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Abstract

Physical simulated locomotion allows rich and varied interactions with environments and

other characters. However, control is difficult due to factors such as a typical character’s

numerous degrees of freedom and small stability region, discontinuous ground contacts,

and indirect control over the centre of mass. Previous academic work has made significant

progress in addressing these problems, but typically uses simulation time steps much

smaller than those suitable for games. This project deals with developing control strategies

using larger time steps. After describing some introductory work showing the difficulties

of implementing a handcrafted controller with large physics time steps, three major areas

of work are discussed.

The first area uses trajectory optimization to minimally alter reference motions to ensure

physical validity, in order to improve simulated tracking. The approach builds on previous

work which allows ground contacts to be modified as part of the optimization process,

extending it to 3D problems. Incorporating contacts introduces difficult complementarity

constraints, and an exact penalty method is shown here to improve solver robustness and

performance compared to previous relaxation methods. Trajectory optimization is also

used to modify reference motions to alter characteristics such as timing, stride length and

heading direction, whilst maintaining physical validity, and to generate short transitions

between existing motions.

The second area uses a sampling-based approach, previously demonstrated with small

time steps, to formulate open loop control policies which reproduce reference motions.

As a prerequisite, the reproducibility of simulation output from a common game physics

engine, PhysX, is examined and conditions leading to highly reproducible behaviour are

determined. For large time steps, sampling is shown to be susceptible to physical inva-

lidities in the reference motion but, using physically optimized motions, is successfully

applied at 60 time steps per second.

Finally, adaptations to an existing method using evolutionary algorithms to learn feedback

policies are described. With large time steps, it is found to be necessary to use a dense

feedback formulation and to introduce phase-dependence in order to obtain a successful

controller, which is able to recover from impulses of several hundred Newtons applied for

0.1s. Additionally, it is shown that a recent machine learning approach based on support

vector machines can identify whether disturbed character states will lead to failure, with

high accuracy (99%) and with prediction times in the order of microseconds.

Together, the trajectory optimization, open loop control, and feedback developments allow

successful control for a walking motion at 60 time steps per second, with control and

simulation time of 0.62ms per time step. This means that it could plausibly be used

within the demanding performance constraints of games. Furthermore, the availability of

rapid failure prediction for the controller will allow more high level control strategies to

be explored in future.
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Chapter 1

Introduction

1.1 Research Problem

Physics-based locomotion methods, which combine physically simulated characters

with control strategies which mimic biological behaviour, have the potential to im-

prove many aspects of character animation, including interactiveness, motion vari-

ety and naturalness. However, formulating effective controllers is a difficult task as

characters have low instrinsic stability and many degrees of freedom to regulate, and

ground contacts introduce problematic discontinuities. In designing controllers, it

is also difficult to balance the competing objectives of robustness, motion style and

naturalness, and controllability and responsiveness.

NaturalMotion’s morpheme software is animation based (see Section 1.2, and the

capability to interact physically with the environment is limited to one-way transfer

of momentum from characters to the environment, and ragdoll simulations without

sophisticated control. euphoria has many impressive physics-based behaviours, but

does not have the functionality to reproduce a reference motion. Therefore it would

be beneficial to develop methods which are able to physically track reference motions

such as locomotion, under the same simulation conditions typically used in euphoria.

There are many existing examples of physics-based controllers, and Chapter 2 gives

an overview of the large body of existing work, but often small simulation time steps

are used and typically computational performance is not sufficient for interactive ap-

plications such as games, where animation will run alongside many other tasks. This

doctoral project, in collaboration with NaturalMotion, draws on existing work but

aims to investigate the extent to which the simulation conditions and computational

requirements of physics-based control can be brought in line with the performance

demands of games.
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To illustrate the effect of simulation time step on a control problem, consider a

simple toy example. A simple 2D rigid pendulum, with a control torque, τ , applied

at the pivot in order to follow a desired trajectory for the pendulum angle θ, models

some minimal elements of a locomotion control problem. The effect of the simulation

time step was examined by applying the following control policy

τ = k(θd − θ) + 2
√
k(θ̇d − θ̇) (1.1)

to a simulated 1m pendulum, with a desired sinusoidal trajectory of amplitude

0.2 radians and period 1s. This control strategy amounts to a critically damped

proportional-derivative control policy with proportional gain k (see Section 2.5.5).

Each time step, a simple simulation was updated using Euler integration, which is

similar to many physics engines, although more sophisticated integration schemes

such as Runge-Kutta are used in some (Erez et al. 2015). The root mean square

tracking error in θ over 5000 time steps was measured for a range of gain values, for

60 and 2000 time steps per second, as shown in Figure 1.1.1. A rate of 2000 time

steps per second or higher is often used in existing work (for example Yin et al.

(2007), Coros et al. (2010), Wang et al. (2009), Liu et al. (2010), Wu & Zordan

(2010), Wu & Popović (2010) and many others discussed in Chapter 2), while 60

time steps per second is more consistent with typical game simulations. For a given

gain, the smaller time step leads to closer tracking, and the smaller time step also

allows much larger gain values before control becomes unstable. Even for this simple

example, the smaller time step makes control significantly easier. By comparison,

a real locomotion simulation is 3D, has a more complex target trajectory, including

contact events and discontinuous behaviour, and lacks the inherent stability of the

pendulum. Furthermore, at 60 time steps per second, the duration of some impor-

tant locomotion phases such as the period between the heel landing and a firm stance

being reached will only cover a few steps of simulation. Therefore, it is reasonable

to expect that locomotion control will be significantly more difficult with large time

steps.

Chapter 3 illustrates the difficulties of large time steps in a more realistic problem,

the implementation of a handcrafted controller based on SIMBICON, a well-known

and often cited strategy from existing work.

Control strategies for simulated characters often use reference motions from mo-

tion capture or other sources as the basis of their desired behaviour. However, due

to artefacts in the process of generating motions and retargeting them to the simu-

lated character, such motions may contain physically implausible behaviour, such as

ground penetration, floating or poor balance. Without addressing these physically
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Figure 1.1.1: Effect of Time Step on Pendulum Tracking

inconsistent elements, physically simulated control based on such motion often fails.

Chapter 4 describes the use of trajectory optimization to modify reference motions

to eliminate such physical inconsistencies. The major contribution here is applying

a previously unused approach to solve contact constraints, allowing contacts to be

varied during optimization for 3D problems.

Once a physically valid reference has been generated, simulated control strategies

can be formulated. An open loop control strategy which tracks the reference motion

in the absence of disturbances is beneficial as it means that a separate feedback

controller can concentrate solely on correcting deviations from the ideal trajectory,

without having to also generate the desired base motion. Chapter 5 describes an

existing sampling-based approach for generating open loop control, and the modifi-

cations required to operate with large time steps and with more typical game physics

simulation software. Additions here include introducing a strategy to optimize the

dimensions of the sampling space, successfully demonstrating that the technique

may be modified to use much larger time steps than previous work, and introducing

a method to generate cyclic control policies.

As described above, an open loop control policy is only useful in the absence of

disturbances, and a feedback controller is required to deal with deviations from the

ideal trajectory. The adaptations required to use a feedback controller based on

evolutionary optimization with large time steps are described in Chapter 6. For

interactive applications, it is also useful to be able to detect when a disturbed

character state will lead to controller failure, and Chapter 6 describes a machine

learning approach to predicting controller success based on the character’s current

17



state. Contributions of this chapter include demonstrating that a successful feedback

controller can be obtained with sufficiently low CPU usage (4%) to be applicable in

games, and showing that a previously unused variant of a machine learning technique

can be applied to make accurate (up to 98.9%) predictions of controller success with

very low computational cost (order of microseconds).

1.2 Background on NaturalMotion

NaturalMotion was formed as a spin-off in 2001, building on research at Oxford

University into biped control using neural networks and evolutionary methods. The

company now employs around 300 staff, and has offices in Oxford, London and

San Francisco. The initial focus of the company was on producing sophisticated

animation tools for the video game and film industries. The main products on

the technology development side are morpheme, an animation middleware tool, and

euphoria, which allows real-time simulation of biological behaviours using techniques

marketed as “dynamic motion synthesis”. The company also previously produced

endorphin, a tool which uses a similar approach to euphoria, but in an offline fashion,

to generate virtual stunts for film. As well as developing animation technology, the

company began producing games in 2007, releasing its first title in 2009 and forming

a separate NaturalMotion Games division in 2010. The games division now focuses

on developing free-to-play mobile games with high production values.

morpheme is an animation system comprising a runtime engine and a tool for visually

authoring animation networks. The visualization tool provides an intuitive, node-

based, drag and drop interface to control how motions are combined at runtime

using structures such as blend trees and state machines. During authoring, the

output of animation networks can be examined exactly as it will appear in the

runtime, and powerful debugging tools are provided. The software also facilitates

integration of physics and rigid body simulation. Further features include advanced

inverse kinematics routines for tasks such as pointing, grasping, and modifying foot

positions for uneven terrain, and retargeting of animations at runtime to support

multiple characters. PC, console and mobile platforms are supported. morpheme

has featured in a number of high profile games, such as Enslaved: Odyssey to the

West, EVE Online, BioShock Infinite, DmC: Devil May Cry, Dark Souls II, The

Evil Within and Until Dawn. There are competing animation engines which offer

some similar features, such as Havok Behaviour, and many game engines such as

Unity provide graphical tools for controlling blends and transitions, but morpheme

is widely regarded as the most mature and sophisticated product of its kind.

euphoria is a system for dynamically generating motion which responds to a char-

18



acter’s environment, creating unique output and richer interaction. The system

comprises a collection of units known as behaviours, which are adaptive, high level

control modules to perform actions such as balancing, staggering or protecting the

character. Each module collects information about the character’s environment and

uses AI routines or other approaches to determine appropriate actions, which are

executed using physics simulation. Individual modules can be combined to construct

complex character behaviour. The parameters and influence of each module can be

controlled, and modules provide feedback to inform game logic. As the control pro-

vided in euphoria is complex, it has largely been limited to PC and more powerful

console platforms. The technology has featured in games such as Star Wars: The

Force Unleashed and its sequel, and a series of titles from Rockstar Games including

Grand Theft Auto IV, Grand Theft Auto V, Red Dead Redemption and Max Payne

3.

NaturalMotion began developing their own games in 2007, and released American

football titles under the name Backbreaker in 2009 on mobile and 2010 on con-

sole. The games take advantage of the company’s animation technology and physics

integration, and place emphasis on delivering impactful and unique tackles. The

mobile version was more successful than the console game. A separate NaturalMo-

tion Games division was formed in 2010, and now focuses on mobile platforms, in

particular iOS. The company has also moved to a free-to-play business model, in

which base versions of games are free, but additional features and accelerated game

progress may be purchased, and aims to distinguish its games in the free-to-play

market with high production quality. Several very successful titles have been re-

leased, including My Horse, CSR Racing and Clumsy Ninja. NaturalMotion was

acquired by Zynga in February 2014.

19



20



Chapter 2

Literature Review

2.1 Introduction

Physics-based character control is of interest to a number of disciplines, but with

different goals in each case. Biomechanics may focus very highly on physical real-

ism. In robotics, real-time control, robustness and stability are important, while

motion naturalness may be a secondary goal. For interactive, real-time applications

such as games, visual plausibility rather than perfect realism is required, but fast

and consistent performance is needed to achieve the desired frame rate, and respon-

siveness to uncertain user input is required. Movie effects require a higher degree

of fidelity, and while performance demands are not as severe as for games, time is

still important due to production constraints. This review focuses on approaches

suitable for games, but also discusses work from other fields.

At present, character control in real-time applications is typically accomplished

largely using kinematic methods. Although there has been much progress with

kinematic approaches, they have several limitations. The number of animations re-

quired to span a motion space increases exponentially with the number of parameters

describing the space, placing great demands on animators or motion capture. Some

modifications to animations are possible at runtime, such as using inverse kinemat-

ics (IK) to control footstep locations, but actions which are too far from the set of

predefined animations will be impossible to represent. Scripting responses for inter-

actions with other objects and characters is also possible, but again entails much

work for animators, and since every configuration cannot be predicted in advance,

interaction animations tend to be very repetitive.

Physics-based character methods have the potential to overcome many of these prob-

lems by generating suitable motion for a given scenario based on control principles,
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and producing lifelike and varied responses to interactions which automatically re-

flect the subtle differences in input conditions. However, there are many difficult

problems associated with providing physical character control. Typical character

models have dozens of degrees of freedom (DOF), with the result that the space

of possible control strategies is very high dimensional. Furthermore, events such

as footsteps create discontinuities in this search space, making selection of good

controllers very difficult. Characters are underactuated, in that they have no di-

rect control over the acceleration of their centre of mass (COM), but must achieve

control indirectly through manipulation of ground reaction forces (GRF). Bipedal

characters are also unstable, requiring constant active control to avoid falling. Fi-

nally, character control may have many potentially competing objectives, including

naturalness, robustness to unexpected events, and agile response to user inputs.

Physics-based character control draws on research from many areas including an-

imation, biomechanics and robotic control. This review describes the approaches

which have been considered, and their successes and limitations. The remainder of

this document is structured as follows. Section 2.2 gives a very brief overview of

physics simulation, character representations and basic balance control. Section 2.3

discusses some aspects of naturalness and perception which may inform controller

design. Methods to reduce the dimensionality of control problems are discussed in

Section 2.4. A review of existing work is given in Section 2.5. Recent trends and

open questions are discussed in Section 2.6.

2.2 Background

This section gives a very brief overview of physics simulation and physics-based

representations of characters. For a much more complete discussion, see the review

by Bender et al. (2014). Basic concepts in balance are also covered.

A physics engine determines the future state of a system based on its current state

and the forces and torques applied and in a fashion consistent with the laws of

physics, a process desribed as forward dynamics. Once the forces and torques have

been determined, the future state is evaluated by numerically integrating the equa-

tions of motion (EOM) of the system in small time steps. A typical simulation loop

is illustrated in Figure 2.2.1. It is also possible to calculate the forces and torques

required to achieve a given motion, a process known as inverse dynamics, although

this is typically more costly than forward simulation.

At each time step, the physics engine determines whether bodies have collided with

each other and applies appropriate measures to prevent interpenetration. This as-
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pect of simulation is particularly important for control, as a character’s centre of

mass motion can only be controlled via ground reaction forces. Contact handling

may be achieved using penalty forces which act in a direction normal to the col-

lision surface to push the colliding objects apart, or by constraint based methods.

For penalty methods, tuning stiffness values to avoid penetration or bouncing is

difficult, and high stiffness values may introduce instabilities with large time steps.

Constraint based methods require iterative solvers, but efficient methods capable

of handling hundreds of contacts are available. The proportion of kinetic energy

retained in a collision is described by a coefficient of restitution. See for example

the thesis by Mirtich (1996) for a more detailed discussion of collision detection

methods and responses.

Collision detection

Contact handling

Time integration

Figure 2.2.1: Typical Physics Simulation Loop

Friction is typically incorporated into physics engines using the Coulomb model. In

this model, friction may exert a force in the plane of two touching bodies of magni-

tude up to µf⊥, where f⊥ is the normal force between them and µ is the coefficient

of friction, a quantity which describes the roughness of the contact between the two

surfaces. If the tangential force f‖ is greater than the maximum frictional force,

f‖ > µf⊥, then sliding occurs. Because the frictional force is symmetrical about

the normal direction, the set of forces which will not cause sliding is described by a

cone, although this is often approximated as a pyramid in real-time applications for

performance reasons.

Characters are generally represented in physics simulations as a hierarchical collec-

tion of rigid bodies. For each link, the resistance to linear and angular accelerations

is described by an inertia tensor. Links are usually treated as having uniform mass

distribution, with density values determined from measurements on humans. The

motion of the character may be determined using maximal co-ordinate methods

(Baraff 1996), in which joint constraints are explicitly enforced, with a redundant

variable for each constraint. In this approach, care is required to avoid constraint
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drift. Alternatively, reduced co-ordinate methods (Baraff 1996) may be used, in

which variables are formulated to implicitly enforce constraints, and there are only

as many variables as DOF. Efficient reduced co-ordinate methods such as Feather-

stone’s algorithm (Featherstone 2014) are available, but typically involve convoluted

algebra.

Connections between links may be described by various types of joint. Common

joint types include hinge joints, which have a single DOF and might be used to rep-

resent joints such as knees and elbows, and ball-and-socket joints, which have three

DOFs and are often used to represent joints with a greater range of motion such as

the shoulder. Joint limits are often represented by separating the motion into a twist

component about the long axis of the link, and a swing component capturing the

other two DOFs, with motions constrained to lie within a wedge of twist values and

an elliptical cone of swing values. Actuation of DOFs is typically treated as if there

were a servo associated with each joint. These representations include many approx-

imations necessary for real-time performance. Much more advanced models exist in

biomechanics research, including actuation by pairs of muscles working antagonis-

tically, more sophisticated joint limits, correlations between joints and modelling of

elastic properties of tendons and other structures.

Many different physics simulation software packages are available and some of the

most common options are discussed here. Open Dynamics Engine (ODE) is an

open source engine which is commonly used in research (Geijtenbeek et al. 2011).

It includes the option of a slow but very accurate solver, or a faster less accurate

one. Bullet is another open source engine (Geijtenbeek et al. 2011). PhysX and

Havok are two engines commonly used in games, where visually plausible results are

typically sufficient and more severe approximations may be made to improve perfor-

mance and robustness, such as artificial damping to prevent instability and ignoring

Coriolis forces (Erez et al. 2015). Boeing & Bräunl (2007) give a good comparison

of available physics engines and describe some shortcomings including integration

errors, inaccuracies in friction calculations and poor simulation of collisions with low

coefficients of restitution. The strengths and weaknesses of various physics engines

are also discussed in Erez et al. (2015). NaturalMotion primarily uses PhysX for

simulation, and that engine was used here for compatibility.

One of the most basic aims of control is maintaining balance. Common concepts

in balance are the support polygon, the centre of pressure (COP), and the zero

moment point (ZMP). The support polygon or support region describes the convex

hull of the parts of the character in contact with the ground. The centre of pressure

is the point through which ground reaction forces (GRF) may be considered to

act. As described in Vukobratović & Borovac (2004), if a point exists within the

support polygon at which the horizontal components of the net moment of all the
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forces acting on the character is zero, then that point is known as the ZMP and,

assuming there is sufficient friction to prevent sliding, the character is dynamically

balanced. If the ZMP does exist (i.e. is inside the support polgon), then it coincides

with the COP. If the point satisfying the moment condition is outside the support

polygon, it is not meaningful as a true ZMP, as the reaction force must act within

the support, but it may still be useful to consider it as a fictitious ZMP. Many robot

control strategies depend on ZMP manipulation (Vukobratović & Borovac 2004),

and these approaches have been shown to be effective for balancing and walking, but

handling of disturbances is limited, and control tends to appear stiff and unnatural.

These approaches also demand very precise, high frequency actuation, with very

high energy requirements (Collins et al. 2005).

2.3 Realism

2.3.1 Characteristics of Natural Motion

This section describes some features observed in biological motion which may help

to improve realism in simulated control strategies.

Formation of arm trajectories for point to point motions was studied by Abend

et al. (1982). They found that hand trajectories when reaching for targets tend to

be fairly straight and have a simple bell shaped velocity profile, whilst individual

joint velocity profiles are often more complicated, which suggests that biological

control is highly co-ordinated, and may be formulated in terms of end effectors.

Some characteristic invariants of human motion are described by Gibet et al. (2004).

For many aiming type motions, there is a logarithmic relationship between speed and

accuracy known as Fitt’s law (Gibet et al. 2004), although the error may be constant

or linear in some cases that do not use feedback based corrections, or where velocity

is constrained (Bodenheimer et al. 1999, Bongers et al. 2009). Another characteristic

invariant is described by the two-thirds power law, a power law relationship between

angular velocity and curvature for hand trajectories, with the exponent 2/3. One

potential explanation for this is given by Gibet et al. (2004) as minimization of jerk

(rate of change of acceleration), but the biological significance of this rationale is

not obvious (Harris & Wolpert 1998).

Harris & Wolpert (1998) explain the observation of bell-shaped velocity profiles and

the above invariants and achieve convincing agreement with measured control signals

for human hand and eye motions by assuming that the motor system exhibits noise

proportional to the strength of the control signal, and that control is performed in
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such a way as to minimize the error in position. Motor noise is also one source of

variability in real motion (Wang et al. 2010), which is important as repetition is

quickly noticed as unnatural (Bodenheimer et al. 1999). Noise at individual joints

is not independent, for instance in experienced marksmen the shoulder and wrist

joints act co-operatively to reduce aiming error (Arutyunyan et al. 1968, 1969).

Human locomotion typically involves little angular momentum about the centre of

mass, with the arms acting to cancel the contribution from the torso and legs for in-

stance (Herr & Popovic 2008). During locomotion, the head tends to have a smooth

trajectory with only small lateral and vertical motions, for reasons thought to be

related to stabilizing the visual and balance systems (Pozzo et al. 1990, Wampler &

Popović 2009). There is a tendency to favour particular joints over others, depend-

ing on the task. For example, Novacheck (1998) gives work ratios for the hip, knee

and ankle joints in walking, running and sprinting, and in particular finds that the

knee is largely passive in walking.

Another characteristic of biological control is that low stiffness is typically exhibited

for familiar motions (Takahashi et al. 2001). Stiffness may be varied in a task depen-

dent manner, for instance when running on different surfaces (Farley & Morgenroth

1999).

Control systems in humans have latencies which are significant compared to the

timescale of moderately fast motions, around 30-50ms for spinal feedback or 150-

250ms for visual feedback (Kawato 1999). Such large delays would hamper feedback

control, and suggest that biological control may include a significant feed-forward

component. Artificial stimulation of the vestibular system has significantly greater

effect on footstep placement when applied during the stance phase than at other

points in the locomotion cycle, suggesting that footstep locations are largely planned

in advance before steps are initiated (Bent et al. 2004). There is strong evidence that

biological systems use learned simulations of their dynamics, called internal models,

to accomplish feed-forward control (Kawato 1999, Takahashi et al. 2001). There is

also evidence that internal models adapt to environmental influences. For example,

hand motions are initially disturbed when external force fields are applied, with

the disturbance diminishing over time, and equal and opposite displacements are

initially observed when the external force is removed, suggesting that trajectories

are planned in advance using internal models which are adaptive (Shadmehr &

Mussa-Ivaldi 1994).

Biological control is regulated by the nervous system, which comprises the central

nervous system (CNS), including the brain and spinal cord, which orchestrates high

level control, and the peripheral nervous system which connects sensory receptors,

organs and muscles to the CNS. The nervous system consists of a large number of

26



neurons, individual units which are densely interconnected. The activation of each

individual neuron is determined by the collective influence of its inputs from other

neurons, which may act to excite or inhibit its activity.

In many animals, rhythmic activities such as breathing, heartbeat and locomotion

are thought to be governed to a significant extent by central pattern generators

(CPG), neural circuits which generate oscillatory outputs without requiring vary-

ing inputs, sensory feedback, or high level control (Matsuoka 1985). There is also

evidence for CPGs in humans, although supraspinal control and sensory feedback

appear to be more important than in other animals (Luksch et al. 2010). Ivanenko

et al. (2004) present measured muscle activation patterns for several different sub-

jects at a large range of walking speeds (1-5 km/h) and find that about 90% of the

activation can be explained in terms of 5 basic feed-forward patterns, which is con-

sistent with the idea that CPGs generate much of the activation. It is also thought

that these basic components may be reused for many different motions, for instance

it appears that walking and running are composed from the same patterns, only

differing in timing and intensity (Cappellini et al. 2006). CPGs are often modelled

using artificial neural networks with mutually inhibiting neurons (Matsuoka 1985).

Matsuoka (1985) also suggests that adaptation, in which the output of a neuron in

response to a step input increases initially and then decreases over time, is signif-

icant in producing oscillatory behaviour. He presents a model of neuron activity

including this feature, and gives conditions on the model parameters for oscillatory

outputs to be produced.

Reflexes allow feedback control through responses to sensory input. In common us-

age, the term reflex refers to an involuntary response to a stimulus, but the technical

definition also includes more complex, modulated responses, which may be depen-

dent on task, motion phase or stimulus intensity (Zehr & Stein 1999). Monosynaptic

reflexes involve only one sensory neuron and one motor neuron and are very fast,

with time delays of order 50ms. The stretch reflex, which causes a contraction when

a muscle is rapidly stretched, is an example of a monosynaptic reflex (Zehr & Stein

1999). Geyer and colleagues suggest that a reflex generating positive force feedback

is important in leg compliance (Geyer et al. 2003, Geyer & Herr 2010).

There is evidence that various aspects of control in human walking are dependent on

the locomotion phase. For example, the modulation of reflexes is phase dependent

(Zehr et al. 1998). Luksch et al. (2010) suggest that the compliance of certain

joints may vary depending on locomotion phase, for example the ankle stiffness

may be lowered prior to heel strike to allow adaptation to uneven terrain, with

higher stiffness during subsequent phases to ensure a robust stance. Bent et al.

(2004) examine the effect on foot placement of galvanic stimulation of the vestibular

system, and find that stimulation has a significantly larger effect during the stance
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phase than during other phases. Similar effects are observed with visual (Hollands

& Marple-Horvat 1996) and somatosensory (Zehr & Stein 1999) input. Luksch et al.

(2010) suggest that the 5 activation patterns observed by Ivanenko et al. (2004) may

be associated with 5 phases of the locomotion cycle (weight acceptance, propulsion,

stabilization, leg swing, and heel strike).

