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Journal Name

Phase behaviour and gravity-directed self assembly
of hard convex spherical caps

John M. McBride and Carlos Avendaño∗

We investigate the phase behaviour and self-assembly of convex spherical caps using Monte
Carlo simulations. This model is used to represent the main features observed in experimental
colloidal particles with mushroom-cap shape [Riley et al., Langmuir, 2010, 26, 1648]. The geome-
try of this non-centrosymmetric convex model is fully characterized by the aspect ratio χ∗ defined
as the spherical cap height to diameter ratio. We use NPT Monte Carlo simulations combined with
free energy calculations to determine the most stable crystal structures and the phase behaviour
of convex spherical caps with different aspect ratios. We find a variety of crystal structures at
each aspect ratio, including plastic and dimer-based crystals; small differences in chemical po-
tential between the structures with similar morphology suggest that convex spherical caps have
the tendency to form polycrystalline phases rather than crystallising into a single uniform structure.
With the exception of plastic crystals observed at large aspect ratios (χ∗ > 0.75), crystallisation
kinetics seem to be too slow, hindering the spontaneous formation of ordered structures. As an
alternative, we also present a study of directing the self-assembly of convex spherical caps via
sedimentation onto solid substrates. This study contributes to show how small changes to particle
shape can significantly alter the self-assembly of crystal structures, and how a simple gravity field
and a template can substantially enhance the process.

1 Introduction
Self-assembly of molecular, nano, and colloidal building blocks
is an efficient method of producing functional materials.1,2 This
method has become particularly important for the formation of
materials across the colloidal length scale due to recent devel-
opments of experimental techniques to synthesise particles with
arbitrary shape and surface functionalities.3–8 The goal of self-
assembly is to understand the role of shape and interparticle in-
teractions on the spatial arrangement of a system, leading to for-
mulation of design rules to target specific structures by control-
ling the driving forces affecting the organisation of the building
blocks.9,10 The role of shape alone has been extensively explored
by considering particles that interact purely via repulsive interac-
tions.11–22

Computer simulations of hard-core particle models have
played a significant role in understanding the mechanism be-
hind the organisation of colloidal systems. A variety of
shapes in bulk and under the influence of external fields have
been explored including spherocylinders15–18, cut-spheres23 and
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platelets24–28, dimers29–31, bowl-like particles32–34, concave
spherical caps35–37, polyhedra38–42, and a variety of branched
particles43–46, just to mention few examples. An assumption
behind these studies is that the effect of gravitational forces is
negligible, corresponding to a situation of colloidal particles em-
bedded within a density matched (implicit) medium. Away from
these conditions, however, the effect of gravity can no longer be
ignored47. The influence of gravity on a suspension is typically
measured in terms of the relative strength between thermal en-
ergy due to Brownian motion and the gravitational energy. When
gravitational effects become important, density inhomogeneities
develop along the direction of the field resulting in sedimenta-
tion and even segregation and phase transformations48–54. In
some cases, gravitational effects can be used to program self-
assembly9,55.

In this work, we present a computer simulation study of a
model of convex spherical caps56 in bulk and under a gravi-
tational field to direct their self-assembly. The particle model,
shown in Figure 1, is used to represent the features of real
mushroom cap-shaped (MCS) colloidal particles57–61. Under
strong geometrical confinement, MCS particles exhibit a very rich
phase behaviour due to their anisotropic shape and lack of cen-
trosymmetry58,62. This behaviour has been confirmed by com-
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puter simulations of a convex spherical cap model, demonstrat-
ing the suitability of the model56. Moreover, MCS particles have
gained considerable attention due to the possibility of forming
photonic band-gap materials with highly anisotropic Brillouin
zones.58,63–65 The focus of the present report is to use Monte
Carlos (MC) computer simulations to explore the competing ef-
fects of gravity and particle shape on crystal structures formed on
both planar structureless walls and patterned substrates to study
colloidal epitaxy66. A good understanding of crystallisation by
sedimentation is necessary if it is to be a viable route for the pro-
duction of novel structures from anisotropic particles.

2 Methods
The convex spherical cap (CSC) model used in this work consists
of a hard sphere of diameter σ cut off by a plane at a height χ, as
shown in Figure 1. The geometry of the particle is described by its
aspect ratio χ∗ = χ/σ . The algorithm to detect overlaps between
particles has been presented elsewhere.32,56,67 We first analyse
the formation of ordered structures of CSCs with different aspect
ratios in bulk conditions, followed by the analysis of the structures
formed under the influence of a gravitational field. Properties
are reported in dimensionless units: pressure, P∗ = Pσ3/(kBT ),
density, ρ∗ = Nσ3/V , and volume fraction, φ = Nνp/V , where P
is the pressure, kB is the Boltzmann constant, T is the absolute
temperature, N is the total number of particles, νp = πχ2(3σ/2−
χ)/3 is the volume of a CSC of height χ, and V is the total volume
of the system. Similarly, all lengths are expressed in units of σ .

