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Abstract

Fuel cell technology can be traced back to 1839 when British scientist Sir William

Grove discovered that it was possible to generate electricity by the reaction be-

tween hydrogen and oxygen gases. However, fuel cell still cannot compete with

internal combustion engines although they have many advantages including zero

carbon emissions. Fossil fuels are cheaper and present very high volumetric en-

ergy densities compared with the hydrogen gas. Furthermore, hydrogen storage

as a liquid is still a huge challenge. Another important disadvantage is the lifes-

pan of the fuel cell because of their durability, reliability and maintainability.

Prognostics is an emerging technology in sustainability of engineering systems

through failure prevention, reliability assessment and remaining useful lifetime

estimation. Prognostics and health monitoring can play a critical role in en-

hancing the durability, reliability and maintainability of the fuel cell system.

This paper presents a review on the current state-of-the-art in prognostics and

health monitoring of Proton Exchange Membrane Fuel Cell (PEMFC), aiming

at identifying research and development opportunities in these fields. This paper

also highlights the importance of incorporating prognostics and failure modes,

mechanisms and effects analysis (FMMEA) in PEMFC to give them sustainable
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competitive advantage when compared with other non-clean energy solutions.

Keywords: Hydrogen Fuel Cell, PEMFC, Health Monitoring, Prognostics,

FMMEA, State of Health

1. Introduction

A fuel cell is simple electro-chemical device as shown in Figure 1, which con-

verts chemical energy into electrical energy from a hydrogen fuel or hydrogen-

rich fuels [1]. A fuel cell basically consists of three main components: anode,

cathode and electrolyte. The electrolyte, which is made of non-conductive ma-5

terials, allows charges to pass through and is sandwiched between catalytic

electrodes, i.e., the anode and the cathode. Electricity is produced from the

cathode to the anode, i.e., electrons flow from the anode to the cathode through

an external circuit [2, 3]. Based on the materials used for the electrolyte, the

anode and the cathode, there are many different types of fuel cells. Particularly10

based on the non-conductive materials used for the electrolyte, fuel cells can

be classified into alkaline fuel cell (AFC), proton exchange membrane fuel cell

(PEMFC), direct methanol fuel cell (DMFC), phosphoric acid fuel cell (PAFC),

molten carbonate fuel cell (MCFC) and solid oxide fuel cell (SOFC) [4, 5].

An individual fuel cell typically delivers low voltages and high currents. Typ-15

ical voltage and current ranges are from 0.4 to 0.9V and from 0.5 to 1A/cm2 re-

spectively [6, 7]. For example, the fuel cell developed at the Sustainable Energy

Technology Centre, University of Hertfordshire, is reported to produce about

0.7V (after losses) and 0.6A/cm2 [8]. In order to achieve a higher power output,

the fuel cells need to be stacked together as shown in Figure 2. Depending on20

the power output and the applications, fuel cells come in various shapes and

sizes [9]. Fuel cell has demonstrated to be an attractive alternative energy gen-

eration technology from hydrogen-rich fuels [2, 3, 5]. A fuel cell does not have

any mechanical moving parts, but have high energy efficiency and zero emis-

sions i.e., to deliver no pollution to the environment during operation. Hence,25

there is a good potential for fuel cell to gradually replace internal combustion
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(IC) engines in the future [10, 11]. Fuel cells are used in many applications,

such as in aerospace and automotive vehicles, in small and large scale power

generation plants, in portable power generators, in combined heat and power

(CHP) generation, and in backup power applications [12].30

PEMFC is the most suitable type of fuel cells for many applications because

of their operating temperature range (between 20◦C and 100◦C) and quick re-

sponse time compared with other types of fuel cells. Compared with high tem-

perature fuel cells, PEMFC can be operated very quickly in lower temperature.

PEMFC materials cost is lower than that of a high temperature fuel cell. If hy-35

drogen is used as a fuel, lower temperature fuel cells are safer to use [5]. Hence

hydrogen PEMFC is most suitable for portable power generators such as those

used in spaceships or automotive vehicles [13, 14]. However, main drawbacks

are the cost and the lifespan of fuel cell because of durability, reliability and

maintainability issues associated with them [13, 15, 16]. So far, general life ex-40

pectancy of a fuel cell is not up to the expectation in industries. For example,

a typical life expectancy of the PEMFC is around 2500 hours, whereas trans-

portation applications require at least 5000 hours and stationary applications

require at least 40000 hours [17, 18].

Health monitoring has been used in engineering systems for many years to45

ensure performance, safety, availability and reliability [19, 20, 21, 22]. Generally

speaking, sensors are used to monitor the operating conditions, performance and

loading cycles. Anomalies and faults can be detected on time, hence avoiding

otherwise unpredicted incidents, down time and fault propagation [23]. Typ-

ically, small faults in a part of the system may develop as a major fault, so50

that ultimately the system may fail adversely. If the fault can be detected or

predicted at an early stage, then the system can be scheduled to maintenance

on time before the fault develops into something more serious [24]. Therefore,

applying health monitoring techniques will be a definite advantage, not only for

the safety reasons, but also for a considerable reduction of unscheduled mainte-55

nance costs. [25].

Prognostics is an engineering process of diagnosing, predicting the remaining

3



Figure 1: Schematics of the principle of operation of a fuel cell

useful lifetime (RUL) and estimating the reliability of a system [26, 27, 28, 29].

