
The University of Manchester Research

Stochastic Bifurcations and Noise-Induced Chaos in 3D
Neuron Model
DOI:
10.1142/S0218127416300329

Document Version
Accepted author manuscript

Link to publication record in Manchester Research Explorer

Citation for published version (APA):
Bashkirtseva, I., Fedotov, S., Ryashko, L., & Slepukhina, E. (2016). Stochastic Bifurcations and Noise-Induced
Chaos in 3D Neuron Model. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering ,
26(12). https://doi.org/10.1142/S0218127416300329

Published in:
International Journal of Bifurcation and Chaos in Applied Sciences and Engineering

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript
or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the
publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the
authors and/or other copyright owners and it is a condition of accessing publications that users recognise and
abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown
Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing
relevant details, so we can investigate your claim.

Download date:21. Oct. 2022

https://doi.org/10.1142/S0218127416300329
https://www.research.manchester.ac.uk/portal/en/publications/stochastic-bifurcations-and-noiseinduced-chaos-in-3d-neuron-model(1f707fbe-cdbc-4061-b743-86448427dd54).html
https://doi.org/10.1142/S0218127416300329


August 1, 2016 9:12 HR-3D˙IJBC˙final

International Journal of Bifurcation and Chaos
c© World Scientific Publishing Company

STOCHASTIC BIFURCATIONS AND NOISE-INDUCED

CHAOS IN 3D NEURON MODEL

IRINA BASHKIRTSEVA
Institute of Mathematics and Computer Science, Ural Federal University, Lenina, 51,

Ekaterinburg, 620083, Russia

Irina.Bashkirtseva@urfu.ru

SERGEI FEDOTOV
School of Mathematics, The University of Manchester, Oxford Road, Manchester M13 9PL, UK

Sergei.Fedotov@manchester.ac.uk

LEV RYASHKO
Institute of Mathematics and Computer Science, Ural Federal University, Lenina, 51,

Ekaterinburg, 620083, Russia

Lev.Ryashko@urfu.ru

EVDOKIA SLEPUKHINA
Institute of Mathematics and Computer Science, Ural Federal University, Lenina, 51,

Ekaterinburg, 620083, Russia

Evdokia.Slepukhina@urfu.ru

Received (to be inserted by publisher)

The stochastically forced three-dimensional Hindmarsh-Rose model of neural activity is consid-
ered. We study the effect of random disturbances in parametric zones where the deterministic
model exhibits mono- and bistable dynamic regimes with period-adding bifurcations of oscilla-
tory modes. It is shown that in both cases the phenomenon of noise-induced bursting is observed.
In the monostable zone, where the only attractor of the system is a stable equilibrium, this ef-
fect is connected with a stochastic generation of large-amplitude oscillations due to the high
excitability of the model. In a parametric zone of coexisting stable equilibria and limit cycles,
bursts appear due to noise-induced transitions between the attractors. For a quantitative analy-
sis of the noise-induced bursting and corresponding stochastic bifurcations, an approach based
on the stochastic sensitivity function (SSF) technique is applied. Our estimations of the strength
of noise that generates such qualitative changes in stochastic dynamics are in a good agreement
with the direct numerical simulation. A relationship of the noise-induced generation of bursts
with transitions from order to chaos is discussed.

Keywords : Hindmarsh–Rose model; excitability; stochastic sensitivity; noise-induced transitions;
stochastic generation of bursting oscillations; stochastic bifurcations; noise-induced chaotization

1. Introduction

A combination of nonlinearity and stochasticity in dynamical systems can lead to unexpected effects
which often have no analogues in the deterministic case. A huge variety of phenomena induced by random
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disturbances is known, such as stochastic resonance [Gammaitoni et al., 1998; McDonnell et al., 2008;
Anishchenko et al., 2007], noise-induced transitions [Horsthemke & Lefever, 1984], noise-induced chaos
[Gao et al., 1999] and order [Matsumoto & Tsuda, 1983; Gassmann, 1997], stochastic bifurcations [Arnold,
1998].

Recently, nonlinear phenomena in models of neural activity attract attention of both mathematicians
and biologists [Izhikevich, 2007]. The 3D Hindmarsh–Rose (HR) model [Hindmarsh & Rose, 1984] describes
a wide range of neural dynamic regimes, namely various periodic oscillations resulting from the period-
doubling and adding bifurcations, coexistence of several attractors, chaos. A detailed bifurcation analysis
of the deterministic HR model is presented, for example, in [Innocenti et al., 2007; Shilnikov & Kolomiets,
2008; Storace et al., 2008; Barrio & Shilnikov, 2011].

One of the important types of the neural activity is bursting: a mode when intervals of the periodic
spiking alternate with intervals of the resting [Izhikevich, 2007]. Mathematical mechanisms underlying
the bursting dynamics in HR model were studied in [Wang, 1993]. Chaotic transitions between spiking
and bursting solutions were investigated in [Gonzalez-Miranda, 2003; Innocenti et al., 2007]. Bifurcation
scenarios giving rise to irregular or chaotic spiking and bursting were analysed in [Barrio et al., 2014].
Mixed-mode bursting oscillations were discussed in [Desroches et al., 2013].

