descriptive statistics for European tourist arrivals (Jan. 2000 - Dec. 2013).
Min. Max. Mean Med. IQR SD CV SW (p) OCSB

Germany 878100 3895000 1953000 1849000 909447 641550 32 <0.01 1
Greece 88040 2838000 762900 555100 1065914 686634 89 <0.01 1
Spain 1566000 6744000 3449000 3429000 2449991 1366387 39 <0.01 1
Italy 1067000 7457000 3415000 3442000 2863705 1653644 48 <0.01 1
Cyprus 30746 321844 158692 187800 154268 83409 53 <0.01 1
Netherlands 451200 1541087 874767 895900 408633 241150 28 <0.01 0
Austria 492255 2834741 1501201 1480754 661226 475432 32 0.67* 1
Portugal 192923 1181643 533720 531457 369484 227719 43 <0.01 1
Sweden 125916 1428207 383473 240430 187245 303655 79 <0.01 1
United Kingdom 692120 3162159 1628266 1495147 770656 546790 34 <0.01 1

Note: * indicates data is normally distributed based on a Shapiro-Wilk (SW) test at p=0.05. 0 indicates there is no

seasonal unit root based on the OCSB test at p=0.05. 1 indicates there is a seasonal unit root based on the OCSB test at

p=0.05.

Table 2: Break points in European tourist arrivals series.
Series Structural Break
Germany 2005(4), 2011(4)
Greece 2009(4)
Spain 2006(3)
Italy 2010(4)
Cyprus None
Netherlands 2011(3)
Austria 2007(5)
Portugal 2006(3)
Sweden None
United Kingdom 2005(4)
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Table 3: Forecasting model parameters for European tourist arrivals.
Series ARIMA ETS(α, γ, σ) NN(p, P, k) TBATS ARFIMA(d) SSA-V SSA-R

Germany (0,1,1)(1,1,1) (0.485,1e-04,0.0415)M NNAR(2,1,1) (0.357,{0,0},1,{<12,5>}) 0.33 (48,13) (48,13)

Greece (3,1,1)(0,1,2) (0.7496,1e-04,0.0796)M NNAR(2,1,1) (0,{0,0},-,{<12,5>}) 0.27 (36,20) (36,20)

Spain (1,0,2)(0,1,1) (0.4911,4e-04,0.0308)M NNAR(2,1,1) (0.082,{0,0},-,{<12,5>} 0.27 (36,22) (36,22)

Italy (0,0,2)(0,1,1) (0.2463,1e-04,0.0573)M NNAR(2,1,1) (0,{0,0},0.999,{<12,5>}) 0.35 (60,16) (60,16)

Cyprus (1,0,1)(2,0,0) (0.649,0.0015,0.0937)M NNAR(2,1,1) (0.301,{0,0},1,{<12,5>}) 0.29 (36,14) (36,14)

Netherlands (1,0,2)(2,1,2)* (0.3069,1e-04,0.0565)M NNAR(2,1,1) (1,{2,0},-,{<12,5>}) 0.32 (36,11) (36,11)

Austria (2,0,3)(2,1,2) (0.0628,1e-04,0.0628)M NNAR(2,1,1) (0.263,{1,0},1,{<12,5>}) 0.19 (60,20) (60,20)

Portugal (1,0,1)(0,1,2) (0.4834,1e-04,0.0531)M NNAR(2,1,1) (0.027,{0,0},-,{<12,5>}) 0.19 (36,14) (36,14)

Sweden (1,0,1)(1,1,1) (0.8362,1e-04,0.0884)M NNAR(2,1,1) (0,{2,0},0.999,{<12,5>}) 0.09 (60,20) (48,20)

United Kingdom (1,0,3)(0,1,1) (0.3707,1e-04,127846.3)M NNAR(2,1,1) (0.557,{0,0},-,{<12,4>}) 4.58e-05 (48,8) (48,8)

Note:* indicates an ARIMA model with drift. M is an ETS model with multiplicative seasonality. α, γ, σ are the ETS smoothing

parameters. p is the number of lagged inputs, P is the automatically selected value for seasonal time series, and k is the number of nodes in

the hidden layer. d is the differencing parameter. L is the window length and r is the number of eigenvalues.