There is evidence that the mechanical properties of muscles may play an impor-

tant part in biological control. The Hill muscle model, illustated in Figure 2.3.1, is

commonly used to represent these properties. The model consists of a contractile

element, which generates the active force, a series element representing the intrinsic

elasticity of the muscle and tendons, and a parallel element representing the effect

of connective tissues. The model also includes force-velocity and force-length rela-

tionships which reflect the properties that muscles can apply force more effectively

near their optimum length, and applied force diminishes with velocity. Zajac et al.

(1989) give a review of the Hill and other muscle models.

Series
Element

Contractile
Element

Parallel
Element

F F

Figure 2.3.1: Hill Muscle Model

van Soest & Bobbert (1993) look at explosive movements such as throwing, kicking

and jumping, where the motion time is so short in comparison to neural latency

that control signals must be largely preprogrammed. They consider two open loop

control policies, one in which joint moments are directly prescribed, and one which

specifies muscle activations, with joint moments arising as a function of muscle prop-

erties. They find that control via directly specified joint moments is significantly

more sensitive to disturbances, and suggest that the force-length-velocity relation-

ship of muscles can be considered as an auxiliary feedback control system with zero

latency. Similarly, Wagner & Blickhan (1999) find that muscle properties can stabi-

lize vertical oscillations of the centre of mass in a simple model of human leg-bending,

without changes in muscle activation. Pratt & Krupp (2004) suggest that adding

elastic elements between drive and load in legged robots may introduce desirable

characteristics such as shock tolerance, low impedance, and good force control over

a wide range of control frequencies.

The equilibrium point hypothesis (Bizzi et al. 1992) suggests that biological control
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is achieved by manipulating the stiffnesses and force-length relationships of agonist-

antagonist muscle pairs to alter the rest position of joints. Control is then formulated

as a sequence of equilibrium positions and joint stiffnesses, with the spring-like

properties of the muscle providing stabilization.

A common hypothesis in research is that biological control may be formulated in

terms of optimality principles. Alexander (2001) notes that evolution and learning

are two strong mechanisms in nature likely to lead to optimality. Many successful

applications of optimality principles in explaining biological behaviour are described

by Todorov (2004). Various natural bipedal gaits can be discovered by optimiza-

tion methods without prior information about motion (Wang et al. 2012, Mordatch

et al. 2013, Geijtenbeek et al. 2013). Anderson & Pandy (2001) obtain impressive

agreement with measured trajectories and muscle activation patterns for a walking

motion by optimizing energy usage per unit distance using a detailed model of a hu-

man leg with elaborately simulated muscles, although the optimization is extremely

expensive computationally.

There are various potential drawbacks to employing optimality principles. The

quantities being optimized in nature are unknown and potentially extremely com-

plicated, and it is debated how useful a simplified objective function can be. There

are many competing theories of what variables are optimized in natural systems,

for example minimization of energy consumption, change in joint torque, and accel-

eration have all been suggested (Todorov 2004). It may be very difficult to define

objective functions which capture motions with stylistic elements, such as a sad

or happy walk. Alexander (2001) also notes that an important difference between

natural evolution and controller optimization is that each predecessor of a real crea-

ture must have been viable, which may constrain natural evolution to local optima.

Although optimization produces realistic results using the sophisticated simulation

used by Anderson & Pandy (2001), real-time applications require much more basic

models of actuation, joint limits, and elastic energy storage mechanisms and it is

not clear how well optima for simpler representations will correspond to real systems

(Liu et al. 2005). Optimization is easier to apply to high energy motions such as

running, jumping and diving, which are highly restricted by dynamic constraints.

Low energy motions such as walking may have many physically correct solutions

and are poorly constrained by optimization alone (Liu et al. 2005).

2.3.2 Perception

This section describes some perceptual factors which may strongly influence the

acceptance of a character animation as natural or otherwise.
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Motion is very important in cognition. For example, very sparse point light represen-

tations are instantly recognizable as human when dynamic, but not when statically

displayed (Johansson 1976). Friends can be recognized based solely on gait, using

point light displays which suppress other potential identification cues (Cutting &

Kozlowski 1977). People are very adept at recognising and interpreting motion of

humans and other animals for evolutionary reasons, as this skill is important for

numerous reasons including social interaction and survival (Johansson 1973, Troje

2002). Furthermore, people will have encountered a huge number of positive ex-

amples of natural behaviour (Ren et al. 2005). Perception is affected by the level

of anthropomorphism of simulations. For example, classification algorithms can

perform better than humans at identifying gender from gait for a point light repre-

sentation (Troje 2002), people are more sensitive to time distortions in animations of

detailed geometrical models than stick figures (Pražák et al. 2010), and subjects are

more sensitive to small differences between pairs of animations for polygonal models

than stick figure models (Hodgins et al. 1998). This is important to bear in mind

when evaluating existing work on character controllers, which may vary significantly

in rendering style. Representations of humans which are close to being lifelike can

fall into the ”uncanny valley”, in which small defects from realism can be very no-

ticeable and offputting, particularly differences in motion (Mori 1970, Hodgins et al.

2010). Hence, problems with animation can destroy the immersiveness of otherwise

engaging simulations.

There is some evidence that realism may influence perception at a subconscious level.

For instance, Oesker et al. (2000) study perceived skill of robotic football players

animated at various levels of sophistication. Participants in the study do not report

explicit awareness of difference in the animations, but do tend to attribute a greater

level of skill to more elaborate animations. Thus, users of applications may be aware

that something is not right with a character’s motion and it may affect their level

of acceptance even if they cannot put their finger on the exact problem.

For many applications, perfect accuracy is not required and plausibility is sufficient

(O’Sullivan et al. 2003). Generally in real-time applications there is a trade-off be-

tween simulation accuracy and performance. Many researchers have investigated

perceptual thresholds for various simulation errors with the idea of establishing

quantitatively what trade-offs are acceptable. Sensitivity to individual errors gen-

erally decreases with scene complexity and dimensionality (Gilden & Proffitt 1989,

O’Sullivan & Dingliana 2001). Reitsma & Pollard (2003) study sensitivity to errors

in ballistic motion of animated humans and find that errors in horizontal motion

are more likely to be detected than those in vertical motion, and that sensitivity

is greater for increases in acceleration than decreases. Research on perception of

motion time warping by Pražák et al. (2010) suggests that users are more likely
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to detect walking animations that have been sped up than those that have been

slowed down. Ren et al. (2005) also note that humans may be relatively insensitive

to slowed down motion, unless clues such as reduced gravity in flight phases are

present.

Much existing work regards realism as an important objective, and attempts to

preserve it by restricting edited or generated motions to be in some sense close to

reference motion, but the achievement of this objective is often judged subjectively,

and there is relatively little work on systematically evaluating naturalness. One

example of a quantitative approach is by Ren et al. (2005), who consider a vari-

ety of statistical measures to classify motion samples as realistic or unnatural. A

method based on an ensemble of hidden Markov models is found to perform rel-

atively well, although still significantly worse than classification by humans. The

ensemble approach also has the advantage that it uses a hierarchical decomposition

of the character model which is able to pinpoint the location of unnatural motion. It

is suggested that such a classification scheme could be used to constrain the output

of motion controllers.

2.3.3 Techniques to Improve Realism

This section describes some approaches to increase the realism of animations.

Physical accuracy may be improved by post processing with filters that ensure phys-

ical validity, for example to enforce valid ground contacts (Pollard & Reitsma 2001)

or conservation of angular momentum and correct COM trajectories for flight phases

(Shin et al. 2003). Safonova & Hodgins (2005) describe some considerations to im-

prove the physical validity of blended animations, including interpolating the COM

rather than the character root, and using a weighting scheme designed to preserve

correct gravity forces.

Physical correctness alone is not sufficient to ensure natural appearance. A common

approach to improve naturalness is to track a reference motion capture sequence.

Motion capture has the advantage that the raw motion is guaranteed to be physically

feasible, although the physical validity may be lost in processing unless care is taken.

It is also good for capturing lifelike motion with the desired style. Since there

are almost certainly discrepancies in morphology between the motion capture actor

and the animated character, the motion must be retargeted, which can increase

the difficulty of tracking. Differences in leg lengths between capture actors and

simulated characters can cause tripping (Sok et al. 2007). Differences between the

simplified actuation and friction models used in simulation and the real capture

environment may also cause problems. Näıve tracking of motion capture data will
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also often result in instability due to accumulation of errors. One further problem

with motion capture data is that GRF are typically not measured, so one source of

important control information is missing.

Noise may be added to animations to increase variability (Perlin 1995). However, due

to the co-ordination of noise between joints, care must be taken to avoid unnatural

results (Egges et al. 2004). One method to deal with this difficulty is to add noise

to an orthogonalized basis, such as that obtained by principle component analysis

(PCA). Physical simulation has the advantage that some noise is inherently present,

due to finite precision, approximations, varying time steps and so on.

Some methods incorporate delays in feedback to simulate biological latency (Kwon &

Hodgins 2010, Jain et al. 2009, Wang et al. 2012). Feed-forward control may also be

used (Yin et al. 2007), although it may not cope well with unexpected disturbances.

There is often an intuitive expectation that techniques such as genetic algorithms

and neural networks which mimic natural processes may be inherently more likely

to produce lifelike results, but there is little rigorous justification for this idea.

2.4 Dimension Reduction

As noted earlier, typical human character models have dozens of DOFs, and this

high dimensionality contributes to the difficulty of control. This section describes

some approaches which ameliorate this problem by considering systems with fewer

DOFs.

Many control systems use simple variables which summarize the system dynamics,

such as the COM linear momentum and angular momentum (Macchietto et al. 2009)

or the ZMP (Kajita et al. 2003). Popović & Witkin (1999) use manually created

low DOF models to reduce complexity. Their approach is justified by biomechani-

cal insights from Blickhan & Full (1993), who examine locomotion for a variety of

creatures and find strong similarities in energetics, gait and ground reaction force de-

spite great diversity in morphology, and suggest that a single legged mass on a spring

model can capture many of the important characteristics of locomotion. Dimension

reduction techniques employed by Popović & Witkin (1999) include removal of in-

significant DOF, such as elbows and wrists in running and walking, replacement of

whole subtrees of the character model with point masses, and exploiting symmetry.

da Silva et al. (2008a) also use a manually created low DOF model consisting of two

leg links and a torso link, to suppress less important DOFs when determining control

policies. Similarly, Wu & Popović (2010) formulate control in terms of a reduced
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DOF model, with the most important information about the dynamics captured by

positions of end effectors for the two feet and the upper body.

Coros et al. (2008) use a manually defined reduced model based on the COM position

and speed, and the torso and hip angles. These variables are chosen as they are

associated with the heaviest links and high level characteristics of motion, allowing

the dimensionality to be lowered while retaining the essence of the state description.

Safonova et al. (2004) argue that since human motion is highly co-ordinated, there

are many correlations between DOF and high dimensionality is merely a result

of an inefficient choice of representation. They find that a reduced basis of 5-10

DOFs which still retains most of the important information can be determined for

a particular type of motion by performing PCA on a set of similar motions. An IK

post-processing step is required to ensure constraints such as footplants are met, as

it may not be possible to satisfy them exactly in the reduced basis. Carvalho et al.

(2007) compare reduced representations determined by PCA and probabilistic PCA

for golf swing motions and find that PPCA can require less computation to satisfy

constraints, but it tends to produce more motion artefacts than PCA. Reduced bases

determined in this manner may not be very intuitive and may be strongly dependent

on example data. Safonova et al. (2004) note a failure using a PCA approach with

only one example motion, presumably because there is insufficient variety in a single

motion for the reduced basis to adequately span the motion space.

The inverted pendulum (IP) model is a low dimensional representation that is often

used to describe the motion of the stance leg during the single stance phase of walking

(Coros et al. 2010, Tsai et al. 2009). The COM is treated as a point mass connected

to a light, inextensible pendulum with its origin at the COP. The inverted pendulum

model is used to describe the COM trajectory, and calculate target positions for the

swing leg. Various extensions to the IP model exist. In the spring loaded IP model

(SLIP), the restriction of constant leg length in the IP is relaxed by treating the

stance leg as a spring, allowing elastic energy storage and release mechanisms to be

modelled (Mordatch et al. 2010). The SLIP model has the disadvantage that its

equations of motion are not analytically integrable, making it costlier to evaluate.

Modelling of angular momentum is incorporated in the angular momentum inducing

IP model (Komura et al. 2004) and IP plus flywheel model (Pratt et al. 2006). Other

related models are the inverted pendulum on a cart (IPC), in which the inverted

pendulum is connected to a cart by an unactuated joint and control is accomplished

by forces applied to the cart (Kwon & Hodgins 2010), and the similar cart-table

model (Kajita et al. 2003). Kwon & Hodgins (2010) suggest that the IPC model

may be more suitable for running than the IP model, since the origin of the pendulum

in IP is poorly defined during flight phases, and IPC avoids discontinuities.
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For running, absorbing and releasing energy is important, and a mass-spring model is

often used. Geyer et al. (2006) argue that compliance is also important in walking, as

the stiff legs of the inverted pendulum model produce exaggerated vertical motion,

and cannot reproduce the characteristic doubly peaked GRF observed in human

walking. They propose a model based on a mass with a spring corresponding to

each leg, which more accurately reproduces these motion features while retaining

relative simplicity. Using this representation, walking and running can be considered

as two modes of a unified model.

In robotics, simple passive dynamic walking systems, which can achieve downhill

locomotion without actuation, are often used to gain insight into dynamics (McGeer

1990, Tedrake 2004). Examples include the rimless wheel model and the compass

gait model. Passive dynamic walkers are also used to simplify control, as active

locomotion can be achieved with the addition of a small number of actuators, and

the underlying passive system has high inherent stability (Tedrake 2004). A similar

principle may apply in biological control, for example Kubow et al. (2002) suggest

that neural control in animals builds on their underlying passive dynamics, and that

control effort is concentrated on dimensions which recover slowly or not at all via

passive dynamics.

Low dimensional models are important in preview control planning for real-time

applications (Mordatch et al. 2010, Kajita et al. 2003). Since it is helpful to plan

over several steps, and plans must be recalculated frequently due to deviations, full

DOF models would be computationally intractable in real-time.

2.5 Character Control Methods

2.5.1 Spacetime Optimization

This section discusses the idea of spacetime optimization (SO), in which motion is

optimized over a whole trajectory.

The idea of manipulating motion by treating it as a constrained optimization prob-

lem (described variously using the terms trajectory optimization, spacetime opti-

mization, spacetime constraints) is introduced in the work of Witkin & Kass (1988),

with the idea that animators specify a minimal outline of desired motion, such as

starting and ending poses and velocities, and desired characteristics for how the

motion is to be performed, such as energy efficiency. A physically valid motion

satisfying the pose constraints and meeting the other criteria as well as possible is

then generated by solving a constrained optimization problem for the motion and
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actuation over the whole motion duration. The aim is to reduce the amount of

work required from the animator by automatically handling the mechanical pro-

cess of ensuring physical realism, allowing the animator to concentrate on artistic

aspects of the motion. The resulting constrained optimization problem is solved

by a technique known as sequential quadratic programming (SQP). In SQP, itera-

tive refinements to a solution are calculated using Newton iteration on a quadratic

approximation to the objective function, and these refinements are projected onto

the subspace of solutions which do not violate the constraints. Each of these steps

boils down to a sparse linear problem, but since the motion and actuation are dis-

cretized over the whole interval, and their values at each time step are considered as

independent variables, these linear problems may involve thousands of unknowns,

precluding real-time performance. Witkin & Kass (1988) demonstrate co-ordinated

jumps with a low dimensional model, which exhibit important characteristics of

traditional animation such as anticipation and follow-through.

The search space for spacetime optimization is likely to be discontinuous with many

local minima, so that methods such as SQP require initialization close to a desired

trajectory to reach good solutions. Ngo & Marks (1993) address this problem using

a genetic algorithm approach to consider a large number of trial solutions and evolve

towards good solutions, at the expense of even greater computation time. Another

approach is to provide several keyframes throughout the motion interval without

specifying their exact timing, which also gives a much more constrained optimization

problem with faster convergence (Liu & Cohen 1995).

Various work attempts to improve the performance of spacetime optimization. Co-

hen (1992) and many subsequent authors describe the motion using splines, greatly

reducing the number of variables. Liu et al. (1994) use a wavelet based representa-

tion, allowing hierarchical refinement of motion detail only where necessary.

The complexity of calculating derivatives required by optimization methods such as

SQP is generally quadratic in the number of DOF. Fang & Pollard (2003) improve

performance by carefully formulating the problem to reduce the time required in

evaluating derivatives. They show that if constraints and objectives are expressed in

terms of aggregate forces and torques, and individual joint torques are not required,

derivatives may be calculated in time which scales linearly with the number of

DOF, rather than quadratically, reducing the necessary computation time at each

iteration and improving scalability to complex characters. For a character with 22

DOF, a leap motion of duration 0.75s is optimized in 4 minutes. As individual joint

torques are not explicitly calculated, the method excludes the use of certain forms

of objective function, although alternatives can usually be constructed. However,

efficient automated differentiation software is readily available now, so calculating

derivatives is less likely to be a bottleneck.

35



Safonova et al. (2004) apply spacetime optimization to full human character models

by using PCA on examples of similar motions to determine reduced bases of 5-10

DOFs. However, several example motions are required to provide sufficient gener-

ality in the low dimensional space, and each class of motions requires a separate

basis. The approach is used to synthesize motions of duration around 2 seconds in

less than 10 minutes, and to make substantial modifications to example walking,

jumping, running and acrobatic motions, whilst maintaining realism.

Liu & Popović (2002) use a simplified model of character dynamics to reduce problem

difficulty. Rather than a complete dynamics formulation, only the overall linear

and angular momenta of the character are physically constrained, and an empirical

model of the characteristic profile of momentum transfers is used rather than a

complete model of contacts. With these simplifications, a number of highly dynamic

motions such as running, jumping and gymnastics are synthesized from rough motion

sketches for a character with 51 DOF, each taking less than 5 minutes to optimize.

The simplified dynamics may not be as well suited to low energy motions such as

walking. Abe et al. (2006) use a similar approach, but with a more general spline-

based representation of the momentum, which is constrained to follow a pattern

similar to an input reference motion. Optimization for a 43 DOF character takes

2-4 minutes.

Popović & Witkin (1999) use spacetime optimization to modify reference motions

in a physically valid manner (unlike other motion editing methods), rather than

generating motion from scratch. To cope with the difficulty in applying SO to high

dimensional characters, low DOF models which retain the characteristics essential

for particular motions are manually defined. The motion of the low DOF model

is then modified using SO with an objective function chosen to minimize deviation

from the reference, so as to retain the subtle details of the original motion. The

modification to the low DOF motion is then mapped back to the full character.

Significant changes to reference motions are demonstrated, such as crossing footsteps

or limping in a running sequence, and jumping diagonally or over obstacles based

on a plain jumping motion. As the example motions provide good initialization,

performance can be relatively good (a few minutes) compared to other SO problems.

This approach could be used to generate motion libraries from a small set of reference

sequences.

Liu et al. (2005) analyse reference motion by assuming that it is the solution of a

SO problem for some unknown set of parameters which encode joint stiffnesses and

muscle preferences. The problem is then tackled backwards to estimate the parame-

ter values most likely to have produced the reference motion. These parameters can

then be used to generate new motions in a similar style to the reference with SO.

Examples include modifying a walk to simulate carrying a weight, and generating
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uphill or downhill motion in the style of a sad walk. The method also has the ad-

vantage of determining stiffness and muscle preference parameters, for which it can

be difficult to find appropriate values manually.

These optimization problems are typically tackled using derivative-based solvers,

and some features such as the timing of foot contacts are difficult to formulate

in differentiable form. None of the work discussed above allows the details of the

contacts to be modified during the optimization.

Liu et al. (2006) consider optimization of multi-character interactions, which would

be impractical to manually schedule. The position and timing of interactions is

modified during the optimization, with time warping used to change time of interac-

tions, and constraints expressed in warped time. Both co-operative motions such as

walking hand in hand and adversarial motions such as tackling are demonstrated.

To achieve good performance with the very large problems resulting from multi-

ple characters, variables are grouped into blocks which are solved separately while

holding the remaining unknowns fixed. Subproblems for different blocks are then

interleaved, and depending on the scheduling of subproblems the influence of each

character can be varied. A continuation method is used to introduce interactions

gradually, for example using a spring between the hands of two characters with

spring strength increasing as the optimization proceeds. Complete solutions require

up to 85 minutes, with each subproblem taking 8-20 minutes.

Wampler & Popović (2009) use spacetime optimization as an inner loop of a solver,

with a stochastic, population-based method (covariance matrix adaptation (CMA),

see Section 2.5.6 for more details) used to optimize timing of footfalls in an outer

loop. The outer loop does not require derivatives, and as it uses a population of

potential solutions it is better able to avoid local minima. Based on the interplay

between motion and morphology, minor modifications to limb lengths and radii

are allowed in the inner loop. Plausible gaits are generated for a variety of creature

topologies (10-33 DOF), without prior information about their motion. The method

requires hundreds of hours of CPU time, with each iteration of the inner loop taking

10-20 minutes.

To obtain a better behaved search space, Mordatch et al. (2012) handle contacts

using soft constraints. Motion is split into a series of 10-20 0.5s phases, with con-

tacts invariant during each phase. The activity of each potential contact during

each phase is represented by a continuous variable, giving a smoother problem, with

physically valid constraints encouraged via objective function terms. Because of the

avoidance of discontinuities in the problem formulation, the optimization problem

can be solved quickly using relatively simple methods, taking 2-10 minutes. Physics

terms in the objective function are gradually introduced as the optimization pro-
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ceeds, allowing flexible exploration of the search space at first. The soft constraints

are not guaranteed to be satisfied, but are found to converge in all the examples

they consider. Motions such as getting up, crawling and climbing are demonstrated,

as well as co-operative actions such as passing objects between characters and one

character climbing on another.

Todorov (2011) introduces a formulation for contacts which is invertible in the sense

that the contact forces can be straightforwardly calculated from the character’s rigid

body positions and velocities on subsequent time steps. The contact formulation is

continuous with contact force decaying with distance subject to a smoothing param-

eter. The smoothing parameters allows continuation methods, in which contacts can

be softer in the early stages of solution. The invertible formulation allows trajectory

optimization problems to be constructed with fewer variables and constraints. It

also allows larger time steps to be used as potentially unstable forward integration

can be avoided. The efficiency of the method is demonstrated by performing a single

Newton step of trajectory optimization in 160ms.

Mordatch et al. (2013) use a similar method to Mordatch et al. (2012), applied

to human lower body motions such as walking, running, jumping and kicking, us-

ing flexible control without task-specific structure. The explicit contact activation

variables used in the previous work are removed, instead defining the activation of

each contact implicitly as a step-like function of its normal force. This also removes

the need to separate motion into contact phases. Biologically inspired actuation

is included by adding a term to the objective function encouraging joint torques

consistent with muscle physiology. The physical consistency and muscle consistency

terms in the objective function are given large weights to obtain values close to

zero in the solution. For a 36 DOF character, solutions require 6-10 minutes, and

show good agreement with joint angle and moment values measured from human

observations reported by Wang et al. (2012) (see Section 2.5.6). The muscle based

objective gives more realistic results than torque actuation, which exhibits severe

crouching.

Posa et al. (2014) show that contacts can be incorporated as variables in the op-

timization problem, allowing the solver greater flexibility and avoiding difficulties

with prescribed contact schedules. Including contacts introduces complementarity

constraints which increase the difficulty of finding a solution as the feasible region is

poorly connected. The complementarity constraints are tackled using a constraint

relaxation method. Only 2D examples are demonstrated, albeit with complex con-

tacts. The most complex problems take up to an hour to solve for a planar model

with 13 DOF.

In the work of Al Borno et al. (2013), trajectories are synthesized over a series of
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0.5s spacetime windows using a shooting method, iteratively improving the control

governing a forward simulation using CMA. Timings for contact are pre-defined, but

precise positions are not required. A highly parallelized implementation requires

about 20 minutes for each 0.5s window with a 41 DOF character.

Trajectory optimization has been used in the generation of motion graphs. Ren et al.

(2010) use trajectory optimization to add transitions to a motion graph, which are

ultimately accepted or rejected by a user to ensure the desired quality. A finite

horizon search is used to detemine an optimal sequence of transition generations so

as to minimize computation and demands on user evaluation, taking into account

the improvement to the graph’s connectivity and the estimated probability of the

optimization succeeding. The probability that the optimization does not fail and

is not rejected by the user is estimated based on the smoothness of COM and end

effector trajectories in a simple interpolated transition. The approach results in

a well connected motion graph with good responsiveness, which is able to handle

more dissimilar transitions than other methods. Wampler et al. (2013) use a similar

approach to synthesize motion graphs for creatures from scratch, based on a model

of the range of tasks to be performed such as direction following or speed matching.

A motion graph is constructed incrementally, beginning with a walk cycle generated

using the method from previous work (Wampler & Popović 2009). Markov analysis

of the task model determines the long run probability that each state in the motion

graph is active, and motions are added to the graph based on an objective function

averaged over the whole graph, weighted by probability. Plausible motion graphs are

demonstrated for creatures with 16-29 DOF, requiring 8-10 hours for a 2 parameter

task model.

Wampler et al. (2014) analyse a database of animal motions in order to predict new

gaits for unknown creatures. Style parameters are extracted from each animal’s

motion and a regression model is used to interpolate to new creatures. Trajectory

optimization is used for individual motions, and a CMA outer loop optimizes the re-

gression parameters. The method gives plausible results for a wide range of creature

sizes, and performs well at reproducing one of the input motions when it is excluded

from the database. However, the approach is very expensive, requiring several days

of computation on a 96 computer cluster.