Noise-induced phenomena in neural models attract attention of many researchers [Pikovsky & Kurths,
1997; Lindner & Schimansky-Geier, 1999; Bashkirtseva et al., 2014; Wang et al., 2016]. The stochastic
variant of the HR model was investigated by several authors. Primarily, effects of noise on the system with
periodic external impulse and stochastic resonance [Longtin, 1997; Reinker et al., 2003; Wang et al., 2000;
Osipov & Ponizovskaya, 2000; Ji & Bi, 2011; Baltanas & Casado, 2002] were studied. Coherence resonance
in stochastic HR model was analysed in [Shi & Lu, 2005; Gu et al., 2002].

The aim of our research is to study the influence of noise on the dynamics of the HR model. In particular,
we analyse a stochastic generation of bursting oscillations and noise-induced transitions between order and
chaos. For the analysis of such phenomena, we suggest an approach based on the stochastic sensitivity
function technique and the method of confidence domains.

The present paper is organized as follows.
In Sec. 2, a brief overview of attractors and bifurcations of the deterministic HR model is given.
Our paper is focused on the study of the effects of random disturbances on the HR model. At first,

in Subsec. 3.1, we consider a parametric zone, where the stable equilibrium is a single attractor of the
deterministic system. We show that even in this seemingly simple case, under the noise, the HR model
exhibits rather complex phenomenon of the stochastic generation of bursting. For a weak noise, random
states concentrate near the equilibrium. With an increase of the noise intensity, random trajectories can
go far from the stable equilibrium, and along with small-amplitude oscillations around the equilibrium,
bursts are observed. An underlying reason of such stochastic bifurcation is in a high excitability of the HR
model.

In Subsec. 3.2, a parametric region, where the equilibrium coexists with the limit cycle, is studied.
Here, random disturbances can induce transitions from one basin of attraction to another, and generate
the bursting type behavior.

A basic mathematical model for theoretical analysis of stochastic dynamics in terms of probability
density function is Kolmogorov-Fokker-Planck (KFP) equation. It gives the most detailed probabilistic
description of the stochastic attractors and stochastic bifurcations. However, a direct usage of this equation
is very difficult technically even in simple cases. For an approximation of KFP solutions, a well-known
quasipotential method [Freidlin & Wentzell, 1984; Dembo & Zeitouni, 1995] and a stochastic sensitivity
function technique [Bashkirtseva & Ryashko, 2005, 2004] can be used.

Stochastic sensitivity function (SSF) technique [Bashkirtseva & Ryashko, 2011] allows us to construct
confidence domains that are simple and evident geometrical models for a spatial description of a config-
urational arrangement of random states around the deterministic attractors. In Subsec. 3.1 and 3.2, for
mono- and bistability zones, noise-induced transitions and stochastic generation of bursting oscillations in
HR model are analysed using the stochastic sensitivity function technique.

The phenomena of stochastic generation of large-amplitude oscillations and noise-induced transitions
are accompanied with changes in number of spikes in a burst. In Subsec. 3.3, results of the probabilistic
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analysis of these phenomena are given.
Noise-induced transitions from order to chaos in connection with the stochastic generation of bursting

oscillations are discussed in Sec. 4.

2. Deterministic model

The three-dimensional Hindmarsh-Rose (HR) [Hindmarsh & Rose, 1984] model of the neural activity is
given by a following system of differential equations:

ẋ = y − x3 + 3x2 + I − z

ẏ = 1 − 5x2 − y

ż = r(s(x − x0) − z),

(1)

where x is a membrane potential, variables y, z describe ionic currents, I is an external current; 0 < r ≪ 1
is a time scale parameter; s, x0 are other parameters.

Here we fix r = 0.002, s = 4, x0 = −1.6.
Consider the dynamics of the system (1) under variation of the parameter I. Fig. 1 shows a bifurcation

diagram of the deterministic system. Here, z-coordinates of equilibrium points and z-coordinates of points
of intersection of limit cycles and chaotic attractors with Poincare section plane x = 0 in dependence of
the parameter I value are plotted.

The system has a unique equilibrium point. For low current values (I < I1 ≈ 1.288), it is stable. The
equilibrium loses its stability due to the subcritical Hopf bifurcation at the point I1.

For I < I0 ≈ 1.2677, the stable equilibrium is a unique attractor of the system. At the point I0,
a limit cycle emerges via saddle-node bifurcation. A type of this limit cycle is termed by ”burst”. The
bursting activity is observed in the system for I0 < I < I2 ≈ 3.292. For I0 < I < I1, the system exhibits
a coexistence of a stable limit cycle and a stable equilibrium. Initially, near I0, a limit cycle has only one
spike in a burst. Then, with the increase of I, via period-adding bifurcations, bursts with 2,3,4, ..., 13 spikes
appear. A transition from burst with 12 spikes to burst with 13 spikes is accompanied with the transition
to chaos [Innocenti et al., 2007; Gonzalez-Miranda, 2003; Shilnikov & Kolomiets, 2008].