Table 4: W -correlations between signal and residuals for European arrivals.
Series SSA-V SSA-R
Germany 0.005 0.005
Greece 0.006 0.006
Spain 0.005 0.005
Italy 0.004 0.004
Cyprus 0.010 0.010
Netherlands 0.009 0.009
Austria 0.005 0.006
Portugal 0.006 0.006
Sweden 0.020 0.020
United Kingdom 0.014 0.014
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Table 5: Out-of-sample RMSE results for European tourist arrivals.
h Germany Greece Spain Italy Cyprus Netherlands Austria Portugal Sweden UK

ARIMA

1 60878 87469 178075 286925 14583 73122 124291 43163 26310 169626

3 83511 162309 264844 300433 26090 82915 120614 64763 26216 236219
6 100444 193335 283152 246547 28481 87697 112352 75174 23456 274589
12 69436 237010 205741 249131 23899 111354 134475 76410 29027 314892
24 67705 148597 338420 392398 30902 183056 160058 124777 50192 326923

Avg. 76395 165744 254047 295087 24791 107629 130358 76857 31040 264450
ETS

1 72512 167965 175616 323764 17224 70263 101502 47590 68145 182703
3 91323 404044 283443 374324 34538 73491 99931 68241 135865 252056
6 110840 511331 371152 305881 43624 85819 101770 94031 71223 281880
12 158631 220320 185833 287974 15988 98392 125114 75547 26005 320905
24 307251 203286 292574 501241 21318 158859 194347 128418 36960 335751

Avg. 148111 301389 261723 358637 26538 97365 124533 82765 67640 274659
NN

1 583107 927936 1216291 1656221 136427 302251 818291 286229 277131 647598
3 601307 1103090 1331447 1797720 148617 289456 880077 249931 277702 666412
6 592265 791876 1523879 2060446 170584 253952 828686 252160 260963 576560
12 870987 857915 1416616 2384578 191839 314958 562093 289237 241766 526148
24 1043841 947666 2101843 2852818 114903 366222 533021 377186 340947 691906

Avg. 738302 925697 1518015 2150357 152474 305368 724434 290949 279702 621725
TBATS

1 69755 172827 165087 341700 19861 67244 112262 52697 59588 185346
3 74674 341103 251317 355806 30749 75087 109237 63350 118345 236517
6 82177 460453 339932 277413 38975 83379 108682 94370 82045 262771
12 68885 327041 226438 292928 17494 89928 124210 76427 50967 323241
24 96389 413543 308376 420722 25576 138154 157441 124781 80656 308798

Avg. 78376 342993 258230 337714 26531 90758 122366 82325 78320 263335
ARFIMA

1 288078 288527 561791 762573 32801 151566 277166 121087 147602 243738
3 498755 615426 1326277 1147309 53293 185584 327985 234275 170292 405534
6 485296 612500 1429433 1058050 51604 228567 325631 231540 188204 437942
12 549514 464374 1551741 764317 52636 187482 358598 206498 191729 426249
24 836800 723297 1931975 1264606 78506 258383 429657 335729 250608 846006

Avg. 531689 540825 1360244 999371 53768 202317 343808 225826 189687 471894
MA

1 637064 979459 1661302 2043813 99010 254921 540455 281083 290753 592365
3 658873 998163 1699850 2082005 101508 261917 550803 291222 297800 619711
6 622732 943896 1593884 1973884 98977 263549 530519 282545 267091 611181
12 682499 988361 1667793 2061660 101779 274967 558132 292833 285396 610854
24 792078 1114764 1763340 2235045 101930 336051 616373 338849 292973 775489

Avg. 678649 1004929 1677234 2079282 100641 278281 559256 297306 286803 641920
WMA

1 631179 967730 1645032 2025634 97872 251307 534917 277641 290926 1604285
3 660584 1002643 1708466 2094682 102017 261860 555184 291589 299831 1595970
6 626773 954457 1616596 1998628 100696 264632 525656 285307 267618 1528163
12 672316 979103 1639693 2033847 99965 272358 553260 288561 284382 1657902
24 781818 1095737 1720151 2190781 100261 330624 608686 333213 291744 1953622

Avg. 674534 999934 1665988 2068714 100162 276156 555540 295262 286900 1667988
SSA-V