2.1 Bulk simulations
The search for bulk equilibrium structures is broken up into two
stages. First we determine the most stable crystal structures for
each aspect ratio, followed by the analysis of the regions of stabil-
ity of the structures. Free energy calculations are used to deter-
mine these regions of stability. For crystal phases the free energy
is determined using the Einstein crystal method.32,68–70 Details
of the implementation of this method are given in the Appendix.
For the fluid phase the excess chemical potential is obtained using
Widom’s particle insertion method71. Close-packed crystal struc-
tures are determined using the floppy-box MC algorithm, here-
after referred to as FBMC simulations.72–74 This method entails
generating several hundred candidate crystal structures for each

Fig. 1 Representation of the geometry of the hard-core convex
spherical caps model. The geometry of the model is uniquely defined by
the aspect ratio χ∗ = χ/σ , where χ is the height of the cap and σ is the
diameter of the parental sphere. The model has axial symmetry and its
orientation is described by the unit vector û. Note that the value of χ∗ = 1
corresponds to a sphere, while χ∗ = 0.5 corresponds to a hemisphere.

aspect ratio and selecting unique candidates as possible equilib-
rium structures. For each aspect ratio χ∗, and each number of
particles from 2 to 10, one hundred configurations are generated
using different initial conditions. Each system is compressed from
a pressure of P∗ = 4 to P∗ = 20 in steps of ∆P∗ = 4, then to a pres-
sure of P∗ = 100 in steps of ∆P∗ = 20, and finally to a pressure
of P∗ = 106 by increasing the pressure by factors of 10. Simula-
tions are run in the isobaric-isotension NPT ensemble where the
shape and size of the box are allowed to vary; 106 MC cycles are
performed at each pressure. Periodic boundary conditions are ap-
plied in all directions. A cycle consists of N MC moves with the
following probabilities: translation, 30%; rotation 30%; 180◦ ro-
tation, 10%; isotropic volume change 15%; anisotropic volume
change 15%. Moves are accepted based on the Metropolis algo-
rithm and for the equilibration stage the acceptance rate is kept at
about 30%. Each final configuration is saved for post-processing
analysis.

Crystal structures are analysed using translational and orienta-
tional order parameters. The crystal symmetry is determined us-
ing Steinhardt bond-orientational order parameters, Ql , for l = 4
and l = 6.75,76 The global orientational order of the system is
characterised by computing the eigenvalues of the orientational
tensor Q given in terms of the orientations of the particles ûi as

Q =
1
N

N

∑
i=1

3
2

ûi⊗ ûi−
I
2
, (1)

where I is the unit tensor. The director ûsys, i.e., the principal ori-
entation of the system, corresponds to the eigenvector associated
to the largest eigenvalue S2 of the tensor Q. S2, usually referred
to as the nematic order parameter77, is a measure of alignment
along the principle axis of the system with S2 = 0 indicating an
isotropic system and S2 = 1 indicating perfect alignment. S2, how-
ever, does not differentiate between parallel or antiparallel orien-
tations along the director. The orientational order parameter S1 is
useful for finding the proportion of particles aligned in the same
direction and it is given by

S1 =
1
N

N

∑
i=1

ûi · ûsys. (2)

Given the propensity of CSCs to dimerise via contacts between
their flat faces, the fraction of particles that form dimers is an-
other indicator of crystal structure. Dimers are identified as hav-
ing a small cap-to-cap distance between the centres of the CSCs
faces and opposing orientations, ûi and û j. Two particles i and j
form a dimer if the distance between their flat caps is |rcap

i j |< 0.25,
with

rcap
i j = rcom

i j −
[

χ−σ/2+
3(σ −χ)2

4(3σ/2−χ)

]
(û j− ûi), (3)

where rcom
i j is the vector between the centres of mass of particles

i and j.
Crystal structures with unique properties for each value of χ∗

are then used as starting configurations for expansion runs in the
isobaric-isotension NPT ensemble to determine the φ −P∗ equa-
tion of state. Systems of approximately N = 500 particles are ex-
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panded from the limit of close packing all the way to dilute gas.
Periodic boundary conditions are applied in the three Cartesian
coordinates. For each thermodynamic state, 105 MC cycles are
performed for both equilibrium runs and for final ensemble av-
erages. A cycle consists of N MC moves of type and probability:
translation, 40%; rotation 40%; 180◦ rotation, 10%; isotropic vol-
ume change 5%; anisotropic volume change 5%. Only isotropic
volume changes are used for fluid states to avoid excessively de-
formed simulation cells. Phase coexistence points along the equa-
tion of state are determined by finding the point at which the
chemical potential and pressure of two phases are equal.

It is useful to measure the degree of mobility of the particles.
For this purpose, we calculate both the pseudo mean square dis-
placement (MSD) ∆r2 and the pseudo orientation autocorrelation
function E2 as

〈
∆r2(tMC)

〉
=

〈
1
N

N

∑
i=1

[
ri(tMC)− ri(0)

]2〉 (4)

and

E2(tMC) =

〈
1
N

N

∑
i=1

1
2

{
3
[
ûi(0) · ûi(tMC)

]2−1
}〉

(5)

where tMC denotes Monte Carlo cycles. These are calculated using
NV T -MC simulations with fixed values for the maximum particle
displacement and rotation78.