Fig. 2 shows examples of the burst with one spike for I = 1.268 (Fig. 2a), and the burst with two
spikes for I = 1.28 (Fig. 2b).

For I2 < I < I6 ≈ 25.261, the system exhibits tonic spiking solutions. For I2 < I < I3 ≈ 3.37, a
period-doubling cascade of bifurcations with a transition to chaos occurs.

The equilibrium becomes stable again at I4 ≈ 5.398 via the supercritical Hopf bifurcation, and for
I4 < I < I5 ≈ 6.198 there is a coexistence of a stable equilibrium and a stable spiking cycle. At I4 the
equilibrium loses its stability again due to the subcritical Hopf bifurcation.

The limit cycle disappears at I6 where the supercritical Hopf bifurcation takes place. For I > I6, the
stable equilibrium is a unique attractor of the system.

3. Stochastic model

Consider the stochastic HR model:

ẋ = y − x3 + 3x2 + I − z + εẇ,

ẏ = 1 − 5x2 − y

ż = r(s(x − x0) − z),

(2)

where w is a standard Wiener process with E(w(t) − w(s)) = 0, E(w(t) − w(s))2 = |t − s| and ε is a noise
intensity.

In this paper, we focus on stochastic phenomena in the parametric zone I ∈ (1.2, 1.288), where the
unforced deterministic system (1) exhibits two dynamical regimes: monostable but excitable regime with
the only stable equilibrium (for I < I0), and bistable regime with the coexistence of the stable equilibrium
and the stable limit cycle (for I0 < I < I1).
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Fig. 1. Bifurcation diagram of the deterministic HR model: z-coordinates of equilibrium points (green for stable, and red
for unstable), z-coordinates of points of intersection of limit cycles and chaotic attractors with Poincare section plane x = 0
(blue).
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Fig. 2. Phase portraits (in projection on xOz plane) and time series of the deterministic HR model for a) I = 1.268, b)
I = 1.28: coexisting equilibrium (green dashed) and limit cycle (blue solid).

3.1. Excitability. Stochastic generation of bursting oscillations

Let us study the effect of random disturbances on the system (2) in the parametric zone I < I0, where a
stable equilibrium is the only attractor of the deterministic system. For parameter values that are close to
the bifurcation point I0, the deterministic system is excitable. Indeed, small deviations from the equilibrium
result in the monotonic convergence to the equilibrium. But the deviations larger than some threshold can
result in a large excursion before returning to the resting state. The excitability is one of the essential
properties of neuron models.

Such excitability with respect to deterministic deviations implies the corresponding stochastic ex-
citability. In Fig. 3, for I = 1.2, random trajectories (in projection on the plane xOz) starting from the
stable equilibrium, and corresponding time series of the system (2) for different values of the noise inten-
sity are plotted. For a sufficiently small noise (ε = 0.03), random trajectories oscillate near the equilibrium
(see Fig. 3a). When the noise intensity is greater than some threshold value, random trajectories can go
far from the stable equilibrium, and along with small-amplitude oscillations (SAO), large-amplitude oscil-
lations (LAO) occur. Such intermittency of stochastic SAO and LAO forms the stochastic bursting (see
Fig. 3b for ε = 0.1). One can see that a number of spikes in bursts is random.

Consider a process of the stochastic generation of bursting oscillations for different values of the
parameter I in the zone I < I0. Fig. 4 shows the details of the distribution of random states in dependence
on the noise intensity ε for I = 1.2 (Fig. 4a) and I = 1.25 (Fig. 4b). Here, z-coordinates of points
of intersection of random trajectories with the Poincare section line x = x̄ (x̄ is x-coordinate of the
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Fig. 3. Phase portraits (in projection on xOz plane) and time series for I = 1.2: a) ε = 0.03, b) ε = 0.1. For a small
noise (a), random trajectories oscillate near the equilibrium. For a greater noise intensity (b), and along with small-amplitude
oscillations (SAO) near the equilibrium, large-amplitude oscillations (LAO) occur. Such intermittency of SAO and LAO forms
the stochastic bursting regime.

equilibrium) are plotted. As one can see, for small noise intensities, random states concentrate near the
equilibrium. With an increase in the noise, states with large z-coordinates appear, that confirms the
emergence of large-amplitude trajectories. Note that for I = 1.25 large-amplitude oscillations are observed
for lower noise intensity values than for I = 1.2, because the value I = 1.25 is closer to the bifurcation
point I0.

Fig. 5 demonstrates changes of the probability density distribution of random trajectories. The prob-
ability density function P (z) for z-coordinates of points of intersection of random trajectories with x = x̄

is plotted for I = 1.2 (Fig. 5a) and I = 1.25 (Fig. 5b) for various noise intensities. For a weak noise, the
probability density function has a single peak located above the equilibrium point. With an increase of the
noise intensity, a new peak of P (z) appears, so P (z) function becomes bimodal. Thus, under the random
disturbances, the system demonstrates P -bifurcation [Arnold, 1998] related to the qualitative change in
the distribution of random trajectories.