1 66754 90421 187053 269987 12452 79624 110669 43899 30150 219075
3 74657 161642 258974 247843 19309 72825 97258 53920 23912 238796
6 84512 174413 319133 247302 25103 76307 100631 65085 24282 244749
12 71809 198750 273338 230185 27319 82871 92983 75607 26318 226785
24 79860 156307 474835 289067 36938 114085 131438 102602 49615 322121

Avg. 75518 156307 302667 256877 24224 85142 106596 68223 30855 250305
SSA-R

1 66278 87807 197206 273286 14132 80036 111899 45565 27880 214170
3 69996 151700 343912 243894 17722 75227 104308 52128 24230 225354

6 74054 157592 396543 248764 17923 78755 99183 58928 25766 232604

12 53384 173704 227745 256370 21241 86821 96732 68175 26986 222035

24 82974 177537 409057 298978 33875 126767 167380 97214 34386 280366

Avg. 69337 149668 314892 264258 20979 89521 115900 64402 27850 234906

Note: Shown in bold font is the model reporting the lowest RMSE at each horizon for a given country.
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Table 6: Out-of-sample RRMSE results for European tourist arrivals with SSA-R as the
benchmark model.

h Germany Greece Spain Italy Cyprus Netherlands Austria Portugal Sweden UK
SSA−R
ARIMA

1 1.09 1.00 1.11 0.95 0.97 1.09 0.90 1.06 1.06† 1.26∗

3 0.84 0.93 1.30∗ 0.81 0.68‡ 0.91♭ 0.86 0.80∗ 0.92 0.95
6 0.74† 0.82 1.40∗ 1.01 0.63∗,† 0.90‡ 0.88 0.78∗ 1.10∗ 0.85
12 0.77 0.73∗,† 1.11 1.03 0.89 0.78 0.72∗,‡ 0.89∗ 0.93 0.71‡

24 1.23∗ 1.19∗ 1.21∗ 0.76∗ 1.10∗ 0.69∗,† 1.05∗ 0.78∗ 0.69∗ 0.86∗

Avg. 0.93 0.94 1.22 0.91 0.85 0.87 0.88 0.86 0.94 0.93
SSA−R
ETS
1 0.91 0.52∗,† 1.12 0.84 0.82 1.14 1.10 0.96 0.41∗ 1.17

3 0.77 0.38† 1.21♭ 0.65 0.51∗,† 1.02 1.04 0.76 0.18∗,† 0.89
6 0.67∗,† 0.31∗,† 1.07 0.81 0.41∗,† 0.92 0.97 0.63∗,† 0.36∗,† 0.83
12 0.77∗,† 0.73 1.11 1.03 0.89 0.78 0.72‡ 0.89∗ 0.93 0.71
24 0.27∗,† 0.87∗ 1.40∗ 0.60∗ 1.59∗ 0.80∗,† 0.86∗ 0.76∗ 0.93∗ 0.84∗

Avg. 0.68 0.56 1.18 0.79 0.84 0.93 0.94 0.80 0.56 0.89
SSA−R

NN
1 0.11∗,† 0.09∗,† 0.16∗,† 0.17∗,† 0.10∗,† 0.26∗,† 0.14∗,† 0.16∗,† 0.10∗,† 0.33∗,†

3 0.12∗,† 0.14∗,† 0.26∗,† 0.14∗,† 0.12∗,† 0.26∗,† 0.12∗,† 0.21∗,† 0.09∗,† 0.34∗,†

6 0.13∗,† 0.20∗,† 0.26∗,† 0.12∗,† 0.11∗,† 0.31∗,† 0.12∗,† 0.23∗,† 0.10∗,† 0.40∗,†

12 0.06∗,† 0.20∗,† 0.16∗,† 0.11∗,† 0.11∗,† 0.28∗,† 0.17∗,† 0.24∗,† 0.11∗,† 0.42∗,†

24 0.08∗,† 0.19∗,† 0.19∗,† 0.10∗,† 0.29∗,† 0.35∗,† 0.31∗,† 0.26∗,† 0.10∗,† 0.41∗,†