There are numerous difficulties with SO approaches. Even with modern hardware,

performance is nowhere near real-time, so they are only suitable for offline compu-

tation. It is very difficult to apply SO to high dimensional characters without good

initialization, as the optimization methods tend to get stuck in local minima. As

the approach optimizes a whole motion trajectory rather than a controller, it is not

able to deal with unexpected disturbances, and is therefore unsuitable for interac-

tive applications. It may however be useful for physically filtering motion sequences,
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motion editing or motion synthesis.

2.5.2 Neural Networks and Biologically Inspired Control

This section describes approaches to developing control based on methods which

mimic natural control processes.

Neural networks (NN), illustrated in Figure 2.5.1, and similar methods consist of

a graph of nodes (or neurons) with directed connections between them. Nodes

determine output values based on a weighted sum of their inputs, modulated by

an activation function. The activation function is usually nonlinear to allow more

complex behaviour, with the hyperbolic tangent or other sigmoid functions com-

mon choices. The final behaviour of the network is then determined by adjustments

to the set of input weights. Selection of a suitable network topology is an impor-

tant consideration in using neural networks, with more complex topologies allowing

more complex behaviour but entailing greater computational expense and greater

difficulty in determining appropriate weights. A common topology known as a multi-

layer perceptron consists of a layer of input nodes, which provide information about

the system state or sensor data, one or more layers of hidden nodes to perform

computation, and a layer of output nodes. Networks which include loops allow stor-

age of an internal state, and are described as recurrent. Without recurrency the

response of the network is a static function of its inputs (Allen & Faloutsos 2009).

The topology may be fixed in advance, or altered along with the weights to achieve

the desired output (Allen & Faloutsos 2009).

w1 

w2 

w3 

Figure 2.5.1: Example Neural Network Activation Function and Topology

In other applications, weights for neural networks are often determined by providing
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a set of example inputs with ideal outputs. Weights which allow the network to

most closely match the ideal outputs can then be calculated by gradient based

methods. In the case of character control, sufficient example motions may not be

available, or the goal may be to generate motion from scratch. In this case, it may

be possible to find suitable weights by creating a large number of random networks,

evaluating their performance using some fitness function, and refining the most

effective ones, a so called generate and test approach. Since this approach requires

only forward simulation, it can easily handle features such as contacts, friction and

discontinuities which can be difficult to incorporate into other methods such as

spacetime optimization (van de Panne & Fiume 1993).

A significant part of the work in the generate and test approach lies in designing

a good fitness function. For locomotion tasks, the fitness function is often based

on distance travelled in a given interval. Terms may be included to encourage

straight line walking or keep the COM high to prevent crawling motions (Reil &

Husbands 2002). It may also be useful to reward stability at the end of the interval,

to eliminate controllers which might reach the end of the interval but fail soon

afterwards. Complex goals are often achieved by first optimizing for a related simpler

task and incrementally adding complexity using the previous solution as a starting

point (Reil & Massey 2001). Controllers that are obviously unsuccessful are often

terminated early to improve performance (Sims 1994, Reil & Husbands 2002, Allen

& Faloutsos 2009). Capturing characteristics such as naturalness and style in fitness

functions is extremely difficult (van de Panne 2000).

van de Panne & Fiume (1993) use sensor-actuator networks (SAN), similar to NN

but with input based on sensor data rather than state, to generate diverse locomotion

behaviours for low dimensional planar creatures. The nodes in the SAN are dynamic

systems themselves, with time delays and hysteresis to prevent rapidly switching on

and off. Controllers are generated using stochastic gradient ascent or simulated

annealing. For the low dimensional creatures considered, 1-5% of random networks

produce useful behaviour, but this fraction diminishes with creature complexity

and the technique would be unsuitable for high dimensional characters. Promising

solutions are fine tuned by adjusting parameters such as node switching delays,

range of motion and actuator stiffnesses using stochastic methods.

Luksch et al. (2010) generate motion based on several ideas from biological con-

trol. Control is implemented using a collection of co-ordinated feed-forward torque

patterns, analogous to CPG, and phase-dependent feedback units which function

similarly to reflexes. Activity of individual units may be stimulated or suppressed

based on events, sensory information, or the activity of other units. Setting stiffness

and equilibrium points allows passive dynamics for some joints. Robust walking

is demonstrated for a 3D simulated character with 21 DOF, including walking on
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slopes and steps. The approach shows improved naturalness and energy efficiency

compared to typical robot control.

Matsuoka (1985) shows that mutually suppressive neurons can produce oscillatory

behaviour when they exhibit adaptation i.e. a reduction in response over time with

constant stimulus. Dynamic systems can be stabilized by entrainment with Mat-

suoka oscillators. Liu et al. (2013) explore how a dynamic system governed by a

Matsuoka oscillator can be adapted to different conditions by applying state space

transformations which bring otherwise unstable states within the transformed basin

of attraction. Transformations considered included offsets to state variables (for ex-

ample to adapt to walking on different slopes), time scaling (for example to adjust

stride frequency), and energy scaling. The approach can also be used to control

transitions, by transforming the basin of attraction of the destination motion to

include the end state of the source motion. Adaptation for a 2D walker to different

walking speeds and steep slopes is demonstrated. Apart from lack of ankle actuation

in the model, good correspondence is shown between the adaptation of the simulated

walker’s limit cycle and measured human motion. Simulation is performed using a

variable time step integrator, which could be awkward for real-time applications due

to its inconsistent computational cost per frame.

There are various advantages and disadvantages to control based on NN and similar

models. The approach does not require prior information about motion, and can

be used in a highly automated fashion. These methods are arguably closer to the

way control is developed in natural systems, compared to other methods. Intrinsic

variability in output may also contribute to perceived realism. Although a lot of

computation may be involved in the optimization process, the output of an optimized

network is typically efficient to compute.

However, there is no guarantee that the approach will generate good solutions, and

the workings of an optimized network are likely to be inscrutable. The level of

automation may or may not be advantageous, as control over the style of motions

produced is limited, although one possible way to exert more control is to manually

rate controllers rather than using a fitness function. Designing appropriate fitness

functions and managing the trade-off between network flexibility and optimization

complexity may be difficult problems. Changes to character morphology, environ-

ment or goal will frequently require further optimization, although initialization

using previous solutions may be useful. Apart from following tasks (Sims 1994, Reil

& Husbands 2002), there has been little work on interactive control of these systems.

These techniques may be difficult to apply to high dimensional characters.
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2.5.3 Evolutionary Methods

This section describes the use of evolutionary methods such as genetic algorithms

which are often used to progress towards good solutions. Several papers described

below use evolutionary methods to obtain good parameter values for neural networks

or similar control models (see Section 2.5.2).

Genetic algorithms (GA) mimic natural evolutionary processes by maintaining pop-

ulations of candidate solutions, and producing new improved solution generations

by mutating or combining the best performing solutions of the current generation.

Single runs of GA can lead to homogeneous results, so it can be helpful to perform

many runs to allow sufficient variety (Sims 1994). Evolutionary methods do not

require derivatives, and as they are population-based they are able to avoid local

minima.

Sims (1994) uses an evolutionary approach to modify both a control network and

the morphology of simple creatures to achieve walking, jumping, swimming and

following tasks. Nodes in the control network can apply a variety of mathemati-

cal functions. Nodes can retain internal states, and are able to generate periodic

outputs such as sine and saw waves even with static inputs. It is noted that these

features probably result in a less accurate biological model than the sum-threshold

nodes used in typical NN. The morphology is represented using a directed graph,

and both the morphology and the control network are updated using a GA approach.

Mutations allow new nodes to be added to the control and morphology graphs, and

new connections between nodes to be established. Impressive results are demon-

strated for low dimensional creatures, but major modifications of morphology are

likely to be unsuitable for many applications.

Reil & Massey (2001) and Reil & Husbands (2002) consider biped walking control

using a model of a central pattern generator (CPG), a mechanism thought to be

involved in biological control for generating cyclic outputs for tasks such as locomo-

tion, without higher neural control. The CPG is modelled using a NN with a high

degree of recurrency, which promotes periodicity. The network is not aware of the

system state, and control is achieved by generating target joint angles for a manually

tuned proportional-derivative controller (see Section 2.5.5). The biped model has

relatively few DOFs, in particular the upper body is represented by a single link.

Weights and other parameters of the network are determined using a GA. From

100 runs of 120 generations, about 10% produce stable walkers, with some runs

producing lifelike walking. Fluctuations inherent in the NN control improve realism

by reducing repetitiveness. Following of a sound signal is also demonstrated by ap-

propriate adjustments to the fitness function. No prior information about motion is
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required.

Allen & Faloutsos (2009) aim to improve automation and expand the range of po-

tential behaviour for a NN walking controller by allowing the network topology to

evolve. This is achieved by allowing mutations to add new nodes or connections.

To achieve sufficient complexity to generate walking motions the networks require

hundreds of parameters. Controllers typically become unstable after 5-10m.

2.5.4 Optimal Control

This section describes a common framework known as optimal control, which is

often used to formulate control for physically simulated characters.

In general, an optimal control problem involves selecting a control policy u(t) over

some time interval in order to influence a state x(t) in some optimal fashion. In

character simulation, the control could be joint torques, and the state could be

target joint angles, COM trajectory, etc. An optimal control problem consists of a

rule governing the evolution of the future state as a function of the current state

and current control signal, and a cost function to be minimized. Since it may

be desirable to keep control signals small, for instance to minimize work, the cost

may be a function of u as well as x. As the future state only depends on current

information, and not the history of the system, a control policy which is optimal

over some time interval [t0...t2] is also optimal over a truncated interval [t1...t2]

where t0 < t1 < t2. Hence, optimal control problems can often be tackled by

working backwards progressively from the end of the interval, a so called dynamic

programming approach. Variational analysis of optimal control problems leads to the

Hamilton-Jacobi-Bellman (HJB) equation, a nonlinear partial differential equation.

The solution of the HJB equation is the optimal value function, which gives the

minimum remaining cost to the end of the time interval as a function of x. An

optimal policy follows the gradient of the optimal value function.

An important special case of optimal control problem is the linear quadratic regula-

tor (LQR), for which the rule governing the evolution of the state is a linear function

of x and u, and the cost function is a weighted sum of quadratic functions in x and

u. The LQR is analytically tractable and determination of optimal policies can be

reduced to solution of an equation known as the Riccati equation. Methods also

exist to tackle linear quadratic problems in the presence of Gaussian noise (LQG).

Since analytical approaches are available, LQR based controllers can generally be

evaluated with relatively little computation, allowing good performance. Some ap-

proaches to less tractable optimal control problems are discussed by Tedrake (2004).
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A general problem with optimal control formulations for physically simulated char-

acters is that the results may be highly dependent on the values chosen for the

weights which express the relative importance of minimizing various components of

x and u. Often these values must be chosen arbitrarily, based on physical insight, or

by trial and error. Optimal control also generally copes poorly with discontinuities

in dynamics due to contacts.

Brotman & Netravali (1988) use an optimal control approach to interpolate between

keyframes in a physically valid manner, minimizing a cost comprising control energy

and trajectory smoothness. They find that the results appear more natural and use

less control energy compared to other interpolation methods. Such a method could

be used as the basis of a motion editing approach.

Tedrake (2004) discusses some approaches to analytically intractable optimal control

problems based on reinforcement learning of the optimal policy or optimal cost

function. The approach is applied to a bipedal robot based on a passive walker with

the addition of a small number of actuators. For this low dimensional system, a

minimal walk is achieved after around one minute of online learning, and a robust

walk after around 1000 steps.

Kwon & Hodgins (2010) use an LQR approach to determine optimal control for an

inverted pendulum on cart model to generate a COM trajectory for a desired speed

and heading which is similar to a reference running motion. The trajectory of the

cart is then used to generate footstep locations and from these a full body trajectory

is determined. From a single example motion, their method is able to generate

running with various speeds and headings, and is able to recover from moderate

disturbances. However, the recovery is achieved by artificial control forces on the

cart rather than through foot placement, and appears unnatural. Performance is

around half real-time.

Muico et al. (2009) find that LQR based controllers are unreliable for high dimen-

sional characters, and propose an extended nonlinear quadratic regulator (NQR)

formulation to deal with nonlinearities in the dynamics. They also treat the con-

tact forces as part of the control policy, which allows planning over multiple foot-

steps. An LCP solver then calculates joint torques to correct discrepancies between

the predicted contact forces and those actually obtained in the simulation. They

demonstrate greater robustness and agile control such as sharp turns using NQR.

Computation requires 1-10ms per frame depending on the complexity of contacts,

and is dominated by the LCP solver, although it is noted that the solver used is

unnecessarily precise.

Under certain conditions on the control cost and rule governing state evolution,
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the HJB equation can be made linear by a change of variables. This allows linear

superposition of existing controllers which are optimal for particular tasks, to gen-

erate controllers suitable for intermediate tasks, as demonstrated by da Silva et al.

(2009). They form combinations of existing controllers with time varying weights

determined according to their suitability for achieving the desired task from the cur-

rent state. They demonstate examples including accurate control of entry angle for

a variety of initial conditions for diving based on just two example controllers, and

walking controllers able to adjust step lengths or cope with level or sloping terrain.

Controllers combined in this manner achieve goals more effectively and with lower

control cost than other approaches such as linear blending. Limitations include the

requirement that individual controllers share a common optimal control formulation,

and must operate over the same time interval. Performance is not explicitly stated,

but the linear superposition approach is implied to be fast.

Muico et al. (2011) also make use of the linearizability of the HJB equation to track

multiple controllers and they relax some of the limitations noted by da Silva et al.

(2009) by providing a novel framework to blend or transition between controllers

at arbitrary times based on the system state. Discontinuities in dynamics caused

by contacts are problematic for the optimal control framework, but they reduce the

severity of this difficulty in a similar fashion to their previous work (Muico et al.

2009) by incorporating the contact forces into the control policy and treating them

as if they were actuation variables. By tracking multiple controllers, they are able

to improve robustness. The authors also state that the push recovery is less stiff and

unnatural than other control approaches, although they note that this is difficult to

quantify.

2.5.5 Handcrafted Controllers

This section discusses controllers which use handcrafted models of biological mech-

anisms such as balance.

This kind of controller often uses proportional-derivative (PD) control to drive joints

towards desired poses or to track reference motion. In PD control, actuation for each

joint is given by a linear combination of the errors in the position and velocity of

its corresponding DOF, scaled by appropriate gains. Typical responses of a PD

controller are shown in Figure 2.5.2. If the position gain kp and velocity gain kd

are related by kd = 2
√
kp, the dynamics are critically damped. Smaller or larger

values of kp relative to kd lead to over-damping and under-damping respectively.

Selecting good values for the position and velocity gains is the major difficulty in

PD control. Gains which are too high can result in overly stiff motion, which lacks
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responsiveness to disturbances, and can cause problems with overshooting target

poses or oscillation. Biological control generally exhibits low stiffness, but gains

which are too low can lead to very loose motion which appears unnatural and fails

to reach target poses. Various heuristics can help to guide choice of gain values. For

instance, selecting gains to obtain critical damping is often a reasonable starting

point. van de Panne & Fiume (1993) suggest that sensible initial values can be

determined by simple calculations, for example a bent leg should be able to produce

an actuation comparable to half the character’s weight. Zordan & Hodgins (2002)

suggest that gains should be scaled for each joint based on the inertia of the attached

chain of body links. Zordan & Hodgins (2002) also use a temporary reduction in

gains following impacts to provide responsiveness before ramping back to original

values. These principles can give a good starting point, but fine tuning of gains is

often necessary, either by trial and error or optimization (see section 2.5.6). Gain

values may also be highly dependent on morphology and require fresh tuning for

different characters. A major advantage of PD control is that is conceptually simple

and computationally inexpensive.

 0

 1

po
si

tio
n

time

 0

 1

po
si

tio
n

time

 0

 1

po
si

tio
n

time

Figure 2.5.2: Typical Responses for Proportional-Derivative Control, for Over-
Damped (Top), Critically Damped (Middle) and Under-Damped (Bottom) Con-
ditions

Antagonist control is a similar representation, in which a pair of springs is associated
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with each DOF, and control is achieved by varying the two spring stiffnesses. This

formulation is entirely equivalent to PD control, but it has the advantages that it

is more conceptually similar to actuation in real animals, the parameters are more

intuitive, and it separates control of position and stiffness (Neff & Fiume 2002).

An integral component is sometimes incoporated to include feedback on the history

of the dynamics, leading to proportional-integral-derivative (PID) control. This can

have the advantage of detecting that applied actuation is not sufficient to achieve

target poses and adjusting accordingly, but the integral is invalidated by disconti-

nuities in motion.

Allen & Faloutsos (2012) describe a number of misconceptions regarding PD con-

trol, in particular regarding its asymptotic behaviour, the time to reach the target

position, and the effect of a target velocity term on the final position.

In work by Allen et al. (2011), PD control parameters are determined in order to

precisely interpolate target states in a critically damped fashion, matching both

position and velocity targets. The method is applied to a single-DOF robot arm

with rapidly changing target positions during a ball deflecting task. The calculated

PD parameters give much closer tracking of desired position and velocity compared

to a hand-tuned controller, and the resulting motion appears less robotic due to a

more natural compliance.

Handcrafted controllers often use a finite state machine (FSM), consisting of a small

set of states corresponding to phases of locomotion such as leg swing, toe-off or the

flight phase for running. Transitions between states may occur on a timed basis,

or may be triggered by events such as heel strike. Some methods use an associated

pose control graph, with target poses for each state. Modifying target poses can

be a straightforward way to generate new motions (Coros et al. 2010), but control

over motion style is difficult. Setting target positions may be relatively easy, but

target velocities are much less intuitive. For this reason, target velocities may be set

to zero, requiring the use of exaggerated target poses which are never reached. In

general, using pose control graphs is uncomplicated, but less detailed and natural

than tracking reference motion, with control over style limited and difficult.

Raibert & Hodgins (1991) simulate running motions for bipeds and quadrupeds

using PD control. Elastic mechanisms in the legs are modelled, and energy injected

or removed to produce the vertical oscillations observed in real running motions.

Speed and balance are controlled using foot placement based on an IPM. Balance

is achieved through PD control of the trunk attitude.

Hodgins et al. (1995) produce simulated running, cycling and vaulting motions using

a state machine to select control laws based on the motion phase. PD control is used
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to drive joint angles towards targets computed by the control laws. Remaining DOFs

not directly associated with the motion are used for stabilization. The control laws

are hand-tuned using force plate data and muscle activation data from biomechanics,

and motion capture. Their method is stated to be most suitable for highly dynamic

motions, which are strongly constrained by dynamics.

Zordan & Hodgins (2002) use PD control to track motion capture data for simulation

of boxing and table tennis. IK and timewarping are used to modify the motion

capture data, for example to generate new table tennis swings. The tracking is

augmented with balance control achieved by computing additional torques to drive

the COM position over the centre of the support polygon. PD gains are temporarily

lowered when impacts are detected, increasing responsiveness.

SIMBICON (simple biped control) is a successful and often cited example of a

handcrafted controller (Yin et al. 2007). It uses PD control with a pose control graph

containing four states for walking or two states for running motions. Alternatively,

it can use tracking of a reference motion. A robust balance mechanism is achieved

by expressing the target angles for the torso and swing hip in world space, and

controlling the swing hip target angle based on feedback from the COM trajectory.

Feedback error learning is used to learn largely feed-forward control, eliminating the

need for large PD gains. The controller is able to produce a variety of motions,

including walking in all directions, running and hopping, and impressive robustness

to pushes is demonstrated. There are limitations, including robotic gaits, and poor

reproduction of realistic ankle motion and toe-off behaviour. The controller runs in

real-time on standard hardware.

Coros et al. (2010) describe another method based on PD tracking of a pose control

graph, with the aim of allowing high flexibility and straightforward authoring of

new motions. In a similar fashion to SIMBICON, some joint angles are expressed in

world space to include information about orientation. Balance is achieved through

foot placement controlled using an IPM. High level control of locomotion speed

is achieved by using virtual forces to accelerate or decelerate the COM. The vir-

tual forces are mapped to joint torques via the Jacobian of the system. Jacobian

transpose control is also used to apply compensation for estimated gravity forces to

allow low-gain PD tracking. The controller is designed to be insensitive to changes

in gait, task and morphology, and avoids tuning of parameters by using critically

damped PD control, with gains scaled based on mass for different characters. Gen-

eralization of the method across character morphology and various tasks including

picking up and carrying heavy objects, and climbing over and ducking obstacles is

demonstrated. The controller is not suitable for highly dynamic motions and, since

a pose control graph method is used, the results do not appear as natural as motion

capture. Real-time performance is achieved using standard hardware.
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Jain & Liu (2011a) consider a SIMBICON controller with spring forces at contact

points used to model the effect of deformable bodies. They find that this approach

allows greater robustness and realism compared to using rigid bodies, which tend to

result in intermittent contacts and sporadic pressure distributions. They also con-

sider some other approaches such as segmenting the foot into multiple rigid bodies

and penalty methods. However, they find that segmenting the foot introduces prob-

lems with mass ratios and additional controller complexity, while penalty methods

with inappropriate stiffness may result in penetration or bouncing.

Handcrafted controllers are generally highly task specific, and constructing more

complex motion spaces with many tasks requires transitioning between controllers.

The success of a transition depends on the two controllers and the controller phase at

transition, and determining which transitions can be made stably is a difficult prob-

lem. Faloutsos et al. (2001) address this problem by using support vector machines

to classify stable entry conditions for controllers.

Although handcrafted controllers have produced some impressive results, there are

a number of difficulties with this approach. Manually designing controllers is a

skilled and time-consuming task, and controllers tend to suffer from high specificity

in terms of task, character morphology and environment. As controllers tend to

be highly gait specific, providing agile and responsive control involves transitions

between controllers and is a difficult problem. PD control generally handles each

joint individually, which can lead to poor simulation of the highly co-ordinated

motion seen in nature. The fact that poses are targets only and may not be reached

can hamper precise control.

2.5.6 Offline Optimization of Controller Parameters

As discussed earlier, many types of controller include parameters, such as PD gains,

weights in cost functions of optimal control formulations, and so on, which must

be specified. In some cases, their values may be guided by physical insight, but

often their effect is not very intuitive. They are also often sensitive to variation,

requiring retuning for changes in character morphology or task. One common way

to address these problems is to perform offline optimization to find parameter values

that perform well for some desired task.

The objective functions to be optimized are typically high dimensional, nonlinear

and discontinuous with many local minima. These factors make it difficult to ap-

ply many standard optimization techniques, although stochastic methods can be

effective. Covariance matrix adaptation (CMA), illustrated in Figure 2.5.3, is a

stochastic approach which is frequently used (Hansen 2006). In CMA, search points
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are randomly sampled and evaluated from a multivariate normal distribution which

represents the current estimate of the optimum. An “elite” subset of these samples

with the highest values of the objective function is used to calculate an improved esti-

mate of the mean and covariance, and the process is iterated until some convergence

criterion is achieved. Step-size adjustment arises naturally out of the variance esti-

mation, allowing fast progress but preventing premature convergence. The method

also has the advantage that it requires only function evalutions, not derivatives.

Problems of the complexity involved in controller optimization can take many hours

or days to converge.

Figure 2.5.3: Illustration of Covariance Matrix Adaptation Method - Elite Samples
(Shown in Red) from One Iteration Determine the Next Iteration’s Sampling Region
(Red Ellipse)

Sharon & van de Panne (2005) look at low dimensional planar biped locomotion

using a set of nodes in the space describing the system, with control for a particular

state determined by the closest node. The nodes thus form a Voronoi decomposi-

tion of the state space, and control behaves similarly to a FSM, with traversing a

cell boundary corresponding to a state transition. The positions of the nodes and

their outputs are optimized to give motions close to a provided reference sequence.

The reference motion can be used to give a good initialization for the optimization

problem, and the cost function is carefully chosen to give a more tractable search

space, with the result that a relatively unsophisticated greedy hill-climbing method

can be used. The technique is demonstrated for a variety of motion styles, and for

uphill climbing and robustness to disturbances.

Yin et al. (2008) look at the use of offline optimization to improve flexibility of

existing controllers in an automated fashion. They use continuation methods, an

approach to solving for different scenarios by varying some parameter of the system
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such as step height or coefficient of friction in small increments and optimizing

based on the previous solution. This generates a continuous range of controllers

which can be interpolated to tackle intermediate problems. They consider a variety

of optimization methods based on gradient descent or stochastic approaches. Robust

adaptation is demonstrated for diverse variations including tall steps, steep inclines,

pushing heavy objects, and walking on ice.

Wang et al. (2009) use CMA to optimize a slightly modified version of the SIMBI-

CON controller (Yin et al. 2007) to improve naturalness. They note some discrep-

ancies between the original SIMBICON and real locomotion, including unnaturally

high torques in the hips and knees rather than the ankles, and lack of realistic toe-off

behaviour. To address these issues, extra bones are added in the feet, and control

of the ankles is handled in world space rather than local joint space, to ensure good

ground clearance. Transitions in the finite state machine are determined by mo-

tion heuristics rather than the time-based approach used originally. They include

objective terms in the optimization to encourage realistic walking characteristics

such as good foot clearance, low overall angular momentum, low head motion and

largely passive knee joints. There are also optional objective terms to control walk-

ing speed and step length. They demonstrate significant improvements in realism

over the original SIMBICON, including closer agreement with measured leg joint

trajectories. Robustness is somewhat reduced, since it is not explicitly optimized

for, and SIMBICON uses some unnatural mechanisms to maintain stability. Opti-

mization involves up to 3000 iterations of CMA, requiring about 180 hours of CPU

time.