Note that for large amplitude oscillations, random states with x > −1 are observed. The value x = −1
can be used as a threshold that separates in the phase space small-amplitude oscillations near equilibrium
from the spiking phase. For a quantification of the weight of spiking time in the total time of the observation,
consider the numerical characteristic η = Tl

T
, where Tl is the time spending by the system in the region

x > −1 and T is the total time. In Fig. 6, functions η(ε) for different I are plotted. For a small noise,
random states are concentrated near the equilibrium, so η = 0. For increasing noise intensity values, the
large-amplitude oscillations are observed, and η increases as well. The plot η(ε) allows us to estimate a
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a)

b)

Fig. 4. Stochastic generation of large amplitude oscillations: z-coordinates of points of intersection of random trajectories
with the Poincare section x = x̄, a) I = 1.2, b) I = 1.25. For small noise intensities, random states concentrate near the
equilibrium. With an increase of noise, states with large z-coordinates appear, corresponding to the appearance of large-
amplitude oscillations and the onset of the bursting regime.

critical value of the noise intensity, corresponding to the onset of spiking generation. For I = 1.2, we get
ε∗ ≈ 0.06, and for I = 1.25 we have ε∗ ≈ 0.04.

The emergence of noise-induced large-amplitude oscillations can be explained by peculiarities of the
phase portrait of the deterministic system in zone I < I0. In this parametric region, the equilibrium is
stable. If initial states are deviated from the equilibrium, the trajectories tend to it, but a character of
a transient process depends on the value of the initial deviation. Indeed, if the deviations are sufficiently
small, the trajectories tend to the equilibrium monotonically. If we take the initial deviations larger than
some threshold, the transient process has a spike (see Fig. 7). The further increase in the deviations result
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Fig. 5. Distribution of random trajectories: a) I = 1.2, b) I = 1.25. For a weak noise, the probability density function has
a single peak located above the equilibrium point. With an increase of the noise intensity, a new peak of P (z) in the zone
z > 1.2 appears. Thus, the system demonstrates P -bifurcation.

in the trajectories with two, three and more spikes.
To analyze the mechanism of stochastic generation of large-amplitude oscillations, we apply the sto-

chastic sensitivity function technique. A brief theoretical background of SSF technique is given in the
Appendix.

The stochastic sensitivity matrix reflects the geometry of bundles of stochastic trajectories around
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Fig. 6. Function η = Tl

T
. Here, Tl is the time spending by the system in the region x > −1 and T is the total time. The

value x = −1 is used as a threshold that separates in the phase space small-amplitude oscillations near equilibrium from the
spiking phase. The increase of η corresponds to the onset of spiking generation.

the deterministic attractors. If the attractor is an equilibrium, this distribution can be estimated by a
confidence ellipsoid. Eigenvectors of the stochastic sensitivity matrix determine a spatial arrangement of
axes of the ellipsoid while eigenvalues define a size of them.

Fig. 8 shows eigenvalues of the stochastic sensitivity matrix for the equilibrium in the parametric zone
I ∈ (1.2, 1.288). One can see that the stochastic sensitivity increases unlimitedly with the approaching to
the bifurcation point I1.

Random states of the system (2) are distributed non-uniformly around the equilibrium. Note that the
difference in eigenvalues of the stochastic sensitivity matrix for each fixed I is significant. So the confidence
ellipsoids are elongated in the direction of the eigenvector v∗ corresponding to the largest eigenvalue of
the stochastic sensitivity matrix, and they are very narrow in other directions. Thus, the eigenvector v∗

localizes the main direction for deviations of random trajectories from the equilibrium.
Fig. 9 shows the projection of the line passing through the equilibrium point in the direction v∗ on

the plane xOz, and the intervals MM0, MM1, MM2, starting from the equilibrium M and corresponding
to zones with different number of spikes in the transient process. Trajectories starting from any point of
MM0 tend to the equilibrium monotonically without spikes. Initial points taken from MM1 and MM2

result in large-amplitude trajectories with one and two spikes respectively.
Using these intervals of deviations we can construct confidence intervals for the distribution of random

trajectories, and estimate the critical values of the noise intensity. The noise intensity ε0 corresponds to
MM0, and for ε < ε0 there are small-amplitude stochastic oscillations near the equilibrium. The values ε1

and ε2 that can be estimated using intervals MM1 and MM2, correspond to the onset of the generation
of bursts with one and two spike respectively.

For I = 1.2, we get ε0 ≈ 0.0675, ε1 ≈ 0.0684, ε2 ≈ 0.1084 and for I = 1.25 we have ε0 ≈ 0.0391,
ε1 ≈ 0.0395, ε2 ≈ 0.0628. The obtained values are in a good agreement with the results of the direct
numerical simulations.
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Fig. 7. Deterministic phase portraits and eigenvector corresponding to the largest eigenvalue of SSF for I = 1.2: a) in xyz-
space, b) in projection on xOz-plane. A character of a transient process depends on the value of the initial deviation: the
trajectories tend to the equilibrium monotonically without spikes, or the transient process has one, two or more spikes.