Avg. 0.10 0.16 0.21 0.13 0.15 0.29 0.17 0.22 0.10 0.38
SSA−R
TBATS

1 0.95 0.51∗,† 1.19 0.80 0.71∗,‡ 1.19♭ 1.00 0.86 0.47∗ 1.16

3 0.94 0.44 1.37♭ 0.69 0.58‡ 1.00 0.95 0.82 0.20∗,‡ 0.95‡

6 0.90 0.34∗,‡ 1.17 0.90 0.46∗,† 0.94 0.91 0.62∗,† 0.31∗ 0.89†

12 0.77† 0.53 1.01 0.88∗ 1.21 0.97 0.78 0.89∗ 0.53 0.69‡

24 0.86∗ 0.43∗ 1.33∗ 0.71∗ 1.32∗ 0.92∗ 1.06∗ 0.78∗ 0.43∗ 0.91∗

Avg. 0.88 0.45 1.21 0.79 0.86 1.00 0.94 0.80 0.39 0.92
SSA−R

ARFIMA
1 0.23∗,† 0.30∗,† 0.35∗,† 0.36∗,† 0.43∗,† 0.53∗,† 0.40∗,† 0.38∗,† 0.19∗,† 0.88∗,†

3 0.14∗,† 0.25∗,† 0.26∗,† 0.21∗,† 0.33∗,† 0.41∗,† 0.32∗,† 0.22∗,† 0.14∗,† 0.56∗,†

6 0.15∗,† 0.26∗,† 0.28∗,† 0.24∗,† 0.35∗,† 0.34∗,† 0.30∗,† 0.25∗,† 0.14∗,† 0.53∗,†

12 0.10∗,† 0.37∗,† 0.15∗,† 0.34∗,† 0.40∗,† 0.46∗,† 0.27∗,† 0.33∗,† 0.14∗,† 0.52∗,†

24 0.10∗,† 0.25∗,† 0.21∗,† 0.24∗,† 0.43∗,† 0.49∗,† 0.39∗,† 0.29∗,† 0.14∗,† 0.33∗,†

Avg. 0.14 0.29 0.25 0.28 0.39 0.45 0.34 0.29 0.15 0.56
SSA−R

MA
1 0.10∗,† 0.09∗,† 0.12∗,† 0.13∗,† 0.14∗,† 0.31∗,† 0.21∗,† 0.16∗,† 0.10∗,† 0.36∗,†

3 0.11∗,† 0.15∗,† 0.20∗,† 0.12∗,† 0.17∗,† 0.29∗,† 0.19∗,† 0.18∗,† 0.08∗,† 0.36∗,†

6 0.12∗,† 0.17∗,† 0.25∗,† 0.13∗,† 0.18∗,† 0.30∗,† 0.19∗,† 0.21∗,† 0.10∗,† 0.38∗,†

12 0.08∗,† 0.18∗,† 0.14∗,† 0.12∗,† 0.21∗,† 0.32∗,† 0.17∗,† 0.23∗,† 0.09∗,† 0.36∗,†

24 0.10∗,† 0.16∗,† 0.23∗,† 0.13∗,† 0.33∗,† 0.38∗,† 0.27∗,† 0.29∗,† 0.12∗,† 0.36∗,†

Avg. 0.10 0.15 0.19 0.13 0.21 0.32 0.21 0.21 0.10 0.37
SSA−R
WMA

1 0.11∗,† 0.09∗,† 0.12∗,† 0.13∗,† 0.14∗,† 0.32∗,† 0.21∗,† 0.16∗,† 0.10∗,† 0.13∗,†

3 0.11∗,† 0.15∗,† 0.20∗,† 0.12∗,† 0.17∗,† 0.29∗,† 0.19∗,† 0.18∗,† 0.08∗,† 0.14∗,†

6 0.12∗,† 0.17∗,† 0.25∗,† 0.12∗,† 0.18∗,† 0.30∗,† 0.19∗,† 0.21∗,† 0.10∗,† 0.15∗,†

12 0.08∗,† 0.18∗,† 0.14∗,† 0.13∗,† 0.21∗,† 0.32∗,† 0.17∗,† 0.24∗,† 0.09∗,† 0.13∗,†

24 0.11∗,† 0.16∗,† 0.24∗,† 0.14∗,† 0.34∗,† 0.38∗,† 0.27∗,† 0.29∗,† 0.12∗,† 0.14∗,†

