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LARGE DEVIATIONS FOR STOCHASTIC HEAT EQUATION
WITH ROUGH DEPENDENCE IN SPACE

YAOZHONG HU, DAVID NUALART, AND TUSHENG ZHANG

Abstract. In this paper we establish a large deviation principle for the nonlinear one-
dimensional stochastic heat equation driven by a Gaussian noise which is white in time and
which has the covariance of a fractional Brownian motion with Hurst parameter H ∈

(
1
4 ,

1
2

)
in the space variable.

1. Introduction

In this paper we consider the one-dimensional stochastic partial di�erential equations

∂uε

∂t
=
κ

2

∂2uε

∂x2
+
√
εσ(uε)Ẇ , t ∈ [0, T ], x ∈ R , (1.1)

where W is a zero-mean Gaussian process with covariance given by

E [W (s, x)W (t, y)] =
1

2

(
|x|2H + |y|2H − |x− y|2H

)
(s ∧ t), (1.2)

with 1
4
< H < 1

2
and ε > 0. That is, W is a standard Brownian motion in time and a

fractional Brownian motion with Hurst parameter H in the space variable and Ẇ = ∂2W
∂t∂x

.

The covariance of the noise Ẇ is given by

E
[
Ẇ (s, x)Ẇ (t, y)

]
= Λ(x− y)δ0(t− s),

where Λ is a distribution, whose Fourier transform is the measure µ(dξ) = c1,H |ξ|1−2Hdξ,
with c1,H given in (2.2). Because Λ (that can be formally written as Λ(x − y) = H(2H −
1)|x− y|2H−2) is not a locally integrable function, the classical approach developed, among
others, by Da Prato and Zabczyk [6], Peszat and Zabczyk [14], Dalang in [7, 8] and Dalang
and Quer-Sardanyons [9], cannot be applied to such rough covariance. In [1], Balan, Jolis
and Quer-Sardanyons proved the existence and uniqueness of a mild solution to equation
(1.1) in the particular case σ(u) = au + b, and assuming that the initial condition u0 is
bounded and Hölder continuous of order H. The stochastic integral is understood in the Itô
sense. The case of a general nonlinear coe�cient σ, which has a Lipschitz derivative and
satis�es σ(0) = 0, has been considered by Hu, Huang, Lê, Nualart and Tindel in [13]. In that
paper, the existence and uniqueness of a mild solution whose trajectories belong to a suitable
space of trajectories is proved by using techniques inspired by the works of Gyöngy [11] and
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2 Y. HU, D. NUALART, T. ZHANG

Gyöngy and Nualart [12]. The initial condition u0 satis�es some restrictive conditions (see
Theorem 2.7).

The purpose of this paper is to establish a large deviation principle for the laws of the
solutions uε to equation (1.1). For this we use the weak convergence approach to large
deviations based on the Laplace principle, developed by P. Dupuis and R. Ellis [10]. This
approach has proved to be successful in a wide range of in�nite-dimensional equations (see,
for instance, Sritharan and Sundar [16], Chueshov and Millet [5], Chenal and Millet [4],
Budhiraja and Dupuis [2], Budhiraja, Dupuis and Maraoulas [3] and Xu and Zhang [17]).
In our case, we use the weak convergence of probability measures in the space of trajectories

X
1
2
−H

T introduced in De�nition 2.6.

The paper is organized as follows. A section of preliminaries contains the de�nition of
stochastic integral, the notion of solution for equation (1.1) and the functional spaces intro-
duced in [13]. In Section 3 we recall a general criteria for large deviations based on weak
convergence in [3]. Section 4 is devoted to show the existence and uniqueness of a solution
to the skeleton equation associated to equation (1.1) and the stability with respect to per-
turbations of the skeleton. Finally, in Section 5 we prove the large deviation principle for
equation (1.1).

2. Preliminaries

Let D(R) denote the space of real-valued in�nitely di�erentiable functions with compact
support on R. The noiseW can be represented (see [15, 13]) as a zero-mean Gaussian family
{Wt(φ), t ∈ [0, T ], φ ∈ D(R)} de�ned on a complete probability space (Ω,F ,P), whose
covariance structure is given by

E [Wt(φ)Ws(ψ)] = c1,H(t ∧ s)
∫
R
Fφ(ξ)Fψ(ξ) |ξ|1−2H dξ, (2.1)

where Fφ,Fψ stand for the Fourier transforms of φ, ψ and

c1,H =
1

2π
Γ(2H + 1) sin(πH) . (2.2)

The inner product appearing in (2.1) can be expressed in terms of fractional derivatives.
One has

c1,H(t ∧ s)
∫
R
Fφ(ξ)Fψ(ξ) |ξ|1−2H dξ

= cH(t ∧ s)
∫
R

∫
R
(φ(x+ y)− φ(x))(ψ(x+ y)− ψ(x))|y|2H−2dxdy, (2.3)

where cH is an appropriate constant, see [15].

Let H denote the Hilbert space obtained by completing D(R) under the inner product

⟨φ, ψ⟩H := c1,H

∫
R
Fφ(ξ)Fψ(ξ) |ξ|1−2H dξ

= cH

∫
R

∫
R
(φ(x+ y)− φ(x))(ψ(x+ y)− ψ(x))|y|2H−2dxdy. (2.4)
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Then the Gaussian family {Wt(φ), t ∈ [0, T ], φ ∈ H} can be regarded as an H-cylindrical
Brownian motion. Let us now recall the stochastic integral presented in [13].

De�nition 2.1. For any t ≥ 0, let Ft be the σ-algebra generated by W up to time t. An
elementary process g is a process given by

g(s, x) =
n∑

i=1

m∑
j=1

Xi,j 1(ai,bi](s)1(hj ,lj ](x),

where n and m are �nite positive integers, 0 ≤ a1 < b1 < · · · < an < bn ≤ T , hj < lj and
Xi,j are Fai-measurable random variables for i = 1, . . . , n. The integral of such a process
with respect to W is de�ned as∫ T

0

∫
R
g(s, x)W (ds, dx) =

n∑
i=1

m∑
j=1

Xi,j W
(
1(ai,bi] ⊗ 1(hj ,lj ]

)
(2.5)

=
n∑

i=1

m∑
j=1

Xi,j

[
W (bi, lj)−W (ai, lj)−W (bi, hj) +W (ai, hj)

]
.

One can now extend the notion of integral with respect to W to a broad class of adapted
processes.

Proposition 2.2 (1). Let ΛH be the space of predictable processes g de�ned on [0, T ] × R
such that almost surely g ∈ L2([0, T ];H) and E[

∫ T

0
∥g(s)∥2Hds] <∞. Then, we have:

(i) The space of elementary processes de�ned in De�nition 2.1 is dense in ΛH .

(ii) For g ∈ ΛH , the stochastic integral
∫ T

0

∫
R g(s, x)W (ds, dx) is de�ned as the L2(Ω)-limit

of Riemann sums along elementary processes approximating g, and we have

E

[(∫ T

0

∫
R
g(s, x)W (ds, dx)

)2
]
= E

[∫ T

0

∥g(s)∥2Hds
]
. (2.6)

We recall the de�nition of the solution to equation (1.1) from [13].

De�nition 2.3. Suppose u0 is a bounded function on R. Let uε = {uε(t, x), 0 ≤ t ≤ T, x ∈
R} be a real-valued predictable stochastic process such that for all t ∈ [0, T ] and x ∈ R
the process {pt−s(x − y)σ(uε(s, y))1[0,t](s), 0 ≤ s ≤ t, y ∈ R} is an element of ΛH , where

pt(x) =
1√
2πκt

e−
x2

2κt is the heat kernel on the real line related to κ
2
∆. We say that uε is a

mild solution of (1.1) if for all t ∈ [0, T ] and x ∈ R we have

uε(t, x) = ptu0(x) +
√
ε

∫ t

0

∫
R
pt−s(x− y)σ(uε(s, y))W (ds, dy) a.s., (2.7)

where the stochastic integral is understood in the sense of Proposition 2.2 and

ptu0(x) =

∫
R
pt(x− y)u0(y)dy.
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Now let us recall some of the spaces introduced in [13]. Let (B, ∥ · ∥) be a Banach space
equipped with the norm ∥ · ∥, and let β ∈ (0, 1), δ ∈ (0,∞] be �xed numbers. For every

function f : R → B, we introduce the functions NB
β f , N

B,(δ)
β f : R → [0,∞] de�ned by

NB
β f(x) =

(∫
R
∥f(x+ h)− f(x)∥2|h|−1−2βdh

) 1
2

(2.8)

and

NB,(δ)
β f(x) =

(∫
|h|≤δ

∥f(x+ h)− f(x)∥2|h|−1−2βdh

) 1
2

. (2.9)

When B = R, we abbreviate the notations N R
β f as Nβf and N R,(δ)

β f as N (δ)
β f . Notice that

for δ = ∞, the above two quantities de�ned by (2.8) and (2.9) coincide: NB,(∞)
β f = NB

β f .