2.2 Simulations of convex spherical caps under gravity

The behaviour of CSCs under the influence of a gravitational field
is studied using NV T -MC simulations. Particles are placed in a
simulation box cell of dimensions Lx, Ly, and Lz. Periodic bound-
ary conditions are applied only in the x and y directions, while
a hard wall is placed at the bottom of the cell along the z direc-
tion. This situation corresponds to a finite system where particles
are confined within a large slit pore of volume V = LxLyLz. The
particles are subject to an external field of the form

φi(z) = mgzi (6)

where zi is the z-component of the centre of mass of particle i, m
is the buoyant mass, and g is the gravitational acceleration. The
origin of the cell is located in the middle of the box. The algorithm
to detect overlaps between a CSCs and a hard wall is taken from
reference [56]. The strength of the gravity field is controlled by
the gravitational length given by l∗g = l/σ = kBT/mgσ . Note that
the lower the value of l∗g is, the stronger the gravitational field is
with respect to the thermal energy.

The box area A = LxLy is adjusted to accommodate a hexag-
onal arrangement of spheres of diameter σ .50 This is achieved
by setting Lx = na0, Ly =

√
3

2 na0, where n is an integer and a0 is
the lattice constant. While the choice of a0 has a non-negligible
effect on the crystallisation of the particles, crystal strain due to
lattice-mismatch is still unavoidable as the shape and size of the
box are kept constant while the system undergoes an effective
compression.50,79 An intermediate value of a0 = 1.06 is used in
this work for all the simulations to accomodate crystals across a

range of densities. Different values of particles per unit of area
ρ∗A = Nσ2/A are used in the range of 2.5 ≤ ρ∗A ≤ 25. The num-
ber of particles N used range from 1000 to 5000. For the ma-
jority of simulations the box is bounded at the bottom by a flat
hard wall. However, additional simulations are performed where
the box is bounded by a template constructed of monolayers of
spheres frozen in place and arranged with hexagonal symmetry
and lattice constant a0 = 1.06.

MC-NV T simulation runs are started with random initial con-
figurations at a high value of l∗g , corresponding to a weak gravi-
tational strength. The value of l∗g is then decreased sequentially,
using as a starting configuration the previous final configuration
at higher gravitational strength. For each value of l∗g ,∼ 106 MC cy-
cles are used for the equilibration stage, and additional ∼ 106 MC
cycles are used to collect ensemble averages. Each cycle attempts
N Monte Carlo moves with the following probabilities: transla-
tion, 40%; rotation, 40%; 180◦ rotation, 20%. Moves are accepted
using the Metropolis algorithm and the acceptance rate is tuned
during the equilibration stage to an approximate value of 30%.

The particle distribution along the z-direction is analysed by the
area density profile ρ∗A(z),

ρ
∗
A(z) =

1
A

∫ ∫
ρ
∗(x,y,z)dxdy (7)

where ρ∗(x,y,z) is the local reduced number density. Density
profiles are calculated using bins of thickness ∆z = 0.1σ . Max-
ima and minima in the density profile indicate the formation of
layers and are used to isolate particles in well-defined layers for
analysis of local translational and orientational order. Structural
order along individual layers is analysed using two-dimensional
bond-orientational order parameters Ψn(z) along the z-direction
defined as

Ψn(z) =
1

N(z)

N(z)

∑
j=1

1
N j

N j

∑
k=1

exp(inθ jk) (8)

where n describes the degree of symmetry analysed, N(z) is the
number of particles in a layer at positions z, N j is the number
of nearest neighbours of particle j, θ jk is the angle made by the
bond between particle j and its nearest neighbour k with respect
to an arbitrary axis80. Neighbouring particles are determined us-
ing a Voronoi tessellation algorithm81. Local orientation of the
particles is analysed using profiles of the orientational order pa-
rameter S1(z) and S2(z). The reduced osmotic pressure P∗(z0) is
calculated as the force per unit of area exerted on a layer of par-
ticles at height z0 by the overhead particles at height z > z0

50,82,

P∗(z0) =
P(z0)σ

3

kT
=

1
σAl∗g

∫ ∫ ∫ Lz
2

z0

ρ
∗(x,y,z)dxdydz. (9)

3 Results

3.1 Bulk phase behaviour of convex spherical caps

The phase behaviour of CSCs in bulk as a function of the aspect
ratio χ∗ has been analysed using NPT -MC simulations combined
with free energy calculations. Figure 2 shows the stable crys-
tal structures determined using FBMC simulations and free en-
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ergy calculations. These complex structures can be classified in 5
groups: isotropic disordered state (I, not shown), plastic crystals
(PC), aligned crystals (A), dimer-based crystals (B), and inter-
digitated crystals (C). The orientationally ordered crystals are
further denoted by 1 or 2 depending on whether the CSCs are
oriented along 1 or 2 axes.