It has emerged in the last decade as one of the most efficient approaches in

failure prevention, reliability estimation, RUL prediction of various engineering60

systems and products [30, 31]. There are three different approaches to prog-

nostics, namely (1) data driven approach, (2) model driven approach, and (3)

fusion approach [26]. As prognostics can provide state-of-health (SOH) and

RUL information of the fuel cell, the operation of the fuel cell can be optimised

using an appropriate control strategy. Maintenance tasks can be scheduled, thus65

reducing down time. Although prognostics was used in safety critical systems in

early days, it is nowadays an integral part in many engineering systems, prod-

ucts and applications [26]. Hence application of Prognostics, along with health

monitoring to PEMFC, can be used to improve the reliability, sustainability

and maintainability (through evidence based decision making), reduce the life70

cycle cost, and can also provide feedback to the design and validation process

[32, 33, 34]. Health monitoring sensors can be used to monitor the important

parameters such as precursor parameters and loading conditions [35]. Prognos-
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Figure 2: Schematics of a fuel cell stack operation and components

tics can use sensor information to predict the remaining useful life time (RUL),

to diagnose failures well before they develop into a serious problems, and to75

provide information to control systems to automate contingency management

[36, 37, 38]. Hence both health monitoring and prognostics can play a vital role

in improving the durability, reliability, and maintainability of PEMFC system.

This will help to overcome the main challenges faced by the PEMFC industry

today.80

Although some developments have been reported in prognostics for PEMFC,

more research needs to be done in the field. Development of prognostics for

PEMFC has become a hot topic in the recent years as PEMFC has the po-

tential of replacing the internal combustion engine in the future [39]. PEMFC

is a very sensitive electrochemical device which involves heat transfer, charge85

transport, electrochemical reaction and multi-phase flows, hence developing a

prognostics methodology has become a complex and complicated process [17].

Although a fuel cell has no mechanical moving parts, membrane electrode as-
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sembly (MEA) undergoes degradation processes similar to those occurring in

mechanical systems because of the electrochemical reaction and multi-phase90

flows. These degradation processes might be natural in some cases but most of

these processes of degradation could be accelerated by loading cycles, operating

conditions, etc. Furthermore, failures in MEA are very difficult to measure or

observe directly as MEA is placed between the bipolar plates. Failure modes,

mechanisms and effects of MEA are not very well researched and understood.95

Therefore, a detail study of FMMEA is necessary for two main reasons: (1) to

apply prognostics at the deployment stage of the fuel cell systems and (2) to

understand the underlying physical processes of degradation and improve the

design of MEA and other components using novel materials which have high re-

sistance to degradation. FMMEA studies can also help to identify the precursor100

of failures in the MEA to start the process of prognostics and health monitoring.

This paper presents a critical review in prognostics approaches and health

monitoring techniques to improve the lifespan of the PEMFC. The prognostics

approaches, such as data driven, model driven and fusion approach, have been

studied and reviewed, including their advantages and disadvantages. Success-105

ful applications of prognostics in other engineering systems, including batter-

ies which are also an electrochemical device, have been highlighted. The key

aspects, such as degradation mechanisms, prognostics modelling, accelerated

testing, different health monitoring parameters and prognostics, are studied. In

particular, both prognostics approaches and health monitoring techniques in110

PEMFC are reviewed. Finally, this study highlights the importance of incor-

porating different failure models into a global model so that prognostics can be

applied to PEMFC more precisely to improve the lifespan.

2. Prognostics

Prognostics is a technology used to monitor degradation in engineering sys-115

tems, predict when failure may occur, improve reliability, and provide a cost

effective strategy for scheduled maintenance [40]. Prognostics of engineering
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systems or products has become very important as degradations in the individ-

ual parts may cause a severe (and irreversible) damage to the entire system,

environment and users. Ultimately, it may lead to failures and will result in120

significant costly repairs, that could otherwise have been avoided. Adopting

prognostics techniques require continuous monitoring of performance, loading

cycles and precursors of failures, and detecting any anomalies in these parame-

ters.

Figure 3 illustrates the three main approaches to prognostics, which are125

(i) Data driven, (ii) Model driven and (iii) Fusion approach. Fusion approach

is a combination of both (i) and (ii) methodologies. Figure 3 also shows the

classifications of prognostics approaches. Data driven approach can be further

classified into statistical and machine learning techniques. Statistical techniques

can be either parametric or non-parametric. Machine learning techniques can be130

either supervised learning, where test data is available or unsupervised learning,

where test data is not available. Model driven approach can be based on physics

of failure models or system models. Physics of Failure (PoF) models are based on

the underlying physical phenomena of failures which requires detailed FMMEA

study. System model relates the system’s output to its input, and it can be135

derived from first principles or test data. Fusion approach entails a combination

of data driven and model driven approaches which incorporates the benefits and

eliminates the drawbacks from both approaches [26].

2.1. Data Driven Approach

Data driven approach is considered as a black box approach to prognos-140

tics as it does not require system models or system specific knowledge to start

the prognostics [41]. Monitored and historical data are used to learn the sys-

tems’ behaviours and used to perform the prognostics. Hence the data driven

approach is suitable for the systems which are complex and whose behaviours

cannot be assessed and derived from first principles. The implementation of145

data driven techniques for the purpose of health monitoring and prognostics is

generally based on the assumption that the statistical characteristics of system’s
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Figure 3: Classification of prognostics approaches

performance will not be changed until fault occurs [41]. Therefore, the main

advantage of the data driven approach is that the underlying algorithms are

quicker to implement and computationally more efficient to run compared with150

other techniques [42]. However, it is necessary to have historical data and knowl-

edge of typical operational performance data, the associated critical threshold

values and their margins. Data driven techniques completely rely on the analy-

sis of data obtained from sensors and exploit operational or performance related

signals that can indicate the health of the monitored system. Data driven strate-155

gies to prognostics have been applied in a number of engineering applications

[43, 44, 45, 46, 47, 48, 49, 50].