De�nition 2.4. Let Xβ
T (B) be the space of all continuous functions f : [0, T ]×R → B such

that

∥f∥Xβ
T (B) := sup

t∈[0,T ],x∈R
∥f(t, x)∥+ sup

t∈[0,T ],x∈R
NB

β f(t, x) <∞ .

It was shown in [13] that Xβ
T (B) is a Banach space. Throughout this paper, we write

Xp
T for Xβ

T (B) with B = Lp(Ω), β = 1
2
− H. For θ > 0, de�ne the following seminorm for

f : [0, T ]× R → Lp(Ω):

∥f∥Xp
T,θ

:= sup
t∈[0,T ],x∈R

e−θt∥f(t, x)∥+ sup
t∈[0,T ],x∈R

e−θtN Lp(Ω)
1
2
−H

f(t, x) (2.10)

For the uniqueness of the solution to (1.1) we need another space.

De�nition 2.5. Zp
T is de�ned as the space of all random �eld f : [0, T ]× R× Ω → R such

that

∥f∥Zp
T
= sup

t∈[0,T ]

∥f(t, ·)∥Lp(Ω×R) + sup
t∈[0,T ]

N ∗
1
2
−H,p

f(t) <∞, (2.11)

where p ≥ 2 and

N ∗
1
2
−H,p

f(t) =

(∫
R
∥f(t, ·)− f(t, ·+ h)∥2Lp(Ω×R)|h|2H−2dh

) 1
2

. (2.12)

Denote by C([0, T ] × R) the space of all real-valued continuous functions on [0, T ] × R
equipped with the topology of uniform convergence over compact sets. For every h ∈ R, let
τh be the translation map in the spatial variable, that is τhf(t, x) = f(t, x− h).

De�nition 2.6. Let Xβ
T be the space of all functions f ∈ C([0, T ]× R) such that

(i) (t, x) 7→ N (1)
β f(t, x) is �nite and continuous on [0, T ]× R.

(ii) limh↓0 supt∈[0,T ], x∈[−R,R]N
(1)
β (τhf − f)(t, x) = 0 for every positive R.

It turns out that Xβ
T is a complete separable metric space equipped with the following

topology. A sequence {fn} in Xβ
T converges to f in Xβ

T if for all R > 0, the sequences {fn}
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and {N (1)
β (fn−f)} converge uniformly on [0, T ]× [−R,R] to f and 0 respectively. We de�ne

a metric on Xβ
T as follows

dβ(f, g) =
∞∑
n=1

2−n ∥f − g∥n,β
1 + ∥f − g∥n,β

, (2.13)

where ∥ · ∥n,β is the seminorm

∥f∥n,β := sup
t∈[0,T ], x∈[−n,n]

|f(t, x)|+ sup
t∈[0,T ], x∈[−n,n]

N (1)
β f(t, x) .

The following theorem was proved in [13].

Theorem 2.7. Assume that for equation (1.1) the following conditions hold:

(1) The initial condition u0 is bounded and locally Hölder continuous of order H. Fur-
thermore, for some p > 6

4H−1
, u0 is in Lp(R) and∫

R
∥u0(·)− u0(·+ h)∥2Lp(R)|h|2H−2dh <∞ . (2.14)

(2) σ is di�erentiable, its derivative is Lipschitz and σ(0) = 0.

Then there exists a unique solution uε to (1.1) in Zp
T ∩ Xp

T . In addition, the solution has

sample paths in the space X
1
2
−H

T .

Condition (2.14) together with u0 ∈ Lp(R) for some p > 6
4H−1

, are required for the

uniqueness of the solution in the space Zp
T . On the other hand, the boundedness and local

Hölder continuity of order H are slightly stronger than the conditions imposed in Theorem
4.25 of [13] for the existence because they imply that Nβ0u0 is bounded for any β0 < H and
we can take β0 >

1
2
−H. The Hölder continuity of u0 will be a useful ingredient in the proof

of Theorem 4.3.

Throughout the paper, C will denote a generic constant whose value may change from
line to line.

3. A Criteria for Large Deviations

LetH be the Hilbert space introduced in Section 1. De�ne the following space of stochastic
processes:

L2 := {ψ : Ω× [0, T ] → H is predictable and

∫ T

0

∥ψ(s)∥2H ds <∞, a.s.−P}. (3.1)

De�ne LT (f) := 1
2

∫ T

0
∥f(s)∥2H ds for f ∈ L2. Let U be a Polish space. Set V =

C([0, T ];H) ⊆ C([0, T ] × R). Let {Gε}ε>0 be a family of measurable maps from V to U.
We present below a su�cient condition for large deviation principle (LDP in abbreviation)
to hold for the family Zε = Gε(

√
εW ), as ε → 0, where and throughout this section W is

the Gaussian process identi�ed as an H-cylindrical Brownian motion.

For N ≥ 1, de�ne
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SN = {f : L2([0, T ];H) : LT (f) ≤ N}. (3.2)

SN will be equipped with the topology of weak convergence in L2([0, T ];H).

Set S =
∪

N≥1 S
N , and

UN = {f ∈ L2 : f(ω) ∈ SN ,P a.s. ω}.

The following condition will be su�cient to establish a LDP for a family {Zε}ε>0 de�ned
by Zε = Gε(

√
εW ).

Assumption (A).

There exists a measurable map G0 : V → U such that the following hold.

a) For N ∈ N, let fn, f ∈ SN be such that fn → f weakly as n→ ∞. Then

G0(

∫ ·

0

fn(s)ds) → G0(

∫ ·

0

f(s)ds) in U.

b) For N ∈ N, let ψε, ψ ∈ UN be such that ψε converges in distribution to ψ as ε → 0.
Then

Gε(W +
1√
ε

∫ ·

0

ψε(s)ds) ⇒ G0(

∫ ·

0

ψ(s)ds) in distribution.

For ϕ ∈ U, de�ne Sϕ = {f ∈ S : ϕ = G0(
∫ ·
0
f(s)ds)}. Let I : U → [0,∞] be de�ned by

I(ϕ) = inf
f∈Sϕ

{LT (f)}, ϕ ∈ U. (3.3)

By convention, I(ϕ) = ∞ if Sϕ = ∅.
The following criteria was established in [3].

Theorem 3.1. For ε > 0, let Zε be de�ned by Zε = Gε(
√
εW ), and suppose that Assumption

(A) holds. Then I(ϕ) de�ned by (3.3) is a rate function on U and the family {Zε}ε>0 satis�es
a large deviation principle with rate function I.

4. Skeleton Equations

In this section we will study the corresponding skeleton equation of the stochastic heat
equation (1.1). Let {ek, k ≥ 1} be an orthonormal basis of the Hilbert space H. The
fractional sheet W admits a representation:

W =
∞∑
k=1

βk(t)ek,

where {βk(t), k ≥ 1} is a family of independent Brownian motions. The stochastic integral
against W can be expressed as∫ T

0

∫
R
g(s, x)W (ds, dx) =

∞∑
k=1

∫ T

0

⟨g(s, ·), ek⟩Hdβk(s).
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For f ∈ S, consider the skeleton equation:

uf (t, x) = ptu0(x) +

∫ t

0

⟨pt−s(x− ·)σ(uf (s, ·)), f(s, ·)⟩Hds, t ∈ [0, T ], x ∈ R. (4.1)

Before we state the result on the existence and uniqueness of the solution of the above
equation, let us �rst give the following lemma which will be used several times in the rest of
the paper.

Lemma 4.1. The following estimates hold:

(1) For any 0 ≤ s < t,∫
R
|z|2H−2dz

∫
R2

|(pt−s(z + z1 − z2))− pt−s(z1 − z2))

−(pt−s(z + z1)− pt−s(z1))|2 |z2|2H−2dz1dz2

≤ C(t− s)−
3
2
+2H . (4.2)

(2) For any β ∈ (0, 1) and s > 0,∫
R2

|ps(z + z1)− ps(z1)|2|z|−1−2βdz1dz ≤ Cs−
1
2
−β. (4.3)

Proof. (4.3) is contained in Lemma 3.1 in [13]. We only prove (4.2). Invoking Plancherel's
identity, we have∫

R2

|(pt−s(z + z1 − z2))− pt−s(z1 − z2))− (pt−s(z + z1)− pt−s(z1))|2|z2|2H−2dz1dz2

=

∫
R2

e−κ(t−s)ξ2 |eiξ(z−z2) − e−iξz2 − eiξz + 1|2|z2|2H−2dξdz2

=

∫
R2

e−κ(t−s)ξ2 |eiξz − 1|2|e−iξz2 − 1|2|z2|2H−2dξdz2. (4.4)

Consequently, ∫
R
|z|2H−2dz

∫
R2

|(pt−s(z + z1 − z2))− pt−s(z1 − z2))

−(pt−s(z + z1)− pt−s(z1))|2|z2|2H−2dz1dz2

≤
∫
R
e−κ(t−s)ξ2dξ(

∫
R2

|eiξz − 1|2|e−iξz2 − 1|2|z2|2H−2|z|2H−2dzdz2)

=

∫
R
e−κ(t−s)ξ2dξ(

∫
R
|eiξz − 1|2|z|2H−2dz)2

≤
∫
R
e−κ(t−s)ξ2 |ξ|2−4Hdξ ≤ C(t− s)−

3
2
+2H . (4.5)

�

The next theorem is the existence and uniqueness of the solution of the skeleton equation.

