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Abstract 6 

Mapping and monitoring tropical rainforests and quantifying their carbon stocks are important, both 7 

for devising strategies for their conservation and mitigating the effects of climate change. Airborne 8 

Laser Scanning (ALS) has advantages over other remote sensing techniques for describing the three-9 

dimensional structure of forests. This study identifies forest patches using ALS-based structural 10 

attributes in a tropical rainforest in Sumatra, Indonesia. A method to group trees with similar 11 

attributes into forest patches based on Thiessen polygons and k-medoids clustering is developed, 12 

combining the advantages of both raster and individual tree–based methods. The structural 13 

composition of the patches could be an indicator of habitat type and quality. The patches could also 14 

be a basis for developing allometric models for more accurate estimation of carbon stock than is 15 

currently possible with generalised models. 16 

1. Introduction 17 

Tropical forests play a major role in regulating the Earth’s climate, being a large sink for carbon 18 

dioxide, and storing much of the terrestrial carbon pool (Dixon et al. 1994). An accurate estimation 19 

of carbon components within a forest is a first step in the United Nations initiative for Reducing 20 

carbon Emissions from Deforestation and forest Degradation (REDD). However, limited knowledge 21 

about the quantity and spatial distribution of biomass at the landscape level has led to considerable 22 

uncertainties in the estimation of carbon stocks. Human activities such as logging and clearing of 23 

forests for agriculture and agro-forestry continue to alter the extent and composition of tropical 24 

rainforests. Natural causes such as death of large trees, and subsequent regrowth in the gaps, also 25 

contribute to the generation of patches in the landscape. This increases complexity in carbon 26 

estimation and causes fragmentation of habitats. Mapping and monitoring these structural changes 27 

are pre-requisites for devising strategies for conservation of many endangered species. 28 

Airborne Laser Scanning (ALS), an active remote sensing technique based on the technique of Light 29 

Detection and Ranging (LiDAR), is now extensively used for describing the three-dimensional 30 

structure of forests to understand the habitat requirements of species and to quantify above-ground 31 

biomass (AGB), and thereby carbon stocks (Asner and Mascaro 2014). A standard approach to area-32 



based AGB estimation with ALS data uses grid cells, which has limitations given that ALS datasets are 33 

generally obtained as point clouds. LiDAR metrics aggregated from the attributes of points within 34 

grid cells are highly scale-dependent, and in forests, a grid cell could include part of a large tree, or 35 

many small trees, depending on the cell size. Thus, Ferraz et al. (2016) noted that the predictive 36 

power of ALS-based AGB models decreased with increasing spatial resolution due to edge effects 37 

associated with tree crowns. 38 

Patches with different canopy structure and composition can be distinguished in Canopy Height 39 

Models (CHMs) derived from ALS data, which could correspond to different habitat types and 40 

quality. These could also form the basis for carbon stock estimation which is mid-way between plot-41 

based and individual tree–based approaches, in terms of accuracy, computational time and 42 

complexity. The aim of this study is to identify forest patches based on the structural composition of 43 

individual trees using ALS data in a tropical rainforest to facilitate estimations of habitat 44 

fragmentation and carbon stock. The objectives are: (i) to estimate the locations and attributes of 45 

single trees based on a Canopy Height Model; (ii) to group the single trees based on their structural 46 

attributes into homogeneous forest patches; and (iii) to analyse the attributes of trees within 47 

clusters of similar patches. 48 

2. Study Area and Dataset 49 

The study area (centre: 99.00°E; 1.89°N), with an area of 400 ha, is in Batang Toru in the province of 50 

North Sumatra, Indonesia. A history of logging and clearing of land for agro-forestry, selective 51 

logging to establish “forest gardens” and natural dynamics have created a mosaic of forest patches. 52 

The forests are home to a number of unique plant and animal species (Fredriksson et al. 2014), 53 

including the critically endangered Sumatran orang-utans (Pongo abelii). 54 

ALS data were collected by PT McElhanney (Indonesia) between 23
rd

 March and 4
th

 April, 2015, using 55 

a Leica ALS-70 HP LiDAR system from a fixed wing aircraft. The flying height was between 900 m and 56 