The principal disadvantage of the data driven approach is that the confidence

level in the predictions depends on the available historical and empirical data.

Historical and empirical data are required in the data driven approach to define160

the respective threshold values. In some instances it is difficult to obtain or have

historical data available, for example in the case of a new system or device that
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may require long time to test. When a test takes a long time to complete, the

data collection becomes expensive and deployment of the system will take an

unrealistic long period of time. However, there are techniques and procedures,165

that can be used to overcome this disadvantage [51, 52]. Three of the strategies

that could be used to address this challenge are based on the use of:

1. Hardware-in-the-Loop simulations (HiL): Hardware-in-the-Loop is a com-

puter simulation which is used to test a real product or system by con-

necting it to the hardware that applies simulated loads as in a real appli-170

cation. It is very fast and cheap to implement. In addition, several failure

parameters (i.e., operational and environmental) can be controlled inde-

pendently. HiL can also be used to develop algorithms, test and validate

the algorithms, benchmarking and to develop metrics for prognostics [51].

2. Accelerated Life Test (ALT): Accelerated life test is designed to cause the175

product to fail more quickly than under normal operating conditions by

applying an accelerated (elevated) stress condition which is responsible

for a particular failure mechanism. ALT becomes an important method

in the development of the prognostics. Several environmental and loading

conditions can be applied independently to accelerate failures [31, 52, 53,180

54, 55].

3. Online Learning (Semi supervised/Unsupervised learning): Online learn-

ing is based on the assumption that a new system performance data rep-

resents the healthy system and that they do not fail for a certain period

of time. This type of approach can also be called semi supervised or un-185

supervised learning as only healthy data or no reference data is available.

Reinforcement learning approach is also suitable for this strategy [56].

2.2. Model Driven Approach

The model driven approach uses mathematical equations that predict the

physics governing failures and therefore is sometimes referred to as the Physics190

of Failure (PoF) approach. It requires knowledge of the failure mechanisms,

geometry of the system, material properties and the external loads that are
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Figure 4: Model driven approach to prognostics

applied to the system. An accurate mathematical model can benefit the prog-

nostics process, where the difference between the output from a mathematical

model and the real output of the system can be used to find the anomalies, mal-195

functions, disturbances, etc. [26, 57]. Using the difference between the model

and the data values for a performance parameter, the early warnings for failures

and RUL can be predicted. Many prognostics works have been published based

on the model-driven approach [47, 48, 58, 59, 60, 61, 62, 63]. A block diagram

of a typical model based approach is shown in Figure 4. Typical model driven200

approach is based on the system/physics of failure model for which the health

monitoring system will provide required sensor data. Once a fault is detected

by feeding the sensor data into the model, the damage parameter is isolated

and a damage is estimated. The damage trend will then be used to estimate

the RUL [26].205

10



2.3. Fusion Approach

The fusion approach is based on the advanced features of both the data

driven and model based methods. This approach requires an accurate mathe-

matical model of the system for the physics based failure approach, and enough

historical data and knowledge of typical operational performance data, for the210

data driven approach. The aim of the fusion approach is to overcome the limita-

tions and disadvantages of both model and data driven approaches to estimate

the remaining useful life [26]. Therefore, the accuracy of the fusion approach

should be higher than both model and data driven approaches when used in-

dividually [26], although for a real-time analysis it may not be suitable due to215

the significant computational resources required. The fusion approach has been

reported to be used in many applications before [26, 64, 65, 66, 67, 68, 69].

3. Applications of Prognostics to PEMFC

Although prognostics is used in many engineering systems and products

including batteries [70, 71, 72, 73, 74, 75, 76, 77], to assess the remaining useful220

life and enhance the durability and reliability, prognostics is rarely discussed

with respect to fuel cells. Jouin et al. (2013a, 2013b) discussed the benefits

of applying the prognostics techniques to monitor the SOH and estimate the

RUL of PEMFC, aiming at improving their durability and reliability, and hence

extend their life spans [78, 79]. They also discussed layer approach (based on225

different tasks) to prognostics and health management (PHM) and degradation

mechanisms in these review papers. Lack of experimental and failure data, and

complete models which incorporates all wear mechanisms were also reported as

main challenges [78, 79].

Most fuel cells need a health monitoring system in place to assess their per-230

formance. They are generally used to give early warnings or change the control

strategy if an anomaly is detected in the performance variable or in any key mon-

itoring parameter [23]. Sensors are used to monitor the parameters that need

to be watched. Because a fuel cell is very sensitive to the supplied fuel, oxidant,
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load current and the amount of water and heat produced, health monitoring235

becomes a vital component to control the fuel cell system [2]. Furthermore,

prognostics and health monitoring can provide information to a prognostics

system to estimate RUL, schedule maintenance and improve the sustainability

of the fuel cell.

This review is focused on PEMFC and organised under the subsections of240

degradation mechanisms, modeling for prognostics, accelerated testing, monitor-

ing parameters and techniques, diagnosis and RUL estimation. Before starting

the prognostics process, it is necessary to understand the most effective degra-

dation mechanisms of PEMFC. Under this section degradation mechanisms re-

sponsible for failures in PEMFC are reported. For the model driven approach to245

prognostics, PEMFC failure models are necessary. Models could be derived from

the first principle or test data. PEMFC models used for diagnosis and prognos-

tics are discussed next. Accelerated test is discussed for the purpose of failure

data collection, and understand the effect of different degradation mechanisms

in the performance of PEMFC. Next, monitoring parameters and techniques for250

health monitoring and prognostics of PEMFC are investigated from the liter-

ature. Finally, from the prognostics models, test data, monitoring parameters

and monitoring techniques, how PEMFC can be diagnosed regarding its failure

conditions and how RUL is estimated are discussed, respectively.