In work by Wang et al. (2010), controllers are optimized for various sources of

uncertainty, including unexpected forces and motor noise. They also optimize for the

influence of user input and controller transitions not known in advance, important

considerations for responsive control. A Monte Carlo approach is used to evaluate

controllers in the presence of uncertainty, and optimization is performed with CMA.

To deal with convergence difficulties, controllers are optimized in incremental steps

of gradually increasing noise starting from a baseline with a similar method to that

used by Yin et al. (2008). They are able to demonstrate relatively agile user control,

increased tolerance to pushes and robust walking on narrow beams and slippery

surfaces. Realistic behaviour such as taking short steps and using arms for balance

on narrow beams arises automatically.

Wang et al. (2012) optimize a controller based on biologically inspired actuation and

building on the positive force reflex ideas suggested by Geyer & Herr (2010). They

use torques generated by Hill-type simulated musculotendon units (MTU) (Zajac

et al. 1989), which model the dependence of actuation response on muscle length and

contraction velocity, and they also model the dependence of joint torques on moment
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arm lengths. 8 MTUs are used in each leg, corresponding to the major human leg

muscles, including biarticular muscles (muscles which span two joints), such as the

hamstrings. No reference motion is used, and control is achieved with a combination

of SIMBICON style PD control and biologically motivated reflexes such as positive

force feedback. The MTUs introduce many additional parameters, and the controller

has over 100 tunable values, which are optimized using CMA to minimize metabolic

energy expenditure per unit distance. Walking and running are both demonstrated

by varying the target velocity. The controller produces impressively realistic results,

and by modifying parameters it is also possible to reproduce behaviour observed

in patients with conditions such as weak hamstrings. The controller uses a physics

simulation update rate of 2400Hz, and is stated to run in real-time once optimized.

Kwon & Hodgins (2010) use CMA to optimize adjustments to footstep locations

and knee torques generated by IPC trajectory planning (see Section 2.5.4) in order

to improve motion quality and provide better tracking of reference motion.

In work by Wu & Popović (2010), biped locomotion control is formulated in terms

of three end-effectors for the feet and upper body. A high level planner determines

a desired end-effector trajectory for each footstep. A low level controller solves a

quadratic program to calculate torques to achieve the planned trajectory. Offline

optimization of the planner parameters is then performed using CMA to minimize

energy cost and deviations from desired COM trajectory. It is noteworthy that bal-

ance is not explicitly modelled, but is achieved through the optimization by learning

how to modify the end-effector trajectories to influence the COM in the desired fash-

ion. Helper forces are allowed in the optimization, but penalized, and designed to

be phased out as optimization progresses. The planner samples terrain height val-

ues along the path of the foot and adjusts a height offset accordingly, allowing the

controller to avoid the unnaturally high ground clearances seen in terrain-blind ap-

proaches. Impressive results are shown, including natural and robust locomotion

on uneven terrain, and highly agile transitions such as turning 180 ◦ in two steps.

Because control is formulated in terms of end-effectors only, the approach can easily

be applied to different character morphologies. The controller operates in real-time

on standard hardware, although it uses 2048 simulation time steps per second.

Ding et al. (2012) use CMA to learn linear feedback policies to stabilize open loop

control for tasks including balancing, walking and running. They reduce the number

of parameters by decomposing the feedback matrix into low dimensional state and

actuation projection matrices, which encourage co-ordinated sensing and control.

Matrix elements are also encouraged to be zero to increase sparsity further. The

reduced order feedback parameters are optimized using CMA by evaluating policy

rollouts. Their approach discovers low-dimensional feedback policies of comparable

effectiveness to hand-tuned controllers such as SIMBICON, and shows that ground
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reaction forces and centres of pressure can be useful for control. In some cases, lower

dimensional feedback policies achieve better fitness, as for higher dimensional models

there may be problems with convergence or local minima. Some of the models take

hundreds of hours to optimize.

Liu et al. (2012) use a similar method to learn feedback control for running and a

set of obstacle clearing manoeuvres. Starting from a single motion capture sequence

for each task, open loop controllers are generated using the method described by Liu

et al. (2010) (see Section 2.5.8), with learned feedback as used by Ding et al. (2012).

These specific controllers are then parameterized using a continuation method. For

running, new optimizations are performed for slightly different conditions of speed

and turning direction, and fitting with radial basis functions is used to allow in-

terpolation. Similarly, the obstacle clearing skills are parameterized with respect

to features such as obstacle height, with parameterized optimal approach distances

and velocities also determined. Further optimization and control blending are used

to achieve robust transitions between running and obstacle skills. Simple footstep

planning is used to get as close as possible to the ideal distance and velocity val-

ues when approaching each obstacle. The results demonstrate impressive progress

in robustly transitioning between highly dynamics tasks, although appear to be

hampered by the limited extent of the turning parameterization. Obstacle clearing

success ranges from 83-90%. Simulation is performed using Open Dynamics Engine

(ODE) with a time step of 0.5ms. Each optimization requires several hours, with

the 2D parameterization of the running skill requiring 11 hours.

In the work of Geijtenbeek et al. (2013), both control parameters and muscle routing

are optimized using CMA. Muscles paths are represented as sets of line segments

connecting attachment points via intermediate points, with the attachment and

intermediate points free to be modified during optimization. A Hill-type model of

muscle dynamics similar to that employed by Wang et al. (2012) is used. More

robust and natural results are obtained using this approach than when the muscle

routing optimization is disabled. Simulation is performed using ODE with a time

step of 0.3ms, with a spring-damper contact model.

2.5.7 Online Optimization

In this section, some methods which use an optimization approach but operate in

real-time or close to real-time are discussed.

In online optimization, control is often formulated in terms of quadratic objective

functions with linear constraints, resulting in quadratic programming (QP) problems

for which efficient solvers are available. An overview of a typical online optimization
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approach is shown in Figure 2.5.4. In general, these techniques have the advantage

that optimization considers the character DOFs simultaneously rather than individ-

ually, resulting in more co-ordinated motion and allowing more faithful tracking of

reference motions. However, defining suitable optimization objectives can be diffi-

cult, and objectives can interfere with each other (Abe et al. 2007). These methods

are also very demanding computationally and, although described as real-time in

the literature, would be very hard to implement using the limited resources typically

available in games.

Figure 2.5.4: Overview of Typical Online Optimization Method

Abe et al. (2007) use online optimization to solve for joint torques based on a set of

quadratic objectives describing goals such as tracking, balance and reaching. Bal-

ance control is formulated in terms of driving the COM position over the centre

of the support region. The solver may optimize the objectives in priority order, or

combine them as a weighted sum. The prioritization approach is found to give less

realistic results due to interference between objectives. Control is demonstrated for

a variety of reaching and robust balancing tasks. Since the objectives are not mor-

phology dependent, the control scheme can easily be applied to different characters.

The controller runs at 30 fps on standard hardware.

Planning over long intervals is computationally intractable in real-time, and com-

puted trajectories are quickly invalidated by disturbances. da Silva et al. (2008b)

address these problems by using short-horizon planning, and updating plans regu-

larly. Planning is achieved by using a linearized model of dynamics as a constraint

in a QP, which is solved to compute torques required to track reference motion

over a short interval. The predictive control is augmented with feedback from a low

gain PD controller, to compensate for errors and deal with unexpected disturbances.

Their method also employs a balance mechanism based on control of the swing hip,

similar to SIMBICON. The controller is able to successfully adapt reference mo-

tion to new environments, such as inclines. Motion appears somewhat robotic, a

result attributed to the greedy nature of the short-horizon planning. The controller

operates in real-time.
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da Silva et al. (2008a) combine tracking of reference motion and balance control.

Balance control is modelled using an optimal control formulation, with a quadratic

cost function. The balance controller uses a reduced 3-link model (2 legs and trunk)

to improve performance and to suppress DOFs which have little significance in

locomotion. A linear approximation to the dynamics is computed offline for each

contact state of the reference motion, allowing the optimal control problem to be

cast as an analytically solvable LQR, which can be evaluated for the reduced model

efficiently. A style controller tracks the reference motion, and style and balance

terms are combined in a QP. Faithful tracking of reference motion over difficult

terrain including slopes, steps and seesaws is demonstrated.

Macchietto et al. (2009) consider real-time balance and tracking control for a stand-

ing character. Unlike many other methods which address only the COM, both COM

and COP (or equivalently both linear and angular momentum) are controlled, based

on evidence from biomechanics that angular momentum is tightly controlled in na-

ture. Control is achieved by calculating ideal joint accelerations through online

optimization of a quadratic goal comprising terms representing linear balance, an-

gular balance, and reference tracking. A penalty method is used for contacts with

the result that the quadratic problem can be solved in a single step, as opposed to

a constraint based approach which would require an iterative solver. Torques are

then computed from the ideal accelerations using an inverse dynamics solver. The

addition of angular momentum control leads to co-ordinated motion which is richer

and more robust, with natural behaviour such as windmilling arising automatically.

Since control is based on high level descriptions of the character such as COM and

COP, it is easily adaptable to different morphologies. The controller operates in

real-time.

Wu & Zordan (2010) use a similar approach to that described by Macchietto et al.

(2009), but add the ability to take deliberate steps, with high level control of stepping

location and duration based on the character’s momentum state. Based on research

on natural trajectory formation (Abend et al. 1982), a target path for the swing foot

is given by a straight trajectory with Gaussian velocity profile. A target trajectory

for the COM is also defined, using a quadratic curve, consistent with motion capture

data and with the idea of the swing phase as a controlled fall, similar to the IPM.

Target joint angles are then determined using IK, and combined with balance goals

in a quadratic problem, which can be solved in real-time. Realistic reactive stepping

is demonstrated and, as with the work of Macchietto et al. (2009), the control can

handle different morphologies easily.

Mordatch et al. (2010) use online optimization to deal with planning for difficult

locomotion tasks such as moving on uneven terrain. Planning is conducted over the

course of two steps using a closed form approximation to a spring loaded inverted
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pendulum. Six phases of motion are considered, a double stance, single stance and

flight phase for each leg. This allows different gaits to be represented in the same

framework, with some phases having zero duration in certain gaits, for instance

walking has no flight phase. The planning objectives include user control terms to

influence step size and heading. The planning optimization problem is solved online

using CMA, initialized using information from previous planning steps to improve

performance. Full body torques are determined using a QP, with objectives to

follow the low dimensional plan and maintain balance. Robust response to pushes

and traversal of difficult terrain including slopes and variously sized gaps is shown,

although the motion is somewhat robotic and overly stiff. Performance is around

15% of real-time, or 55% with reduced planning frequency.

de Lasa et al. (2010) accomplish locomotion through control of high-level motion

features including angular momentum and COM and end-effector trajectories. Ref-

erence values for these features are determined using state machines, and quadratic

objectives describing their behaviour and including user input are optimized in a

prioritized fashion. Precise jumping and walking in a variety of styles is demon-

strated. As control is based on high-level motion features, parameters are intuitive,

and controllers can easily cope with different characters. Performance is around

50-100% real-time.

In work by Ye & Liu (2010), an optimal control policy is calculated offline for a

reference motion using differential dynamic programming with an abstract dynamics

model based on linear and angular momenta and COM position. Approximating

derivatives about the optimal policy gives a linear feedback policy in terms of the

abstract model state, time to complete the motion and the final state. The ability to

alter completion time gives more robustness to disturbances, and changing the final

state constraint allows environmental adaptations such as step height. A quadratic

problem is then solved to calculate full body motion consistent with the abstract

state. Simulation is performed at 120Hz. Performance is about 15% of real-time for

a 42 DOF character.

Jain & Liu (2011b) perform long horizon planning, using modal analysis to simplify

computation by allowing uncoupled modes to be optimized separately (see also the

work of Kry et al. (2009), discussed in Section 2.5.8). First a quadratic problem is

solved to compute contact forces to achieve bulk motion as consistent as possible

with the target motion. Then each mode is optimized using the already calculated

contact forces. Planning is performed for low frequency modes over an interval of

10-15 frames, with shorter horizon planning for high frequency modes. For a 42 DOF

character, performance is around 3-10% real-time, with computing the interaction

between contact forces and bulk motion being the bottleneck.
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Tassa et al. (2012) solve a linear quadratic regulation problem at each time step

to achieve control. Solutions from previous time steps are used to warm start the

solution. A smooth approximate contact model allows contacts to be differentiated.

The resulting controller is able to demonstrate getting up from arbitrary poses, and

recovery from large disturbances. For a 22 DOF character, performance is around

15% of real-time.

Brown et al. (2013) look at rotational movements such as rolling, which are infre-

quently studied. As well as angular momentum and angular velocity, they also find

that the integrated angular velocity, which they refer to as angular excursion, is effec-

tive as a high-level control objective. Control is achieved using a quadratic problem

to optimize high-level linear and rotational objectives along with pose tracking. Ro-

tational behaviours frequently involve many potential contacts. To determine which

should be used for control, the optimization is first run with all contacts, then those

exerting little force or torque about the COM are excluded. Flexibility of the pose

tracking is improved by blending between two target poses. Optimization and sim-

ulation are both performed at 60Hz. The single-threaded implementation runs at

20-40% real-time.

Al Borno et al. (2014) also consider rotational movements such as cartwheels, dives

and flips. A quadratic problem is solved at each time step to optimize contacts, COM

and end effector trajectories and angular momentum. Control is parameterised using

a time-invariant phase variable based on the angle of the body, resulting in greater

robustness to disturbances compared to a time-based parameterization. The control

and simulation both run at 1000Hz, with single-threaded performance around 50-

100% real-time.

Han et al. (2014) solve a series of optimal control problems over small time windows

covering two footsteps. A low dimensional nonlinear dynamics model is used, based

on overall momentum change and foot motion. Optimization is prioritized, with

the highest priority level solving for foot motions, allowing foot contact repositions

for robustness and uneven terrain. A second level of priority solves for linear and

angular momentum, energy and reference tracking objectives. Output motion is

generated at 200 frames per second, with the optimal control policy updated as

often as performance allows, initialized using previous solutions. The dynamics

formulation allows closed-form derivatives, allowing real-time performance.

2.5.8 Other Methods

This section describes some methods which do not fit neatly into the categories

already discussed.
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Various methods employ control strategies based on the behaviour of systems in

phase space. Cyclic motions such as walking can be represented by closed phase

space trajectories known as limit cycles. Laszlo et al. (1996) formulate control by

linearizing dynamics about a desired limit cycle and driving disturbed states back

to the stable trajectory. Another related concept is a Poincaré map or return map,

which describes how the state evolves in subsequent orbits of periodic motion, with

fixed points on the map corresponding to stable trajectories. Tedrake (2004) uses

return map analysis to generate stable walking for low dimensional bipedal robots

based on passive walkers.

Pratt et al. (2006) analyse the dynamics of an inverted pendulum plus flywheel

model and derive expressions for the region into which a biped must step to come to

a complete halt, which they describe as the capture region. The model is applied to

a low dimensional representation of a biped, which is able to stop by using angular

momentum based strategies such as lunging.

Coros et al. (2008) use a combination of offline and online methods to accomplish

locomotion planning on highly constrained terrain. For a given constrained loco-

motion task, solutions for a large number of randomly generated similar tasks are

computed using offline optimization. A non-parametric regression is then performed

on the population of examples to produce a model of the character’s state after step-

ping based on its current state and selected action. To simplify the analysis, a low

dimensional model of the state is manually defined, and a low dimensional action

space is determined using PCA on the example motions. The resulting stepping

model is used online to plan over two step intervals, with replanning after each

step. Planning may be achieved by systematically sampling the space of feasible

actions for highly constrained motions, or by random sampling for less constrained

problems. Navigation of difficult terrain including anticipation and variation of step

size is demonstrated, although the movement is somewhat lacking in naturalness.

The controller runs in real-time or close to real-time, depending on the action space

sampling method.

Kry et al. (2009) consider motion in terms of a character’s natural oscillatory modes

(see also the work by Jain & Liu (2011b) discussed in Section 2.5.7). They focus

on low frequency modes which they argue are most likely to correspond to natural

energy efficient motion. Simple loop-shaped and worm-like creatures are physically

simulated by activating relevant modes with particular amplitudes and phases, but

a lack of balance control prevents simulation of more complex creatures. Kinematic

motions for a dog are demonstrated by combining modes relevant to locomotion.

Up to six modes are used.

Liu et al. (2010) achieve open-loop control by randomly generating PD joint targets
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within specified sampling windows. At each sampling step, a large number (1400 in

the examples considered in the paper) of possible future states are generated using

simulation. The states are evaluating using an objective function based on tracking

a reference motion. To retain diversity and avoid shortsighted control, a smaller

number of states (200) are kept as the basis of future sampling, with retention

biased to better values of the objective function. Control over a series of sampling

steps can then be reconstructed by backtracking from the final state. The method

is illustrated in Figure 2.5.5. The approach is used to successfully reproduce various

motions including walking, running and contact-rich rolling. It can also be used to

transform reference motions to different environmental conditions, such as uneven

terrain or low friction, and to retarget motion to other characters. Simulation is

performed with 0.5ms time steps, with control sampling at 0.1s intervals. For 1400

sampled motions per sampling step, reconstructing motions requires 1-3 minutes

using 80 cores.

timestep

objective

Figure 2.5.5: Sampling-based Approach as Used by Liu et al. (2010)

2.6 Conclusion

This section describes recent trends and possible future directions in physics-based

character locomotion and discusses some open questions.

As shown in Figure 2.6.1, the field is currently enjoying an active period. Activity

appears to have declined a little since a particularly high period around 2010, but

remains high.
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Examining the individual categories in Figure 2.6.1, some trends are suggested,

although care should be employed since the category sample sizes are relatively

small, papers may been missed during the literature search, and there may be some

effects due to the difficulty of classifying research which incorporates ideas from

more than one category.

It appears that handcrafted controllers have become uncommon in the last few years

as tuning of multiple parameters is difficult and time consuming. At the same time,

offline parameter optimization methods have become more prevalent.

Spacetime optimization continues to be a useful technique for offline motion editing

and synthesis, and recent work to improve handling of contacts such as that by

Mordatch et al. (2012) and Posa et al. (2014) extends its usefulness by increasing

the flexibility and robustness of search space exploration.

There has been some interesting recent work in the area of neural networks, such as

by Liu et al. (2013), but these methods remain difficult to apply to characters with

many DOF.

There has been a lot of recent activity in the area of online optimization. These

approaches can generate very impressive results, and with recent approaches such

as applying optimization to simplified low dimensional models, performance is ap-

proaching real-time. With further developments in performance, this could be a

very promising area for future work.

Another recent trend has been the use of more biologically influenced actuation,

for example as employed by Wang et al. (2012) and Mordatch et al. (2013). These

approaches increase complexity, but give impressively natural results without the

need for reference motion.

Although quite natural results have been achieved using biologically inspired actu-

ation and objective functions, it remains unclear whether certain aspects of motion

style such as emotional state and fatigue can be represented without using reference

motions.

There has been relatively little work on rigorously assessing the naturalness of gener-

ated motion. Although some methods such as comparing joint angles and moments

with observed human trajectories have been used (Wang et al. 2012), many papers

rely on visually assessing the plausibility of output motion, making it difficult to

compare different approaches.

Although there has been a lot of progress with coping with unexpected forces and

changes in terrain, there is still some way to go to achieve a flexible controller able
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to transition smoothly between different tasks and adapt robustly to environmental

changes. For interactive control, balancing realism with prompt responsiveness to

unexpected user input remains challenging, although this issue is not specific to

physics-based methods.
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Chapter 3

Preliminary Implementation and

Results

3.1 Introduction

As discussed in Chapter 2, there is a large body of existing work on physics-based

character control, drawing on many areas including animation, biomechanics and

robotic control. This project aims to build on the existing work and address some

questions concerning real-time applications using commercial physics engines. Much

of the existing work is not designed to run in real-time and even methods described

in the literature as real-time often require too much CPU time to be immediately

applicable to applications such as games where animation control must run alongside

many other tasks. Various problems need to be considered in order to achieve real-

time performance. In particular, it may be necessary to use longer time steps in

the numerical integration stage of the physics engine than are often used in existing

work, making control more difficult.

3.2 SIMBICON Type Controller Implementation

SIMBICON (Yin et al. 2007) was chosen as the basis for initial experimentation as,

although the mechanics of the controller are relatively simple, it is quite effective and

robust, and it is widely cited in existing work, with many researchers achieving good

results with additional sophistication built on top of SIMBICON-style controllers

(Yin et al. 2008, Coros et al. 2008, Wang et al. 2009, 2010, 2012). This section

gives some more detail on the original SIMBICON paper and the development of

a preliminary implementation integrated within NaturalMotion’s animation engine,

65



morpheme.

The original SIMBICON method is a joint based PD control approach, with torques

for each joint calculated based on the discrepancy between desired and simulated

values of the joint angle and angular velocity, scaled by gain parameters kp and kd

respectively.

τ = kp(θd − θ) + kd(θ̇d − θ̇) (3.1)

In the original SIMBICON method, desired joint orientations are defined by a finite

state machine with a small set of target poses corresponding to phases of the loco-

motion cycle, with transitions between phases triggered either by time or by heel

strike events, and target angular velocities are set to zero.

For most of the joints, the PD control is applied in the joint’s local space as defined

relative to its parent. In order to include information about the vertical direction

which is relevant for balance, control for the torso, swing hip and stance hip joints

is applied in world space. The torques for the swing hip and torso, τB and τtorso, are

determined based on their desired orientations, and the torque for the stance hip,

τA, is calculated to ensure that the net torque is zero.

τA = −τtorso − τB (3.2)

A balance mechanism is provided by modifying the target orientation for the swing

hip with feedback based on the horizontal position of the COM relative to the stance

ankle, d, and the COM velocity, v.

θd = θd0 + cdd+ cvv (3.3)

Source code for a standalone implementation of SIMBICON was obtained from the

authors’ website. This version used an update frequency of 2000Hz for the physics

simulation, and was based on Open Dynamics Engine (ODE), which uses a matrix

solver based approach to resolve constraints, which is highly accurate and robust

but computationally expensive. Although real-time performance was achieved, the

CPU utilization was very high, which would be unsuitable for applications such as

games where character control must share resources with many other tasks. Ex-

perimentation with the source code suggested that it was possible to lower this

physics update rate somewhat, but the controller became completely unstable at

around 750Hz. Likewise, Giovanni & Yin (2011) implement generalized biped walk-
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ing control (Coros et al. 2010), a similar controller to SIMBICON, in several different

simulation engines and find that the controller fails for time steps above 1-2ms for

all the simulators considered.

Initial work focused on developing an implementation of a SIMBICON-style con-

troller integrated into morpheme, with computational requirements more suitable

for real-time applications. The default male character rig and example walking mo-

tions from morpheme were used. The rig has 20 links with proportions and mass

distribution suitable for representing a human, although some minor changes are

made to improve simulation characteristics, such as avoiding large mass ratios in

chains. Twist and swing based joint limits are used to allow a realistic range of

motion. The character’s feet are represented by rigid cuboids. The implementation

was based on a modification of an existing morpheme physics node, which tracks

target animations using a spring-damper based PhysX joint drive. A world space

controller was added to calculate torques for the three joints associated with bal-

ance, and the existing joint drive was disabled for these joints. Performance was

improved by scaling torques for the balance joints based on the moments of inertia

of their attached chains. The SIMBICON balance feedback terms were also added

to modify the target orientation for the swing hip. Rather than using a small set

of target poses, desired orientations for joints were determined based on a reference

walking animation, with the aim of improving the naturalness and level of control

over motion style compared to the original SIMBICON, which often appears robotic.

For each frame, it is necessary to identify which leg is the swing leg, and which is the

stance leg. This was initially determined by retrieving footfall timings from the event

information associated with the reference animation (events such as heel strike are

marked up in the animation engine for reasons such as avoiding blending artefacts),

but this was not found to be satisfactory due to latency between the simulated

and target poses. A more effective approach involving contact information retrieved

from the physics engine was implemented. The contact information could also be

used to reset the phase of the target animation at each footstep to avoid losing

synchronization.

As one of the aims of this project is to investigate whether locomotion control can be

brought more in line with the performance requirements of real-time applications,

the development and experimentation with the initial morpheme implementation

was performed with a physics simulation rate of 60Hz.

With the initial implementation, the character was able to take one step, but ap-

peared to lack sufficient momentum to propel itself over the new pivot foot and

tended to fall backwards. An alternative feedback mechanism based on ensuring the

COM had sufficient energy to pivot was investigated, but was no more successful.
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The implementation here used a reference motion rather than a FSM containing a

small set of target poses, so may not be directly comparable to the work by Yin

et al. (2007) but, as noted above, similar FSM based approaches have also been

found to fail with high time steps (Giovanni & Yin 2011).

3.3 Foot Contacts

A major source of instability in the initial implementation was the interaction be-

tween the feet and the ground. One difficulty was with errors and latency in the

tracking resulting in poor orientation of the foot prior to heel strike, leading to

tripping. Another problem involved dealing with the sudden impulse associated

with the ground impact and achieving a sufficiently stable foot plant to support

the subsequent step. Ground contacts introduce large, discontinuous forces which

increase the stiffness of the numerical integration in the physics simulation. At a

physics rate of 60Hz, the uncertainties associated with large integration time steps

make the behaviour of the simulation less predictable and smooth. Furthermore, at

this simulation rate, the controller only has 2 or 3 physics updates after each heel

strike to accomplish a stable stance with that foot ready to initiate stepping with

the opposite foot.