3.2. Bistability. Noise-induced transitions between equilibrium and limit cycle

Let us study the effect of random disturbances on the system (2) in the parametric zone I ∈ (1.268, 1.288),
where a stable equilibrium and a stable limit cycle coexist.
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Fig. 8. Eigenvalues of the stochastic sensitivity matrix for the equilibrium. The stochastic sensitivity increases unlimitedly
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Fig. 9. The projection of the line passing through the equilibrium point in the direction of the eigenvector corresponding to
the largest eigenvalue of SSF on the plane xOz, and the intervals corresponding to zones with different number of spikes in
the transient process, for I = 1.2.

Consider I = 1.27. In Fig. 10, random trajectories (in projection on the plane xOz) starting from the
limit cycle and corresponding time series of the system (2) for different values of the noise intensity are
plotted. For sufficiently small values of noise intensity (ε = 0.0005), random trajectories are concentrated
near the deterministic cycle (Fig. 10a). For a noise intensity value greater than some threshold, stochastic
trajectories can cross the separatrix surface, separating basins of attraction of the equilibrium and the limit
cycle, and go to the stable equilibrium (Fig. 10b for ε = 0.002). With an increase in the noise intensity,
backward transitions from the basin of attraction of the equilibrium to the basin of attraction of the limit
cycle can occur (Fig. 10c for ε = 0.07).

The details of the distribution of random states in dependence of noise intensity are shown in Figs.
11, 12. Consider points of intersection of the random trajectories with the Poincare section line x = x̄.
Fig. 11 shows z-coordinates of these points in dependence on the noise intensity for I = 1.27 and I = 1.28.
Note that for small noise intensities, random states concentrate near the deterministic limit cycle. With an
increase of noise, random states near the equilibrium appear, which corresponds to the onset of the noise-
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Fig. 10. Random trajectories starting from the limit cycle (in projection on xOz plane) and corresponding time series for
I = 1.27: a) ε = 0.0005, b) ε = 0.002, c) ε = 0.07. For small noise (a), random trajectories are concentrated near the
deterministic cycle. For a noise intensity value greater than some threshold (b), stochastic trajectories cross the separatrix,
and go to the basin of attraction of the stable equilibrium. With a further increase of the noise intensity (c), backward
transitions from the basin of attraction of the equilibrium to the basin of attraction of the limit cycle occur.

induced transition from the cycle to the equilibrium. Using Fig. 11, we can estimate empirically the critical
values of the noise intensity of the onset of the noise-induced transition from the cycle to the equilibrium.
For I = 1.27, we get ε∗ ≈ 0.001 and for I = 1.28 we have ε∗ ≈ 0.009.

Fig. 12 demonstrates changes of the probability density distribution of random trajectories. The prob-
ability density function P (z) of z-coordinates of points of intersection of random trajectories with x = x̄ is
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a)

b)

Fig. 11. Stochastic generation of bursting oscillations: z-coordinates of points of intersection of random trajectories with
x = x̄ in dependence on noise intensity ε and z-coordinate of the equilibrium (dashed), a) I = 1.27, b) I = 1.28. For small
noise intensities, random states concentrate near the deterministic limit cycle. With an increase of noise, random states near
the equilibrium appear, corresponding to the onset of the noise-induced transition from the cycle to the equilibrium.

plotted for I = 1.27 (Fig. 12a) and I = 1.28 (Fig. 12b) for various noise intensities. For a weak noise, the
probability density function is bimodal with peaks located above the limit cycle. With an increase in the
noise intensity, the dispersion of random trajectories in the upper part of cycle increases. It is displayed
in the plot of P (z) so that its right peak becomes smaller and wider. With a further increase of ε, one
can observe the appearance of a peak above the equilibrium, so P (z) function becomes trimodal. Such
qualitative change of the form of the probability density function is specified as P -bifurcation.

This phenomenon of noise-induced transitions is confirmed by changes of the function η(ε) (see Fig. 13).
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Fig. 12. Probability density distribution of random trajectories for a)I = 1.27, b)I = 1.28. For a weak noise, the probability
density function is bimodal with peaks located above the limit cycle. With an increase of noise intensity, one can observe
the appearance of a new peak above the equilibrium, and the function becomes trimodal. Thus, the system demonstrates
P -bifurcation.
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T
. Here, Tl is the time spending by the system in the region x > −1 and T is the total time. The value

x = −1 is used as a threshold that separates in the phase space small-amplitude oscillations near equilibrium from the spiking
phase. For a small noise, η is almost constant. With the increase of noise, the decrease of η is observed, which corresponds
to the onset of noise-induced transitions from limit cycle to equilibrium. For greater noise intensity values, η increases, which
corresponds to the onset of backward transitions.

The function η(ε) is almost constant for a small noise. For values of the noise intensity greater than some
threshold, η begins to decrease, which means that the system begins to spend less time in a vicinity of
the limit cycle. For greater noise intensity values, η increases, which corresponds to the onset of backward
transitions. As one can observe, the threshold values of noise intensity found above (ε∗ ≈ 0.001 for I = 1.27,
and ε∗ ≈ 0.009 for I = 1.28), correspond to the onset of decrease of function η.