3.1. Degradation Mechanisms255

A Membrane Electrode Assembly (MEA) is the key component of the fuel

cell. The MEA consists of electrodes and membrane which is sandwiched be-

tween two electrodes. A fuel cell stack has many MEA stacked together. Failure

in any components of the MEA i.e., membrane or electrodes, will cause complete

failure of the stack even though all the other MEA are functional. Although260

there are no mechanical moving parts in the fuel cell, fuel cell components

undergo degradation processes similar to other mechanical components. It is

therefore necessary to understand the degradation mechanisms of the fuel cell

components, particularly the membrane. Membrane degradation can be cate-
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gorized into the followings: (1) Chemical degradation, (2) Mechanical degra-265

dation and (3) Membrane shorting [80, 81, 82]. Chemical degradation occurs

when the membrane decomposes because of electrochemical reaction caused by

poisonous substances and radicals which are produced in the cathode and an-

ode during chemical reactions [83]. Some of the typical radical elements are

peroxide (HO−) [84], carbon monoxide (CO) [85] and hydroperoxide (HOO−)270

[86, 87, 88]. Mechanical degradation occurs, when membrane undergoes me-

chanical degradation such as fracture because of thermal stress [80], humidity

[89, 90, 91], pressure and mechanical stress. Membrane shorting occurs when

membrane allows current to pass through. Mechanical degradation may cause

early failures because of manufacturing defects and improper MEA fabrication275

[86]. Mechanical failure may also be caused by excessive or non-uniform pres-

sure [86]. Fuel cell undergoes thermal and humidity cycling which may lead

to additional mechanical stress on the MEA [91]. These degradations could

lead to a decrease in the performance of the fuel cell and ultimately failures in

membrane; hence a complete failure in the fuel cell stack.280

Platinum (Pt) based catalysts are used in the electrodes to increase the rate

of chemical reaction. These catalysts typically undergo variable potential cy-

cling from 0.6 to 1.0 V. It may also undergo higher potential spikes and higher

potential voltage during uncontrolled operations [92]. Sudden increases in the

load current may result in a reduction of the catalyst area [80]. Pt dissolution is285

generally caused by chemical oxidation by the oxygen in the cathode electrode

[93]. These conditions may expose the catalyst into electrochemical stress and

may result in irreversible degradation in the catalyst. Some of the other operat-

ing conditions which may accelerate the failures are relative humidity [94, 91],

reactant starvation [95, 96], carbon monoxide poisoning at the anode catalyst290

[96, 97, 98], cathode flooding and membrane drying [98, 99, 100, 101, 102]. Fuel

cells run close to their open circuit voltage, accelerating different degradation

mechanisms in the membrane and catalyst [103].

Many degradation mechanisms were investigated theoretically and experi-

mentally. But the data related to which failure mechanisms cause more failures295
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and which failure mechanisms cause less failures are not available. Failures and

their corresponding failure mechanisms need to be investigated in relation to

fuel cell applications such as stationary, automotive, backup, combined heat

and power, etc. Hence it is necessary to carry out application specific failure

modes, mechanisms and effects analysis.300

3.2. Modeling for Prognostics

Once the failure modes, mechanisms and their effects are understood, physics

of failure or underlying physical processes of failure need to be modeled. Prognostics-

oriented fuel cell catalyst aging model has been reported by Zhang and Pisu

(2014) [104]. Catalyst degradation model is based on on the platinum disso-305

lution kinetic model proposed by Darling and Meyers [105, 106] and simplified

for the purpose of prognostics. Aging parameters for this model are electro-

chemical surface area and membrane gas crossover. Burlatsk et al. (2012) have

reported a mathematical model to predict the life of PEMFC under hydration

dehydration cycling. Stresses associated with hydration and dehydration cycle310

have been modeled mathematically, particularly a model of relative humidity

(RH) distribution in gas channels, a model of membrane stress and a model of

damage accrual [107]. These model predict membrane lifetime as a function of

RH cycle amplitude and membrane mechanical properties. A viscoplastic model

of Nafion® has been reported in the literature by Solasi et al. (2008) [108]. Ex-315

perimental results were used to develop a nonlinear time-dependent constitutive

model to predict the hygro-thermomechanical behaviour of Nafion®. Rong et

al. (2008a & 2008b) have developed a rate-dependent isotropic plasticity model

with temperature and humidity dependent material properties to understand

the viscoplasticity properties of catalyst layer components. Numerical simula-320

tions were used to investigate the crack initiation in the material [109, 110].

PEMFC models have been developed by a number of researchers mainly for

the purpose of control. Generally, models for each part of the fuel cell such as

catalyst layers, gas diffusion layers, etc. were developed and then integrated

to simulate and understand the behaviours of fuel cells under different operat-325
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ing conditions [111, 112, 113]. But underlying physical processes of failures or

physics of failure models have not been fully developed i.e. integrated failure

model for most of its failure mechanisms. Hence it is very important to develop

failure models for each failure mechanisms and integrate them into a model

which can predict most of the failures.330

3.3. Accelerated Testing

Accelerated testing is a useful tool to collect failure data, understand the

failure mode and mechanisms, and develop prognostics strategies. Accelerated

testing on PEMFC can be carried out under load cycling [114, 115, 116], RH

cycling [114, 117, 118, 119, 120], elevated temperature [121], thermal cycle [122],335

load ripples [123], anode flooding, membrane drying, carbon corrosion [88], Pt

dissolution [55, 88] etc. Under the accelerated testing, effects of one parameter

can be investigated effectively by keeping all the other parameters at normal

conditions and changing the particular parameter between two possible extreme

values. Accelerated testing can also be carried out for radical elements and340

external poisoning by introducing these elements into the fuel cell.