Theorem 4.2. Assume
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(1) the initial condition u0 satis�es

sup
x∈R

|u0(x)|+ sup
x∈R

N 1
2
−Hu0(x) <∞ , (4.6)

(2) σ is di�erentiable, its derivative is Lipschitz and σ(0) = 0.

Then, there exists a unique solution uf to equation (4.1). Moreover, the solution uf belongs

to the space X
1
2
−H

T .

Proof. We will solve the equation using a successive iteration in the space X
1
2
−H

T . Let β :=
1
2
−H in the proof to simplify the presentation. Recall

||Z||Xβ
T
= sup

0≤t≤T,x∈R
|Z(t, x)|+ sup

0≤t≤T,x∈R
|NβZ(t, x)|.

We will also use the notation ||g||∞ = supx |g(x)| for a real-valued function g on R.
De�ne uf0(t, x) = ptu0(x) and

ufn+1(t, x) = ptu0(x) +

∫ t

0

⟨pt−s(x− ·)σ(ufn(s, ·)), f(s, ·)⟩Hds. (4.7)

From the assumptions on u0 it follows that ||uf0 ||Xβ
T
< ∞. First we will provide a uniform

bound ||ufn+1||Xβ
T
. From the equation (4.7), we have

|ufn+1(t, x)|2 ≤ C||u0||2∞ + C(

∫ T

0

||f(s, ·)||2Hds)
∫ t

0

||pt−s(x− ·)σ(ufn(s, ·))||2Hds. (4.8)

Moreover,

||pt−s(x− ·)σ(ufn(s, ·))||2H

= cH

∫
R2

∣∣pt−s(x− (y + z))σ(ufn(s, y + z))− pt−s(x− y)σ(ufn(s, y))
∣∣2 |z|2H−2dydz

≤ C

∫
R2

(pt−s(x− (y + z))− pt−s(x− y))2|σ(ufn(s, y + z))|2|z|2H−2dydz

+C

∫
R2

p2t−s(x− y)|σ(ufn(s, y + z))− σ(ufn(s, y))|2|z|2H−2dydz

:= I1(t, s, x) + I2(t, s, x). (4.9)

The term I1(t, s, x) can be bounded as

I1(t, s, x) ≤ C||ufn(s, ·)||2∞
∫
R2

(pt−s(x− (y + z))− pt−s(x− y))2|z|2H−2dydz

≤ C||ufn(s, ·)||2∞(t− s)−1+H , (4.10)

where the Lipschitz property of σ, σ(0) = 0, and Lemma 4.1 have been used. For I2 we have

I2(t, s, x) ≤ C

∫
R2

p2t−s(x− y)|ufn(s, y + z)− ufn(s, y)|2|z|2H−2dydz

≤ C

∫
R
p2t−s(x− y)|Nβu

f
n(s, y)|2dy

≤ C||Nβu
f
n(s, ·)||2∞(t− s)−

1
2 . (4.11)
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Putting together (4.8)�(4.11), we get

||ufn+1(t, ·)||2∞ ≤ C||u0||2∞ + C

∫ t

0

||ufn(s, ·)||2∞(t− s)−1+Hds

+C

∫ t

0

||Nβu
f
n(s, ·)||2∞(t− s)−

1
2ds. (4.12)

Next, we want to establish a bound for Nβu
f
n+1(s, x). Set

Φ(t, x) =

∫ t

0

⟨pt−s(x− ·)σ(ufn(s, ·)), f(s, ·)⟩Hds.

We have

|Nβu
f
n+1(s, x)|2 ≤ C|Nβ(ptu0(x))|2 + C|NβΦ(t, x)|2, (4.13)

where

|NβΦ(t, x)|2 =

∫
R
|Φ(t, x+ z)− Φ(t, x)|2|z|2H−2dz

=

∫
R

∣∣∣∣∫ t

0

⟨(pt−s(x+ z − ·)− pt−s(x− ·))σ(ufn(s, ·)), f(s, ·)⟩Hds
∣∣∣∣2 |z|2H−2dz

≤ C

∫ T

0

||f(s, ·)||2Hds

×
∫
R

∫ t

0

∥(pt−s(x+ z − ·)− pt−s(x− ·))σ(ufn(s, ·))∥2H|z|2H−2dsdz

≤ C

∫
R

∫ t

0

∥(pt−s(x+ z − ·)− pt−s(x− ·))σ(ufn(s, ·))∥2H|z|2H−2dsdz. (4.14)

The integrand in the above integral can be estimated as follows.

∥(pt−s(x+ z − ·)− pt−s(x− ·))σ(ufn(s, ·))∥2H

= cH

∫
R2

[
(pt−s(x+ z − (z1 + z2))− pt−s(x− (z1 + z2)))σ(u

f
n(s, z1 + z2))

−(pt−s(x+ z − z1)− pt−s(x− z1))σ(u
f
n(s, z1))

]2 |z2|2H−2dz1dz2

≤ C

∫
R2

|(pt−s(x+ z − (z1 + z2))− pt−s(x− (z1 + z2)))

−(pt−s(x+ z − z1)− pt−s(x− z1))|2 |σ(ufn(s, z1 + z2))|2|z2|2H−2dz1dz2

+ C

∫
R2

|pt−s(x+ z − z1)− pt−s(x− z1)|2|ufn(s, z1 + z2)− ufn(s, z1)|2|z2|2H−2dz1dz2

:= J1(t, s, x, z) + J2(t, s, x, z). (4.15)

Observe that

J1(t, s, x, z)

≤ C||ufn(s, ·)||2∞
∫
R2

|(pt−s(x+ z − (z1 + z2))− pt−s(x− (z1 + z2)))

−(pt−s(x+ z − z1)− pt−s(x− z1))|2 |z2|2H−2dz1dz2
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= C||ufn(s, ·)||2∞
∫
R2

|(pt−s(z + z1 − z2)− pt−s(z1 − z2))

−(pt−s(z + z1)− pt−s(z1))|2 |z2|2H−2dz1dz2. (4.16)

Consequently, by Lemma 4.1 we have∫
R
J1(t, s, x, z)|z|2H−2dz ≤ C||ufn(s, ·)||2∞(t− s)−

3
2
+2H . (4.17)

For J2, we have∫
R
J2(t, s, x, z)|z|2H−2dz

≤ C

∫
R
|z|2H−2dz

∫
R2

|pt−s(x+ z − z1)− pt−s(x− z1)|2

×|ufn(s, z1 + z2)− ufn(s, z1)|2|z2|2H−2dz1dz2

≤ C||Nβu
f
n(s, ·)||2∞

∫
R2

|pt−s(x+ z − z1)− pt−s(x− z1)|2|z|2H−2dzdz1

≤ C||Nβu
f
n(s, ·)||2∞(t− s)−1+H , (4.18)

where Lemma 4.1 has been used. Combining (4.13)�(4.18) together, we obtain

||Nβu
f
n+1(t, ·)||2∞ ≤ C + C

∫ t

0

||ufn(s, ·)||2∞(t− s)−
3
2
+2Hds

+C

∫ t

0

||Nβu
f
n(s, ·)||2∞(t− s)−1+Hds. (4.19)

De�ne

An(t) := ||ufn(t, ·)||2∞ + ||Nβu
f
n(t, ·)||2∞.

Estimates (4.12), (4.19), together with the condition H ∈ (1
4
, 1
2
), imply that we can �nd

β0 < 1 such that

An+1(t) ≤ C + C

∫ t

0

(t− s)−β0An(s)ds.

By Lemma 4.26 in [13], we conclude that

sup
n

sup
0≤t≤T

An(t) = sup
n

sup
0≤t≤T

{||ufn(t, ·)||2∞ + ||Nβu
f
n(t, ·)||2∞} <∞. (4.20)

Next we are going to show that {ufn, n ≥ 0} constitutes a Cauchy sequence in the space X
1
2
−H

T .

To this end, we bound ||ufn+1(t, ·) − ufn(t, ·)||2∞ and ||Nβ(u
f
n+1(t, ·) − ufn(t, ·))||2∞ separately.

Recall

ufn+1(t, x)−ufn(t, x) =
∫ t

0

⟨pt−s(x−·)σ(ufn(s, ·))−pt−s(x−·)σ(ufn−1(s, ·)), f(s, ·)⟩Hds. (4.21)

Hence,

|ufn+1(t, x)− ufn(t, x)|2 ≤
∫ T

0

∥f(s, ·)∥2Hds
∫ t

0

∥pt−s(x− ·)(σ(ufn(s, ·))− σ(ufn−1(s, ·)))∥2Hds.