It is not immediately obvious which crystal structure is the most
stable at each value of aspect ratio χ∗. While one can distinguish
clearly between PC, A, B, and C phases as they have different
structural and thermodynamic properties, it is more difficult to
differentiate between A1 and A2 crystals as they have similar
properties. Furthermore, this is true for all other corresponding
phases of the same crystal type (B1P and B2P, etc.). This is evi-
dent in Figure 3 where we show the maximum packing, φm, ob-
tained using FBMC simulations. As an example, A1 and A2 have
essentially the same values of φm as a function of aspect ratio,
in addition to having almost identical equations of state. It is
interesting to note than although one would expect hemispheres
(χ∗ = 0.5) to crystallize with a maximum value of φm = 0.74 in the
BPC crystal, these particles exhibit higher volume fractions since
particles forming a dimer can experience small offsets to enhance
the packing. This is also true for other B crystals for CSC with
χ∗ < 0.65 as observed in Figure 3. The structures shown in Figure
2 are in equilibrium, however the FCMB method is most apt for
finding the densest crystal structures, and in the case of B crys-
tals for χ∗ < 0.65 the FBMC method finds structures which differ
slightly from those reported in Figure 2. Even though the PC, A,
B, and C phases are distinct their stability needs to be assessed. It
emerges that the relative stability of crystals must be determined
by the interplay of translational and rotational entropy. One can
provide an initial estimate of the stability of crystals by only con-
sidering the structure: high φm indicates high translational en-
tropy; the rotational entropy may be inferred from a particle’s
local environment. So we first examine the structure of the dif-
ferent crystal phases shown in Figure 2.

The plastic crystal PC is characterised by particles arranged on
a crystal lattice with random particle orientations. The PC phase
for CSCs is found to be similar to the hard sphere crystal and the
FCC structure is used throughout this work. The HCP structure is
likely to be just as stable but the question of which is more stable
is left for future work. In regions of stability PC is completely
free to rotate (S2 is low at all volume fractions), which leads us to
use linear scaling to determine the theoretical maximum packing
in Figure 3. If one assumes that the unit cells of a CSC PC and a
hard sphere FCC crystal are identical at constant ρ∗, then the the-
oretical maximum packing is found as φPC

m = φ HS
m νp/νHS, where

close packing of hard spheres is φ HS
m = 0.74, and νHS is the vol-

ume of a sphere of diameter σ . It is evident that as χ∗ decreases
the maximum packing sharply drops while the rotational freedom
is assumed unchanged, so the PC stability should be at a maxi-
mum at χ∗ = 1 and decrease as a function of anisotropy. Crystals
of type A have a deformed FCC structure with a maximum φm at
χ∗ = 0.85. Both forms A1 and A2 exhibit almost identical packing
and equations of state. The maximum packing of A crystals is al-
ways exceeded by that of the B crystals. Particles in B crystals are
individually hindered from rotating due to their arrangement in

Fig. 2 Representative configurations of the ordered structures formed
by CSCs with different values of aspect ratio χ∗: PC , χ∗ = 0.95; BPC ,
χ∗ = 0.5; A1 , χ∗ = 0.75; A2 , χ∗ = 0.85; B1P , χ∗ = 0.6; B2P , χ∗ = 0.85;
B1O , χ∗ = 0.25; B2O , χ∗ = 0.33; C1 , χ∗ = 0.5; C2 , χ∗ = 0.5; The crystal
structures are obtained using FBMC simulations.
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Fig. 3 Maximum volume fraction, φm, obtained from FBMC simulations
at various aspect ratios for crystals outlined in Figure 2. Theoretical
maximum packing for PC crystals is given by the continuous curve.

dimer-like configurations. The tendency for CSCs to form these
cap-to-cap contacts has been quantified by van Anders et al.83,
and these arrangements are here referred to as specific entropic
bonds (SEB). The most dense packings of CSCs always have at
least one SEB as particles aligning cap-to-cap allows for more ef-
ficient use of space. Like with the A crystals, B1 and B2 have al-
most identical φm and equations of state. The B crystals however
have more complex structures, and as χ∗ decreases their struc-
tural properties change considerably. Crystals formed by CSCs of
χ∗ & 0.6 are denoted B1P and B2P as the dimers resemble prolate
spheroids or dumbbells. Such a comparison draws on similari-
ties between the B2P crystal and the structures observed in for
hard ellipsoids by Dovev et al.84 and by Pfleiderer et al.85, and
although it has not been studied here there may exist another BP

crystal where dimer bonds are formed randomly akin to the ape-
riodic crystal structure formed by dumbbells29,31,86,87. The next
dimer-based crystal is BPC has similar structure to PC where in
this case particles forming dimers can rotate cooperatively. First
reported in Marechal et al.33 as FCC2, this phase is an unusual
example of a plastic crystal where the centres of mass of individ-
ual particles do not exhibit long-range translational order, as pairs
of particles effectively orbit around the FCC lattice points; long-
range translational order is recovered if the particle reference is
taken as the centre of mass of the dimers. Crystals formed by
CSCs of χ∗ . 0.4 are denoted B1O and B2O as the dimers resem-
ble oblate spheroids or UFO particles88, and are closely related
to the structures observed in convex lens-shaped particles (note
that a dimer formed by two CSCs have the same shape as a con-
vex lens-shaped particles provided that 0 < χ∗ ≤ 0.5)89. While
the rotational freedom of individual particles is severely limited
in B crystals, dimers can still rotate to varying degrees. This is
in contrast to the C crystals where particles interdigitate and are
effectively locked together. For C crystals the particles form two
SEBs in order to achieve the most dense CSC packing, with a max-
imum φm located at χ∗ = 0.5. Once again, C1 and C2 have almost
identical φm and equations of state. The C2 structure can be con-
sidered AB stacking of layers with different orientations. Though
not investigated here, a crystal with random stacking of layers
may actually be the most stable C crystal.