Accelerated testing under combined RH cycling and load cycling has been

reported by Wu et al. (2014). Under these conditions, severe chemical degra-

dation was observed in the membrane using transmission electron microscopy

(TEM) and scanning electron microscopy (SEM) cross sectional images [114].345

Petrone et al. (2015) proposed a new approach and protocol to accelerated test-

ing for the purpose of prognostics and lifetime prediction based on adaptable

load cycling [124]. It is important to have such general protocol to conduct

accelerated testing on PEMFC for the purpose of prognostics and life time pre-

diction.350

3.4. Monitoring Parameters and Techniques

3.4.1. Voltage

Cell voltage is among the cheapest and easiest ways to implement monitoring

techniques. It also is one of the quickest approaches to monitor a fuel cell, as
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voltage measurements do not require expensive and specialized sensors. Most355

of the fault modes of the fuel cell cause a voltage drop. Anode flooding at low

current densities was investigated by O’Rourke et al. (2009) based on cell voltage

measurements [125]. These cell voltages were then compared with median cell

voltage. If the difference between any cell voltage and median cell voltage was

higher than a predetermined value, then the cell could be under anode flooding.360

This method is a more efficient approach than the low frequency (< 6Hz)

impedance measurement.The low frequency impedance measurement technique

may take a longer period of time to identify flooding. Once flooding occurs

and the cell voltage has already been decreased, it is likely that the irreversible

phenomenon has already been started [125].365

Membrane drying and cell flooding were investigated by Frappe et al. (2010)

[126]. In this work, it was observed that membrane drying increased the mem-

brane resistance because of insufficient water. Cell flooding blocks a part of

the active area therefore the active area of the fuel cell reduces. Frappe et al.

(2010) proposed that it was possible to monitor only a group of cells instead of370

monitoring every individual cell in the stack. Thus, sample groups of cells were

selected to monitor at the inlet, outlet and center of the stack. State-of-health

indicator of the fuel cell stack was proposed as the voltage difference between

the center group and the inlet/outlet group. Based on this indicator, Frappe

et al. (2010) proposed that if there were no voltage variations (the difference is375

zero), then this implied no fault condition; if all the voltages dropped together

at the same time (again the difference is zero), then this implied a load varia-

tion; if the voltage of the center group dropped, there was possible drying; and

if the voltage of the inlet/outlet group dropped, there was possible flooding.

This approach was backed up with experimental data and results [126].380

Xue et al. (2006) investigated model based condition monitoring of a PEMFC

based on a lumped parameter dynamic fuel cell model and by employing the

Hotelling T 2 statistical analysis [58]. Fault detection of the PEMFC was facili-

tated by comparing the real time fuel cell output voltage measurements with the

baseline voltage by employing the Hotelling T 2 statistical analysis. The baseline385
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voltages were used to evaluate the output T 2 statistics under normal operating

conditions. Upper control limit for the fault was established and fault condition

was declared if the T 2 statistics of real-time voltage measurements exceeded the

upper control limit [58].

3.4.2. Impedance390

Alternating current (AC) impedance is generally used to estimate the state-

of-health (SOH) of fuel cells and batteries [127, 128]. AC impedance can also be

used as an in-situ health monitoring technique for PEMFC. An AC impedance

measurement technique coupled with a model-based approach was suggested by

Fouquet et al. (2006) [127]. In this study, a 150cm2 hydrogen PEMFC stack395

consisting of six cells was used. Test data was then fitted to parameters of a

Randles-like equivalent circuit. In order to improve the quality of the fit, clas-

sical Randles was replaced with a constant phase element instead of a standard

plane capacitor. It was reported that this modified model of Randles equiva-

lent circuit was an efficient and robust way to monitor the SOH of hydrogen400

PEMFC with respect to water content on MEA. Flooded and dry conditions

were identified with respect to the variation of the parameters of the proposed

modified Randles equivalent circuit model for PEMFC [127]. Unlike Fouquet

et al. (2006), Kurz et al. (2008) reported a predictive control strategy based

on impedance measurements [128]. From the impedance measurements at two405

different frequencies, the voltage drop caused by the flooding and drying phe-

nomena was detected. Kurz et al. (2008) used this information to run the fuel

cell at an optimal operating point [128].

Rubio et al. (2007, 2008) proposed a current interruption method to estimate

the PEMFC model parameters such as double layer capacitance, diffusion resis-410

tance, charge transfer resistance, diffusion related time constant and membrane

resistance (i.e. impedance) [129, 130]. It was found a correlation between the

cathode flooding phenomenon and the diffusion resistance. It was also reported

that impedance model parameters can be used to diagnose other degradation

phenomena such as membrane drying, cathode drying, membrane degradation,415
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and anode poisoning. The current interruption method was shown to be easy

to use as an in-situ health monitoring method [129, 130]. An implementation of

continuous real-time impedance spectroscopy was carried out by Bethoux et al.

(2009) [131]. This work showed that small sinusoidal current of known ampli-

tude and frequency could be sent into the fuel cell stack while it was operating.420

A low pass filter was proposed to retrieve the signal back from the fuel cell

stack without any electrical disturbances to the load. Using the collected data,

complex impedance can be estimated and equivalent Randles circuit parameters

can be computed [131].