(4.22)
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Now,

∥pt−s(x− ·)(σ(ufn(s, ·))− σ(ufn−1(s, ·)))∥2H

= cH

∫
R2

∣∣∣pt−s(x− (y + z))(σ(ufn(s, y + z))− σ(ufn−1(s, y + z)))

−pt−s(x− y)(σ(ufn(s, y))− σ(ufn−1(s, y)))
∣∣∣2 |z|2H−2dydz

≤ C

∫
R2

(pt−s(x− (y + z))− pt−s(x− y))2

×(σ(ufn(s, y + z))− σ(ufn−1(s, y + z)))2|z|2H−2dydz

+C

∫
R2

p2t−s(x− y))
[
(σ(ufn(s, y + z))− σ(ufn−1(s, y + z)))

−(σ(ufn(s, y))− σ(ufn−1(s, y)))
]2

|z|2H−2dydz

:= K1(t, s, x) +K2(t, s, x). (4.23)

Invoking the Lipschitz continuity of σ and (2) in Lemma 4.1, we have

K1(t, s, x)

≤ C||ufn(s, ·)− ufn−1(s, ·)||2∞
∫
R2

(pt−s(x− (y + z))− pt−s(x− y))2|z|2H−2dydz

≤ C||ufn(s, ·)− ufn−1(s, ·)||2∞(t− s)−1+H . (4.24)

From the inequality (see [13])

|(σ(a)− σ(b))− (σ(c)− σ(d))| ≤ C|(a− b)− (c− d)|+ C|a− b|(|a− c|+ |b− d|), (4.25)

we have

K2(t, s, x)

≤ C

∫
R2

p2t−s(x− y))
∣∣∣(ufn(s, y + z)− ufn−1(s, y + z))

−(ufn(s, y)− ufn−1(s, y))
∣∣∣2 |z|2H−2dydz

+ C

∫
R2

p2t−s(x− y))|ufn(s, y + z)− ufn−1(s, y + z)|2|ufn(s, y + z)− ufn(s, y)|2|z|2H−2dydz

+ C

∫
R2

p2t−s(x− y))|ufn(s, y + z)− ufn−1(s, y + z)|2|ufn−1(s, y + z)− ufn−1(s, y)|2|z|2H−2dydz

≤ C||Nβ(u
f
n(s, ·)− ufn−1(s, ·))||2∞

∫
R
p2t−s(x− y)dy

+C||ufn(s, ·)− ufn−1(s, ·)||2∞||Nβ(u
f
n(s, ·))||2∞

∫
R
p2t−s(x− y)dy

+C||ufn(s, ·)− ufn−1(s, ·)||2∞||Nβ(u
f
n−1(s, ·))||2∞

∫
R
p2t−s(x− y)dy

≤ C(t− s)−
1
2 [||Nβ(u

f
n(s, ·)− ufn−1(s, ·))||2∞ + ||ufn(s, ·)− ufn−1(s, ·)||2∞], (4.26)
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where we have used the fact (see(4.20))

sup
n

sup
0≤s≤T

||Nβ(u
f
n(s, ·))||2∞ <∞.

Putting (4.22)�(4.26) together we get

||ufn+1(t, ·)− ufn(t, ·)||2∞

≤ C

∫ t

0

(t− s)−
1
2 [||Nβ(u

f
n(s, ·)− ufn−1(s, ·))||2∞ + ||ufn(s, ·)− ufn−1(s, ·)||2∞]ds. (4.27)

By de�nition,

Nβ(u
f
n+1(t, x)− ufn(t, x))

2

=

∫
R

∣∣∣∣∫ t

0

(⟨pt−s(x+ z − ·)(σ(ufn(s, ·))− σ(ufn−1(s, ·))), f(s, ·)⟩H

−⟨pt−s(x− ·)(σ(ufn(s, ·))− σ(ufn−1(s, ·))), f(s, ·)⟩H)ds
∣∣∣2 |z|2H−2dz

≤ (

∫ T

0

∥f(s, ·)∥2Hds)
∫ t

0

ds

∫
R
∥(pt−s(x+ z − ·)− pt−s(x− ·))

× (σ(ufn(s, ·))− σ(ufn−1(s, ·)))
∥∥∥2

H
|z|2H−2dz. (4.28)

Furthermore,∥∥∥(pt−s(x+ z − ·)− pt−s(x− ·))(σ(ufn(s, ·))− σ(ufn−1(s, ·)))
∥∥∥2

H

= cH

∫
R2

∣∣∣(pt−s(x+ z − (z1 + z2))− pt−s(x− (z1 + z2)))(σ(u
f
n(s, z1 + z2))− σ(ufn−1(s, z1 + z2)))

−(pt−s(x+ z − z1)− pt−s(x− z1))(σ(u
f
n(s, z1))− σ(ufn−1(s, z1)))

∣∣∣2 |z2|2H−2dz1dz2

≤ C

∫
R2

|(pt−s(x+ z − (z1 + z2))− pt−s(x− (z1 + z2)))− (pt−s(x+ z − z1)− pt−s(x− z1))|2

×|(σ(ufn(s, z1 + z2))− σ(ufn−1(s, z1 + z2)))|2|z2|2H−2dz1dz2

+ C

∫
R2

|pt−s(x+ z − z1)− pt−s(x− z1)|2

×
[
(σ(ufn(s, z1 + z2))− σ(ufn−1(s, z1 + z2)))− (σ(ufn(s, z1))− σ(ufn−1(s, z1)))

]2
|z2|2H−2dz1dz2

:= M1(t, s, x, z) +M2(t, s, x, z). (4.29)

By a change of variable and Lemma 4.1, we have∫
R
M1(t, s, x, z)|z|2H−2dz

≤ C||ufn(s, ·))− ufn−1(s, ·)||2∞
∫
R
|z|2H−2dz

∫
R2

|(pt−s(x+ z − (z1 + z2))− pt−s(x− (z1 + z2)))

−(pt−s(x+ z − z1)− pt−s(x− z1))|2|z2|2H−2dz1dz2

≤ C||ufn(s, ·))− ufn−1(s, ·)||2∞(t− s)−
3
2
+2H . (4.30)
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Invoking the inequality (4.25), we have

M2(t, s, x, z)

≤ C

∫
R2

|pt−s(x+ z − z1)− pt−s(x− z1)|2[
(ufn(s, z1 + z2)− ufn−1(s, z1 + z2))− (ufn(s, z1)− ufn−1(s, z1))

]2
|z2|2H−2dz1dz2

+C

∫
R2

|pt−s(x+ z − z1)− pt−s(x− z1)|2

×[|ufn(s, z1 + z2)− ufn−1(s, z1 + z2)|2|ufn(s, z1 + z2)− ufn(s, z1)|2]|z2|2H−2dz1dz2

+C

∫
R2

|pt−s(x+ z − z1)− pt−s(x− z1)|2

×[|ufn(s, z1 + z2)− ufn−1(s, z1 + z2)|2|ufn−1(s, z1 + z2)− ufn−1(s, z1)|2]|z2|2H−2dz1dz2

:= M21(t, s, x, z) +M22(t, s, x, z) +M23(t, s, x, z). (4.31)

Integrating against |z|2H−2dz and using Lemma 4.1 we have∫
R
M21(t, s, x, z)|z|2H−2dz

≤ C||Nβ(u
f
n(s, ·)− ufn−1(s, ·))||2∞

∫
R2

|pt−s(x+ z − z1)− pt−s(x− z1)|2|z|2H−2dzdz1

≤ C(t− s)−1+H ||Nβ(u
f
n(s, ·)− ufn−1(s, ·))||2∞, (4.32)

and ∫
R
M22(t, s, x, z)|z|2H−2dz

≤ C||ufn(s, ·)− ufn−1(s, ·)||2∞
∫
R
|z|2H−2dz

∫
R2

|pt−s(x+ z − z1)− pt−s(x− z1)|2

×|ufn(s, z1 + z2)− ufn(s, z1)|2]|z2|2H−2dz1dz2

≤ C||ufn(s, ·)− ufn−1(s, ·)||2∞||Nβ(u
f
n(s, ·))||2∞

×
∫
R2

|pt−s(x+ z − z1)− pt−s(x− z1)|2|z|2H−2dzdz1

≤ C||ufn(s, ·)− ufn−1(s, ·)||2∞||Nβ(u
f
n(s, ·))||2∞(t− s)−1+H

≤ C||ufn(s, ·)− ufn−1(s, ·)||2∞(t− s)−1+H . (4.33)

Notice that (4.20) was used in the last step. Similarly, the following holds true:∫
R
M23(t, s, x, z)|z|2H−2dz ≤ C||ufn(s, ·)− ufn−1(s, ·)||2∞(t− s)−1+H . (4.34)