Having described qualitatively the features of the different crys-
tals we proceed to analyse their relative stability using free energy
calculations. The results for the free energies of different crystal

χ∗ P∗ = Pσ3 φ Crystal βF µ

0.95 400 0.7448 A1 20.11 300.6
400 0.7447 A2 20.07 297.2

0.85 300 0.7614 B1P 20.14 213.9
300 0.7614 B2P 19.81 213.6

0.80 100 0.7301 B1P 15.27 71.50
100 0.7300 B2P 15.19 71.42

0.75 300 0.7684 B1P 20.16 192.7
300 0.7684 B2P 20.14 192.6

0.70 100 0.7240 B1P 14.80 71.50
100 0.7243 B2P 14.74 71.42

0.65 100 0.7143 B1P 14.54 67.19
100 0.7141 B2P 14.46 67.12

0.60 130 0.7325 C1 16.29 62.75
130 0.7325 C2 16.06 62.51

0.50 130 0.7220 C1 16.32 63.46
130 0.7220 C2 16.19 63.34

0.40 130 0.6596 C1 14.18 42.13
130 0.6605 C2 14.00 41.90

0.33 120 0.6444 C1 14.48 39.33
120 0.6443 C2 14.51 39.36

0.25 600 0.7401 C1 20.406 86.772
600 0.7401 C2 20.407 86.774

Table 1 Results for the free energies of crystal candidates of CSCs with
different values of χ∗ that have similar structural and thermodynamic
properties. Stable crystal structures are highlighted in grey.

χ∗ P∗ = Pσ3 φ Crystal βF/N µ

0.95 731 0.7310 PC 17.1361 277.008
731 0.7696 A1 22.4994 276.520
731 0.7496 A2 22.4990 276.519
731 0.7503 B1P 23.6741 277.289
731 0.7503 B2P 23.2761 276.887

0.85 76.6 0.6656 PC 10.2193 66.8169
76.6 0.7099 A1 13.3603 66.4308
76.6 0.7099 A2 13.2444 66.3149
76.6 0.7115 B1P 13.8182 66.7414
76.6 0.7116 B2P 13.3894 66.4763

0.75 49.7 0.6218 PC 9.3446 44.6377
49.7 0.6648 A1 11.4337 44.4559
49.7 0.6649 A2 11.3106 44.3202
49.7 0.6766 B1P 11.7842 44.2168
49.7 0.6770 B2P 11.7070 44.1519

Table 2 Results for the free energies of crystal candidates of CSCs with
different values of χ∗ that have different structural and thermodynamic
properties. Results are reported for the value of P∗ which corresponds
to a PC at a supersaturation of ∆µ∗ ≈ 0.5. Stable crystal structures are
highlighted in grey.

candidates are shown in Tables 1 and 2. It is evident from the
results in Table 1 that crystal candidates with similar properties
have small differences in the free energy. It must be noted that
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Fig. 4 Difference in chemical potential, ∆µ∗, between each metastable
crystal and the stable crystal for different values of χ∗. ∆µ∗ is measured
at a P∗ which corresponds to a supersaturated PC with ∆µ∗ ≈ 0.5; the
dotted line is shown at ∆µ∗ = 0.5 for clarity. The stable crystals at each
aspect ratio are: χ∗ = 0.75 - B2; χ∗ = 0.85 - A2; χ∗ = 0.95 - A2. See
Table 2 for more details.

given such small differences, such as for C1 and C2 at χ∗ = 0.25
and for A1 and A2 at χ∗ = 0.95, judgements on which phase is
the most stable requires further analysis as the precision of our
calculation is not high enough. For this reason, only approximate
boundaries are drawn in the phase diagram shown in Figure 5.
Relative stability may be calculated more accurately using, for ex-
ample, the Monte Carlo lattice-switch method90. Such analysis,
however, is outside the scope of the present work. As a contrast,
Table 2 shows clear differences in the free energy of crystals with
distinct structures. However, the stability at a given pressure is
not determined by the free energy alone, but rather by the chem-
ical potential. Examining the chemical potential of the PC, B and
A phases for χ∗& 0.7 reveals that while only one phase is stable at
any time, many phases are closely metastable. In order to study
the regions of metastability we compressed the PC phase until
the system is metastable with a supersaturation of ∆µ∗ ≈ 0.5. At
this pressure we report the difference in chemical potential, ∆µ∗,
between the stable state - which depends on the aspect ratio -
and the various metastable states. The results are shown in both
Figure 4 and Table 2, where it is evident from the small differ-
ences in chemical potential that a PC compressed past the point
of stability will not necessarily transition into a single crystal type.

A summary of phase transitions for each value of χ∗ studied is
given in Table 3 and illustrated in a phase diagram in Figure 5.
Particles with χ∗ > 0.95 essentially crystallise in a similar way as
hard spheres at moderate values of volume fraction. The results
for the phase behaviour of CSCs with χ∗ = 0.95 are shown in Fig-
ure 6. This system exhibits two main phase transitions: (a) tran-
sition from the I phase (φ = 0.4922) to the PC phase (φ = 0.5420)
at P∗ = 11.79; and (b) transition from the PC phase (φ = 0.7304)
to the A2 phase (φ = 0.7488) at P∗ = 636.4. The final phase tran-
sition to the B2 phase is of minor importance as it occurs at ap-
proximately 99.6% of φm.