Cooper and Smith (2006) investigated four electrical measurement tech-425

niques for on-line measurement of ohmic resistance: current interrupt, AC re-

sistance, high frequency resistance and electrochemical impedance spectroscopy

(EIS) [132]. Internal resistance measurements of PEMFC based on all four tech-

niques were compared. Current interrupt and high frequency resistance methods

correlated each other well if the high frequency measurement technique was in430

the suitable range. For hydrogen PEMFC operating with moderately humidi-

fied reactants, the ohmic resistance measurements determined with the current

interrupt technique, high frequency resistance and EIS were within 10−30%. It

appears that there are considerable differences between these three techniques

and there is no agreement about which method is the most suitable for on-line435

electrical measurement of ohmic resistance of hydrogen PEMFC [132]. Fast EIS

approach can also be used to assess the performance of PEMFC in the real time

[133]. For this purpose chirp signal which frequency changed with time, was

used. Fourier transformation and Wavelet Coherence techniques were used to

analyse the output signal [133].440

Rubio et al. (2010) classified PEMFC degradation phenomena based on time

scale, i.e., time taken to observe a variation in the performance of the fuel cell

[98]. Cathode flooding, membrane drying, catalyst poisoning, and contamina-

tion of the hydrogen or oxidants were reported as short time scale phenomena.

Slow rate chemical degradations such as corrosion and membrane degradation445

were mentioned as long time scale phenomena. PEMFC internal resistance was
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reported as a monitoring parameter and Rubio et al. (2010) showed that differ-

ent phenomena could be observed from the relative increment of the PEMFCs

internal resistance [98]. Generally short time scale phenomena of degradation

are reversible if the control system takes an appropriate action (such as purg-450

ing) on time so that the fuel cell recovers from the short time scale degradation

phenomena. But the long time scale degradation phenomena is generally irre-

versible and the rate of degradation depends on the rate of chemical reaction

such as corrosion and membrane degradation.

3.4.3. Temperature455

Temperature measurement of PEMFC is important for the safety purposes

and for the health monitoring purposes. Thermal stability of the PEMFC is

important for better performance [134] and long life. Hence most of real world

PEMFC systems will have temperature monitoring components and the col-

lected data will be used to control the fuel cell operation for optimum power460

generation. Generally, temperature measurements are taken at multiple places

which could be identified through numerical heat transfer simulations [135]. Lo-

cation of these temperature measurements may vary with the structure of the

stack, type of cooling i.e. water or air, size of the stack, material properties of

fuel cell components, etc.465

Correlation between local temperature and local current density was ob-

served by G. Zhang et al. (2010) and local temperature rises with the local

current density with decreasing operating voltage. Hence temperature and cur-

rent data can provide detailed information about the stack condition and can

be used for prognostics and health monitoring of the fuel cell.470

3.4.4. Acoustic Emission Technique

Acoustic emission (AE) is the propagation of transient elastic waves in a

solid medium, which are generated when the solid structure is subjected to irre-

versible changes such as crack or plastic deformation. Acoustic emission can be

used to monitor deformation in the membrane due to the water contents. This475
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was investigated and reported by B. Legros et al. (2010). AE has been used

as diagnostic tool for water management i.e. hydration and dehydration. AE

showed good sensitivity to different operating conditions such as gas humidi-

fication levels and MEA water uptake. It means AE could be used as online

non-invasive monitoring strategy for PEMFC [136]. B. Legros et al. (2011) have480

also investigated electrochemical noise (EN) as a tool for the diagnosis of the

PEMFC when it undergoes flooding and drying [137]. EN was increased during

the drying of the fuel cell and also with current level.

3.5. Prognostics and RUL Estimation

A behavioural model suitable for PEMFC prognostics was developed by485

Lechartier et at. (2015) [138]. This model consists of two parts: (1) static

model which represents polarization curve based on Butler-Volmer law and dy-

namic model which represents electrical equivalence of the fuel cell dynamic

behaviour. Parameters were updated from the electrical measurements such as

polarization curve and EIS. Static model was validated by comparing the exper-490

imental data and simulated results. Good fitting was observed in the dynamic

model parameters. The combined behavioural model was also simulated. Per-

formance of the model prediction was very good in new stack rather than in an

old stack. A few problems needed to be addressed such as difference between

the operating conditions for the polarization curve and aging process, decompo-495

sition of the current parameter and integration of some other input to improve

the performance [138].

A complete analysis of prognostics to PEMFC was carried out by Jouin et al.

(2016) [139]. A detail framework was proposed considering all the factors influ-

encing two important outputs i.e. output power and lifetime of the stack. This500

detail analysis starts with vocabulary definition followed by literature review on

degradation and incorporating most recent understanding of the degradation

phenomena to establish a complete degradation and failure analysis of PEMFC.

Electrodes and membrane were identified as most concerned and most affected

components in the PEMFC. Certain degradations phenomena were selected and505
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modeled to predict the power and lifetime accurately. Although validation re-

sults have shown higher correlation for four different datasets, it is required

to test the model on actual systems such as automotive applications so that

it could be validated for actual application [139, 140]. This work shows bet-

ter improvement on prognostics work related to PEMFC. Framework should be510

incorporated with other degradation models and failure mechanisms to make

complete and common framework for the prognostics of PEMFC. RUL estima-

tion completely relies on the criteria for end-of-life and it may vary from system

to system, from manufacturers to manufactures etc., as there are many param-

eters influence the lifetime of PEMFC. It makes difficult to define thresholds515

to each parameter that influences the lifetime [141]. Hence agreed definitions

for healthy and failed PEMFC should be established first. For example 0 - 5%

of power loss is good state of health (SOH), 5 - 10% of power loss is accept-

able SOH and more than 10% power loss can be taken as degraded SOH [141].