Then, (4.32), (4.33) and (4.34) together gives∫
R
M2(t, s, x, z)|z|2H−2dz ≤ C||ufn(s, ·)− ufn−1(s, ·)||2∞(t− s)−1+H

+C(t− s)−1+H ||Nβ(u
f
n(s, ·)− ufn−1(s, ·))||2∞. (4.35)
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Substitute (4.29), (4.30), (4.35) back into (4.28) to obtain

||Nβ(u
f
n+1(t, ·)− ufn(t, ·))||2∞ ≤ C

∫ t

0

||ufn(s, ·)− ufn−1(s, ·)||2∞(t− s)−1+Hds

+C

∫ t

0

(t− s)−1+H ||Nβ(u
f
n(s, ·)− ufn−1(s, ·))||2∞ds

+C

∫ t

0

||ufn(s, ·)− ufn−1(s, ·)||2∞(t− s)−
3
2
+2Hds. (4.36)

Setting

Rn(t) := ||ufn+1(t, ·)− ufn(t, ·)||2∞ + ||Nβ(u
f
n+1(t, ·)− ufn(t, ·))||2∞,

it follows from (4.27) and (4.36) that there exists a β0 < 1 such that

Rn+1(t) ≤ C

∫ t

0

(t− s)−β0Rn(s)ds. (4.37)

Applying Lemma 4.26 in [13] we conclude from (4.37) that
∑∞

n=0R
1
p
n converges uniformly in

[0, T ] for all 1 ≤ p < ∞. In particular, this implies that ufn, n ≥ 0 is a Cauchy sequence in

the Xβ
T . Denote by u

f the limit of {ufn}. Letting n→ ∞ in (4.7), it follows easily that

uf (t, x) = ptu0(x) +

∫ t

0

< pt−s(x− ·)σ(uf (s, ·)), f(s, ·) >H ds. (4.38)

We have proved the existence of the solution of equation (4.1). The statement, uf ∈ X
1
2
−H

T ,
follows from the Hölder continuity of uf (see the proof of Theorem 4.3 below) and Lemma
4.12 in [13]. Suppose uf , vf both are solutions to equation (4.1). By the similar estimates

as for ufn+1 − ufn we can show that

||uf (t, ·)− vf (t, ·)||2∞ + ||Nβ(u
f (t, ·)− vf (t, ·))||2∞

≤ C

∫ t

0

(t− s)−β0{||uf (s, ·)− vf (s, ·)||2∞ + ||Nβ(u
f (s, ·)− vf (s, ·))||2∞}ds (4.39)

for some β0 < 1. This implies

||uf (t, ·)− vf (t, ·)||2∞ + ||Nβ(u
f (t, ·)− vf (t, ·))||2∞ = 0

for t ∈ [0, T ], proving the uniqueness. �

For f ∈ S, de�ne a mapping G0 by

G0(

∫ ·

0

f(s)ds) = uf (·),

where uf is the solution to equation (4.1).

Theorem 4.3. Suppose that the following conditions hold:

(1) The initial condition u0 is bounded and locally Hölder continuous of order H.
(2) σ is di�erentiable, its derivative is Lipschitz and σ(0) = 0.
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For N ∈ N, let fn, f ∈ SN be such that fn → f weakly as n → ∞. Let ufn denote the
solution of equation (4.1) replacing f by fn. Then

G0(

∫ ·

0

fn(s)ds) = ufn → G0(

∫ ·

0

f(s)ds) = uf .

in the space X
1
2
−H

T .

Proof. Recall

ufn(t, x) = ptu0(x) +

∫ t

0

⟨pt−s(x− ·)σ(ufn(s, ·)), fn(s, ·)⟩Hds. (4.40)

Since the norm {
∫ T

0
∥fn(s)∥2Hds, n ≥ 1} is bounded by a constant N , invoking similar argu-

ments as in the proof of Theorem 4.2, we can show that

sup
n

sup
0≤t≤T

{||ufn(t, ·)||2∞ + ||N 1
2
−H(u

fn(t, ·))||2∞} < ∞. (4.41)

Next we prove that the family {ufn , n ≥ 1} is equi-Hölder continuous. Let

vfn(t, x) :=

∫ t

0

⟨pt−s(x− ·)σ(ufn(s, ·)), fn(s, ·)⟩Hds.

It is su�cient to show that {vfn , n ≥ 1} are Hölder continuous with Hölder constant and
Hölder exponent being independent of n. For 0 ≤ t1 < t2 ≤ T , we have

|vfn(t2, x)− vfn(t1, x)|2

≤ C|
∫ t2

t1

⟨pt2−s(x− ·)σ(ufn(s, ·)), fn(s, ·)⟩Hds|2

+C|
∫ t1

0

⟨(pt2−s(x− ·)− pt1−s(x− ·))σ(ufn(s, ·)), fn(s, ·)⟩Hds|2

≤ C

∫ t2

t1

∥pt2−s(x− ·)σ(ufn(s, ·))∥2Hds

+C

∫ t1

0

∥(pt2−s(x− ·)− pt1−s(x− ·))σ(ufn(s, ·))∥2Hds. (4.42)

Using the similar arguments as in the proof of (4.9), (4.10) and (4.11), we have

∥pt2−s(x− ·)σ(ufn(s, ·))∥2H
≤ C{||ufn(t, ·)||2∞ + ||N 1

2
−H(u

fn(t, ·))||2∞}(t2 − s)−1+H

≤ C(t2 − s)−1+H , (4.43)

where (4.41) has been used. Hence,∫ t2

t1

∥pt2−s(x− ·)σ(ufn(s, ·))∥2Hds ≤ C

∫ t2

t1

(t2 − s)−1+Hds = C(t2 − t1)
H . (4.44)

On the other hand,

∥(pt2−s(x− ·)− pt1−s(x− ·))σ(ufn(s, ·))∥2H
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≤ C

∫
R2

[(pt2−s(x− (y + z))− pt1−s(x− (y + z)))

−(pt2−s(x− y)− pt1−s(x− y))]2|σ(ufn(s, y + z))|2|z|2H−2dydz

+ C

∫
R2

(pt2−s(x− y)− pt1−s(x− y))2|σ(ufn(s, y + z))− σ(ufn(s, y))|2|z|2H−2dydz

:= A1(t2, t1, s, x) + A2(t2, t1, s, x). (4.45)

Applying the Plancherel's identity and (4.41), we have

A1(t2, t1, s, x)

≤ C||ufn(s, ·))||2∞
∫
R2

[(pt2−s(x− (y + z))− pt1−s(x− (y + z)))

−(pt2−s(x− y)− pt1−s(x− y))]2|z|2H−2dydz

= C||ufn(s, ·))||2∞
∫
R2

[(pt2−s(y − z))− pt1−s(y − z))

−(pt2−s(y)− pt1−s(y))]
2|z|2H−2dydz

≤ C

∫
R2

|(e−
κ
2
(t2−s)ξ2e−iξz − e−

κ
2
(t1−s)ξ2e−iξz)

−(e−
κ
2
(t2−s)ξ2 − e−

κ
2
(t1−s)ξ2)|2|z|2H−2dξdz

≤ C

∫
R2

e−κ(t1−s)ξ2 |e−
κ
2
(t2−t1)ξ2 − 1|2|e−iξz − 1|2|z|2H−2dξdz. (4.46)

Through a change of variables, it follows that∫ t1

0

A1(t2, t1, s, x)ds ≤ C

∫
R2

∫ t1

0

e−κ(t1−s)ξ2ds|e−
κ
2
(t2−t1)ξ2 − 1|2|e−iξz − 1|2|z|2H−2dξdz

≤ C(t2 − t1)
H . (4.47)

Similarly, we have

A2(t2, t1, s, x) ≤ C||N 1
2
−H(u

fn(s, ·))||2∞
∫
R
(pt2−s(y)− pt1−s(y))

2dy

≤ C

∫
R
e−κ(t1−s)ξ2 |e−

κ
2
(t2−t1)ξ2 − 1|2dξ, (4.48)

which yields that ∫ t1

0

A2(t2, t1, s, x)ds ≤ C(t2 − t1)
1
2 . (4.49)

Putting together (4.42), (4.44), (4.45),(4.47) and (4.49), we see that there exists a constant
C (independent of n) such that

|vfn(t2, x)− vfn(t1, x)|2 ≤ C|t2 − t1|H , for all t1, t2 ∈ [0, T ], x ∈ R. (4.50)

Let x1, x2 ∈ R and consider

vfn(t, x1)− vfn(t, x2) =

∫ t

0

⟨(pt−s(x1 − ·)− pt−s(x2 − ·))σ(ufn(s, ·)), fn(s, ·)⟩Hds.
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We have

|vfn(t, x1)− vfn(t, x2)|2 ≤ C

∫ t

0

∥(pt−s(x1 − ·)− pt−s(x2 − ·))σ(ufn(s, ·))∥2Hds. (4.51)