Figure 5 shows that PC is stable until about χ∗ = 0.74. At
χ∗= 0.75 there is a point where the density of the metastable fluid

0.25 0.50 0.75 1.00
χ ∗

0.5

0.6

0.7
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Fig. 5 Approximate aspect ratio-volume fraction (χ∗−φ ) phase
diagram for CSCs. Circles represent results obtained from free energy
calculations and NPT Monte Carlo simulations. The grey area
represents coexistence regions, while the hatched area at the top of the
phase diagram indicates the inaccessible densities where maximum
packing fractions would be exceeded. Lines connecting the simulation
points are used to guide the eye. Dotted lines denote approximate
phase boundaries.

is greater than the density of the PC. This suggests that there
may be a point on the phase diagram where there is an isochoric,
first order I-PC transition. A2 is the next stable phase observed
across the range 0.95 & χ∗ & 0.85, and the region of metastabil-
ity extends to χ∗ = 0.7 as is partly shown in Figure 4. A1 is not
found to be the most stable phase at any point, but it is metastable
across the range 0.95 & χ∗ & 0.70. The region of maximum sta-
bility for A2 coincides with the maximum φm seen in Figure 3. It
seems that the small increase in rotational freedom afforded by
the A arrangement as compared to B is sufficient to offset the dif-
ference in packing efficiency between the two phases. However
as the disparity in φm increases, A phases become metastable. For
low anisotropy the B crystals are the most stable at high density,
but at about χ∗ . 0.689 crystals of type C become the most dense
stable crystals. Examining the range 0.6 . χ∗ . 0.69, even though
C crystals have greater φm, B crystals exhibit much greater regions
of stability, once more demonstrating the importance of rotational
freedom. For χ∗ = 0.4 one can make similar arguments for the
stability of the BPC phase as were made previously for the PC
phase: if we assume that the BPC phase maintains full rotational
freedom then the theoretical maximum packing at χ∗ = 0.4 must
be significantly reduced. However we find that orientational or-
der increases with packing fraction, indicating that the BPC crys-
tal unit cell does deform and the dimers experience a reduction
of rotational freedom. Thus the small region of stability for the
BPC at this point is due partly to both reduced rotational free-
dom and inefficient packing. Finally, for similar crystals such as
A1 and A2 it appears that the structures in which CSCs align
along two principal axes are generally more stable. Determining
exactly why this is so is inherently difficult, but it is suggested this
is due to increased entropy as a result of particles being able to
occupy twice as many orientations.
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χ∗ Phase 1 Phase 2 φ1 φ2 P∗ µ∗

0.99 I PC 0.494 0.545 11.55 16.04

0.95 I PC 0.4922 0.5420 11.79 16.26
PC A2 0.7304 0.7488 636.4 243.2
A B2P 0.7527 0.7539 1516 1072

0.85 I PC 0.5034 0.5429 14.02 18.00
PC A2 0.6590 0.6900 65.34 58.46
A2 B2P 0.7237 0.7285 101.8 83.65

0.80 I PC 0.5253 0.5514 18.05 21.21
PC B2P 0.6290 0.6741 48.03 44.72

0.75 I PC 0.5914 0.5928 35.48 34.32
0.75 PC B2P 0.6052 0.6587 41.02 38.41

0.70 I B2P 0.5984 0.6482 41.56 36.96

0.65 I B2P 0.5930 0.6414 43.18 35.98
B2P C1 0.7589 0.7664 324.6 180.6

0.60 I B1P 0.5756 0.6250 42.33 33.22
B1P C2 0.7125 0.7285 122.3 73.06

0.50 I BPC 0.5481 0.5988 45.93 30.06
BPC C2 0.6736 0.7076 108.3 55.40

0.40 I BPC 0.5514 0.5886 67.67 32.05
BPC C2 0.6321 0.6641 105.4 43.39

0.33 I B2O 0.5448 0.5904 89.97 32.21
B2O C2 0.6827 0.7050 218.1 58.61

0.25 I B1O 0.4888 0.5456 100.4 26.23
B1O C1 0.7010 0.7242 454.3 70.48

Table 3 Crystal structures formed by CSC as function of the aspect ratio
χ∗. For each system, coexistence phases, coexistence volume fractions,
transition pressure, and transition chemical potential µ∗ are presented.

The results for the phase transitions are determined completely
using free energy calculations to connect the equations of state
of two stable phases in coexistence. However, it is important to
stress that, with the exception of the PC phase for CSCs with
large values of χ∗, we do not observe the spontaneous formation
of ordered phases from the compression of the isotropic phase.
This is most likely due to a problem of slow kinetics. The forma-
tion of B phases, for example, requires as a first step the forma-
tion of dimer-like arrangements, followed by the organisation of
the dimers into the final structure. This issue is exemplified in
Figure 7 where the results for the equation of state and phase
coexistence between the I phase (φ = 0.5481) and the plastic
crystal BPC phase (φ = 0.5988) at P∗ = 45.93 formed by sphere-
like dimers of hemispheres (χ∗ = 0.5) are presented. The com-
pression of the I phase pushes the system beyond the transition
point reaching the supersaturated region. In the BPC phase all
hemispheres need to be bonded through SEBs. The fraction of
non-bonded hemispheres funbonded as a function of the volume
fraction is shown in Figure 7, where it is observed that at the en-
trance of the coexistence region, only 20% of hemispheres form
dimers. Further compression of the system deep in the supersat-
uration region increases the fraction of bonded particles to 40%,
however, the acceptance of MC moves and the mobility of the sys-
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Fig. 6 Phase behaviour of CSCs with χ∗ = 0.95. (a) Packing
fraction-pressure (φ −P∗) equation of state and packing fraction-nematic
order parameter (φ −S2) profile obtained from NPT -MC simulations. (b)
orientation autocorrelation function E2 for pressures
P∗ = [150,300,500,700] that correspond to states in the PC phase
region. The maximum particle rotation is fixed at ∼ 26.5◦.