An attempt was made to address the lack of stable foot plants by creating a con-

straint to lock the foot in position immediately after heel strike, and destroying it

when the COM had moved a short distance in front of the pivot point. This ap-

proach was successful in producing a controller which could take many stable steps

and reproduced the input animation relatively well (see accompanying video). How-

ever, it was not satisfactory as a long term solution as stability was achieved in a

very artificial manner, with the character appearing to lean backwards on the step

further than would be stable without the foot locking, and being dragged over the

pivot foot rather than being pushed by the trailing leg.

3.4 Tracking Latency

Subsequent work aimed to achieve stable walking without the unnatural effects

associated with applying constraints to the feet after heel strike to ensure a solid

stance. One of the problems observed with stability was high latency in tracking

the reference animation (see Figure 3.4.1). In order to quantitatively assess the

latency, a representative joint was chosen (the right knee joint) and a correlation

measure was calculated between the trajectory obtained in the simulation and the
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Figure 3.4.1: Tracking Latency in Right Knee Joint

reference animation offset by n frames, with n varying from 1 to 8. The correlation

measure was based on the squared error between the target and actual joint angle

values summed over 4 locomotion cycles. The correlation measure was plotted for

several different joints and in each case a quadratic curve fit was found to describe

the data well (see Figure 3.4.2). The latency could then be estimated by calculating

the number of frames corresponding to the minimum of the quadratic. Code was

added to the implementation to output this latency measure and the R2 coefficient

of the curve fit as a check that a quadratic curve gave a good fit to the data.

One factor thought to contribute to the latency in joint tracking was that the physics

node used as the basis for the implementation did not set target angular velocities for

joints, only target orientations. Code was added to supply target angular velocities

to the joint drive calculated from subsequent frames of the input animation, and this

improved the latency from 6.2 frames to 2.4 with the joint strength and damping

settings used.

The effect of the joint drive strength and damping parameters on latency was also

investigated by running the simulation repeatedly with different parameter values.

The strength and damping parameters are scaled in the animation engine relative to

values which have previously been tuned to give lifelike behaviour for other physics

nodes, with both multipliers expected to have values close to 1.0 for a natural

appearance. The latency values for a range of strength and damping multipliers are

shown in Figure 3.4.3. The error bars are based on running the simulation 10 times

for each condition. Note however that for small estimated values of latency, since

the minimum in the quadratic fit is very close to one end of the data interval it
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Figure 3.4.2: Curve Fit to Quantitatively Estimate Tracking Latency
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may be quite weakly determined, and the small latency values may be less reliable

than the error bars suggest. The results show that latency decreases with both

increasing joint strength and increasing joint damping. However, large values of

these parameters have other deleterious effects, with motion appearing stiff and

unnatural, and for very large values render tracking completely unstable. Given the

limited benefit to latency and deterioration in stability and naturalness for larger

values, it appears that values close to the morpheme default values (e.g. multipliers

in the range 1.0 — 1.5) are optimal.

3.5 Feedback Error Learning

The original SIMBICON paper (Yin et al. 2007) uses feedback error learning (FEL)

to learn feed-forward torques, with the aim of reducing motion stiffness by allowing

lower gain values to be used in the feedback PD control. In the FEL approach, feed-

forward control is adapted over a series of locomotion cycles, by applying the current

estimate of the feed-forward torques to the character and calculating a feedback

correction to deal with the remaining deviation. The feed-forward estimates τff are

then updated by making a linear combination of the existing estimate with a small

contribution from the feedback component τfb

τ ′ff = (1− α)τff + α(τff + τfb) (3.4)

where α is a parameter which affects the learning rate. The feed-forward estimates

should converge over a series of locomotion cycles.

A framework to support the FEL approach was included in the morpheme imple-

mentation. As it was desirable to have the option of experimenting with different

update rates for the physics simulation, the FEL framework was developed in a

frame rate independent fashion, by dividing the locomotion cycle into a number

of intervals of equal duration (64 intervals were used), with feed-forward estimates

constant throughout each interval. For each frame of simulation, the applied feed-

forward torque was interpolated by forming a weighted combination of the intervals

which overlapped the duration of the frame, and updates to feed-forward torques

were made in a similar weighted fashion.

The FEL method needs a stable feedback controller to work from, but the stability of

the initial morpheme implementation was poor. Therefore, an attempt was made to

produce a more stable basis for the FEL process by overriding the state of the physics

model after each frame, with joint orientations and angular velocities determined
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Figure 3.5.1: Feedback Error Learning Tracking Errors

from the reference animation. The tracking error was calculated by summing the

squared error in joint orientation over one cycle of locomotion, and is shown over a

large number of cycles of FEL with α = 0.05 in Figure 3.5.1. Of obvious note are

large spikes in the error with a fairly regular period of around 2000 frames. This

period is much larger than the duration of the input animation and so does not

correspond to any feature of the reference motion, and the origin of the spikes is not

understood. There is some evidence of a downward trend in the tracking errors as

a result of the FEL, but it is difficult to separate from the noise associated with the

spikes in error, and the improvement, if any, is slow. Yin et al. (2007) do not describe

how many cycles of FEL were required for convergence in their implementation. It is

likely that the stability of the base controller is still too low to apply FEL effectively.

3.6 Angular Momentum Regulation

Another area which was explored in the initial experimentation was the incorpora-

tion of information about the angular momentum of the character about its COM

into the control strategy. Several papers (Macchietto et al. 2009, Lee & Goswami

2010, Herr & Popovic 2008) emphasize that regulating angular momentum is an im-

portant aspect of control. Two sets of control variables can be considered equivalent

— either the rate of change of linear and angular momentum, or the ground reaction

force and centre of pressure. Thus it may be possible that the problems with ground

contacts observed in the initial controller implementation could be addressed using

angular momentum information.
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Figure 3.6.1: Reference Animation Whole Body Angular Momentum

Figure 3.6.2: Measured Whole Body Angular Momentum (Reproduced from Herr
& Popovic (2008))

73



-5.0

0.0

5.0

10.0

15.0

20.0

25.0

30.0

0 64

L x
 / 

kg
m

2 s-1

frames

target
simulated

Figure 3.6.3: Whole Body Angular Momentum Tracking

It may be worthwhile to explore strategies similar to the approach described by Lee

& Goswami (2010), in which optimal values for the GRF and COP are calculated,

which are used to determine target joint accelerations. The joint torques required

to achieve the desired accelerations are then calculated using inverse dynamics.

One option which was considered here was to include the target and simulation

angular momentum, and the GRF and COP from previous frames as inputs for the

PD controller. By modifying the foot torques, it should be possible to manipulate

the COP and thus improve balance. For example, in some instances in the initial

implementation too much energy is being lost due to the impact of the leading foot

with the ground, so that the character tends to tip over backwards. With feedback

into the PD control, this would appear as a shortfall in the angular momentum

about the COM compared to its target value, which could be compensated for by

adjusting the torque on the trailing foot to push the COP backwards.

As the first step in implementing this idea, code was added to determine target

values for the angular momentum about the character’s COM based on the input

animation, and to calculate the angular momentum in the physics simulation at

each frame. As a test that the values returned were sensible, the output target

values (Figure 3.6.1) were compared with whole body angular momenta reported by

Herr & Popovic (2008), which were estimated from experimental measurements on

10 subjects (Figure 3.6.2). Note that the morpheme implementation has a y-up co-

ordinate scheme, while Herr & Popovic (2008) use z-up. The form of the calculated

target values is consistent with the experimental data.

Figure 3.6.3 shows the target and simulation angular momenta in the sagittal plane.
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The tracking is reasonably faithful for the first half of the locomotion cycle, but

is subsequently poor. It is thought that this poor angular momentum tracking is

contributing significantly to the instability of the controller. However, as incorpo-

rating angular momentum information into the control would add more parameters,

and manual tuning of the controller was already difficult and time consuming, it

was decided to implement a more sophisticated automated parameter optimization

framework before further work on angular momentum regulation.

3.7 World Space Control for Feet

A further source of instability in the initial controller implementation was the ori-

entation of the feet. Poor orientation prior to heel strike often led to tripping, and

poor orientation after foot placement interfered with achieving a robust stance. An

attempt was made to improve the alignment by including the feet in the set of joints

controlled in world space. Additional terms were also included in the balance feed-

back mechanism to encourage better foot placement leading up to heel strike. These

measures were somewhat successful in increasing the number of steps the controller

could take before becoming unstable, as can be seen in the video accompanying this

section, but very large PD gains were required resulting in very stiff movement and

jerky impacts following ground contacts.

3.8 Gravity Compensation

The large values for the gain parameters were in part necessary because the PD

controller was correcting, in a feedback fashion, deviations from desired joint orien-

tations caused by gravity. Explicit gravity compensation could be used to ameliorate

this problem, and is included in NaturalMotion’s behaviour system, euphoria. Fur-

thermore, adaptation of the brain’s internal model of dynamics under force fields

(Shadmehr & Mussa-Ivaldi 1994, Lackner & Dizio 1994) suggests that gravity com-

pensation is consistent with biological control, and could be considered as a form of

feed-forward control.

The following method was implemented in morpheme to determine gravity compen-

sation torques. For each joint, the mass and COM of the subtree of the physics rig

associated with that joint is calculated, and the gravitational torque about the joint

position evaluated. A compensating torque of equal magnitude to the gravitational

torque is then applied to the physics part which is the immediate child of the joint,

and an equal and opposite torque applied to the parent part of the joint to ensure
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Figure 3.8.1: Gravity Compensation Torques

torques are balanced. The method is illustrated in Figure 3.8.1 for the shoulder

joint, with its subtree highlighted in red. This procedure is iterated from the leaf

joints inwards until the pelvis (shown in black in the diagram), which is considered

as the root of the upper body, is reached. If one of the legs is not in contact with

the ground, the joints in that leg are also included iteratively from the foot inwards

until the pelvis is reached, and then gravity compensation continues down the other

leg to the ground. If both feet are supported, the torques from the upper body must

be distributed between the two supports, by calculating torques proportionally to

the magnitude of the GRF at each foot.

With gravity compensation, it was possible to greatly reduce the PD controller

gains, resulting in much smoother, but still poor, motion. The resulting motion is

illustrated in the video accompanying this section.

3.9 Summary

Initial experimentation with large time step simulation was conducted based on the

well-known SIMBICON framework. The original SIMBICON operates at 2000 sim-

ulation time steps per second and becomes unstable below about 750 time steps per

second. Implementing the basic SIMBICON method at 60 time steps per second

produced a controller stable for no more than one walking step, with problems due

to tripping, dealing with sudden impulses from ground contacts, and providing suf-

ficient forward momentum to complete steps. Foot constraints allowed many stable
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steps to be performed, but resulted in very unnatural behaviour. Tracking latency

was a major source of control difficulty, and although it was possible to improve la-

tency by including angular velocity tracking and tuning the joint drive parameters,

tracking delays remained which were significant compared to the duration of some

phases of the reference motion. Feedback error learning also appeared to improve

tracking slightly, but the base controller was too unstable to make FEL truly effec-

tive. World space foot control and gravity compensation also appeared to result in

modest improvements, but motion quality still remained poor.

Overall, despite numerous attempts to improve the motion quality, it appears that

it would be very difficult to implement a SIMBICON type controller effectively with

large time steps, and that more sophisticated control approaches are required.
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Chapter 4

Trajectory Optimization

4.1 Introduction

As described in Chapter 3, SIMBICON type controllers were found to be very prob-

lematic with large time steps, and it appears that more sophisticated control ap-

proaches may be necessary to achieve stable control under such conditions. One

issue which may cause such methods to fail is attempting to track reference motions

which lack physical validity. This chapter describes the use of trajectory optimiza-

tion techniques to improve the physical validity of reference motions, in order to

increase their suitability for tracking with physics-based controllers.

In order to achieve lifelike motion with physics-based character control, it is often

desirable to track a reference such as a motion capture sequence. However, due

to noise in the capture process and artefacts introduced by retargeting the actor’s

motion to a character model, the physical validity of the reference may be degraded,

causing the tracking to fail. In particular, the position and timing of contacts with

the environment may be incorrect. Therefore, it is useful to be able to process

motion sequences, and their contact configurations, to improve physical plausibility

whilst retaining the subtle details which contribute to realism.

This problem can be tackled with trajectory optimization, a process used to de-

termine control sequences for a system which are optimal in terms of an objective

function, subject to constraints. Here, the objective function might reward closeness

to the original reference motion, with the constraints enforcing physical plausibility.

There are two general families of approaches to trajectory optimization, shooting

methods and direct methods. In shooting methods, the space of control policies is

searched, with the state trajectory corresponding to a given control sequence deter-

mined by forward simulation subject to the system dynamics. In direct methods,
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optimization takes place over both the control and state trajectories simultaneously,

with constraints ensuring consistent dynamics.

Shooting methods can handle modifications to contact configurations, but are very

sensitive to changes near the beginning of the control interval, as their influence

propagates over the whole interval, making such problems difficult to solve.

Contacts are difficult to include as variables in direct methods as they are hard

to formulate in differentiable form, and as a result much previous work with direct

methods uses fixed contact schedules. Posa et al. (2014) do incorporate contacts into

direct trajectory optimization, but at the expense of introducing complementarity

constraints. A complementarity constraint enforces that the product of a pair of

variables is zero, and these constraints make problems difficult to solve as the feasible

region of the search space is poorly connected. Posa et al. (2014) use a constraint

relaxation method, allowing the product of the complementary variables to take a

small non-zero value, which is then driven to zero as optimization progresses. The

approach is demonstrated for problems with complex contacts, although only planar

examples are considered. In general, constraint relaxation methods can encounter

difficulties when the relaxation parameter gets very close to zero.

This chapter extends the direct method of Posa et al. (2014) to 3D problems with

contacts using an exact penalty method, in which a specially formulated term is

added to the objective function which leads to the complementarity constraints be-

ing satisfied. The results suggest that the exact penalty method offers significantly

greater robustness and performance compared to the constraint relaxation approach.

The performance also appears strong compared to previous work incorporating con-

tacts using shooting methods. As an auxiliary contribution, it is demonstrated that

trajectory optimization problems can be effectively tackled using an interior point

solver, as well as previously used sequential quadratic programming methods. This

work also uses an open-source solver, allowing greater applicability than previous

work relying on proprietary software.

4.2 Related Work

This section previous work on trajectory optimization, which is also described in

more detail in Section 2.5.1.

Trajectory optimization (also described as spacetime optimization or spacetime con-

straints), as introduced by Witkin & Kass (1988), is the idea of manipulating mo-

tions over a whole interval by treating the series of poses as variables in a constrained
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optimization problem. Physical consistency may be enforced by constraints, and de-

sirable motion characteristics encouraged through an objective function. Full char-

acters may have dozens of DOF for each time step in the interval, leading to costly

optimization problems involving thousands of optimization variables overall, and

much subsequent work includes measures to improve performance. An additional

difficulty with trajectory optimization is that it is very susceptible to problems with

local minima. Many of the papers discussed below also address that issue, but it is

not the focus here.

Methods to improve performance include splitting motion into a series of inde-

pendent subproblems (Cohen 1992), using more compact representations such as

B-splines (Cohen (1992) and many subsequent papers) or wavelets (Liu et al. 1994),

allowing the precise timing of keyframes to vary (Liu & Cohen 1995), and using sim-

plified dynamics (Liu & Popović 2002, Abe et al. 2006) or low-dimensional character

models (Popović & Witkin 1999, Safonova et al. 2004). However, these approaches

are not guaranteed to produce results which are physically consistent between fixed

time steps, which is desirable for tracking with physics-based controllers as required

here.

Efficient solution of constrained optimization problems usually requires derivatives

to be calculated, and the timing of foot contacts is difficult to express in formulations

which are differentiable. This means that a prescribed contact schedule is often used

during optimization, and none of the methods discussed above allow contact timings

to be changed during optimization.

Variable contact timings can be achieved by performing trajectory optimization as

an inner loop, and adjusting contacts in an outer loop (Wampler & Popović 2009),

but this approach is very expensive computationally.

Modifiable contacts can be included in more tractable ways by using a continuous

approximation to the discontinuous contact dynamics (Todorov 2011) or using soft

constraints (Mordatch et al. 2012, 2013). Soft constraints are related to the exact

penalty method presented in Section 4.4, with each approach replacing constraints

with penalty terms in the objective function. However, the contact method described

by Mordatch et al. (2012) is not guaranteed to completely eliminate contact errors.

The method presented here allows the body of work on exact penalty methods

to be drawn on, including convergence results, understanding which formulations of

penalty functions might be expected to be driven to zero, and strategies for selecting

weighting for penalty terms. This work therefore has value in elucidating the soft

constraint approach and its connections with other fields. Furthermore, Mordatch

et al. (2012) use objective terms to enforce physical consistency, allowing small

physics violations to remain in the final result (their aim is to generate visually
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plausible motions rather than concentrating on strict physical validity). In the

method presented here, the aim is to produce motions highly suitable for simulated

tracking, and physics violations, including contact violations, are reduced to zero

(within the tolerance of the solver).

Posa et al. (2014) incorporate contacts as optimization variables by using comple-

mentarity constraints, which are awkward to solve as they make the search space

poorly connected. They use a constraint relaxation method to deal with comple-

mentarity constraints, and demonstrate examples with complex contacts, although

only in 2D. Solutions take up to an hour to obtain for a planar 13 DOF character.

This chapter focuses on direct trajectory optimization, but some other approaches

are briefly discussed here. Muico et al. (2009) use an optimal control solver as a

preprocessing step to make motion capture data more suitable for tracking. It is not

clear whether the method used allows contacts to be optimized. Several hours of

processing time are required for a character with 29 DOF. Al Borno et al. (2013) use

a shooting method with trajectories synthesized in 0.5s windows using covariance

matrix adaptation, requiring about 20 minutes per window with a 41 DOF character.

4.3 Overview of Trajectory Optimization

A general nonlinear optimization problem involves minimizing an objective function

f subject to inequality and equality constraints g and h.

min
x
f(x)

s.t.g(x) ≥ 0

h(x) = 0 (4.1)

where x = {x1, x2, . . . , xn} is a vector of unknowns to be solved for. Trajectory

optimization casts the problem of manipulating motion data in this form, with the

motion represented by x and physical consistency being enforced by the constraints.

The objective function can then be used to encourage desirable characteristics in

the output motion, such as energy efficiency or closeness to a reference trajectory.
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4.4 Contact Formulation and Complementarity

Constraints

Following the method introduced by Posa et al. (2014), contacts were incorporated

as variables in the optimization problem. In extending the method to 3D, a friction

cone formulation was initially used, but this made it awkward to constrain frictional

forces to oppose motion in sliding. It also introduced severe nonlinearities, which

often made the solver fail to converge. Using a friction pyramid formulation, as

described by Stewart & Trinkle (1996), the solver behaved much more robustly. A

four-sided pyramid was used here. A value of 1 was used for the coefficient of friction.

This is somewhat higher than a realistic value, and so may make it easier to avoid

slipping and allow exploitation of larger tangential friction forces, but this value

was chosen for consistency with other NaturalMotion simulations, and it would be

straightforward to explore other values in future.

To avoid specifying many redundant constraints, only points which were expected

to make contact with the ground were included in the problem formulation. For all

the examples considered here, this included four points on each foot. Other points

could be added if necessary to deal with motions where other body parts such as

hands or knees might contact the ground. No mechanism was included to deal with

self-contacts.

The choice of contact formulation introduces complementarity constraints, i.e. con-

straints of the type

xi ≥ 0

gi (x) ≥ 0

xigi (x) = 0 (4.2)

This set of constraints may also be written using the more compact notation

0 ≤ xi⊥gi (x) ≥ 0 (4.3)

For a basic model of contact forces, the first inequality may specify that the separa-

tion between bodies is never negative (i.e. penetration does not occur), the second

may specify that reaction forces may only be repulsive, and the final equality may

specify that reaction forces can only apply when bodies are in contact.
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Friction can also be incorporated into this framework as follows

0 ≤ y⊥cn ≥ 0

0 ≤ λe + v⊥β ≥ 0

0 ≤ µcn − eTβ⊥λ ≥ 0 (4.4)

where y is the contact separation, cn the normal force, e are vectors defining the

friction directions (the friction polygon corresponds to the convex hull of e), v are the

components of the relative velocity of the bodies parallel to the friction directions,

λ is a term related to the relative velocity, and µ is the coefficient of friction. The

first complementarity constraint is similar to the basic model described above. The

second and third constraints enforce that friction acts in a direction to prevent sliding

and that the tangential forces satisfy the Coulomb friction model. See Stewart &

Trinkle (1996) for full details.

Complementarity constraints are difficult for solvers as the feasible region is poorly

connected, with discontinuous jumps between points with non-zero xi and points

with non-zero gi (x). Two common ways to deal with this issue are constraint

relaxation, as used by Posa et al. (2014), and penalty methods.

In the constraint relaxation approach, the constraint is replaced with

xi ≥ 0

gi (x) ≥ 0

xigi (x) ≤ α (4.5)

for a small value of α, which is reduced towards zero as the solution progresses. Even

with constraint relaxation, difficulties can still be encountered with convergence

when α gets close to zero. During experiments, convergence issues were found at

α values comparable to the desirable complementarity tolerance, and so potentially

interfering with reaching a solution.

Other methods are based on penalty functions. In these approaches, a modified

problem is considered, in which the constraint is removed altogether and replaced

with an additional weighted term in the objective function.

Fukushima et al. (1998) consider a sequential quadratic programming (SQP) ap-
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proach using a differentiable penalty term with a smoothing parameter to handle

complementarity constraints. Rather than solve a series of problems, they describe

a method to update the penalty weight and smoothing parameter after each SQP

iteration.

Many solvers include an elastic mode, in which constraints are relaxed, and a penalty

term is added to the objective function. Anitescu (2005) shows that the elastic mode

can be used effectively for problems with complementarity constraints.

It can be shown that, for certain formulations of penalty function and sufficiently

large values of the penalty weight, solutions of the original problem are also solu-

tions of the modified problem (Benson et al. 2006, Wright & Nocedal 1999, Ch. 15,

Ch. 17.3). A formulation with this property is referred to as an exact penalty func-

tion. Choosing a suitable weight value in advance can be difficult, but it is possible

to start with a moderate value and increase it in successive steps until the penalty

term becomes sufficiently small.

Benson et al. (2006) describe two formulations of exact penalty functions for com-

plementarity problems. In the `1 or summation formulation, a term of the form

ρ
∑
xigi (x) is added to the objective function, where ρ is the penalty weight. In

the `∞ or pairwise formulation, the penalty term is of the form ρmaxi{xigi (x)}.

The summation formulation described by Benson et al. (2006) was originally used

for this implementation, but this led to a problem. Within the solver tolerance,

it was possible for each xigi (x) in the sum to have a small negative value. The

solver would succeed in driving the summed penalty term to zero, but since there

might be thousands of complementarity constraints in the problem, a large number

of small negative values could allow a few of the individual terms in the sum to have

large positive values and hence significantly violate their constraints. Changing

to a pairwise formulation eliminated this problem, and with this amendment the

exact penalty method was found to be more robust than the constraint relaxation

implementation for solving complementarity problems. The pairwise formulation

replaces the objective function with

f(x) + ρζ

xigi(x) ≤ ζ (4.6)

where f is the original objective function, and ρ is the penalty weight. The inequality

applies for each complementarity constraint, so ζ gives the maximum complemen-
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tarity violation.

4.5 Optimization Algorithm

The two leading methods for solving large nonlinear optimization problems are se-

quential quadratic programming (SQP) and interior point methods (Wright & No-

cedal 1999). Both methods essentially use Newton steps to iteratively improve

solutions, but they differ in how constraints are handled. Typically in SQP, a list of

which inequality constraints are at their limits (the active set) is iteratively updated

based on Lagrange multiplier estimates. Interior point methods use logarithmic

barrier terms to prevent iterates getting too close to inequality bounds until the

optimization has progressed sufficiently. Based on available results in the literature,

both methods appear to be fairly close in terms of robustness and performance.

For example, Betts & Gablonsky (2002) suggest that SQP methods have a slight

advantage. On the other hand, results for a large number of standard test problems

reported by Benson et al. (2003) suggest that the interior point methods LOQO and

KNITRO achieve better performance and robustness than the SQP code SNOPT.

However, these comparisons are not particularly recent and updates have been made

to both methods. Unfortunately, no more recently published comparisons could be

found.

The majority of existing work on trajectory optimization uses the SQP approach, in

particular the proprietary software SNOPT. However, in this work it was desirable

to develop code which could be used commercially without licensing costs. The free

open-source SQP solver HQP (Franke & Arnold 1999) was considered, but it was

not used as it does not appear to have been maintained for some time, and the

documentation is limited. No other suitable free SQP solvers could be found.

The free, open-source interior point code IPOPT (Wächter & Biegler 2006) was used

as it is high quality, well tested and actively maintained, with good documentation.

IPOPT requires the first derivative of constraints and first and second derivatives of

the problem Lagrangian. Symbolic differentiation was used in order to take advan-

tage of problem sparsity. ADOL-C (Walther & Griewank 2012) was initially used

and performed well for the majority of the function evaluations, but determining

the Lagrangian Hessian was very slow, taking the overwhelming majority of the

evaluation time and dominating the overall solver time. The slow performance may

be associated with some detail of the problem formulation, but was not explored in

sufficient detail to determine a specific reason. Switching to the alternative symbolic

code CasADi (Andersson 2013) eliminated this performance issue, reducing function

evaluation to an insignificant proportion of the total solution time.
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MUMPS (Amestoy et al. 2001) was used as the linear solver within IPOPT. Results

suggest that other solvers may be 2 or 3 times faster (Gould et al. 2007) but MUMPS

was used as it is public domain. The single threaded version of MUMPS was used, as

the documentation suggests that the overhead of parallelization is likely to eliminate

any benefit of multithreading for the size of problems encountered here. METIS

(Karypis & Kumar 1998) was used to improve matrix ordering. Using OpenBLAS

rather than the default BLAS implementation included with MUMPS improved

solution time by about 40%.