Avg. 0.10 0.15 0.19 0.13 0.21 0.32 0.21 0.22 0.10 0.14
SSA−R
SSA−V

1 0.99 0.97 1.05 1.01 1.13∗ 1.01 1.01 1.04 0.92 0.98
3 0.94 0.94 1.33 0.98 0.92 1.03 1.07 0.97 1.01 0.94
6 0.88 0.90 1.24∗ 1.01 0.71∗,‡ 1.03∗ 0.99 0.91∗ 1.06 0.95
12 0.74∗,‡ 0.87 0.83∗ 1.11 0.78∗ 1.05∗ 1.04∗ 0.90 1.03 0.98∗

24 1.04∗ 1.14∗ 0.86∗ 1.03∗ 0.92∗ 1.11∗ 1.27∗ 0.95∗ 0.69∗ 0.87∗

Avg. 0.92 0.96 1.06 1.03 0.89 1.05 1.08 0.95 0.94 0.94
Score 27 29 28 25 32 26 26 32 31 26

% Score 0.68 0.73 0.70 0.63 0.80 0.65 0.65 0.80 0.78 0.65
Note: * indicates a statistically significant difference between forecasts based on the modified Diebold Mariano test at p = 0.10. Score

indicates the number of statistically significant outcomes for each horizon. All KSPA tests are significant at p = 0.05. ♭ indicates a

statistically significant difference between the distribution of forecasts based on the two-sided KSPA test. ‡ indicates that the model
reporting the lowest error also reports a stochastically smaller error than errors from the competing model based on the one-sided KSPA

test. † indicates a statistically significant difference between the two forecasts based on both one-sided and two-sided KSPA tests.
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Table 7: Direction of change results for European tourist arrivals.
h Germany Greece Spain Italy Cyprus Netherlands Austria Portugal Sweden UK

ARIMA

1 1.00* 0.91* 1.00* 0.97* 0.91* 0.84* 0.84* 1.00* 0.94* 0.84*
3 1.00* 0.90* 1.00* 1.00* 0.97* 0.97* 0.97* 1.00* 0.97* 0.93*
6 1.00* 1.00* 1.00* 0.89* 1.00* 1.00* 0.81* 0.96* 1.00* 0.85*
12 1.00* 0.38 0.43 0.52 0.38 0.33 0.43 0.29 0.62 0.57
24 1.00* 0.89* 0.33 1.00* 0.22 0.44 0.67 0.56 0.44 0.33

Avg. 1.00 0.82 0.75 0.88 0.70 0.72 0.74 0.76 0.79 0.71
ETS

1 0.91* 0.91* 0.94* 1.00* 0.91* 0.91* 0.94* 1.00* 0.94* 0.91*
3 1.00* 0.97* 1.00* 1.00* 1.00* 1.00* 0.97* 1.00* 0.97* 0.90*
6 1.00* 1.00* 1.00* 0.93* 1.00* 1.00* 0.93* 0.93* 1.00* 0.85*
12 0.24 0.52 0.57 0.52 0.19 0.67 0.52 0.38 0.67 0.48
24 0.22 0.56 0.56 0.67 0.22 0.67 0.56 0.33 0.33 0.44

Avg. 0.67 0.79 0.81 0.82 0.66 0.85 0.78 0.73 0.78 0.72
NN

1 0.91* 0.47 0.75* 0.81* 0.72* 0.63 0.34 0.56 0.59 0.41
3 0.77* 0.77* 0.77* 0.80* 0.67 0.80* 0.70* 0.73* 1.00* 0.83*
6 0.81* 0.85* 0.78* 0.85* 0.70* 0.85* 0.52 0.93* 0.85* 0.85*
12 0.52 0.48 0.38 0.33 0.19 0.52 0.43 0.38 0.67 0.62
24 0.33 0.44 0.22 0.56 0.11 0.67 0.67 0.22 0.89* 0.56

Avg. 0.67 0.60 0.58 0.67 0.48 0.69 0.53 0.56 0.80 0.65
TBATS

1 0.91* 0.84* 1.00* 0.97* 0.88* 0.91* 0.88* 1.00* 0.91* 0.91*
3 1.00* 0.97* 1.00* 1.00* 0.97* 0.93* 1.00* 1.00* 1.00* 0.90*
6 1.00* 1.00* 1.00* 0.93* 1.00* 1.00* 0.89* 0.93* 1.00* 0.89*
12 1.00* 0.62 0.43 0.57 0.38 0.86* 0.38 0.38 0.67 0.48
24 1.00* 0.33 0.33 0.78 0.33 0.89* 0.44 0.33 0.56 0.44