Now,

∥(pt−s(x1 − ·)− pt−s(x2 − ·))σ(ufn(s, ·))∥2H

= cH

∫
R2

|(pt−s(x1 − (y + z))− pt−s(x2 − (y + z)))σ(ufn(s, y + z))

−(pt−s(x1 − y)− pt−s(x2 − y))σ(ufn(s, y))|2|z|2H−2dydz

≤ C

∫
R2

|(pt−s(x1 − (y + z))− pt−s(x2 − (y + z)))

−(pt−s(x1 − y)− pt−s(x2 − y))|2|σ(ufn(s, y + z))|2|z|2H−2dydz

+ C

∫
R2

|pt−s(x1 − y)− pt−s(x2 − y)|2|σ(ufn(s, y + z))− σ(ufn(s, y))|2|z|2H−2dydz

:= B1(t, s, x1, x2) +B2(t, s, x1, x2). (4.52)

In view of (4.41) and invoking Plancherel's identity, we have

B1(t, s, x1, x2)

≤ C||ufn(s, ·))||2∞
∫
R2

|(pt−s(x1 − (y + z))− pt−s(x2 − (y + z)))

−(pt−s(x1 − y)− pt−s(x2 − y))|2|z|2H−2dydz

≤ C

∫
R2

e−κ(t−s)ξ2 |e−iξ(x1−x2−z) − e−iξz − e−iξ(x1−x2) + 1|2|z|2H−2dξdz

= C

∫
R2

e−κ(t−s)ξ2 |e−iξ(x1−x2) − 1|2|e−iξz − 1|2|z|2H−2dξdz. (4.53)

Integrating against ds and using a change of variables, we deduce that∫ t

0

B1(t, s, x1, x2)ds ≤ C

∫
R

1

|ξ|1+2H
|e−iξ(x1−x2) − 1|2dξ

≤ C|x1 − x2|2H . (4.54)

For B2, we have

B2(t, s, x1, x2) ≤ C||N 1
2
−H(u

fn(s, ·))||2∞
∫
R
|pt−s(x1 − y)− pt−s(x2 − y)|2dy

≤ C

∫
R
e−κ(t−s)ξ2 |e−iξ(x1−x2) − 1|2dξ, (4.55)

which yields that∫ t

0

B2(t, s, x1, x2)ds ≤ C

∫
R

∫ t

0

e−κ(t−s)ξ2ds|e−iξ(x1−x2) − 1|2dξ

≤ C

∫
R

1

ξ2
|e−iξ(x1−x2) − 1|2dξ

≤ C|x1 − x2|. (4.56)
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Collecting the inequalities in (4.51), (4.52),(4.54) and (4.56) we arrive at

|vfn(t, x1)− vfn(t, x2)|2 ≤ C(|x1 − x2|+ |x1 − x2|2H). (4.57)

As ufn(t, x) = ptu0(x) + vfn(t, x), it follows from (4.50), (4.57) that there exists an indepen-
dent constant C such that

|ufn(t1, x1)− ufn(t2, x2)|2 ≤ C{|x1 − x2|+ |x1 − x2|2H + |t2 − t1|H} (4.58)

for all t1, t2 ∈ [0, T ], x1, x2 ∈ R. The above uniform estimate along with the Arzela-Ascoli
theorem yields that there exists a subsequence {nk, k ≥ 1} and a uniform continuous function
u(t, x) such that

sup
0≤t≤T

sup
x∈[−R,R]

|ufnk (t, x)− u(t, x)|2 → 0 (4.59)

for every R > 0 as k → ∞. First we will show u = uf . By the uniqueness of the equation,
it is su�cient to show that u is a solution to equation (4.1). Applying Fatou Lemma and
taking into account (4.41), (4.58) it is easy to see that

sup
0≤t≤T

{||u(t, ·)||2∞ + ||N 1
2
−H(u(t, ·))||2∞} < ∞, (4.60)

and

|u(t1, x1)− u(t2, x2)|2 ≤ C{|x1 − x2|+ |x1 − x2|2H + |t2 − t1|H} (4.61)

for all t1, t2 ∈ [0, T ], x1, x2 ∈ R. Recall that

ufnk (t, x) = ptu0(x) +

∫ t

0

⟨pt−s(x− ·)σ(ufnk (s, ·)), fnk
(s, ·)⟩Hds. (4.62)

To pass to the limit in the above equation as k → ∞, we need to prove

lim
k→∞

∫ t

0

∥pt−s(x− ·)σ(ufnk (s, ·))− pt−s(x− ·)σ(u(s, ·))∥2Hds = 0. (4.63)

In fact,

∥pt−s(x− ·)(σ(ufnk (s, ·))− σ(u(s, ·)))∥2H

≤ C

∫
R2

(pt−s(x− (y + z))− pt−s(x− y))2(σ(ufnk (s, y + z))− σ(u(s, y + z)))2|z|2H−2dydz

+C

∫
R2

p2t−s(x− y))
[
(σ(ufnk (s, y + z))− σ(u(s, y + z)))

−(σ(ufnk (s, y))− σ(u(s, y)))
]2 |z|2H−2dydz

:= Dk
1(t, s, x) +Dk

2(t, s, x). (4.64)

For every y, z, clearly (σ(ufnk (s, y + z)) − σ(u(s, y + z)))2 → 0 as k → ∞. On the other
hand,

(pt−s(x− (y + z))− pt−s(x− y))2(σ(ufnk (s, y + z))− σ(u(s, y + z)))2|z|2H−2

≤ C||ufnk (s, ·)− u(s, ·)||2∞(pt−s(x− (y + z))− pt−s(x− y))2|z|2H−2

≤ C(pt−s(x− (y + z))− pt−s(x− y))2|z|2H−2, (4.65)
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where the right side is dydz -integrable. Applying the dominated convergence theorem, we
deduce that

lim
k→∞

Dk
1(t, s, x) = 0. (4.66)

Moreover, by a change of variable and Lemma 4.1 we have

Dk
1(t, s, x) ≤ C

∫
R2

(pt−s(x− (y + z))− pt−s(x− y))2|z|2H−2dydz ≤ C(t− s)−1+H , (4.67)

which further implies, by the dominated convergence theorem, that

lim
k→∞

∫ t

0

Dk
1(t, s, x)ds = 0. (4.68)

Now let us look at Dk
2(t, s, x). For �xed y, z, it holds that

[(σ(ufnk (s, y + z))− σ(u(s, y + z)))− (σ(ufnk (s, y))− σ(u(s, y)))]2 → 0 (4.69)

as k → ∞. In view of (4.58), (4.61) the following bound holds true:

[(σ(ufnk (s, y + z))− σ(u(s, y + z)))− (σ(ufnk (s, y))− σ(u(s, y)))]2

≤ C[|ufnk (s, y + z)− ufnk (s, y)|2 + |u(s, y + z)− u(s, y)|2]
≤ C(||ufnk (s, ·)||2∞ + ||u(s, ·)||2∞)χ{|z|≥1} + C|z|2Hχ{|z|<1}

≤ C{χ{|z|≥1} + C|z|2Hχ{|z|<1}}. (4.70)

As p2t−s(x− y)){χ{|z|≥1}+C|z|2Hχ{|z|<1}} is integrable w.r.t. |z|2H−2dydz, it follows from the
dominated convergence theorem that

lim
k→∞

Dk
2(t, s, x) = 0. (4.71)

Moreover,

Dk
2(t, s, x) ≤ C

∫
R2

p2t−s(x− y)){χ{|z|≥1} + C|z|2Hχ{|z|<1}}dydz ≤ C(t− s)−
1
2 . (4.72)

Apply the dominated convergence theorem for the second time to get

lim
k→∞

∫ t

0

Dk
2(t, s, x)ds = 0. (4.73)

Combining (4.64), (4.68) and (4.73) together, we prove (4.63). Since fnk
converges weakly

to f , using (4.63) we have

lim
k→∞

∫ t

0

⟨pt−s(x− ·)σ(ufnk (s, ·)), fnk
(s, ·)⟩Hds

= lim
k→∞

∫ t

0

⟨pt−s(x− ·)σ(ufnk (s, ·))− pt−s(x− ·)σ(u(s, ·)), fnk
(s, ·)⟩Hds

+ lim
k→∞

∫ t

0

⟨pt−s(x− ·)σ(u(s, ·)), fnk
(s, ·)⟩Hds

=

∫ t

0

⟨pt−s(x− ·)σ(u(s, ·)), f(s, ·)⟩Hds. (4.74)



20 Y. HU, D. NUALART, T. ZHANG

Now let k → ∞ in (4.62) to get

u(t, x) = ptu0(x) +

∫ t

0

⟨pt−s(x− ·)σ(u(s, ·)), f(s, ·)⟩Hds, (4.75)

which implies u = uf . To conclude that ufn → uf in X
1
2
−H

T , it su�ces to show that the
family {ufn , n ≥ 1} is relatively compact. According to Proposition 4.18 in [13], one only
need to check the following three conditions (i) supn |ufn(0, 0)| is �nite. (ii) For every x ∈ R,
{ufn(·, x), n ≥ 1} is equicontinuous in time. (iii) For every R > 0,

lim
δ→0

sup
n

sup
t∈[0,T ],x∈[−R,R]

∫ δ

−δ

|ufn(t, x+ y)− ufn(t, x)|2

|y|2−2H
dy = 0.