The implementations of both approaches to complementarity constraints involved

successive runs of the solver, with updated values of either the relaxation parameter

α or the penalty weight ρ. Each subsequent run was initialized with the optimized

variable and Lagrange multiplier estimates from the previous run. IPOPT pushes

initial values away from variable boundaries to ensure feasibility, but the default

value for the size of the boundary push (0.01) was quite severe, and would cause

some progress towards the solution from the previous run to be lost. Therefore the

boundary push value was reduced to 10−9.

IPOPT offers two strategies for reducing the interior point barrier term as the solver

progresses, monotone and adaptive. Generally the adaptive method reduced the re-

quired number of iterations, but occasionally it would affect stability. Using the

monotone method for the first solver run (where the initialization might be rela-

tively far from the optimal solution), and the adaptive method for subsequent runs

appeared to be a good compromise.

4.6 Implementation Details

4.6.1 Character Model

A 20-link character model was used with identical link arrangement, dimensions and

inertia to the default morpheme physics rig used in Chapter 3. The joint limits from

that physics model were not replicated for this work, and all the joints were treated

as ball joints so, counting the position and orientation of the centre of mass, the

model had a total of 63 degrees of freedom. It would be possible to include joint

limits in the trajectory optimization model, but that would lead to many additional

constraints, and should not be necessary as the poses used for initialization can

guide the optimization to configurations within a suitable range of motion.
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4.6.2 Dynamics Formulation

For simplicity of implementation, a maximal co-ordinate representation was used

to describe the character’s dynamics. Although reduced co-ordinate representations

such as Featherstone’s algorithm could substantially reduce the number of variables,

the resulting optimization problem would also be much denser, and therefore would

not be expected to change performance much while adding significant complexity.

Previous work often uses splines to reduce problem size. Splines were not used

here, for simplicity, because selecting control points would be problematic with

the flexible contact scheduling, and because the main motivation was to produce

physically processed reference motions, for which densely sampled time steps were

required.

The character’s state at each time step was described by the position and orientation

of each link, the force and torque at each joint, and the details of the contact forces.

The position of each link was specified by the co-ordinates of its centre of mass to

make rotational dynamics easier. Quaternions were used to represent orientations,

since they are relatively compact (4 parameters for 3 DOF), but reasonably simple

algebraically. Quaternion normalization was maintained by solver constraints. Con-

straints were also used to ensure that for each link, the quaternions for successive

time steps were in the same hemisphere, which simplified the algebra for calculating

angular velocities and accelerations.

Joint alignment was enforced by constraining the position of each link relative to its

parent at each time step.

Physical validity was ensured by constraints equating the finite difference estimate

of the linear acceleration of each link at each time step to the sum of forces acting

on it, with a similar constraint relating the rate of change of angular momentum

and total torque.

pt+1 − 2pt + pt−1 = g∆t2 +
∆t2

ml

(∑
j

ftj +
∑
c

ftc

)
It+1ωt+1 − Itωt

∆t
=
∑
j

rtj × ftj +
∑
c

rtc × ftc (4.7)

where pt, It and ωt are the COM position, moment of inertia and angular velocity

at time t, g is the acceleration due to gravity, ml is the link mass, and ftj and ftc

are joint and contact forces, applied at positions r relative to the link COM.
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If the output motion was not required to be cyclic, the constraints would extend

over time steps t = 2 . . . T − 1. For cyclic motions, the constraints would apply to

all of the time steps, with quantities spanning the end of the interval transformed

to take the rotation and translation between successive cycles into account.

As described in Section 4.6.1, the problem formulation did not include any model

of the physiological limits on the range of motion of the joints. Joint orientations

at each time step were constrained to be similar to those in the corresponding time

step of the initialization (within a rotation of about 10◦), but the purpose of this

was to reduce the size of the search space for the solver and avoid getting stuck

in blind alleys, rather than limit joint configurations. Similarly, link positions were

constrained to within a cube of half-side 20cm centred on the initialization pose. No

upper limits on joint forces or torques were specified.

4.6.3 Objective Function

The objective function for the optimization comprised a weighted sum of generally

quadratic terms designed to encourage desirable features in the output motion. The

first part of this section describes the main features of the objective function used

for improving the physical validity of a reference motion. Some amendments to the

objective function for motion editing tasks are described at the end of this section.

For each link, deviations of the link centre of mass position, p, from target poses

were penalized by the term

T∑
t=1

nl∑
l=1

ml ‖ptl − p̄tl‖2 (4.8)

where the sum extends over T time steps and nl links and barred terms represent

target values from the reference motion. The terms were scaled by link mass ml to

give more influence to parts such as the hips and torso.

A separate term penalized deviations from the target position for the character’s

overall centre of mass.

T∑
t=1

∥∥∥∥∥
nl∑
l=1

ml (ptl − p̄tl)

∥∥∥∥∥
2

(4.9)

The objective function also included a term penalizing discrepancy from target link

orientations. For ease of implementation, the term was based on the scalar part
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S(·) of the quaternion mapping between simulated and target orientations, q and q̄,

which behaves as a quadratic function of the angular error for small discrepancies.

nl∑
l=1

ml (1− S (qtlq̄
∗
tl)) (4.10)

With the objective terms discussed so far, output motions were very jittery. At-

tempting to address this, a term based on minimizing the summed square of link

linear accelerations was added, but this led to undesirable behaviour in which succes-

sive links in chains oscillated in alternating directions. Adding a term encouraging

link angular velocities ω to be similar to those from the target motion was more

successful.

T−1∑
t=1

‖ωt − ω̄t‖2 (4.11)

As a measure of energy expenditure, the sum of squared joint torques τ over the nj

joints was included to encourage more natural behaviour.

T∑
t=1

nj∑
j=1

‖τtj‖2 (4.12)

There was a tendency for contact forces and torques to be applied intermittently. To

avoid this, terms were added to the objective function to encourage little variation

between successive time steps.

T−1∑
t=1

nc∑
c=1

‖ft+1c − ftc‖2

T−1∑
t=1

nl∑
l=1

‖τt+1l − τtl‖2 (4.13)

For physical processing of reference motions, the position and orientation objectives

were calculated in world space. For motion editing (see Section 4.7.4), the position

terms were expressed relative to the character COM, with a frame orientated using

the COM velocity, and angular terms were formulated for each link relative to its
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parent. To avoid unnatural torso orientations when editing slope angle, an additional

objective function term was included based on the position of the character’s COM

projected onto the ground relative to the foot positions.

The weights were chosen to make the contributions of each of the terms to the

overall objective function approximately equal. Some of the weights were tuned

over successive runs if the resulting output appeared to place too little or too much

emphasis on the associated motion characteristics. Relatively little tuning effort

was required. Values for the weights are given in Table 4.6.1. These are the values

before scaling was applied (see Section 4.6.4).

Objective Term Unscaled Weight
Link Position 50
COM Position 10

Link Orientation 10
Angular Velocity 0.1

Sum Squared Torque 1E-5
Contact Variability 2E-5
Torque Variability 2E-6

Table 4.6.1: Values Used for Objective Function Weights

4.6.4 Problem Scaling

Nonlinear solvers can be sensitive to problem scaling. For example, progress may

be very slow in directions where derivatives are similar in size to the solution tol-

erance. Therefore it is desirable for all the non-zero derivatives to be comparable

in magnitude. Solvers may include scaling strategies, but it is difficult to automate

scaling as derivatives vary with the current solution estimate and the derivatives at

the initialization point may differ significantly from those near the solution. For this

reason, it is often useful to perform manual scaling using knowledge of the problem.

The trajectory optimization problem was originally formulated using units of kilo-

grams, metres and seconds, but this led to very poor problem scaling. For example,

a linear acceleration constraint as formulated in Equation 4.7 might contain terms

of typical size g∆t2 = 9.81ms−2(0.0167s)2 = 2.7 × 10−3m. On the other hand, a

constraint ensuring that contact forces are not negative might have terms of typical

size 100N = 100kgms−2, nearly 5 orders of magnitude larger.

The formulation was improved by using units corresponding to characteristic mass,

length and time values. Typical values were estimated for the quantities involved

in each kind of constraint and each term in the objective function, and a simple

least squares problem was constructed to determine characteristic mass, length and
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time values which minimized the variation in magnitude. Each scaled term si was

written in terms of its unscaled equivalent ui

si = sm
ni
msl

ni
lst

ni
tui

ln(si) = ni
mln(sm) + ni

lln(sl) + ni
tln(st) + ln(ui) (4.14)

where sm, sl, st are the scaling factors for mass, length and time, and n are the

exponents of each dimension in the term. Then the scaling factors which bring the

scaled quantities closest to 1 were found by minimizing

∑
i

(ln(si))
2 (4.15)

Rounding the least squares estimates gave the values 8kg, 0.5m, and 0.025s. With

these units, the example terms above scale to

(2.7× 10−3m)(0.5m)−1 = 5.4× 10−3

(100kgms−2)(8kg)−1(0.5m)−1(0.025s)2 = 1.6× 10−2

which are much closer in magnitude.

4.7 Results

Testing was performed using a Core i7-3770 with single-threaded code compiled

under Cygwin. A time step of 1/60 of a second was used for all the examples.

4.7.1 Scaling

Testing was performed with and without the problem scaling scheme described in

Section 4.6.4. Table 4.7.1 shows the total time and number of iterations for a

complete sequence of solver runs for a 64 time step cyclic walk motion, using the

exact penalty method to handle complementarity constraints.
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Scaling Iterations Time / h Objective
no 5196 8.7 763.0
yes 1654 1.2 126.4

Table 4.7.1: Solver Performance With and Without Problem Scaling

4.7.2 Complementarity Approaches

The two methods for dealing with complementarity constraints were tested using

the cyclic walk reference. Complete sequences of successive solver runs for the

constraint relaxation approach and exact penalty method are shown in Table 4.7.2

and Table 4.7.3 respectively. The starting values of the relaxation parameter, α =

10−4, and the penalty weight, ρ = 105, were chosen based on experience.

α Iterations Time / h Objective
1E-4 348 0.32 112.3
1E-5 509 0.50 123.1
1E-6 150 0.13 124.4
1E-7 633 0.67 restoration failed
1E-8 2589 2.51 124.9

Table 4.7.2: Solver Output for Successive Steps of the Constraint Relaxation
Method

ρ Iter Time / h Objective Maximum Complementarity Violation
1E5 292 0.21 121.6 2.1E-04
1E6 115 0.08 126.4 7.4E-07
1E7 127 0.12 125.6 1.0E-20

Table 4.7.3: Solver Output for Successive Steps of the Exact Penalty Method

The two methods were further tested using cyclic jogging and running motions.

The results are shown in Table 4.7.4. For time reasons, the relaxation method was

terminated at a complementarity violation of 10−8.

4.7.3 Cyclic Walk

Processing a reference motion to improve its physical validity was tested using a

cyclic walking motion with a duration of 64 time steps. The reference motion was

used both to supply target poses for the objective function and to initialize the

solver. Using the exact penalty method, the solver required just under 25 minutes

to reach an optimal solution which satisfied the physical constraints. As a measure

of similarity between the optimized trajectory and the reference motion, Table 4.7.5

shows the typical deviations from target poses. Typical frames from the original and

optimized motions are shown in Figure 4.7.1, and the motions are also compared
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Method Exact Penalty Relaxation
Motion jog run jog run
Frames 42 34 42 34

Total Iterations 509 759 1300 1198
Total Time / h 0.35 0.45 1.68 0.86
Final Objective 463.7 678.0 495.3 671.2

Complementarity 1E-20 1E-20 1E-8 1E-8

Table 4.7.4: Additional Comparison of Exact Penalty and Constraint Relaxation
Methods

in the accompanying video. As desired, the optimized motion appears very similar

to the reference, but corrects problems with physical validity, most noticeably in

the height of the feet above the ground, as shown in Figure 4.7.2. Additionally,

Figure 4.7.2 shows that the solver is able to modify contact timings to reach an

optimal solution, which would not be possible without including contacts in the

optimization variables. Of course, techniques such as inverse kinematics could be

used to eliminate the problems with foot height but significant care would be required

to avoid degrading the physical validity in other areas.

Quantity Typical Deviation
Link Position 18mm
COM Position 1.1mm

Link Orientation 0.69◦

Table 4.7.5: Typical Deviations from Target Poses for Cyclic Walk Motion

Figure 4.7.1: Typical Frame from Reference Motion and Corresponding Optimized
Frame
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Figure 4.7.2: Contact Separation for Front (Orange) and Rear (Green) Corners of
Right Foot Physics Body

4.7.4 Motion Editing and Transition Synthesis

Although the chief motivation for using trajectory optimization was improving the

physical plausibility of references, investigations were also performed using the solver

to alter aspects of the motion including slope angle (−20-20◦), heading direction (0-

150◦), stride length (110-160cm) and step duration (34-64 frames), and to generate

transitions between two animation segments.

Alterations of slope were constructed by changing the angle of the gravity vector.

Other motion properties were edited by modifying the offset translation and rotation

used in the cyclic constraints. Changes were made in small increments (5◦ for slopes,

10◦ for heading direction, 5cm for stride length, 3 frames for motion duration), with

each new motion initialized using the previous result. Simple time warping was used

to create initializations of appropriate duration when altering motion timing.

A transition from a forward jog to a banking jog, and a transition from an idle

pose to a walking motion were generated. In each case, the two animation segments

were used to provide target poses for the objective function during the initial and

final portions of the interval, with no target poses specified for the duration of the
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transition. The solver was initialized using a simple blend between the final pose of

the first segment and the initial pose of the second segment, with a sigmoid function

used to smoothly vary the blend weight during the transition.

As described in Section 4.4, the problem formulation did not include any measures

to prevent character self-collision. For physically processing motion, this was not an

issue as the target poses naturally avoid self-collision. However, for motion synthesis

tasks, incomplete target pose information could lead to self-collision. To avoid this,

ad hoc constraints were added to ensure a minimum separation between the feet,

and between the hand and hip links.

Similarly, no joint limits were specified in the problem formulation, and synthesis

tasks could result in unnatural configurations, in particular backwards bending of

the knee. An objective function term was added based on the dot product of the

direction of the perpendicular from the hip-ankle line to the knee joint, and the heel-

toe direction in the foot, to encourage the knee to bend in an appropriate manner

based on the orientation of the foot.

Solution times for all the editing and synthesis tasks were similar to the examples

in Section 4.7.2.

The resulting edited and synthesized trajectories are shown in the accompanying

videos.

4.8 Discussion

Clearly, problem scaling has a very marked effect on solver performance, with the

scaled problem achieving a solution several times faster. The objective function is

also substantially better for the scaled problem, presumably because the solver fails

to make progress in poorly-scaled directions.

For the constraint relaxation method, problems with convergence were encountered

as the relaxation parameter α was reduced towards zero. For the walking motion

with α = 10−7, the solver entered its restoration mode, aimed at restoring feasibility,

but was not able to return to a feasible point. The solver was able to recover on

the subsequent relaxation step, but required many iterations. For this value of α,

violations of the complementarity constraints would be small but not negligible.

For all three test problems, the penalty method performed better in terms of solution

time, solver robustness and driving the complementarity error to zero (ζ for the

penalty method and α for the relaxation method are directly comparable, both
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corresponding to an upper limit on complementarity errors).

The final objective function values for both methods are similar.

Output motions are shown in the accompanying videos. The processed cyclic walk

motion satisfies the constraints enforcing physical validity, and retains the desired

similarity to the reference. There are still some minor undesirable characteristics in

the output motion, such as slight sliding of the feet or failing to distribute forces

well between individual contact points, but these may be a limitation of modelling

the foot as a single rigid body, rather than an issue with the optimization method.

With motion editing, surprisingly large changes to the original motion are possible

before the quality starts to degrade significantly. The feet pass unnaturally close to

the ground on the steep slopes, and foot sliding is noticeable for extreme slope and

heading angles. These issues are more to do with realism than physical correctness

(sliding is allowed in the contact model if the friction force is insufficient to prevent

it), and it is likely they could be improved by adding objective terms. For example,

Wampler et al. (2014) use an objective function term to penalize large foot velocities

close to the ground.

The solver was able to synthesize transitions between animation segments which

were of reasonable quality but with some undesirable features, for example sliding

of the foot at the beginning of the idle-walk transition. In this case, the animation

segments were sufficiently dissimilar that the simple blending approach generated

a very poor initialization, and a better initialization strategy could be expected to

improve quality.

With some clean-up by an animator, the editing and synthesis tools could reduce

the amount of work for tasks such as filling in gaps in motion libraries.

4.8.1 Comparison with Other Work

It is difficult to make rigorous comparisons with other work as no standard test

problems have been published and existing work has significant differences in terms

of character complexity, duration of motion intervals, simplification of dynamics,

usage of spline bases, handling of contacts, choice of objective functions, etc. Bearing

these limitations in mind, some comments are presented here in terms of capability

and performance relative to previous work.

The method presented here has been demonstrated for physically processing mo-

tions, for motion editing and for motion synthesis.
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At 25 minutes for a 63 DOF character, the computation time of the method pre-

sented here shows a significant improvement relative that reported by Posa et al.

(2014), the only previous work with a comparable contact formulation, which took

up to an hour to optimize trajectories for a planar character with 13 DOF.

4.9 Summary

This chapter showed that direct trajectory optimization formulations incorporating

contacts could be successfully extended to 3D problems. Good problem scaling was

shown to have a significant effect on solution performance and quality. The results

suggested that the exact penalty method offers better robustness and performance

for dealing with the complementarity constraints which contacts introduce.

The presented trajectory optimization method was tested with walking, jogging

and running motions. Motion editing was demonstrated, including large alterations

to heading direction, slope angle and step cadence. Synthesis of short transitions

between existing motions was also shown.

It was shown that trajectory optimization problems can be successfully tackled with

interior point solvers as well as previously used SQP methods, and an implementa-

tion using non-proprietary software was demonstrated.
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Chapter 5

Sampling-based Open Loop

Control

5.1 Introduction

This chapter describes the implementation of an open loop control approach which

is similar to the work of Liu et al. (2010), but with several significant adaptations.

Open loop control applies a control sequence without any feedback to determine if

the desired behaviour has been obtained, and so on its own it is useless for interactive

applications where disturbances must be dealt with. However, open loop control

can be useful when combined with feedback, as it can produce output close to the

desired behaviour, leaving the feedback controller with smaller deviations from the

ideal trajectory to correct.

In the original paper by Liu et al. (2010), a sampling-based method is used to gener-

ate open loop control to reproduce in simulation various contact-rich motions such

as walking, running and rolling. For an illustration of the approach, see Figure 2.5.5

and the last paragraph of Section 2.5.8. The basic idea is to segment the motion at

boundaries where significant kinematic events occur (such as when leg swing reverses

direction), then generate a large number of potential PD control policies for each

segment. A control policy consists of PD targets for each DOF for the duration of

the segment. Each set of control values leads to a possible end state for the segment

simulation, which is evaluated using an objective function based on reproducing the

desired reference motion. From the large number of samples, a subset are retained

as starting points for simulating the next segment. The retained samples are biased

towards better values of the objective function, but some poorer samples are also

retained to maintain diversity. A complete path through a number of segments can

then be reconstructed by backtracking from the final state. Because the method
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is based on forward simulation, it deals well with contact-rich motions, which are

difficult to handle with derivative-based methods.

The main difference between the implementation in this project and the original

work is the simulation. Liu et al. (2010) use ODE with 2000 time steps per second,

which would be too slow to use in a real-time application. Here, 60 time steps per

second are used, and simulation is performed using PhysX, for consistency with

Chapter 3 and other NaturalMotion software. The sampling-based approach relies

on being able to reset the physics state in a reproducible fashion, and the conditions

for obtaining consistent results between runs in PhysX are not trivial, as discussed

in Section 5.3. More importantly, with much larger simulation time steps, the ap-

proach is more sensitive to the quality of the reference motion. At 2000 time steps

per second, the original authors report that the method is robust to variations in

motion capture procedure and postprocessing, discrepancies between the motion

capture actor and simulated character, severe ground penetration, floating and bal-

ance issues, retargeting between different characters, and changes in environment

such as pebbly ground and ice. However, this robustness may be a result of the very

small simulation time step rather than an intrinsic feature of the method, and at

60 time steps per second more physically plausible input motions were found to be

required, as discussed in Section 5.4.

In order to generate PD targets for each segment, the original paper samples within

a hyperrectangular sampling window, with larger dimensions for the DOFs expected

to be more active in the motion. The dimensions for each DOF are chosen manually,

and the authors report that one set of sampling window dimensions will work across

many example motions, although they do report that manual tuning of the window

size is sometimes useful to improve the quality of output motions. Section 5.5 de-

scribes a method which allows automatic tuning of the sampling window dimensions,

and characterizes the sampling windows with a single size parameter, allowing the

effects of the sampling parameters to be elucidated.

As the method is stochastic, and the starting conditions for each segment depend on

the previous segment, it is difficult to generate cyclic control sequences. Even if the

reference motion repeats, the starting conditions for a segment in one cycle will not

match those for the previous cycle, and the control values from the previous segment

will not be applicable. No prior method has been demonstrated for generating cyclic

policies, and a method for creating a bridging segment which links the end state of

the penultimate segment of a cyclic sequence to the start state of the first segment

is introduced in Section 5.8.
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5.2 Implementation

In this section some details of the implementation used for this project are discussed.

As mentioned in Section 5.1, simulation was performed using PhysX, with 60 time

steps per second. A standalone PhysX application was used, although it would be

equally possible to integrate the implementation into the morpheme animation en-

gine. The same character model from previous chapters was used, and represented

in PhysX using an articulation. The articulation was driven using target joint orien-

tations, which behave as a PD controller. Stiffness and damping values (equivalent

to PD gains) for each joint were tuned once to give reasonable outputs. As described

by Liu et al. (2010), the samples can be evaluated independently and so the method

is highly parallelizable. In this implementation, four simulations were run in parallel

on a single machine.

Instead of using the kinematic centroid segmentation method (Jenkins & Mataric

2003) as used by Liu et al. (2010), segmentation of reference motions was performed

manually, but employing a similar strategy of segmenting at extremes of motion

such as leg swing reversal. The same 64 frame walking motion from Chapter 4 was

used as a reference, and divided into 8 segments.

The objective function included the same terms as in the original paper, but with

different weights. The main terms in the objective function include a pose term,

which measures the discrepancy in joint angles and angular velocities between the

simulated character and the target motion, a root term measuring the deviation in

root orientation, an end-effector term based on the vertical position of end-effectors,

and a balance term, based on the position of the end-effectors relative to the COM,

projected onto the ground plane. For full details of the objective function formula-

tion, see the original paper by Liu et al. (2010). The weights used here are shown

in Table 5.2.1, along with the weights used for the walking motion in the original

paper. The weights used here are mostly proportional to those from the original

paper, but a proportionally larger balance weight was found to be useful. Because

a different weighting scheme was used, the objective function values are not directly

comparable.

Objective Term Weight (this implementation) Weight (Liu et al. 2010)
Pose 0.1 5
Root 0.06 3
End-effector 0.6 30
Balance 0.1 10

Table 5.2.1: Objective Function Term Weights

In order to obtain a point in the sampling space to act as the centre of the sampling
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window, a preliminary step was run for each motion segment, using CMA (Hansen

2006) to find a point which would lead to a good objective function value. With

1500 CMA iterations and four parallel simulations, this preliminary step required

about one minute per motion segment.

5.3 Reproducibility in PhysX

As the sampling method involves constructing the open loop control sequence from

a collection of segments, it relies on the simulation behaviour in the concatenated

segments being consistent with the behaviour in the individual segments. When the

segments are being replayed in sequence, the starting conditions for each segment

should be as close as possible to the starting conditions when the segment was

originally generated, and the simulation should evolve as closely as possible, i.e. the

physics engine should be highly deterministic. Otherwise, the starting conditions

for subsequent segments will likely diverge further and further from those expected

by the individual segments, and the control values will no longer be appropriate,

leading to rapid failure of the open loop control.

The issue of simulation determinism is not discussed in Liu’s paper (Liu et al. 2010),

and there are several reasons why it may not have been problematic in their im-

plementation. They use ODE for simulation, which is open source and the factors

affecting determinism are well known. ODE offers two options for time steps, either

an expensive but accurate direct solver or a faster iterative method. In the itera-

tive method, pseudorandom constraint reordering may be used for stability reasons.

Determinism can be controlled by using the accurate solver, using a constant seed

for the pseudorandom number generation, or disabling constraint reordering. Fur-

thermore, as the control is expressed in terms of PD targets, it does include an

element of feedback. In the original paper, the simulation time step is 0.5ms, and

the duration of a typical segment is 0.1s, or 200 simulation steps, which may allow

some tolerance of small discrepancies in the segment starting conditions.

On the other hand, the implementation here uses PhysX, which is closed source,

preventing inspection of the code to determine the factors affecting determinism,

and no existing discussion of determinism could be found. Also, a much larger

simulation time step is used here, so that each control segment spans only a few

simulation time steps, and the feedback component arising from the PD control

would be expected to make the open loop control much less robust to departures

from determinism.