Let us study this effect using the SSF technique.
The non-zero eigenvalues of the SSF matrix of the limit cycle for I = 1.27 are shown on Fig. 14. One

can observe a significant overfall of values along the cycle. Note that the part of the cycle with minimal
x-coordinates has the maximal stochastic sensitivity (maximal values of the largest eigenvalue). Other two
peaks of SSF correspond to spikes in the cycle.

Fig. 14c shows a limit cycle with a stochastic trajectory for I = 1.27 and ε = 0.003. The trajectory goes
to the basin of attraction of the equilibrium from the lower-right part of the cycle (shown as ”transition
region” in Fig. 14c).

Eigenvectors v1(t) corresponding to the largest eigenvalues λ1(t) of SSF localize the main directions
for deviations of random trajectories from the cycle. Consider points ξi of the limit cycle in the transition
region and vectors of the main directions vi for each of these points. Fig. 15 shows the limit cycle for
I = 1.28 and lines passing through the points ξi in the directions of vi. Consider intervals starting in the
points ξi and ending on the separatrix surface, separating basins of attraction of the limit cycle and the
equilibrium. Using these intervals we can estimate the critical value of the noise intensity corresponding
to the onset of noise-induced transition from the cycle to equilibrium. For I = 1.27 we get ε∗ ≈ 0.0015,
for I = 1.275 we have ε∗ ≈ 0.0067 and for I = 1.28 we get ε∗ ≈ 0.02. The obtained values are in a good
agreement with the results of the numerical simulations.

Using the approach described in Section 2.1, we estimate the critical values of the noise intensity for
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Fig. 14. a) Eigenvalues of the SSF for the limit cycle; b) x-coordinates of limit cycle for I = 1.27; c) limit cycle (black) and
stochastic trajectory (grey) for I = 1.27 and ε = 0.003. Peaks of the SSF correspond to the parts of the limit cycle with the
highest stochastic sensitivity (a,b). The trajectory goes to the basin of attraction of the equilibrium from the part of the cycle,
shown as ”transition region” in (c).



August 1, 2016 9:12 HR-3D˙IJBC˙final

Stochastic bifurcations and noise-induced chaos in 3D neuron model 17

−1.4 −1.35 −1.3 −1.25 −1.2 −1.15

1.06

1.07

1.08

1.09

1.1

x

z

ξ
4

ξ
1

ξ
2

ξ
3

Fig. 15. Method of the main directions: limit cycle (solid black), equilibrium (green), directions of the eigenvectors corre-
sponding to the largest eigenvalue of SSF (blue), points of the intersection with the separatrix (red) for I = 1.28 (in the
projection on xOz).

the transitions from the equilibrium to the limit cycle. For I = 1.27 we get ε∗ ≈ 0.0254, for I = 1.275 we
have ε∗ ≈ 0.0205 and for I = 1.28 we get ε∗ ≈ 0.0147.

Let us compare the critical values of the noise intensity for the transition from cycle to equilibrium
and vice versa. With the approaching of the parameter I to the bifurcation point I1, the equilibrium
loses its stability, while the stability of the limit cycle grows. Fig. 16 shows that with the approaching of
the parameter I to the bifurcation point I1, the critical values of the noise intensity for the equilibrium
decrease, but the critical values for the cycle increase. This explains the fact that for the smaller values of
I, the equilibrium dominates in the system, but closer to I1, the limit cycle begins to dominate.

Fig. 17 shows plots of the function η calculated over trajectories starting from the limit cycle, and
starting from the equilibrium. For a weak noise, the value of η is zero for the trajectories starting from the
equilibrium and almost constant at non-zero rate for the limit cycle. The noise intensity value, for which η

for cycle begins to decrease, is the critical value ε∗lc, corresponding to the onset of the transition from the
limit cycle to the equilibrium. Similarly, the value ε∗eq is a critical value, corresponding to the onset of the
transition from the equilibrium to the limit cycle: it is a noise intensity, for which η for the equilibrium
begins to increase. Values of noise intensity, for which the plots of η for the cycle and the equilibrium begin
to coalesce, correspond to the onset of the mutual transitions between the cycle and the equilibrium. For
I = 1.27 ε∗lc < ε∗eq, so the transitions from the cycle to the equilibrium occur for smaller noise intensity
values than from the equilibrium to the cycle, and the equilibrium dominates in the system. For I = 1.285
ε∗eq < ε∗lc, so the transitions from the equilibrium to the cycle occur for smaller noise intensity values, and
the cycle dominates in the system.

3.3. Average number of spikes in burst of the stochastic system

The phenomena of the stochastic generation of large-amplitude oscillations and the noise-induced transi-
tions are accompanied with changes of number of spikes in a burst. Fig. 18 represents the distribution for
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Fig. 16. Critical values of noise intensity for the transition from cycle to equilibrium and vice versa.

the number of spikes n in bursts for I = 1.2, I = 1.28, I = 1.4, I = 1.8 and various ε.
For I = 1.2, an equilibrium is the only attractor of the deterministic system. Under stochastic dis-

turbances, bursting oscillations appear in the system. A number of spikes in a burst is random. Fig. 18a
shows that with the increase in noise intensity, the average number of spikes in bursts grows. Note that
for a low noise, the average number of spikes is two. It can be explained by the fact that with an increase
in the noise intensity, trajectories with one and two spikes appear almost simultaneously, but trajectories
with two spikes dominate.