(i) is clear. (ii) and (iii) follow easily from (4.58). �

5. Large deviation principle

For u ∈ X
1
2
−H

T , set

Su = {f ∈ L2([0, T ];H);uf = u},
where uf stands for the solution to equation (4.1). De�ne

I(u) = inf
f∈Su

{
1

2

∫ T

0

||f(s)||2Hds
}
. (5.1)

Theorem 5.1. Assume that the assumptions of Theorem 2.7 hold. Then, the laws µε of

{uε(·, ·), ε > 0} satisfy a large deviation principle on X
1
2
−H

T with the good rate function I(·).
More precisely, we have

(i) For any closed subset C ⊂ X
1
2
−H

T ,

lim sup
ε→0

ε log µε(C) ≤ − inf
f∈C

I(f).

(ii) For any open set G ⊂ X
1
2
−H

T ,

lim inf
ε→0

ε log µε(G) ≥ − inf
f∈G

I(f).

Proof. By Theorem 2.7, there exists a unique strong ( in the probabilistic sense) solution

to the stochastic heat equation (1.1) in the space X
1
2
−H

T . Therefore, for every ε > 0, there

exists a measurable mappings Gε from V = C([0, T ],H) to U := X
1
2
−H

T such that

uε = Gε(W ) ,

where W is the Gaussian process considered as an H-valued cylindrical Brownian motion.
Let G0 be de�ned as in Section 4 (just before Theorem 4.3). To prove the large deviation
principle, we will verify the assumption A in Section 3. The part a) of the assumption is
already proved in Theorem 4.3. Next, we will prove the part b). Now �x N > 0, and let
ψε, ψ ∈ UN be such that ψε converges in distribution to ψ as ε→ 0, where UN is de�ned in
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Section 3. It is easy to see that vε := Gε(W + 1√
ε

∫ ·
0
ψε(s)ds) is the solution of the stochastic

heat equation:

∂vε

∂t
=
κ

2

∂2vε

∂x2
+
√
εσ(vε)Ẇ + σ(vε) · ψε , t ≥ 0, x ∈ R , (5.2)

equivalently in a mild form

vε(t, x) = ptu0(x) +
√
ε

∫ t

0

∫
R
pt−s(x− y)σ(vε(s, y))W (ds, dy)

+

∫ t

0

⟨pt−s(x− ·)σ(vε(s, ·)), ψε(s)⟩Hds. (5.3)

Our aim is to show that vε converges in distribution to v := G0(
∫ ·
0
ψ(s)ds), the unique

solution of the equation

v(t, x) = ptuo(x) +

∫ t

0

⟨pt−s(x− ·)σ(v(s, ·)), ψ(s)⟩Hds. (5.4)

First, we claim that there exists θ > 0 such that

sup
ε

∥vε∥Xp
T,θ

<∞, (5.5)

where ∥ · ∥Xp
T,θ

is de�ned by (2.10). Let us now prove the claim. Write

vε(t, x) = ptu0(x) + Φε
1(t, x) + Φε

2(t, x), (5.6)

where

Φε
1(t, x) :=

√
ε

∫ t

0

∫
R
pt−s(x− y)σ(vε(s, y))W (ds, dy),

Φε
2(t, x) :=

∫ t

0

⟨pt−s(x− ·)σ(vε(s, ·)), ψε(s)⟩Hds.

Applying Proposition 3.6 in [13] with β = 1
2
−H, it holds that

∥Φε
1∥Xp

T,θ
≤ C0

√
p∥vε∥Xp

T,θ

(
κ

H
2
− 1

2 θ−
H
2 + κ−

1
4 θ−

1
4 + κH− 3

4 θ
1
4
−H

)
, (5.7)

where C0 is a constant depending only on H and the Lipschitz constant of σ. We can get a
similar bound for Φ2. Since ψε ∈ UN we have

|Φε
2(t, x)| ≤

(∫ t

0

∥pt−s(x− ·)σ(vε(s, ·))∥2Hds
) 1

2
(∫ t

0

∥ψε(s)∥2Hds
) 1

2

≤ cHN
1
2

(∫ t

0

∫
R2

|pt−s(x− y − z)σ(vε(s, y + z))− pt−s(x− y)σ(vε(s, y))|2|z|2H−2dydzds

) 1
2

≤ CN
1
2

(∫ t

0

∫
R2

|pt−s(x− y − z)− pt−s(x− y)|2|vε(s, y + z)|2|z|2H−2dydz

) 1
2

+ CN
1
2

(∫ t

0

∫
R2

p2t−s(x− y)|vε(s, y + z)− vε(s, y)|2|z|2H−2dydzds

) 1
2

. (5.8)

By Minkovski inequality it follows from (5.8) that

∥Φε
2(t, x)∥Lp(Ω)
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≤ CN
1
2

(∫ t

0

∫
R2

|pt−s(x− y − z)− pt−s(x− y)|2∥vε(s, y + z)∥2Lp(Ω)|z|2H−2dydz

) 1
2

+ CN
1
2

(∫ t

0

∫
R2

p2t−s(x− y)∥vε(s, y + z)− vε(s, y)∥2Lp(Ω)|z|2H−2dydzds

) 1
2

. (5.9)

Similar estimates can be obtained for

∥Φε
2(t, x+ h)− Φε

2(t, x)∥Lp(Ω),

which are needed to control the norm in the space Xp
T,θ. We have

∥Φε
2(t, x+ h)− Φε

2(t, x)∥Lp(Ω)

≤ C

(∫ t

0

∫
R2

|(pt−s(x+ h− y − z)− pt−s(x− y − z))

−(pt−s(x+ h− y)− pt−s(x− y))|2∥vε(s, y + z)∥2Lp(Ω)|z|2H−2dydz
) 1

2

+ C

(∫ t

0

∫
R2

|pt−s(x+ h− y)− pt−s(x− y)|2

× ∥vε(s, y + z)− vε(s, y)∥2Lp(Ω)|z|2H−2dydzds
) 1

2 . (5.10)

Due to the above estimates (5.9), (5.10), we can now follow exactly the same proof as
Proposition 3.6 in [13] to obtain

∥Φε
2∥Xp

T,θ
≤ C1∥vε∥Xp

T,θ

(
k

H
2
− 1

2 θ−
H
2 + k−

1
4 θ−

1
4 + kH− 3

4 θ
1
4
−H

)
, (5.11)

where C1 is a constant depending only on H,N and the Lipschitz constant of σ. Now
combining (5.7), (5.11) and (5.6) we get

∥vε∥Xp
T,θ

≤ C + C1∥vε∥Xp
T,θ

(
k

H
2
− 1

2 θ−
H
2 + k−

1
4 θ−

1
4 + kH− 3

4 θ
1
4
−H

)
+C0

√
p∥vε∥Xp

T,θ

(
k

H
2
− 1

2 θ−
H
2 + k−

1
4 θ−

1
4 + kH− 3

4 θ
1
4
−H

)
. (5.12)

Now choosing θ > 0 su�ciently large so that

(C0
√
p+ C1)

(
k

H
2
− 1

2 θ−
H
2 + k−

1
4 θ−

1
4 + kH− 3

4 θ
1
4
−H

)
< 1,

it follows from (5.12) that

sup
ε

∥vε∥Xp
T,θ

<∞,

which is the claim.

To prove our theorem, we need a stronger conclusion. For any β < H and p ≥ 2, it holds
that

sup
ε

∥vε∥Xβ,p
T,θ

<∞, (5.13)

where

∥f∥Xβ,p
T,θ

:= sup
t∈[0,T ],x∈R

e−θt∥vε(t, x)∥Lp(Ω) + sup
t∈[0,T ],x∈R

e−θtN Lp(Ω)
β vε(t, x).
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In fact, let Φε
1, Φ

ε
2 be de�ned as above. By Proposition 3.6 in [13], we have, for large

enough θ,

sup
ε

∥Φε
i∥Xβ,p

T,θ
≤ Ci∥σ(vε)∥Xp

T,θ
≤ C∥vε∥Xp

T,θ
. (5.14)

Then (5.13) follows from (5.5), (5.6) and (5.14).