Therefore, some experiments were performed to investigate what factors influence
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determinism in PhysX, and how reproducible the simulation could be made. There

are a number of settings in PhysX which might be expected to have an impact on

determinism, including:

Restoration Method There are various methods which can be used to restore the

PhysX simulation to a previously recorded state. One approach is to use meth-

ods exposed in the API to set the transform, velocity and angular velocity of each

physics body to their previously recorded values. The problem with this approach is

that some internal state not exposed in the API may not be captured and restored.

An alternative method is to use the binary serialization tools in PhysX, which allow

the binary state to be exported to a chunk of memory and later restored, presum-

ably allowing more internal details of the simulation to be captured, although the

documentation does not detail exactly what is stored.

Articulation Iterations In this implementation, the character is represented using

a PhysX articulation object. Articulations use an iterative solver to update their

state each time step, with separate user adjustable iteration counts for internal

driving such as joint forces, and external forces such as gravity and contact forces.

If there are any non-deterministic aspects to the iterative solver, such as the order

in which constraints are solved, then higher iteration counts would be expected to

produce more consistent results between runs.

Resetting Collision State PhysX maintains a cache of collision and contact in-

formation for each body in the simulation, to speed up calculations on subsequent

frames. The cache can be cleared for a body in the simulation by calling the reset-

Filtering function, forcing the collision detection for that body to be performed from

scratch on the next frame. Clearing the cache may be necessary to avoid invalid

information being retained when the state is altered during the process of restor-

ing a previous simulation state. Resetting the collision information causes the next

frame to be more expensive, but this is not really a concern since the sampling based

method is already an offline approach.

Contact Offset Each body in PhysX has a contact offset, a small extension of its

collision volume designed to avoid jittery contacts when objects are at rest. The

default value is 0.02 times the typical length scale, which is defined when creating

the PhysX scene to reflect the typical size of objects in the simulation (so 1m would

be a standard choice for a scene containing a human character, giving a 2cm contact

offset). Smaller values can cause jittering problems for situations which are well

known to cause simulation difficulties, such as stacks of many objects which are close

to stationary, but would not be expected to be problematic for a single character.

In order to test the effect these factors have on the simulation determinism, the
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Figure 5.3.1: Effect of Articulation Iteration Count on Run Consistency

simulation was set to a particular state, run for one time step, restored and re-

run with identical joint control. The state of the hips body in the character was

then compared between the original and repeat runs. This procedure was repeated

for each frame in a 64 frame reference animation, and the median and maximum

deviations between runs were recorded. The results below are for the discrepancy

in the linear velocity of the hips body. The transforms and angular velocities were

also compared but showed very similar behaviour to the linear velocity.

The effect of articulation iterations was tested for iteration counts between 1 and

16, increasing in powers of 2, with the internal and external iteration counts both

set to the same value. The results for one particular configuration of restoration

settings are shown in Figure 5.3.1, but all the other configurations showed similar

behaviour. The maximum error can be much larger for very small iteration counts,

but no improvement is observed above 4 iterations. Therefore, for simplicity the

remainder of this section only discusses results for 4 iterations.

The discrepancy between runs is shown for various configurations of restoration

settings in Table 5.3.1. Note that the velocities are reported by PhysX as single

precision floating point numbers, with around 7 decimal digits of precision, so an

observed difference of 0 only means that the relative error was less than approxi-

mately 10−7, not necessarily altogether absent. Evidently using binary serialization

and resetting the collision state between runs achieved the best typical deviation

between runs, but some frames still showed inconsistent behaviour. However, it was

observed that almost all of the frames showed no detectable difference, with the

exception of a small number of frames around the time of each new foot contact.
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Reducing the value of the contact offset for the character’s feet from the default

value of 2cm to 0.5mm reduced the discrepancy to unobservable for all the tested

frames. It is not obvious why this effect occurs, although one possible explanation

is that the contact offset can affect the order in which contacts are resolved.

Restoration
Method

Reset Collision
State

Median Velocity
Error / ms−1

Maximum Velocity
Error / ms−1

API y 2.9E-6 1.2E-5
API n 7.6E-6 6.4E-4

Serialization y 0 6.4E-4
Serialization n 4.6E-6 8.1E-5

Table 5.3.1: Effect of Restoration Configuration on Run Consistency

Based on these results, it appears that it is possible to achieve highly reproducible

behaviour in PhysX by using the binary serialization method to restore simulation

states, clearing contact data between runs, and using a small value for the contact

offset of the feet.

5.4 Input Motion

The previous work on sampling-based open loop control (Liu et al. 2010) reports

that the technique deals robustly with reference motion capture data from multiple

sources, with differences in capture processes and data postprocessing. They also

found that it could handle retargeting artefacts in the input motion, including severe

ground penetration and floating, and balance issues resulting from differences in

mass distribution between the motion capture actor and simulated character, and

was able to cope with retargeting to a significantly different character model, albeit

with some reduction in quality.

However, the previous work uses a much higher simulation rate (2000 time steps per

second) than is feasible for use in real-time applications, and the robustness may

originate to a great extent from the large number of time steps the controller has

to compensate for defects in the reference motion or discrepancies between targeted

characters. At 60 time steps per second, a typical motion segment only spans a few

simulation steps, instead of hundreds, and it is expected that much stricter stability

conditions would apply.

The expectation of reduced stability is consistent with observations in other con-

trollers. For example, the generalized biped walking control (Coros et al. 2010) also

operates at 2000Hz and is considered robust. Giovanni & Yin (2011) implement

that controller in several physics engines, including ODE and PhysX, and find that
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Figure 5.4.1: Sampling Results with Unprocessed Reference Motion and Optimized
Trajectory

the controller becomes unstable at time steps above 1-2ms. This result is consistent

between simulation software, suggesting that the effect is related to the controller

and time step, rather than the choice of physics engine. Similarly, modifying the

time step in the SIMBICON source code causes the controller to become unstable

below around 750 time steps per second. Chapter 3 describes the difficulties of try-

ing to get a SIMBICON style controller to work with large time steps. The work

of Muico et al. (2009), one of the few previous examples using relatively large time

steps (120 per second), finds that raw motion capture sequences are poor references

and preprocesses target motions using trajectory optimization to improve physical

plausibility.

In order to test the sensitivity of the sampling method to the quality of the input

motion when using large time steps, sampling was performed for 64 motion segments

(8 repeats of the 8 segment walking cycle) using an unprocessed reference motion

capture sequence, and also with the output from the same motion processed using the

trajectory optimization approach described in Chapter 4. The defects from physical

correctness in the raw motion are not particular severe, with typical penetration and

floating errors of the order of a few millimetres, and reasonably close attention must

be paid for them to be visually noticeable, as can be seen in the videos accompanying

Chapter 4. Similarly, visual inspection suggests very little difference between the

original and processed motion. Despite the apparently minor difference, when five

sampling runs were performed with each input motion, as shown in Figure 5.4.1, the

unprocessed motion consistently failed, while the optimized trajectory consistently
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produced stable explorations of the control space (the objective function remains

relatively small and does not deteriorate from cycle to cycle). Note that the results

shown in Figure 5.4.1 relate to a segmented run which has not yet been assembled

into a single sequence (see Section 5.6). In order to check that this was not a

fluke effect for this particular motion, testing was also performed with several other

unprocessed motions, all of which failed to produce valid sequences, and several

other outputs from the trajectory optimization, which succeeded except for some

motion transformations which were very distant from their original references. This

suggests that at 60 time steps per second the sampling technique is very sensitive to

the physical plausibility of the reference motion, and that the trajectory optimization

approach described in Chapter 4 is successful in generating suitably highly plausible

reference motions.

5.5 Sampling Window Tuning and Influence of

Sampling Parameters

Liu et al. (2010) draw samples from an n-dimensional hyperrectangular sampling

window, where n is the number of DOF, with the size of the window (i.e. the range

of target joint angles for each DOF) manually chosen for each dimension based on

the expected activity of that DOF. For example, for a walking motion, the sampling

window is larger in the directions of the control space corresponding to the hip

DOFs than those for the wrist DOFs. Their window dimensions are tuned once

and work across various motions, although sometimes retuning can improve output

motion quality. The manual window size selection has the disadvantages that there

are as many parameters to tune as DOFs, which may not be easy to tune, may vary

between motions or even between segments within a motion, and may significantly

influence the output quality. Too much sampling freedom might lead to many poor

samples, while too little sampling freedom could damage the sampling diversity

necessary to achieve far-sighted tracking.

In this section, a method is presented for automatically tuning the relative dimen-

sions of the sampling window for each motion segment as the sampling progresses,

based on the distribution of the highest quality samples. The method uses a mod-

ification of the CMA algorithm, generating new samples using a covariance matrix

calculated from a subset of previous samples with the best objective values, and so

automatically extends the sampling window in the directions which are most impor-

tant for generating good samples. However, instead of shrinking the sample space

at each update as is usual for CMA to converge to a solution, the volume of the

sampling window is kept constant, to maintain the same level of sampling diversity
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Figure 5.5.1: Effect of Sampling Window Size on Objective Function Averaged over
Run

throughout.

As well as avoiding the difficulties with manual sampling windows described above,

this allows the size of the sampling window to be characterized by a single param-

eter, making it easier to examine the effect of sampling parameters on the quality

of output motions. The effect of the size on the objective function is shown in Fig-

ure 5.5.1. Five sampling runs with 2000 samples per segment were performed at

each value of the size parameter, and the average objective function value over each

run is shown. The size parameter here is defined so that the sampling window has

the same volume as if it were completely symmetrical, with half-width equal to the

size parameter in every direction. For a constant value of the size parameter, 0.01

radians, the effect of the number of samples per segment was also investigated as

shown in Figure 5.5.2.

The results suggest that the tracking quality of output motions does not depend

significantly on the number of samples once a threshold of 1000-2000 samples per

segment is reached, but is quite sensitive to the sampling window size with an

optimum value around 0.01 for the walking motion considered here. The results

are consistent with the expectation that windows which are too large will generate

too few high quality samples, while windows which are too small lack the necessary

diversity. This convex behaviour and the characterization of the window size using

a single parameter make tuning straightforward.

108



0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

100 1000 10000

av
er

ag
e 

ob
je

ct
iv

e 
fu

nc
tio

n 
ov

er
 p

at
h

number of samples per segment

Figure 5.5.2: Effect of Number of Samples on Objective Function Averaged over
Run

5.6 Reconstructed Motion

The results up to this point are for individual motion segments computed separately.

This section describes the results when the segments are concatenated into a single

simulated sequence.

As a measure of stability, the objective function is plotted for a sequence of motion

segments in Figure 5.6.1. The output motion is shown in the video accompanying

this section. The objective function remains flat for about 50 motion segments, or

around 400 frames, before the control begins to become unstable. This suggests that

there are still some issues with determinism, as a perfectly deterministic simulation

would be expected to exactly reproduce the results from the individual segments and

remain stable, as in Figure 5.4.1. To illustrate the effect of one of the settings chosen

to improve determinism described in Section 5.3, Figure 5.6.2 shows the difference

in objective function values between the segmented and reconstructed path, with

and without the contact data being cleared between segment simulations. Without

clearing the contact data, differences in the reconstructed path are evident much

earlier, and the reconstructed motion starts to fail after around 15 motion segments,

rather than 50. Although the optimum conditions from Section 5.3 do not result

in perfect determinism, the errors accumulate slowly enough to give a feedback

controller a good chance to stabilize the motion.

It was observed that the lateral position of the character’s COM could drift quite

far from the reference motion, as shown in Figure 5.6.3. This likely occurs because
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Figure 5.6.1: Objective Function Values for Reconstructed Path

the objective function which was chosen focuses on the orientation of the character’s

links, and positions of end effectors relative to the COM, and does not contain any

terms based on absolute position. This suggests that it might be worthwhile to

include some position-based terms in the objective function in future.
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Figure 5.6.2: Effect of Simulation Reproducibility on Reconstructed Motion
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Figure 5.6.3: Lateral Drift in Reconstructed Path
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5.7 Performance

For 8 cycles of the walking sequence, or about 8.5 seconds of motion, and using 2000

samples per motion segment, sampling required about 2 minutes on a single 4-core

machine. An advantage of using a larger simulation time step is that fewer time

steps need to be simulated, so the performance compared well with the original work

by Liu et al. (2010), which required slightly more than 2 minutes to reconstruct 5.2

seconds of walking motion using an 80-core cluster.

5.8 Cyclic Open Loop Control

The method described so far is not suitable for creating cyclic control policies, even

for cyclic reference motions, due to its stochastic nature. For example, consider

the illustration in Figure 5.8.1. The vertical bars indicate the segments on which

the reference motion starts repeating. Because the states, represented by circles,

are generated using randomly sampled control values starting from the previous

segment’s state, the state at the beginning of one cycle will not match the state

at the beginning of the subsequent cycle, as indicated by the different positions in

sampling space of the two red circles. The control values, represented by arrows,

are specific to the state from which they were generated, so the control values for

one cycle will not be appropriate for the next cycle.

No method has been presented in existing work on sampling-based control to deal

with this issue of cycling control policies. Liu et al. (2012), who use sampling-

based open loop control together with a feedback controller, do include a method for

generating transitions between different motions. However, the transition is achieved

using feedback, and the transitions between the open loop controllers themselves are

discontinuous, leading to jerky or sometimes failed transitions, even with a small

simulation time step.

This section presents a method for generating a bridging segment between two

stretches of open loop control segments. It is used here to create cyclic open loop

control policies which are stable over several cycles, but could also potentially be

used to create transitions between different motions.

As a first step, it is helpful to find a control sequence, of duration equal to the

reference cycle, which is already relatively close to looping. As noted in Section 5.6,

the lateral deviation from the reference motion could be quite high, which could

be a major source of discontinuity between consecutive cycles. For example, the

two highlighted points in Figure 5.8.2 occur at the same instant in the reference
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Figure 5.8.1: Differences Between Consecutive Motion Cycles due to Stochastic
Approach

cycle, but the large discontinuity between them would make it difficult to construct

a cyclic motion based on that stretch of reconstructed motion.

For an example reconstructed motion, Figure 5.8.3 shows the magnitude of the dis-

continuity in lateral position between each segment and the corresponding segment

in the previous cycle. It also shows, for each segment, the root mean square devia-

tion from the reference motion, taken over the duration of the cycle ending on that

segment. The second measure is useful for ensuring that the amplitude of the lateral

motion closely matches the reference motion. Segments for which both values are

small, such as indicated by the vertical line in Figure 5.8.3, indicate the end points of

stretches of motion which are more favourable starting points for generating cycling

behaviour.

Once a stretch of reconstructed motion that is not too far from cyclic is identified,

the following approach can be used to construct a cyclic control sequence. The

basic idea, as illustrated in Figure 5.8.4, is to optimize control values for a bridging

segment, such that repeating the control values for all subsequent cycles leads to

stable control. The selected initial motion sequence is already reasonably close to

being cyclic, as indicated by the control arrow almost joining up with the state from

the previous cycle. The hope is that it will be possible to find control values for

the bridging segment which bring the subsequent state close enough to the cycle’s

beginning state to be within the region of stability for the repeated control sequence.

In the implementation here, CMA was used as follows to determine suitable bridging

control values, with evaluation based on the average objective function value over

a series of cycles. During each cycle, the control values generated by the current

CMA iteration were applied during the bridging segment, with all the other segments

repeating the control values from the original, almost cyclic, control sequence. The
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Figure 5.8.2: Illustration of Poor Cyclic Behaviour
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Figure 5.8.5: Objective Function Values During CMA Optimization of Cyclic Policy

duration of the evaluation was extended as the CMA run progressed, from 1.5 to

3.5 motion cycles, in order to start with an easier problem and then gradually place

more emphasis on longer term stability. 1500 CMA iterations were used, requiring

a total time of about 18 minutes, although the implementation only used a single

simulation and performance could easily be improved using parallel simulations.

The results of the CMA run are shown in Figure 5.8.5. The objective function dete-

riorates somewhat as the evaluation duration increases through the run, indicating

that the method does not produce completely stable cyclic control. However, it does

get worse relatively slowly, suggesting that it may still stay stable on a long enough

time scale to be useful.

The objective function for a path reconstructed using cyclic control values is shown in

Figure 5.8.6, and the output motion is shown in the video accompanying this section.

The reconstructed path does not show the motion prior to the first bridging segment,
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Figure 5.8.6: Objective Function for Reconstructed Path with Cyclic Control

so the motion is actually stable for approximately one cycle longer than Figure 5.8.6

suggests, or about 200 frames altogether. Thus, the cyclic control policy is less

stable than the non-cyclic policy (which started to fail after around 400 frames) but

may be more favourable as the basis of feedback control as it eliminates the problem

of dealing with one large discontinuity per cycle, leaving an error which accumulates

over multiple cycles.

5.9 Summary

This chapter described the implementation of a sampling-based approach for gener-

ating open loop control policies which reproduce reference motions. The approach

was based on work by Liu et al. (2010) but required adaptations to reduce the sim-

ulation rate from 2000 time steps per second to 60, and to use PhysX, a common

game simulation engine.

The sampling-based method relies on the determinism of the physics simulation, and

some care was required to obtain deterministic behaviour using PhysX. Various fac-

tors were found to affect reproducibility in PhysX, including the use of serialization

or other methods to restore the character’s state, the number of solver iterations,

internally cached information about contacts, and the size of the region surrounding

objects in which contacts could be detected. With suitable choices for these set-

tings, it was possible to obtain highly deterministic behaviour, but simulations with

nominally identical starting conditions would still diverge after a few hundred time
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steps.

Unlike the original work by Liu et al. (2010), which was robust to imperfections in

the input motion, the large time step implementation was found to be susceptible

to failure using reference motions with even quite subtle departures from physical

plausibility. However, using the trajectory optimization approach from Chapter 4,

it was possible to generate visually similar reference motions which allowed the

sampling method to succeed.

A technique was introduced to automatically tune the dimensions of the sampling

windows used for each motion segment. Experimentation suggested that the tracking

quality of the motion output was more sensitive to the sampling window dimensions

than the number of samples per motion segment, with no observable benefit above

2000 samples per segment.

Relatively poor tracking of the lateral COM position was noted, likely due to a lack

of bulk position criteria in the objective function used.

The sampling-based method inherently produces non-cyclic control policies. A

method was presented here to attempt to create cyclic policies, based on search-

ing an interval of many cycles for a stretch of control values which minimized the

cyclic discontinuity, then creating a bridging segment using an evolutionary method.

With this approach, it was possible to generate cyclic control policies which avoided

large discontinuities between cycles, but with stability reduced to only around 3

walking cycles. Despite the limited stability, it is expected to be easier for a feed-

back controller to compensate for the resulting slowly accumulating errors than to

deal with a large discontinuity between cycles.
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Chapter 6

Feedback Control

6.1 Introduction

Chapter 5 described the development of an open loop controller using 60 simulation

time steps per second. Open loop control is very little use on its own however, as

controllers for interactive applications must be able to deal with unexpected distur-

bances. Indeed the controllers developed in Chapter 5 fail after a few cycles even

without disturbances, due to accumulation of errors and the difficulties of creating

cyclic control policies using sampling-based methods. Therefore, this chapter de-

scribes the development of feedback policies with the aim of stabilizing the open

loop controller. The approach used here is similar to previous work by Ding et al.

(2012), as described in Section 6.2. However, as with Chapter 5, the large increase

in time step results in significant differences in the conditions required for stable

control, as described in Section 6.3. Section 6.4 examines how robust the resulting

feedback controllers are to external forces. Computational performance relative to

the requirements of real-time applications is discussed in Section 6.5. Section 6.6

describes the use of machine learning techniques to predict whether the controller

will remain stable given the character’s current state, which has many potential

applications in high level control.

6.2 Related Work

The feedback approach used here is similar to the method described by Ding et al.

(2012), which uses CMA evolutionary optimization (Hansen 2006) to learn linear

feedback policies which map a deviation from the desired state, ds, to an adjustment
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to the control action, da, using a feedback matrix M

da = Mds (6.1)

where s is an n-dimensional vector of state and sensory information expected to

be useful in deriving feedback laws, and a is an m-dimensional vector spanning the

space of actions expected to be most relevant to the feedback control. The feedback

matrix is therefore m × n. The method assumes an open loop control policy is

already available, and Ding et al. (2012) use the sampling-based open loop control

approach introduced by Liu et al. (2010) for several example motions. The elements

of the feedback matrix are then used as the parameters in the CMA optimization.

Each member of the CMA population is evaluated by a policy rollout, that is by

applying its parameter values to the feedback policy and performing simulation for

some duration, and measuring tracking quality or other desirable features using an

objective function. Due to the dimensionality and irregularity of the search space,

some problems are difficult to optimize directly, but may be addressed by starting

with simpler problems and progressively adding difficulty.

To encourage sparsity in the control formulation, the feedback matrix may be de-

composed into the product of m× r and r × n components, with r small compared

to m and n so that the total number of parameters, r× (m+ n), is reduced. Values

of r up to 3 are used for the example motions. Sparsity may be further encouraged

by an objective function term which rewards zero-valued elements in the feedback

matrices.

The feedback decomposition approach also has the advantage that the component

matrices have the effect of automatically identifying low-dimensional state abstrac-

tions and low-dimensional co-ordinated actions, and therefore the method does not

rely on the motion-specific expertise normally needed to manually select such low-

dimensional spaces. It is also shown that information such as ground reaction forces,

which is not commonly included in state descriptions, can contribute to effective

feedback policies.

As well as avoiding dense feedback structures, Ding et al. (2012) do not consider

feedback policies which depend on motion phases as they would result in large

parameter counts.

The simulation time step is not stated, although the computation times reported

suggest that it is probably close to 0.5ms, which is very commonly used in other

work. With long policy rollout durations, up to 50s, and single threaded simulation,

some optimizations require hundreds of hours to complete, although it is noted that
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the simulation for the individuals in the CMA population is trivially parallelizable.

Liu et al. (2012) use a similar approach to learn feedback controllers for running, with

transitions in and out of several highly dynamic obstacle clearing motions. An affine

structure is used for the feedback, rather than linear, to allow for parameterization of

the motions. The running motion is parameterized in terms of speed and direction,

and the other motions are parameterized in terms of features such as obstacle height.

For the running motion, a 12-dimensional state vector and 9-dimensional action

vector are used. The order reduction approach suggested by Ding et al. (2012) is

used, with r = 3, so the total number of parameters for running is 3×(12 + 9) = 63.

Simulation is performed using ODE, with a time step of 0.5ms. Compared to the

work by Ding et al. (2012), shorter policy rollouts are used (up to 20 cycles of

running) and early termination of simulations is used to reduce the evaluation cost

for policies which fail rapidly. Multiple simulations are also run in parallel on a

24-core machine, with the running motion requiring 11 hours of computation. Note

that this includes motion parameterization to different speeds and directions.

Although Liu et al. (2012) split some of the obstacle manoeuvres into separate mo-

tion phases for feedback control, the running controller uses static feedback through-

out the motion, as with the walking motion generated by Ding et al. (2012). There

are however reasons to consider including phase-dependent feedback. In human

locomotion, reflexes, which contribute to feedback control, are known to be phase-

dependent (Zehr et al. 1998). Several simulated control strategies also employ phase-

dependent feedback, for example Luksch et al. (2010), Geyer & Herr (2010), and

Wang et al. (2012).

Machine learning techniques are also used here to predict whether a feedback con-

troller can maintain stability given the character’s current state. In related work,

Faloutsos (2002) uses support vector machines (SVM) in order to predict whether

transitions between different controllers will be successful. SVMs are a supervised

learning approach, that is they learn based on a set of training data which has

already been classified, in this case a set of vectors describing the character state

with labels indicating transition success or failure. Training the SVM model may

take considerable time, but it only needs to be done once, and can be performed of-

fline. Prediction is performed online, so the prediction time and amount of memory

required to store the model are important considerations.

SVMs work by mapping the input space to a higher-dimensional space in which the

data are more separable based on their labels. The mapping may use a linear or

nonlinear kernel, with common nonlinear kernels including polynomials and radial

basis functions (RBF). Within the high-dimensional space, a hyperplane is sought

121



which balances two desirable properties. The first desired outcome is to create the

largest separation between the classification regions, while the second is to minimize

incorrectly classified examples. Training points which are closest to the classification

boundary are called support vectors. In order to make predictions for new data

points, not included in the training set, it is necessary to determine which side of

the hyperplane they fall in the high-dimensional space. The cost of this prediction

is proportional to the number of support vectors, which can grow linearly with the

size of the training set.

For the conditions considered by Faloutsos (2002), polynomial kernels produce better

accuracy than RBF, with accuracies ranging from 70-100%, depending on the tran-

sitions considered. For typical training set sizes of around 10000 examples, training

times range from a few minutes to a few hours, depending on which kernel is used,

with prediction times on the order of milliseconds. The memory requirements for

the models are not reported.

As noted above, the prediction costs for standard SVM scale with the number of

support vectors, which can be problematic for large training sets. Jose et al. (2013)

address this problem by introducing local deep kernel learning (LDKL), using local

kernels with a tree-based structure. The tree structure means that the prediction

cost scales logarithmically, allowing prediction costs 2 or 3 orders of magnitude

smaller, although with a modest reduction in accuracy for the examples they con-

sider.

6.3 Large Time Step Feedback

This section describes the feedback implementation used here, using PhysX with 60

simulation time steps per second, as in previous chapters. Again, due to the much

larger time steps, the conditions for stability are expected to be stricter.

The cyclic formulation described in Section 5.8 was used as the underlying open

loop control, using the same 64 frame walking motion as previous examples.