Avg. 0.98 0.75 0.75 0.85 0.71 0.92 0.72 0.73 0.83 0.72
ARFIMA

1 0.84* 0.88* 0.84* 0.88* 0.97* 0.75* 0.84* 0.75* 0.78* 0.75*
3 0.77* 0.97* 0.73* 0.80* 0.87* 0.80* 0.83* 0.77* 0.93* 0.83*
6 0.89* 0.93* 0.89* 0.89* 1.00* 0.93* 0.70* 0.89* 0.85* 0.85*
12 0.10 0.57 0.38 0.38 0.29 0.38 0.33 0.33 0.62 0.52
24 0.00 0.11 0.33 0.33 0.11 0.33 0.33 0.22 0.67 0.22

Avg. 0.52 0.69 0.64 0.66 0.65 0.64 0.61 0.59 0.77 0.64
MA

1 0.75* 0.50 0.53 0.66 0.63 0.59 0.59 0.56 0.56 0.53
3 0.73* 0.77* 0.70* 0.77* 0.73* 0.80* 0.90* 0.63 0.83* 0.77*
6 1.00* 0.93* 0.96* 0.93* 1.00* 0.93* 0.52 0.89* 0.74* 0.93*
12 0.43 0.52 0.33 0.43 0.14 0.48 0.57 0.33 0.71* 0.57
24 0.33 0.33 0.33 0.56 0.00 0.44 0.56 0.22 0.78 0.00

Avg. 0.65 0.61 0.57 0.67 0.50 0.65 0.63 0.53 0.73 0.56
WMA

1 0.44 0.41 0.44 0.47 0.50 0.50 0.41 0.53 0.53 0.53
3 0.47 0.53 0.40 0.40 0.43 0.60 0.50 0.43 0.47 0.53
6 0.48 0.52 0.52 0.52 0.52 0.56 0.44 0.52 0.52 0.52
12 0.00 0.48 0.33 0.29 0.57 0.14 0.24 0.00 0.38 0.29
24 0.00 0.11 0.11 0.22 0.33 0.22 0.22 0.00 0.56 0.00

Avg. 0.28 0.41 0.36 0.38 0.47 0.40 0.36 0.30 0.49 0.37
SSA-V

1 0.97* 0.88* 0.97* 0.94* 0.88* 0.84* 0.91* 0.94* 0.94* 0.84*
3 0.93* 0.93* 1.00* 1.00* 1.00* 0.93* 0.93* 0.97* 0.97* 0.97*
6 1.00* 1.00* 1.00* 1.00* 1.00* 1.00* 0.89* 1.00* 0.85* 0.93*
12 0.90* 0.43 0.48 0.67 0.38 0.81* 0.81* 0.57 0.76 0.76
24 1.00* 0.67 0.11 0.78 0.67 0.78 0.78 0.78 0.78 0.56

Avg. 0.96 0.78 0.71 0.88 0.78 0.87 0.86 0.85 0.86 0.81

SSA-R

1 0.97* 0.88* 0.88* 0.97* 0.84* 0.81* 0.91* 0.94* 0.94* 0.84*
3 0.60 0.50 0.57 0.47 0.33 0.57 0.60 0.60 0.47 0.63
6 0.67 0.52 0.48 0.44 0.30 0.48 0.48 0.74* 0.41 0.56
12 0.57 0.52 0.86* 0.57 0.33 0.43 0.48 0.81* 0.48 0.67
24 0.78 0.33 1.00* 0.89* 0.22 0.78 0.78 1.00* 0.44 0.89*

Avg. 0.72 0.55 0.76 0.67 0.41 0.61 0.65 0.82 0.55 0.72

Note: Shown in bold font is the model reporting the best average DC prediction across all horizons for
a given country. * indicates the DC predictions are statistically significant based on a t-test at p = 0.05.
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Figure 1: A summary of the basic SSA process.
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Figure 2: Time series, periodogram and selected paired eigenvectors for German tourist
arrivals (Jan. 2000 - Apr. 2011).
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Figure 3: SSA signal extraction for German tourist arrivals.
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