tem characterised by the mean-square displacement (see Figure
7(c)) are reduced significantly and the system is trapped in a dis-
ordered solid state. In another study, hard hemispheres were only
found to crystallise when a significant concentration of depletants
is added91. A similar trend is observed for the other transitions.
For the system of CSCs with χ∗ = 0.95, the system upon com-
pression is able to transform from the I phase to the PC phase
(see Figure 6), however, the system is unable to transform from
the PC phase to an A phase. The formation of an A phase re-
quires that all particles align along one or two directions which
is characterised by both order parameters S1 and S2. As in the
previous case of hemispheres, the system near the coexistence
region becomes so dense that the acceptance of MC moves de-
creases significantly without an enhancement of the alignment of
the particles as demonstrated by the behaviour of the orientation
autocorrelation function E2 shown in Figure 6(b). A more de-
tailed analysis of the formation of ordered phases of CSCs in bulk
requires a study of nucleation kinetics using special techniques
for rare events.92–95

3.2 Template-assisted self-assembly under gravity
It is evident from the difficulty of forming ordered phases of CSCs
in bulk that we require a different approach to promote the for-
mation of different crystal phases. Directed self-assembly of CSCs
has been studied using geometrical confinement56,58, and by us-
ing depletants to create an attractive interaction between hemi-
spheres91. However, recent sedimentation experiments of parti-
cles with similar geometry as CSCs reveal the formation of or-
dered phases by stacking of layers on a planar surface60. In order
to ascertain how CSCs self-assemble under gravity, we slowly de-
crease the gravitational length lg (increase of the gravitational
strength) to observe the evolution of the stacking of layers and
their structure first against a structureless hard wall. This could
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Fig. 7 Phase behaviour of CSCs with χ∗ = 0.5. (a) Packing
fraction-pressure (φ −P∗) equation of state obtained from NPT -MC
simulations. The I phase branch is obtained from compression runs,
while the crystal BPC branch is obtained from expansion of the crystal
structure. Dashed lines indicate the point of the phase transition. The
fraction of unpaired CSCs observed during the compression of the I
phase is also shown. In (b) and (c) the orientation autocorrelation
function E2 and the mean square displacement ∆r2 for two state points
of the fluid branch corresponding to pressure P∗ = 30 (fluid state) and
P∗ = 50 (supersaturated state) are shown. The maximum particle
rotation is set as ∼ 2.86◦; the maximum particle displacement is set as
0.01σ .

be achieved experimentally via slow sedimentation or stepped-
force centrifugation in a density-matched medium96,97. We re-
strict our analysis to CSCs with aspect ratios χ∗ ≥ 0.75. Hemi-
spheres were also studied, but it was observed that the gravita-
tional field did not aid the crystallisation of the particles.

The results for the density profile and order parameters profile
for CSCs with χ∗= 0.95 are shown in Figure 8 at two different val-
ues of gravitational length l∗g . For the gravitational length l∗g = 0.2
(Figure 8(a)) the system clearly forms layers that grow in the
direction perpendicular to the flat wall. These layers are charac-
terised by well-defined peaks in the density profile. The analysis
of the order parameters Ψ6, S1 and S2 in each layer reveals the for-
mation of layers with hexagonal order (large values of Ψ6) that
lack orientational order with values of order parameters S1 ∼ 0
and S2 ∼ 0. This behaviour is an indication of the formation of
a PC layer. At a lower gravitational length (l∗g = 0.04, Figure
8(b)), the particles belonging to the three PC layers near the
wall align in a common direction to form orientationally ordered
crystal (OOC) layers having well-defined translational and orien-
tational order that, in this case, resembles the A crystal observed
in bulk simulations (see crystals A1 and A2 in Figure 2). Similar
analysis for systems of CSCs with χ∗ = 0.85 and χ∗ = 0.75 reveals
that in addition to the A phase observed at low values of l∗g , in
some cases the aligned particles of one layer are paired to the
particles of an upper layer to form dimers via SEBs in an arrange-
ment similar to B crystals. The results for the structural prop-
erties of the first three layers near the flat wall formed by CSCs
with χ∗ = 0.85 are shown in Figure 9, demonstrating the trans-

Fig. 8 Density ρ∗ and order parameters Ψ6 and S2 profiles along the
direction of the gravity field for CSCs with χ∗ = 0.95 for two values of
gravitational length l∗g . Representative configurations for each
temperature are also shown. (a) Results for l∗g = 0.20 where the system
exhibit coexistence of layers of PC structure with layers of I structure;
(b) results for l∗g = 0.04. where three-phase coexistence of layers with
OOC structure, PC structure, and I structure is observed.