This needs to be optimised and agreed by the manufacturers, system integra-520

tors, researchers etc. to maximise the return on the investment on the PEMFC

systems.

Zhang and Pisu (2012) presented what possibly is the first systematic work

on prognostics and RUL estimation of PEMFC [142]. They investigated a

physics-based model for the purpose of prognostics based on an electro-chemical525

surface area (active area) under different operating conditions [142]. This work

was based on the spatially lumped model and kinetic expression for platinum ox-

idation and dissolution presented by Darling and Meyers (2003, 2005) [105, 106]

and on the 64-particle catalyst degradation model proposed by Zhang and Pisu

(2012) [104]. The method was demonstrated by simplifying the model to a first530

order dynamic model where the dynamics of platinum oxide coverage during

load cycling was neglected. Hence, this work is a model based approach. Low

pass filter and Unscented Kalman Filter (UKF) were used to capture the slow

degradation in the residual between the model of the catalyst and actual cat-

alyst [142]. Later, Zhang and Pisu (2014) developed a diagnostic-oriented fuel535

cell model which incorporated the fault of water flooding inside the fuel cell.
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UKF were then developed for channel flooding and gas diffusion layer flooding

[143]. Extended Kalman filter (EKF) were used to estimate the RUL based

on load current [144, 145]. An empirical degradation model was built from ex-

perimental data and parameter analysis for this purpose. An inverse first-order540

reliability model was used to extrapolate the SOH of PEMFC for the uncertainty

quantification of the RUL estimation [145].

Jouin et al. (2014a) proposed a particle filtering framework for the prognos-

tics of PEMFC [146]. A voltage drop representing irreversible degradations was

used as the aging indicator of the PEMFC. Two sets of test data were used in545

this work: (1) aging under a constant 70A current load; and (2) aging under

a high frequency small ripple current load of 70A. Tests under similar stable

environmental conditions were carried out on a 5-cell PEMFC stack with an ac-

tive area of 100cm2. The voltage evolution with time was modelled and used as

the state model. Three different state models which could be used to represent550

voltage evolution were used: (1) linear model, (2) exponential model and (3)

logarithmic model. Performance metrics of these three models were compared

and the logarithmic model’s predictions were found more accurate with greater

stability [146]. Later, Jouin et al. (2014b) applied particle filtering framework

based on power evolution with time and estimated the RUL using the same data555

[147]. Power evolution, acceleration of power degradation and recoveries of the

power degradation were considered, modelled and incorporated with Particle

Filtering (PF) framework by Jouin et al. (2014b) [147]. Predictions from this

particle filtering framework produced less errors compared with other particle

filtering frameworks [148]. Particle filter approach based on polarization equa-560

tion, introduction of time dependency of the mission profile, and degradation

of different components of the stack, was applied to micro Combined Heat and

Power (µCHP) [149].

An adaptive particle filter algorithm based approach to prognostics and RUL

estimation was proposed by Kimotho et al. (2014) for the IEEE PHM data chal-565

lenge [150]. Kimotho et al. (2014) introduced a self-healing factor after each

characterization and the adaptation of the degradation model parameter to fit
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the change in the degradation behaviour at various stages of the PEMFC life-

times [150]. SOH prediction based on physics driven and data driven model

was reported by Kim et al. (2014). Voltage degradation model and four pa-570

rameter equivalent circuit models were developed based on underlying physical

phenomena. These model then were trained for the training data set, tested

and validated on the test data set. The four parameters from the equivalent

circuit model exhibited linear relationship with the voltage degradation which

could be used to estimate the RUL of the PEMFC [151].575

Further work on particle filters has been reported by Jouin et al. (2016)

[152]. A global particle filter for power aging and three other particle filters

were dedicated to specific parameters in the global filter. Unknown coefficients

of the models had been estimated least square fitting to initialise all four particle

filters. RUL predictions were within the 5% of error for a validation test of more580

than 500 hours. Quantity of data was needed for learning reported as a major

drawback i.e. more than 1100 hours of test data was needed for learning which

is very high compared with the lifetime of a PEMFC system [152].

An Adaptive Neuro-Fuzzy Inference System (ANFIS) was applied to the

voltage drops caused by the degradation during normal operation of PEMFC585

stacks by Silva et al. (2014) [153]. A data driven approach based on an Echo

State Network (ESN) which uses of a dynamical neurons reservoir, was studied

as a prognostics system enabling an estimation of the remaining useful life of

a PEMFC by Morando et al. (2014) [154]. This work was also based on cell

voltage. In particular, the mean cell voltage was used to forecast the degradation590

of PEMFC [154]. A sensitivity analysis for this Echo State Network (ESN) based

on data driven prognostics approach was studied by Morando et al. (2014),

where the Analysis of Variance (ANOVA) statistical technique was used [155].

A novel PEMFC performance-forecasting model based on a modified rel-

evance vector machine (RVM) was reported by Wu et al. (2016) [156]. Ex-595

perimental aging voltage data was used to model RVM for a PEMFC stack.

Model was then applied to voltage-degradation data from two experiments for

a 1.2kW fuel cell stack. Results of the performance-forecast model were com-
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pared with the counterpart model of classic support vector machine (SVM).

Although a good agreement between both models was observed, better predic-600

tions were made using modified RVM model compared with the SVM based

model particularly when there were limited data available for prediction [156].