1350 m above ground level, and the scan half angle was 22.5°. This generated an ALS point cloud 57 

with an average density of 23.63 returns m
-2

. The returns were classified into ground (0.97%) and 58 

non-ground (99.03%) using an algorithm based on adaptive TIN filtering implemented in Terrasolid 59 

software (Axelsson 2000; PT McElhanney 2015). 60 

3. Methods 61 

3.1 Attributes of individual trees 62 

The ground returns, with an average density of 0.23 returns m
-2

, were used to generate a Digital 63 

Terrain Model (DTM) using FUSION v3.50 (McGaughey 2009). The ground and non-ground returns 64 



were merged, and the 95
th

 percentile height of returns above the DTM was used to generate a CHM 65 

with a cell size of 1 m; the 95
th

 percentile height was used instead of the maximum to exclude 66 

outliers. Individual tree locations, and their heights and crown radii were estimated from the CHM, 67 

using the CanopyMaxima function in FUSION. This algorithm identifies local maxima using a variable 68 

sized filtering window based on canopy height variances (Popescu et al. 2002). The number, mean 69 

height and mean canopy radius of all trees within a 25 m radius of each tree were derived, using 70 

Generate Near Table in ArcGIS
TM

 (v10.1), with those summary attributes assigned to each individual 71 

tree. A 25 m buffer radius was selected because less than 1% of the trees had a crown radius larger 72 

than 12.5 m. 73 

The tree location points (X, Y) were converted to Thiessen polygons, with the attributes of the 74 

enclosed tree assigned to the polygons. In fitting the Thiessen polygons the area of the polygon was 75 

determined by the spacing between adjacent points, with adjacency based on a Triangulated 76 

Irregular Network (TIN) generated from the points. The line connecting two points in the TIN was 77 

bisected, and these bisectors formed the edges of the Thiessen polygons. 78 

3.2 Delineation of patches and analysis of clusters 79 

The individual Thiessen polygons were clustered into patches using the five attributes (Height and 80 

Crown Radius of each tree, and the Count, Mean Height, and Mean Crown Radius of trees within a 81 

25 m radius) in a k-medoids algorithm implemented in MATLAB R2015. Silhouette values, a measure 82 

of the separability of clusters, were used to determine the number of clusters; the one with the 83 

lowest number of negative Silhouette values was selected as the optimum. All adjacent polygons 84 

belonging to the same cluster were merged to generate patches in ArcGIS
TM

. All the patches with an 85 

area less than 0.25 ha were merged based on the longest shared border. Statistical analyses were 86 

performed in MATLAB with α set to 0.001. Crown areas and Thiessen polygons were compared using 87 

a Pearson correlation. An ANOVA (one-way analysis of variance) was used to test for differences 88 

between clusters, using Scheffe's procedure for post hoc pair-wise comparisons. 89 

4. Results 90 

4.1 Identification of single trees 91 

The mean height of the CHM (Figure 1) was 20.37±7.31 m. There were 34,484 trees identified with 92 

heights ≥ 5 m within the study area, with an overall tree density of 86.21 trees ha
−1

. The mean tree 93 

height was 21.26±6.98 m, and the mean crown radius was 6.39±2.08 m. The mean number of trees 94 

within a radius of 25 m for all trees was 22.35±12.37, and their mean crown radius was 6.35±1.01 m. 95 

The mean crown area calculated from the crown radii was 141.77±93.87 m
2
, whereas the mean area 96 



of Thiessen polygons was 115.99±84.13 m
2
. The areas of Thiessen polygons correlated only 97 

moderately with the crown areas (r=0.4; n=34484; p<0.001). 98 

 99 

Figure 1: Canopy Height Model generated from the ALS dataset (A); locations of individual trees in a subset of the study area (B); and the 100 

Thiessen polygons generated from the locations of individual trees (C)  101 

4.2 Delineation of forest patches 102 

The tree clustering process identified an optimum number of five cluster types based on the five 103 

input structural variables. The shortest trees (Cluster 2) occupied only 4.58% of the area, while 104 

accounting for 13.38% of the tree count, while the tallest trees (Cluster 3) occupied 21.97% of the 105 

area, with only 8.86% of the tree count. Cluster 4 (mean tree height: 25.58 m), covered the largest 106 

area (37.26%), based on the clustered Thiessen polygons (Table 1). There were 1082 patches when 107 

the Thiessen polygons were merged based on clusters, with a mean area of 0.37±2.94 ha. These 108 



were merged into 189 patches with a mean area of 2.11±8.71 ha, by iterative merging of patches 109 

with an area less than 0.25 ha (Figure 2).  110 

 111 

Figure 2: Thiessen polygons grouped into clusters based on the attributes of individual trees for the whole study area (A) and for a subset 112 