In parametric zones where the system exhibits a limit cycle, the number of spikes in bursts also changes
(see Figs. 18 b-d). Note that with an increase in the noise intensity, along with the dominating number of
spikes, bursts with lower and greater numbers of spikes in bursts appear. Meanwhile, the average number
of spikes increases. Fig. 19 summarizes these observations, showing the average number of spikes in bursts
in the dependence on the noise intensity for the considered values of the parameter I.

The emergence of bursts with different numbers of spikes can be confirmed by probability density
functions of interspike intervals (ISI). Note that the long ISIs correspond to intervals between the last
spike in a burst and the next spike. The short ISIs correspond to intervals between spikes in burst. Fig. 20
shows the probability density functions of interspike intervals for I = 1.8 (burst with 4 spikes). For a low
noise, the functions have three peaks corresponding to short ISIs and one peak corresponding to long ISIs.
With an increase in the noise intensity, a new peak corresponding to short ISIs appears.

4. Noise-induced transitions from order to chaos

It is well known that the dynamic peculiarities of stochastic flows can be quantitatively described by
Lyapunov exponents. A negativeness of the largest Lyapunov exponent (LLE) means that the trajectories
of the stochastic system mostly converge. Positiveness of LLE indicates that in the stochastic flow the
divergence dominates. Change of the sign of LLE from negative to positive (D-bifurcation) is a standard
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Fig. 18. Distribution for number of spikes in burst for a) I = 1.2 b) I = 1.28 c) I = 1.4 d) I = 1.8.

justification of the transition from regular to chaotic dynamics [Matsumoto & Tsuda, 1983; Gassmann,
1997; Gao et al., 1999].

Let us discuss how noise-induced phenomena of bursting generation in system (2) relate to the variation
of the LLE. First consider the zone I < I0 of the monostability, where the stable equilibrium is a single
attractor of the deterministic system. In Fig. 21a, plots of Λ(ε) are shown for I = 1.2 and I = 1.25. Here,
LLE was calculated by standard Benettin method over the trajectories starting from the deterministic
equilibrium.

For a weak noise, the function Λ(ε) has negative values and practically does not change with the
noise increasing. This means that dynamics of stochastic flows is regular, with small-amplitude random
oscillations (see Figs. 3,4). As the noise intensity increases, the function Λ(ε) changes its behavior. LLE
begins to increase and changes the sign from minus to plus, indicating the transition from order to chaos.
Values of the noise intensity corresponding to such change of the sign essentially depend on the parameter
I. The higher the value of I, the lower the noise transforming the system from order to chaos. So, comparing
the Fig. 4 and Fig. 21a, we can resume that the noise-induced generation of bursts is accompanied by the
chaotization of the stochastic flows.

Further consider the zone of bistability I0 < I < I1 where a stable equilibrium and a stable limit cycle
coexist. In Fig. 21b, plots of Λ(ε) for I = 1.27, I = 1.28 are shown. Here, LLE was calculated over the
trajectories starting from the deterministic limit cycle. Note that evidently Λ(0) = 0.

Here, for a weak noise, functions Λ(ε) decrease. The negativeness of LLE reflects a noise-induced
stabilization of stochastic flows. As the noise intensity increases, the function Λ(ε) begins to grow, changes
its sign, and becomes positive. So, increasing noise transforms the behavior of this system from regular to
chaotic in the bistability zone as well.

Thus, one can conclude that noise-induced generation of bursts is accompanied by D-bifurcations with
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Fig. 19. Average number of spikes in burst versus noise intensity.
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Fig. 20. Probability density functions of interspike intervals (ISIs) for I = 1.8 (burst with 4 spikes). Peaks in the zone of
short ISIs correspond to spiking phase in burst, and a peak in the zone of long ISIs corresponds to the quiescence phase. With
an increase in the noise intensity, a new peak in the zone of short ISIs appears.

transitions to chaos for both monostability and bistability zones.
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Fig. 21. Largest Lyapunov exponents. Noise-induced generation of bursts is accompanied by D-bifurcations with transitions
to chaos for both monostability and bistability zones.

5. Conclusion

The effect of random disturbances on the 3D Hindmarsh-Rose model was studied. We considered two
parametric zones: monostability zone, where a stable equilibrium is the single attractor in the deterministic
system, and bistability zone, where the deterministic dynamics is characterized by the coexistence of a stable
equilibrium and a limit cycle. We have shown that in both cases, under the noise, a bursting-like behavior
is observed. In the monostable zone, this phenomenon is connected with the stochastic generation of large-
amplitude oscillations due to high excitability of the system. In the bistable zone, bursts appear due to the
noise-induced transitions between attractors. We have suggested an approach for quantitative analysis of
such stochastic P -bifurcations based on the stochastic sensitivity technique and the method of confidence
domains. A number of spikes in noise-induced bursts is random. We have provided the probabilistic analysis
of these numbers. We have shown that the noise-induced generation of bursts is related to D-bifurcations
with transitions from order to chaos.
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Appendix A Stochastic sensitivity function technique

Consider a nonlinear system of stochastic differential equations:

dx = f(x) dt + εσ(x) dw(t). (A.1)

Here, x is n-vector function, w(t) is n-dimensional standard Wiener process, ε is a scalar parameter of
noise intensity.