A data driven approach based on a constraint based Summation Wavelet-

Extreme Learning Machine (SW-ELM) algorithm was developed by Javed et

al. (2015). This algorithm was developed using stack voltage drop as an use-605

ful prognostics indicator and assuming aging process is irreversible [157, 158].

Algorithm was validated using Prognostics and Health Management (PHM)

challenge data for 2014 which was published by PHM Society. Satisfactory per-

formance was observed considering the model complexity, computational time

and accuracy of the predictions [157]. This particular SW-ELM is computation-610

ally less expensive and has been recommended that it could be easily integrated

into the system to carried out real-time RUL estimation to reduce the mainte-

nance cost [158]. An ensemble structure of SW-ELM with a new incremental

learning scheme was applied to µCHP to estimate the SOH of the stack un-

der variable load conditions for a a year [159]. A constraint based ensemble615

strategy of connectionist SW-ELM was proposed [160]. Ensemble strategy was

generalized on two rapid learning connectionist networks i.e., Extreme Learning

Machine (ELM) and Leaky-Echo State Network (Leaky-ESN). This approach

was applied on two PEMFC stacks which had life spans of 1150 and 1750 hours

and prognostics predictions were initiated around their half-life period. Due to620

the limited learning data, all three connectionist algorithms did not perform well

until the constraints were used. However predictions from SW-ELM were closer

to the actual value than the predictions from ELM and Leaky-ESN [160]. An-

other Wavelet based approach namely Discrete Wavelet Transformation (DWT)

was proposed for real time prognostics of PEMFC [161].625

As fuel cells are complex electrochemical devices and multiphysics systems,

to drive a model from the first principle might be a difficult task. However, some

research work has been carried out in order to model the PEMFC for the purpose

of controlling and capturing their dynamic behaviour [111, 112, 162, 163, 164].
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Other researches were also reported on fuel cell modeling for the purpose of630

prognostics and health monitoring of PEMFC to capture the fault based on the

water flooding inside the fuel cell [143] and electrochemical surface area and

membrane gas crossover [104].

4. Conclusions

An overview of the current state-of-the-art on the fields of health monitoring635

and prognostics on PEMFC systems was presented in this paper.

It was found that, although some important research works have already

been reported on prognostics and estimation of the RUL of PEMFC stack sys-

tems, this field of knowledge is still at its early stage and needs a further signif-

icant development.640

One of the main problems today is related to the lack of test and failure

data available. Hence, FMMEA of PEMFC is a subject that is not completely

understood yet. For example, in the case of the transportation industry, vibra-

tions and air pollution are known to speed up the degradation of the fuel cell,

often resulting in unexpected failures. However, how these parameters correlate645

with the damages are not exactly known yet.

It is also not clear which failure mechanisms cause most failures in the

PEMFC in general and which failure mechanisms are frequent in particular

application. These information can be useful because development of the prog-

nostics strategies could be prioritized based upon frequent failure mechanism650

for a particular application or system.

FMMEA of PEMFC is essential for the design and optimisation of fuel cell

systems, as it can improve performance from the early introduction of mitigation

mechanisms from known failure modes. Accelerated life tests (ALT) can be used

to better understand failure mechanisms by accelerating only the parameter655

that needs to be studied. These parameters include vibration, temperature,

flooding, CO poisoning, but there may be others. However, ALTs can be costly

since these are destructive tests that must be carried out in a technology that
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is still considerably expensive.

It is clear that this is an area that will receive much growing attention within660

the following years, so there is an opportunity for researchers to develop this

technology further and collaborate with industry partners to improve the overall

life expectancy, efficiency and maintainability of PEMFC systems.

With the better understanding of FMMEA, failure models can then be fur-

ther developed and integrated into a global model in order to achieve more665

reliable prognostics’ forecasts. Control system strategies for PEMFC can then

be based on this global model in order to improve the life expectancy, efficiency

and maintainability of PEMFC.

Collaboration between researchers, designers and manufacturers is therefore

paramount for information and data to be shared with respect to health mon-670

itoring and prognostics. Thus, the work presented herein are a contribution

to the understanding that research and development on health monitoring and

prognostics on PEMFC stack systems are vital so that emission free PEMFC

technology can become a real tangible alternative for energy generation in the

nearby future.675
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N. Zerhouni, S. Jemei, M. Hilairet, B. O. Bouamama, Estimating the

end-of-life of pem fuel cells: Guidelines and metrics, Applied Energy 177

(2016) 87–97.1120

42



[142] X. Zhang, P. Pisu, An unscented kalman filter based approach for the

health-monitoring and prognostics of a polymer electrolyte membrane fuel

cell, a a 1 (2012) 1.

[143] X. Zhang, P. Pisu, An unscented kalman filter based on-line diagnostic

approach for pem fuel cell flooding, International Journal of Prognostics1125

and Health Management.

[144] M. Bressel, M. Hilairet, D. Hissel, B. O. Bouamama, Fuel cells remaining

useful life estimation using an extended kalman filter, in: Industrial Elec-

tronics Society, IECON 2015-41st Annual Conference of the IEEE, IEEE,

2015, pp. 000469–000474.1130

[145] M. Bressel, M. Hilairet, D. Hissel, B. O. Bouamama, Remaining useful life

prediction and uncertainty quantification of proton exchange membrane

fuel cell under variable load, IEEE Transactions on Industrial Electronics

63 (4) (2016) 2569–2577.

[146] M. Jouin, R. Gouriveau, D. Hissel, M.-C. Péra, N. Zerhouni, Prognostics1135
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