(C); the merged patches after dissolving the patches with area less than 0.25 ha for the whole study area (B), and boundaries of patches 113 

overlaid on the Canopy Height Model for a subset (D) 114 

4.3 Analysis of clusters 115 

The mean height, mean crown radius and density of trees in each patch (Table 1; Figure 3) were 116 

significantly different between the clusters (all p<0.001; F4,183=1032.41; F4,183=132.9; F4,183=679.3 117 

respectively). When the clusters were compared pairwise, all differences were significant except for 118 

the crown radii for clusters 2 and 5 (p=0.002), and the density of trees for clusters 3 and 4 (p=0.042). 119 

 120 



Table 1: Attributes of patches within the five clusters before (above) and after (below) merging  121 

Cluster ID 1 2 3 4 5 

Number of Patches 
414 62 181 268 157 

62 20 39 33 35 

Total Number of trees 
9832 4615 3054 9219 7764 

9573 4256 3057 9693 7905 

Total Number of trees (%) 
28.51 13.38 8.86 26.73 22.51 

27.76 12.34 8.86 28.11 22.92 

Total Surface Area (%) 
24.20 4.58 21.97 37.26 11.99 

23.31 4.28 21.52 38.55 12.34 

Overall Density (Trees ha
−1

) 
101.57 251.99 34.75 61.85 161.90 

102.68 248.60 35.51 62.87 160.13 

Mean Height of Trees (m) 
19.89±3.64 13.93±2.57 35.68±5.05 25.58±3.55 16.54±3.18 

19.99±3.90 13.99±2.61 34.49±6.46 25.32±4.37 16.60±3.29 

Mean Crown Radius of Trees (m) 
6.33±1.87 4.91±1.40 7.82±2.37 7.33±2.04 5.65±1.69 

6.39±1.89 4.93±1.42 7.62±2.37 7.24±2.08 5.65±1.70 

 122 

 123 

Figure 3: Box Plots of mean height, mean crown radius and overall density of trees in the five clusters (after merging)  124 

5. Discussion and Conclusion 125 

Identification of homogeneous patches in tropical forests based on tree heights, crown radii and 126 

density could have relevance for estimating habitat fragmentation and biomass. The method 127 

developed in this study, based on Thiessen polygons and k-medoids clustering, groups trees of 128 

similar structural attributes combining the advantages of raster and individual tree–based methods. 129 

The structural composition of the patches could be an indicator of habitat type and quality for 130 

species which are increasingly under threat from anthropogenic and natural disturbances. Distances 131 

between suitable habitats, in the case of fragmentation, could potentially be more accurately 132 

estimated using these tree crown–following tessellations rather than grid cells, especially if they are 133 

at a low resolution. 134 

Natural and anthropogenic factors have contributed to the generation of a mosaic of forest patches 135 

in the study area, which were clearly visible in the CHM. The tallest trees with the largest crown radii 136 

(Cluster 3) occupied a large percentage of the area but had relatively low tree density. Mapping the 137 



extent of these tall patches is important, even if the accuracy of estimated tree density is low, since 138 

the large trees account for most of the biomass in tropical forests. They also serve as a focal point 139 

for biological activity and create large gaps at death, altering the forest structure dynamics in 140 

addition to releasing the sequestered carbon (Chambers et al. 2007; Ferraz et al. 2016). Note that 141 

the average estimated tree density in the study area (86.21 trees ha
−1

) could be lower than the 142 

actual density since the algorithm identifies only the dominant and co-dominant trees as 143 

represented in the CHM (McGaughey 2009).  144 

The areas of Thiessen polygons did not have a high correlation with crown areas since the polygons 145 

were constructed based only on the distances between adjacent points. The associated Thiessen 146 

polygon would be larger than the estimated crown area if the distance from a tree to adjacent trees 147 

is greater than its crown radius. However, this would not pose a problem in the delineation of 148 

patches, and the estimation of patch areas could in fact, be more accurate than one based on crown 149 

areas if tree crowns overlap. The distance for locating neighbouring trees could be modified based 150 

on the study area, especially if there are a high proportion of very large or very small trees. 151 

Although generalised allometric models have been developed for tropical forests (Chave et al. 2005), 152 

species-specific and site-specific models are considered to be more accurate. Even within a single 153 

species, the biomass may vary depending on environmental factors such as rainfall, soil or 154 

topography (Litton and Kauffman 2008). The species diversity in tropical forests is extremely high, 155 

and AGB estimations based on individual tree species may be difficult with the current knowledge of 156 

taxonomy and tree species distribution. Allometric models based on identified clusters within a 157 

landscape could be developed based on systematic field surveys, rather than random sampling of 158 

stands or limited species-specific models, leading to more accurate estimation of carbon stock in 159 

tropical forests.  160 
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