Under stochastic disturbances, random trajectories of the system (A.1) leave the deterministic at-
tractor (cycle or equilibrium) and form some probabilistic distribution around it. Full description of this
distribution is given by Kolmogorov-Fokker-Planck (KFP) equation. In a steady regime, one can consider
stationary probability density function ρ(x, ε) governed by the stationary KFP equation.

To avoid well-known technical difficulties with the direct use of this equation, various asymptotics and
approximations are developed [Kurrer & Schulten, 1991; Lindner & Schimansky-Geier, 1999; Milshtein &
Ryashko, 1995]. For the approximation of KFP solutions, a well-known quasipotential method [Freidlin &
Wentzell, 1984; Dembo & Zeitouni, 1995] and a stochastic sensitivity function (SSF) technique [Bashkirtseva
& Ryashko, 2005, 2004, 2011] can be applied.

At first, let the system (A.1) have an exponentially stable equilibrium x̄. The corresponding approxi-
mation of the quasipotential near x̄ gives an asymptotic of the stationary distribution of random states of
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the system (A.1) in the Gaussian form:

ρ(x, ε) = K exp

(

−(x − x̄,W−1(x − x̄))

2ε2

)

.

For the exponentially stable equilibrium x̄, the matrix W is the unique solution of the equation

FW + WF⊤ = −S, F =
∂f

∂x
(x̄), S = GG⊤, G = σ(x̄).

The matrix W connects the stochastic input (ε2) and the stochastic output (a covariance matrix
D): D(ε) = ε2W . So, the matrix W can be considered as a coefficient of stochastic sensitivity of the
system to random disturbances. We will call it the stochastic sensitivity matrix. This matrix characterizes
a spatial arrangement of the stationary distributed random states of the stochastic system (A.1) around
the deterministic equilibrium x̄. Eigenvectors vi of the matrix W determine a spatial arrangement of
a confidence ellipsoid, whilst eigenvalues λi define its size. In the special case when the coordinates of
random states are uncorrelated and the variances in all directions are the same, confidence domains are
spheres.

Consider confidence intervals in the direction of vi. The ends of the confidence intervals are points of
intersection of the confidence ellipsoid with a line passing in the direction of vi. Their coordinates can be
written as x1,2 = x̄ ± αivi, where αi =

√
2λiεk, the coefficient k is determined by the three-sigma rule

k = 3√
2
. The confidence intervals allow to estimate critical values of noise intensity: ε∗i =

α∗

i√
2λik

.

Consider now a case when the corresponding deterministic system (ε = 0) has a T -periodic solution
x = ξ(t) with an exponentially stable phase curve Γ (limit cycle). Let Πt be a hyperplane that is orthogonal
to the cycle at the point ξ(t) (0 ≤ t < T ). For this plane, in the neighborhood of the point ξ(t), a Gaussian
approximation of the stationary probabilistic distribution can be written [Bashkirtseva & Ryashko, 2004]
as:

ρt(x, ε) = K exp

(

−(x − ξ(t))⊤W+(t)(x − ξ(t))

2ε2

)

with the mean value mt = ξ(t) and the covariance matrix D(t, ε) = ε2W (t). The stochastic sensitivity
matrix W (t) is a unique solution of the boundary problem

Ẇ = F (t)W + WF⊤(t) + P (t)S(t)P (t) (A.2)

with conditions

W (T ) = W (0), W (t)r(t) = 0.

Here

F (t) =
∂f

∂x
(ξ(t)), S(t) = G(t)G⊤(t), G(t) = σ(ξ(t)),

r(t) = f(ξ(t)), P (t) = Pr(t), Pr = I − rr⊤

r⊤r
.

The eigenvalues λi(t) and eigenvectors vi(t) of the SSF matrix characterize the distribution of random
states in the Poincare section Πt near the point ξ(t) of the cycle. SSF matrix allows to construct confidence
ellipse with the center in point ξ(t). A set of these ellipses for t ∈ [0;T ) specify some confidence torus
around a deterministic cycle. This torus is a confidence domain in a phase space for the stochastic cycle
as a whole [Ryashko et al., 2009].

Consider the point of cycle ξ(t) and a confidence interval in the direction of vi(t). Ends of this confidence
interval are points of intersection of the confidence torus with a line passing in the direction of vi(t). Their
coordinates can be written as x1,2(t) = ξ(t) ± αi(t)vi(t), where αi(t) =

√

2λi(t)εk, the coefficient k is
determined by the three-sigma rule k = 3√

2
. The confidence intervals allow to estimate critical values of

noise intensity: ε∗i = min
t∈[0;T )

α∗

i
(t)√

2λi(t)k
.
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