Applying Proposition 3.8 in [13] to Φε
1, Φ

ε
2 we get that

∥vε(t2, x2)− vε(t1, x1)∥Lp(Ω) ≤ C∥σ(vε)∥Xp
T,θ
{|t2 − t1|

H
2 + |x2 − x1|H}

≤ C∥vε∥Xp
T,θ
{|t2 − t1|

H
2 + |x2 − x1|H}

≤ C{|t2 − t1|
H
2 + |x2 − x1|H}, (5.15)

where (5.5) was used and C is an independent constant. By (5.13), (5.15) and Proposition

4.24 in [13] we conclude that the laws of the family {vε, ε > 0} is tight on the space X
1
2
−H

T .
Hence, the family {(vε,W (·, ·), ψε), ε > 0} is tight on the space

X
1
2
−H

T × C([0, T ]× R)× L2([0, T ];H).

Recall that the topology of weak convergence is used for L2([0, T ];H). Choosing a subse-
quence if necessary, by Skorokhod's embedding theorem, there exists a probability space
(Ω̄, F̄ , P̄ ) carrying a family of random �elds (v̄ε, W̄ ε(·, ·), ψ̄ε) such that

(v̄ε, W̄ ε, ψ̄ε) = (vε,W, ψε)

in law and P̄ -almost surely, (v̄ε, W̄ ε(·, ·), ψ̄ε) converges to some random �elds (v̄, W̄ (·, ·), ψ̄)
in the space

X
1
2
−H

T × C([0, T ]× R)× L2([0, T ];H).

In particular, the following stochastic heat equation is held for (v̄ε, ψ̄ε, W̄ ε):

v̄ε(t, x) = ptu0(x) +
√
ε

∫ t

0

∫
R
pt−s(x− y)σ(v̄ε(s, y))W̄ ε(ds, dy)

+

∫ t

0

⟨pt−s(x− ·)σ(v̄ε(s, ·)), ψ̄ε(s)⟩Hds. (5.16)

Next we want to pass to the limit in (5.16) as ε→ 0. First of all, we have

Ē

[∣∣∣∣√ε∫ t

0

∫
R
pt−s(x− y)σ(v̄ε(s, y))W̄ ε(ds, dy)

∣∣∣∣2
]

= εE

[∫ t

0

∥pt−s(x− ·)σ(v̄ε(s, ·))∥2Hds
]
, (5.17)

where Ē stands for the expectation under the probability measure P̄ . By the Lipschitz
continuity of σ it is easy to see that

||pt−s(x− ·)σ(v̄ε(s, ·))||2H

≤ C

∫
R2

(pt−s(x− (y + z))− pt−s(x− y))2|v̄ε(s, y + z)|2|z|2H−2dydz
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+C

∫
R2

p2t−s(x− y)|v̄ε(s, y + z)− v̄ε(s, y)|2|z|2H−2dydz. (5.18)

Thus, we have

Ē

[∣∣∣∣√ε∫ t

0

∫
R
pt−s(x− y)σ(v̄ε(s, y))W̄ ε(ds, dy)

∣∣∣∣2
]

≤ Cε

∫ t

0

∫
R2

(pt−s(x− (y + z))− pt−s(x− y))2∥v̄ε(s, y + z)∥2L2(Ω)|z|2H−2dydz

+Cε

∫ t

0

∫
R2

p2t−s(x− y)∥v̄ε(s, y + z)− v̄ε(s, y)∥2L2(Ω)|z|2H−2dydz

≤ Cε

∫ t

0

ds

∫
R2

(pt−s(x− (y + z))− pt−s(x− y))2∥v̄ε∥2X2
T,θ
|z|2H−2dydz

+Cε

∫ t

0

ds

∫
R
p2t−s(x− y)∥v̄ε∥2X2

T,θ
dy

≤ Cε

∫ t

0

{(t− s)−1+H + (t− s)−
1
2}ds→ 0 (5.19)

as ε → 0, where we have used Lemma 3.1 and the fact supε ∥v̄ε∥2X2
T,θ

< ∞. Next we will
prove

lim
ε→0

∫ t

0

⟨pt−s(x− ·)σ(v̄ε(s, ·)), ψ̄ε(s)⟩Hds =
∫ t

0

⟨pt−s(x− ·)σ(v̄(s, ·)), ψ̄(s)⟩Hds. (5.20)

Since ψ̄ε → ψ̄ weakly in L2([0, T ] : H) and since
∫ T

0
∥ψ̄ε∥2Hds ≤ N , to prove (5.20) it su�ces

to show

lim
ε→0

∫ t

0

Ē[∥pt−s(x− ·)[σ(v̄ε(s, ·))− σ(v̄(s, ·))]∥2Hds] = 0. (5.21)

Now,

Ē[∥pt−s(x− ·)(σ(v̄ε(s, ·))− σ(v̄(s, ·)))∥2H]

≤ C

∫
R2

(pt−s(x− (y + z))− pt−s(x− y))2

×Ē[(σ(v̄ε(s, y + z))− σ(v̄(s, y + z)))2]|z|2H−2dydz

+C

∫
R2

p2t−s(x− y))Ē{[(σ(v̄ε(s, y + z))− σ(v̄(s, y + z)))

−(σ(v̄ε(s, y))− σ(v̄(s, y)))]2}|z|2H−2dydz

:= Gk
1(t, s, x) +Gk

2(t, s, x). (5.22)

For every y, z, clearly (σ(v̄ε(s, y + z))− σ(v̄(s, y + z)))2 → 0 as k → ∞. On the other hand,
for p > 2,

sup
ε
Ē[|σ(v̄ε(s, y + z))− σ(v̄(s, y + z))|p] ≤ C[sup

ε
∥v̄ε∥p

Xp
T,θ

+ ∥v̄∥p
Xp
T,θ
] <∞.

Hence, we have Ē[(σ(v̄ε(s, y + z))− σ(v̄(s, y + z)))2] → 0. Note that

(pt−s(x− (y + z))− pt−s(x− y))2Ē[(σ(v̄ε(s, y + z))− σ(v̄(s, y + z)))2]|z|2H−2
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≤ C[sup
ε

∥v̄ε∥2X2
T,θ

+ ∥v̄∥2X2
T,θ
](pt−s(x− (y + z))− pt−s(x− y))2|z|2H−2

≤ C(pt−s(x− (y + z))− pt−s(x− y))2|z|2H−2, (5.23)

where the right side is dydz -integrable. Applying the dominated convergence theorem , we
deduce that

lim
k→∞

Gk
1(t, s, x) = 0. (5.24)

Furthermore, by Lemma 3.1 we have

Gk
1(t, s, x) ≤ C

∫
R2

(pt−s(x− (y + z))− pt−s(x− y))2|z|2H−2dydz ≤ C(t− s)−1+H , (5.25)

which further implies, by the dominated convergence theorem, that

lim
k→∞

∫ t

0

Gk
1(t, s, x)ds = 0. (5.26)

Now let us look at Gk
2(t, s, x). For �xed y, z, similarly we have

Ē[(σ(v̄ε(s, y + z))− σ(v̄(s, y + z)))− (σ(v̄ε(s, y))− σ(v̄(s, y)))]2 → 0 (5.27)

as k → ∞. In view of (5.5), (5.15) we also have

Ē[(σ(v̄ε(s, y + z))− σ(v̄(s, y + z)))− (σ(v̄ε(s, y))− σ(v̄ε(s, y)))]2]

≤ C[Ē[|v̄ε(s, y + z)− v̄ε(s, y)|2] + Ē[|v̄(s, y + z)− v̄(s, y)|2]]
≤ C([sup

ε
∥v̄ε∥2X2

T,θ
+ ∥v̄∥2X2

T,θ
])χ{|z|≥1} + C|z|2Hχ{|z|<1}

≤ C{χ{|z|≥1} + C|z|2Hχ{|z|<1}}. (5.28)

As p2t−s(x− y)){χ{|z|≥1}+C|z|2Hχ{|z|<1}} is integrable w.r.t. |z|2H−2dydz, it follows from the
dominated convergence theorem that

lim
k→∞

Gk
2(t, s, x) = 0. (5.29)

Moreover,

Gk
2(t, s, x) ≤ C

∫
R2

p2t−s(x− y)){χ{|z|≥1} + C|z|2Hχ{|z|<1}}|z|2H−2dydz ≤ C(t− s)−
1
2 . (5.30)

Apply the dominated convergence theorem the second time to get

lim
k→∞

∫ t

0

Gk
2(t, s, x)ds = 0 (5.31)

(5.31) and (5.26) yield (5.21), and hence (5.20). Now let ε → 0 in (5.16) and use (5.19),
(5.20) to conclude that

v̄(t, x) = ptu0(x) +

∫ t

0

⟨pt−s(x− ·)σ(v̄(s, ·)), ψ̄(s)⟩Hds (5.32)

Since ψε → ψ in distribution and ψ̄ε has the same law as ψε , ψ̄ must have the same law as
ψ. It follows from the uniqueness of the solution of equation (5.32) that v(·, ·), the solution
of the equation (5.4), and v̄(·, ·) will have the same law. We �nally can conclude

vε → v

in distribution, completing the proof of the theorem. �
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