A state vector was manually selected based on the root orientation and height, the

horizontal COM velocity and the positions of the feet, a total of 12 dimensions.

Ground reaction forces, which were successfully used as state features by Ding et al.

(2012), were considered, but found to be too noisy to be useful. For the action space,

the joint target DOFs for the left and right hip, knee and ankle, and the lower joint

of the torso were used, a total of 21 dimensions.

The feedback matrix elements were optimized using CMA (Hansen 2006), with a
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population size of 24. At each CMA iteration, each member of the population was

evaluated by applying its values to the feedback policy, and performing simulation

with those values. Each frame of simulation was compared to the corresponding

frame of the target motion using the same objective function as in Chapter 5, and

the objective function values were averaged over the whole simulation duration to

give an overall objective value.

In order to avoid training controllers which were overly specific to particular testing

conditions, a number of simulations, with different starting conditions, were run

for each trial feedback policy and the objective function was also averaged over the

separate runs. For the results described in this secion, the testing conditions differed

only in terms of the point in the motion cycle at which simulation was initiated.

Repeated testing is more important in Section 6.4, which also involves external

disturbing forces, but was also included here as a common implementation was used

for testing with and without disturbances.

Based on the results regarding the effect of the number of evaluation conditions on

controller robustness reported by Wang et al. (2010), each trial policy was evaluated

across 10 runs. As with the method of Wang et al. (2010), the starting conditions

were randomly determined, but the same conditions were used for each member

of the CMA population, to make the evaluation fair across the population. New

starting conditions were randomly determined every 10 CMA iterations.

In keeping with the common strategy of aiding CMA convergence by starting with

a simpler problem and incrementally adding complexity, the interval over which the

policies were evaluated was increased from 1.5 motion cycles to 4 as the optimization

progressed.

A total of 1500 CMA iterations were used for each optimization. With 4 simulations

run in parallel on a single machine, optimization required 3-4 hours depending on

parameter count (see below).

Controller optimization was tested for various feedback structures, both full and

reduced-order, and with and without phase-dependence. Reduced-order controllers

used the matrix decomposition approach described by Ding et al. (2012), with r = 3.

Motion phase was defined based on the contact states of the feet, since feedback

strategies involving manipulating GRF would be expected to depend significantly

on which contacts are available. For the purpose of determining phase, each foot

was considered to be in contact if PhysX reported any contact forces on the previous

simulation frame. If neither foot reported contacts, the foot closest to the ground

would be considered to be in contact. Two double stance phases were defined, based

on which foot was further forward, as well as two single stance phases, for a total of
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Figure 6.3.1: Progression of Objective Function for Successful Controller

4 phases. It might be possible to exploit symmetry between the left and right stance

phases to reduce the number of phases to 2, but this option was not explored.

Results for the different feedback structures are shown in Table 6.3.1. Only using full

order, phase-dependent feedback resulted in a successful controller, which remained

stable after testing for 1000 simulation time steps, as shown in Figure 6.3.1. The

periodic spikes in objective function occur because of the difficulty of bridging the

discontinuity between the two ends of the motion sequence to make a cyclic control

policy. The output motion is also shown in an accompanying video. All the other

tested configurations led to rapid failure, which probably indicates that the CMA

optimization had completely failed to converge. This suggests that for large time

steps, the low-dimensional abstracts which reduced-order feedback creates are too

sparse to describe adequate feedback policies, and that single phase policies cannot

capture the adaptations in feedback strategy necessary to deal with different contact

states.

Controller Type Phases Parameters Result
reduced order 1 99 failure
reduced order 4 396 failure
full order 1 252 failure
full order 4 1008 success

Table 6.3.1: Effect of Feedback Configuration

Despite the large parameter count for the full order, multiphase controller, no dif-

ficulties were observed with convergence or overfitting. However, each iteration of

the CMA algorithm does include an eigendecomposition step, with cost cubic in
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the number of parameters. For the two cases with the largest parameter counts,

average computation times for the CMA update and for the iteration as a whole

were measured, as shown in Table 6.3.2. Timings were measured at the start of the

optimization, before the simulation duration had been increased, so later iterations

would have higher simulation costs. For 396 parameters, the CMA cost is still very

small compared to simulation, but it is more significant with 1008 parameters, re-

quiring about one third of the total computation. No special effort was made to

make the CMA implementation used here efficient, but it might be necessary to

consider performance of the CMA update if a larger parameter count were used, or

if simulation were parallelized across more than 4 threads.

Parameters CMA Update Time / s Total Time per Iteration / s
396 0.088 2.33
1008 1.132 3.55

Table 6.3.2: Computation Times for CMA Update

6.4 Robustness to Disturbances

In order to evaluate the robustness of the successful feedback controller, the opti-

mization was repeated, this time with random external forces applied during the

training process. Apart from the introduction of disturbances, the optimization

process was identical to that described in Section 6.3.

During training, forces were applied to the topmost link in the torso, roughly cor-

responding to the character’s chest, for a duration of 0.1 seconds (6 time steps),

beginning at a random point in the motion cycle. The forces were parallel to the

ground plane, with components in the two horizontal directions drawn from in-

dependent normal distributions with standard deviation σf . This means that the

squared magnitude of the overall force has a χ2
2 distribution. The force magnitude

is distributed as shown in Figure 6.4.1, with median value approximately 1.18σf , as

illustrated by the vertical line. It also means that the direction of the forces is uni-

formly distributed. This distribution was chosen to ensure the controller was tested

with a wide range of force magnitudes, to avoid training that was overly specific to

a particular level of disturbances.

A random horizontal displacement was also applied to the application point for each

force, so that disturbances would also include a rotational component. The displace-

ment in each horizontal direction was randomly drawn from a normal distribution

with standard deviation of 0.1m.

As with Section 6.3, a total of 10 testing conditions were randomly determined
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Figure 6.4.1: Distribution of Force Magnitudes, Relative to σf

after each 10 CMA iterations, and applied identically to each member of the CMA

population.

A series of optimizations was run, starting with a small value for σf , and increasing it

each time, with each run initialized using the controller from the previous optimiza-

tion. The robustness of each resulting controller was evaluated by running a series

of 10000 trials with random force magnitudes, directions and timing. Each trial was

considered successful if the character was upright and close to its target pose 10s

after the disturbance was applied. The trial forces were divided into bins of size

50N, and the proportion of successful trials was calculated for each bin. Controller

robustness increased up to σf = 200N , after which robustness began to deteriorate,

as shown in Figure 6.4.2. This is consistent with expectation, as values of σf which

are too large will lead to many failures during training, which do not provide much

useful information to the optimization.

For the controller trained at σf = 200N , the robustness results were measured

separately depending on the direction from which the force acted, split into four

quadrants. As shown in Figure 6.4.3, the controller was a good deal more robust to

disturbances from behind, with relatively little difference between the other three

quadrants.

For comparison, the robustness results for previous work are shown in Table 6.4.1.

It is difficult to make a rigorous comparison, as previous results vary in testing

conditions. For example, some work applies disturbances only at fixed times in the

motion cycle, while other results use arbitrary timing. Differences also exist in the
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Figure 6.4.4: Progression of Objective Function Following Disturbance of 185N for
0.1s

durations of impulses and distribution of directions. The previous work typically

reports the largest forces which the controller was able to recover from, which is not

an ideal measure at it could depend on the number of tests performed. For example,

the controller described here was able to recover from forces as large as 920N (an

impulse of 92Ns), but only with very low probability, so it might not have been

observed if a smaller number of trials had been performed. With these limitations,

only a qualitative comparison is possible, but the controller developed here appears

to be in the same range of robustness as much of the previous work, although

the most robust controllers are able to recover from impulses several times larger.

However, the robustness is suprisingly good, considering that most previous results

are for much smaller simulation time steps. Only Muico et al. (2011) use a similarly

large time step, but they use a more expensive control scheme (see Section 6.5,

and require a composition of multiple controllers to achieve their highest robustness

results.

Figure 6.4.4 shows the behaviour of the objective function following the successful

recovery from a force of 185N. The robustness of the feedback controller is also

illustrated in an accompanying video, which shows a series of successful recoveries.
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Reference Force and
Duration

Maximum
Impulse /

Ns

Time Steps
per Second

Notes

Yin et al.
(2007)

340N, 0.4s 136 2000 fixed phase, applied
just after foot

contact
Wang et al.

(2010)
475N, 0.4s 190 2400 trained with

arbitrary timing
during cycle

Wang et al.
(2009)

200N, 0.4s 80 2400 every 4 seconds for
40 seconds, phase

not stated
Lee et al.

(2010)
160N, 0.4s 64 900 every 4 seconds for

40 seconds, phase
not stated

Wang et al.
(2012)

100N, 0.4s 40 2400 every 4 seconds for
40 seconds, phase

not stated
Ding et al.

(2012)
203N, 0.4s 81 not stated

Ding et al.
(2012)

500N, 0.2s 100 not stated

Muico
et al.

(2011)

150N, 0.5s
(approx)

75 120 applied for about
one half-cycle

around
double-support

phase; composite
controller

Coros et al.
(2010)

600N, 0.1s 60 2000 arbitrary timing
during cycle

Wu &
Popović
(2010)

350N, 0.1s 35 2048

Wu &
Zordan
(2010)

170N, 0.1s 17 2000

Table 6.4.1: Robustness Comparison of Previous Work
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6.5 Controller Performance

In previous work, character controllers are typically described as real-time if they

require no more than one second of CPU time to produce one second of simulated

motion. However, most practical real-time applications will involve many other

processes competing for CPU resources, and a budget of more than 5-10% of the

CPU time for character simulation would likely be infeasible. To avoid dropping

frames, it is also desirable for computing costs to be very consistent between frames.

The controller developed here was timed over a series of several hundred time steps,

and found to use an average of 0.62ms per step, with a standard deviation of 0.08ms,

for both computing the control policy and performing the simulation. At 60 simu-

lation time steps per second, this amounts to less than 4% of a single CPU core’s

time. Almost all previous work uses much smaller time steps and requires at least

an order of magnitude more computing time. The only work known to be compa-

rable in performance is by Muico and colleagues (Muico et al. 2009, 2011), but for

their walking controller they report an average time of 1.6ms per time step, with

120 steps per second, which is several times slower. They also have a much more

complex control scheme, and computing costs which are highly variable between

frames, varying between 1.0 and 4.1ms. The cost and variability are dominated by

the LCP solver used to deal with contacts, which they describe as overly precise.

It is possible that faster and more consistent times could be achieved with a more

efficient LCP solver, but this has not been demonstrated. Therefore, with the pos-

sible exception of Muico’s work, the work described here is believed to be the first

locomotion controller with sufficiently low computation cost to be practically used

in a real-time application.

6.6 Machine Learning for Prediction of Controller

Success

This section describes the use of machine learning to predict whether or not a feed-

back controller will remain stable, based on the current state of the character. There

are many reasons why such predictions could be useful. As described by Faloutsos

(2002), predictions could be used to mediate transitions from one controller to an-

other as dictated by high level control. Secondly, a higher level of robustness could

be achieved if multiple feedback controllers are trained for a particular motion se-

quence, and prediction is used to select a feedback policy which is likely to succeed.

This is similar to the idea of composite controllers employed by Muico et al. (2011).

Similarly, it may also improve robustness to reset the timing of the open loop control
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policy after certain disturbances, which could be achieved by performing prediction

for a range of instants surrounding the current control instant, and searching for

more stable timing. Finally, early failure prediction could be useful in real-time

applications such as games, where failure of simulated characters can be very dam-

aging to immersion, and would allow the failure to be handled more gracefully, for

instance by switching to a recovery controller or falling back to a kinematic method.

Previous work (Faloutsos 2002) uses support vector machines (SVM), with predic-

tion times in the order of milliseconds. Such prediction times are significant com-

pared to the control and simulation cost reported in Section 6.5, which means that

strategies relying on multiple predictions, such as the increased robustness methods

described above, or transition between a dense space of controllers, would be in-

feasible under real-time performance constraints. Here, a standard SVM approach

similar to that used by Faloutsos (2002) is compared with a more recent variant

of SVM (Jose et al. 2013), which uses a tree-based kernel structure to improve

prediction times.

In order to generate training data, 1000 trials were performed using the feedback

controller, trained with σf = 200N , subjected to a random force for 0.1s and then

continuing to simulate for 10 seconds (600 time steps). At the end of each trial,

success was defined by remaining upright and close to the target pose. All the

preceding time steps in the trial were then marked as leading to success or failure

accordingly. A vector representing the state of the character, along with the success

label, constituted one example in the training data. To keep the size of the training

set manageable, the state at each time step was included in the data set with prob-

ability 0.1, leading to a total training set size of approximately 60000. In order to

achieve balance between positive and negative examples in the training data, trials

were conducted with σf = 300N , which led to a success rate of approximately 50%.

The same procedure was used to generate a set of test data, again with around

60000 examples, to use in evaluating the trained models.

Two different representations of the character state were tested. The first used the 12

features included in the feedback policy state vector (the root orientation and height,

the horizontal COM velocity and the positions of the feet), along with the current

timing in the motion cycle, for a total of 13 features. A higher dimensional state

vector was also tested, to examine whether a more detailed state description would

lead to more predictive power. The second state vector included all the features

from the first state description, as well as angular momentum values for the torso,

each arm and each leg, the foot orientations, and a measure of the hip abduction

for each leg, giving a total of 39 features. For both representations, scaling factors

were applied so that the range of values taken by each features was close to [-1, 1].
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Models were trained with both a standard SVM approach, using the GPU version of

LIBSVM version 3.17, and the local deep kernel learning (LDKL) variant of SVM,

using LDKL version 1.1. The accuracy results and average prediction times for the

two appraoches are shown in Table 6.6.1 and Table 6.6.2. Note that the prediction

times for standard SVM are recorded in milliseconds, while the LDKL results are

in microseconds, 3 orders of magnitude faster. The accuracy values obtained with

LDKL are also higher. This differs from the results reported by Jose et al. (2013),

where LDKL was typically found to have slightly lower accuracy, although it may

be possible to improve the SVM accuracy results with additional tuning of the

kernel parameters. Furthermore, the models trained using LDKL required only a

few kilobytes of memory to store, while the SVM models used several megabytes

of memory. This could be an important concern for making predictions online in

real-time applications, where memory bandwidth is often a major constraint on

performance. For this prediction problem, clearly LDKL has many advantages over

the standard SVM approach. One disadvantage is that the LDKL implementation

is free only for non-commercial use, while freely usable software such as LIBSVM

is available for the standard SVM method. The higher dimensional feature space

produced more accurate predictions, with a relatively small increase in prediction

cost. The accuracy values are also high enough for the predictions to be expected

to be useful. The video accompanying this section shows results using LDKL for a

series of disturbances, with character states predicted to lead to failure shaded in

red.

Features Kernel Degree Training
Time / s

Accuracy / % Time per
Prediction / ms

39 RBF 3 22.9 97.0 0.322
39 poly 3 50.8 95.3 0.822
13 RBF 3 13.4 96.7 0.177
13 poly 3 14.0 95.0 0.202

Table 6.6.1: LIBSVM Results

Features Tree Depth Training
Time / s

Accuracy / % Time per
Prediction / µs

39 3 3.6 98.9 0.231
39 4 6.8 98.9 0.323
13 3 3.0 98.5 0.184
13 4 5.4 95.6 0.224

Table 6.6.2: LDKL Results

With LDKL prediction costs of the order of microseconds, it would be feasible to

evaluate many controllers in a single time step, allowing for improved robustness

strategies and transitions between dense networks of controllers to be implemented

in a practical real-time application.
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6.7 Summary

This chapter described the development of a feedback policy to stabilize the cyclic

open loop control controller from Chapter 5. The feedback controller was based on

existing work, but as with other aspects of the control problem, adaptations were

required in order to achieve stability with large simulation time steps. In particular,

the implementation here only produced successful controllers using dense feedback,

rather than reduced order policies, and with the introduction of phase-dependence.

The successful feedback controller was retrained in a test environment including ran-

dom external pushes, and a controller was generated which was able to recover from

pushes of several hundred Newtons applied for 0.1s. The robustness to disturbances

was in a similar range to most previous results, many of which use much smaller

simulation time steps.

This chapter also included the use of machine learning techniques to predict whether

a given controller will remain stable based on the current state of the character,

which has many useful applications such as controlling transitions between con-

trollers and improving robustness. Using a recent development in support vector

machines, prediction costs of the order of microseconds, with an accuracy of 98.9%,

were obtained. This improvement in prediction cost by several orders of magnitude

compared to previous results could allow high level control strategies which involve

evaluating many low level controllers in real-time to be explored.
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Chapter 7

Conclusion

7.1 Summary

This project examined the applicability of physics-based locomotion control to sim-

ulated characters using 60 time steps per second, a simulation condition suitable for

satisfying the performance constraints of typical games. A review was presented of

the large body of existing work, which includes significant advances but typically

uses much smaller simulation time steps, often around 2000 time steps per second.

The difficulties of achieving stable control with larger time steps were illustrated

with an attempt to implement a handcrafted controller similar to the well-known

SIMBICON approach, at 60 time steps per second (SIMBICON itself was found

to fail when the simulation rate was modified below 750 time steps per second).

Despite numerous attempts to improve tracking quality and stability, control was

severely hampered by tracking latency and failed after 1 or 2 motion cycles at most.

This suggested that a more sophisticated approach was required to deal with large

simulation steps, and the remainder of the project considered three major areas

contributing to such an approach — trajectory optimization, to improve the phys-

ical plausibity of reference motions, sampling-based control, to generate open loop

control policies, and learning feedback policies, to compensate for departures from

desired motion.

The first area, trajectory optimization, was based on previous work which demon-

strated that ground contacts could be incorporated into a direct optimization ap-

proach, but was limited to planar examples. Here, the method was extended to

three dimensional problems. The inclusion of ground contacts in the optimization

approach also introduces complementarity constraints into the optimization prob-

lem, which make solving difficult. Here, an exact penalty method was shown to

give improved solver robustness and performance compared to the previously used
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constraint relaxation method. Using the exact penalty method, optimized trajec-

tories were successfully generated for walking, jogging and running motions, each

taking around 25 minutes with a single-threaded solver. Trajectory optimization

was also used to make significant alterations to characteristics such as timing, stride

length and heading direction, without compromising physical plausibility, and to

generate short transitions between existing motions. The trajectory optimization

method was implemented using IPOPT, an open source solver, which has benefits

for commercial use compared to previous work with proprietary solvers.

The second area of work used an existing sampling-based method to generate open

loop controllers which reproduce reference motions, with adaptations to deal with

larger simulation time steps. The simulation environment was also changed to

PhysX, which is more representative of the kind of physics engines which would

be common in games, but required some care to ensure deterministic behaviour, a

requirement of the sampling technique. It was found that determinism in PhysX

depended on various factors, including the method used to restore the character’s

state, the solver iteration count, internally cached contact information and the size

of the slightly expanded region surrounding the feet which could trigger contacts.

With suitable settings, it was possible to get highly consistent behaviour, but diver-

gence still occurred after a few hundred time steps.

With large time steps, the sampling-based method was found to be sensitive to the

physical plausibility of the reference motions used. Using trajectory optimization, it

was possible to generate visually similar motions which resulted in successful open

loop control policies at 60 time steps per second.

Automatic tuning of the dimensions of the sampling space was introduced, and it

was found that the quality of the sampling output was sensitive to the sampling

dimensions, and less dependent on the number of samples used.

A technique was also presented to generate cyclic control policies from the sample-

based trajectories, which are inherently non-cyclic. The method involved searching

for stretches of control which had small cyclic discontinuities, and creating a bridging

segment using an evolutionary algorithm. Using this approach it was possible to

obtain cyclic control policies which avoid large discontinuities between cycles, but

with reduced stability compared to non-cyclic policies, leading to failure after around

3 motion cycles.

In any case, open loop control is useless on its own for interactive applications where

it is necessary to deal with disturbances. Therefore, the final area of work involved

generating feedback policies using an evolutionary approach, in order to correct

for deviations from desired behaviour. With large time steps, it was found that it

136



was necessary to use a dense feedback structure, and to introduce phase-dependent

feedback. With these conditions, the feedback controller was successful in stabilizing

a walking motion at 60 time steps per second. When trained in an environment

with random external pushes, the controller was able to recover from disturbances of

several hundred Newtons, applied for 0.1s. The robustness to disturances was within

the same range as previous work, much of which relies on substantially smaller time

steps.

Using a recent machine learning method based on support vector machines, it was

found that it was possible to predict whether the controller could recover from a given

disturbed state, with high accuracy (98.9% for the example here) and with prediction

times of the order of microseconds, orders of magnitude faster than previous work.

Such predictions could be useful for numerous reasons, including gracefully handling

failure, increasing robustness through composition of multiple controllers, managing

transitions between different motions, and high level control strategies, and the

prediction performance means that these techniques would be viable in games.

Together, these three areas of work allowed a walking motion to be successfully

reproduced in simulation at 60 time steps per second. The total cost of control

and simulation was 0.62ms per time step, giving a total processor utilization of

around 4%, at least an order of magnitude lower than almost all previous work,

and low enough to feasibly be used in applications with demanding performance

requirements such as games. Furthermore, the availability of accurate controller

stability prediction, also fast enough to be used in games, opens up exploration of

various high level control strategies in real-time.

7.2 Discussion, Limitations and Future Work

There are several potential improvements to the trajectory optimization implemen-

tation to be considered. Some trial and error is currently used in selecting the

penalty weight for the exact penalty method and it may be worthwhile to explore

more systematic methods of selecting a weight value. For example, Benson et al.

(2006) suggest a method based on estimates of the Lagrange multipliers at the initial-

ization point. At present, multiple solver runs with successively increasing penalty

weights are used. It may be possible to avoid the need for multiple solver runs by

updating the penalty weight during a single solve, but care might be required to

avoid interfering with the criterion used by IPOPT to accept steps based on the

history of previous iterations. It may also be possible to improve the performance

of the optimization by further exploring problem scaling, using a pre-solve step to

get a better initialization point, or by using a multithreaded or GPU based linear
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solver.

For motions modified using TO which are very far from the original reference, it can

currently be difficult to avoid unnatural behaviour, and it is sometimes necessary to

add objective terms to avoid implausible joint configurations or self-collision. Adding

physiologically based joint limits and torque limits to the problem formulation may

improve the naturalness of synthesized motions, and reduce the need for ad hoc

objective terms.

TO is used to generate motion graphs in work by Ren et al. (2010) and Wampler et al.

(2013), but the resulting outputs are purely kinematic. The results of Chapter 4

showed that with the TO implementation here it was possible to maintain physical

plausibility while significantly altering reference motions. Therefore, an interesting

future exploration would be to generate a densely connected graph of physically

correct motions, based on a sparse initial set of references. The graph could then

be used either with a low-dimensional model in order to create a pseudo-physical

controller, or as the target behaviour for simulated control.

Although the technique used for making cyclic open loop control policies was suc-

cessful, it was not wholly satisfactory. Problems with the current approach include

limiting stability to only a few cycles, and significantly increasing the deviation

from the target motion near the cycling boundary due to the difficulty of satisfying

the looping restriction. In future, it would be desirable to develop a more effective

approach, perhaps by using evolutionary optimization over the whole interval.

The samples generated during the open loop control policy determination and au-

tomatically tuned sampling window dimensions may contain a lot of information

about a stable limit cycle and its basin of attraction. It could be worthwhile to

explore strategies based on exploiting this information to generate a more stable

limit cycle and feedback policy.

Feedback control has been successfully demonstrated at 60 time steps per second,

but so far only for a walking motion. In order to examine its generality it will

be important to test other motions, including more agile behaviours such as tight

turning or running. Running motions in particular may be challenging due to the

flight phases, although the successful application of TO to a high time step jogging

motion is encouraging. If feedback control is found to be successful for other motions

as well, then more flexible and high level control could be explored, either using a

motion graph approach or controller parameterization.

The obtained walking feedback controller has somewhat jerky foot plants. This may

be ameliorated in future by modifying the objective function or by improving the

cyclic open loop control policy generation as described above.
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The feedback controller is currently quite time consuming to train, requiring several

hours per motion. Although it is amenable to parallelization across multiple motions,

if the controller is to be extended to dense motion graphs it would be beneficial to

explore ways of accelerating this step, such as using GPU based physics simulation.

As decribed in Section 6.6, there are numerous potential applications of fast, accu-

rate controller stability prediction. One idea would be to train additional feedback

controllers to increase robustness. For example, in Chapter 6, a single feedback

controller was trained to deal with external forces from all directions. A controller

which only has to cope with a narrower range of directions would be expected to

have higher robustness for its area of applicability, and it should be possible to train

several controllers for more specific directions, and automatically select between

them using prediction. Similarly, it would be interesting to see if robustness may

be improved by using prediction to allow the controller to select a different point in

the open loop control sequence following a disturbance. Finally, prediction may be

used to arbitrate high level control strategies. For example, if controllers have been

trained for level ground and various slopes, the most appropriate controller may be

selected based on prediction when the character encounters a change in slope. Sim-

ilarly, prediction could be used to determine the most suitable point to transition

to a different motion, for instance when a change in speed or heading is desired.

Therefore, the successful high time step feedback controller and efficient prediction

form a promising basis for much interesting future exploration.
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control of dynamic characters’, ACM Transactions on Graphics (TOG) 28(3), 1–

9.
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Wampler, K., Popović, J. & Popović, Z. (2013), Animal locomotion controllers from

scratch, in ‘Computer Graphics Forum’, Vol. 32, Wiley Online Library, pp. 153–

162.
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