formation of the layers from an I structure to a PC structure to
an OOC structure upon increasing gravitational strength. Over-
all the use of a gravitational field and a flat substrate improved
the self-assembly of CSCs. However, the methodology is limited
as defects are increasingly common as the amount of anisotropy
increases, and we observe crystals with different structures with
slightly different input parameters. In other words, there is still
an absence of control over the final outcome. In Figure 10, for ex-
ample, two structures formed in systems of CSCs with χ∗ = 0.85
are shown. Using different values for the area density, ρ∗A, two
different structures of the layers near the flat substrate are ob-
served: (a) a herringbone stacking for ρ∗A = 9 and (b) a random
stacking for ρ∗A = 7.5. This difficulty in controlling which structure
is formed can be expected when the difference in chemical poten-
tial between crystals is so low as previously indicated in Figure 4
for bulk phases. A summary of the structures observed in systems
of CSCs under gravity is presented in Table 4.

3.2.1 Quantitative comparison: from bulk to gravity

In addition to showing qualitatively the difference between bulk
self-assembly and self-assembly under gravity we demonstrate
quantitatively the effect gravity has on the phase behaviour of
CSCs by calculating the pressure at which individual layers un-
dergo phase transitions using Equation 9. We compare bulk coex-
istence pressures to the transition pressures observed under grav-
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χ∗ Bulk Phase Gravity

0.95 PC PC A1
0.85 PC PC A1 B1 B2
0.75 PC A1 B1

Table 4 Summary of ordered phases formed spontaneously in systems
of CSCs with different values of χ∗ under gravity. For comparison, the
structures only obtained spontaneously by compression of the isotropic
fluid in bulk conditions are also presented.
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Fig. 9 Results for the structural properties of the layers formed by
CSCs with χ∗ = 0.85 The results correspond to (a) area density ρA, (b)
hexagonal bond-order parameter Ψ6, and orientational order
parameters (c) S2 and (d) S1. Circles, triangles, and squares symbols
correspond to the properties of the first, second, and third layers formed
respectively. Vertical lines indicate the position of the phase transitions
T1, T2, T3, and T4 in order of occurrence.

ity. Then in an attempt to pin-point the driving forces we also
consider the strength of the gravitational field, and the influence
of the structure of the substrate.

Since the only sequence of phase transitions observed in CSCs
under gravity is I-PC-OOC, there are two transitions to consider.
First we examine the PC-I transition. The results for the transi-
tion pressure P∗ and transition gravitational length l∗g as a func-
tion of the aspect ratio χ∗ are shown in Figure 11. The PC unit
cell is almost identical to the FCC or HCP crystals formed by hard
spheres, so it is useful to draw comparisons with previous stud-
ies on hard spheres. Hard spheres under gravity against a flat
wall have been shown to crystallise at approximately the same
pressure as bulk coexistence50. Hard spheres have also been
studied without gravity at both flat walls and hexagonal tem-
plates79,98–101. These studies have shown that a flat wall induces
hard spheres to crystallise at a slightly lower pressure than at bulk
conditions, while a hexagonal template will significantly decrease
the transition pressure. It can be seen in Figure 11 that CSCs mir-
ror the behaviour of hard spheres: CSCs with χ∗ = 0.95 under the
influence of gravity exhibit a PC-I transition at P∗ = 11.8± 0.1,
which is close to that of hard spheres in bulk102 (P∗hs = 11.55 ) and

Fig. 10 Representative configuration of structures observed in systems
of CSCs under gravity with different stacking orders. (a) herringbone
stacking formed by CSCs with χ∗ = 0.85, ρ∗A = 9, l∗g = 0.04; (b) random
stacking formed by CSCs with χ∗ = 0.85, ρ∗A = 7.5, l∗g = 0.03. Dimer
bonds (SEBs) are indicated by white lines.

Fig. 11 Results for (a) the pressures P∗ and (b) gravitational length l∗g
at the I-PC transition for CSCs under gravity. The transition pressures
are presented relative to the transition pressures P∗bulk observed in bulk.
The results correspond to (i) the formation of the first PC layer on top of
the flat wall (denoted by ’Flat substrate’), (ii) the formation of a PC layer
on top of a previously formed PC layer (denoted by ’PC substrate’), and
(iii) the formation of the first PC layer on top of an artificially generated
hexagonal layer of spheres (denoted by ’Hex substrate’).

to that of CSCs with χ∗ = 0.95 in bulk (P∗hs = 11.79 ); CSCs also
form PC layers at significantly reduced pressures when in contact
with a hexagonal template. A PC layer is also much more likely
to crystallise when there is already a PC layer present, i.e. after
the first layer of PC structure on the flat wall has formed. This
first PC layer is effectively acting as a hexagonal template, albeit
a defective one as the CSCs can rotate and have thermal motion.
Along the same lines, it is evident that as the CSCs become more
anisotropic the PC layer is decreasingly effective at promoting
crystallisation when compared to a hexagonal template. It is then
surprising that the flat wall has a much greater effect at stabilising
PC layers for χ∗ = 0.75, as there is no obvious entropic argument
for this increased stability. This suggests that gravity also acts to
stablise PC layers at pressures lower than bulk. This suggestion
can also be inferred from Figure 11(b) which shows a correlation
between the gravitational length and the transition pressure, not-
ing that the gravitational length is inversely proportional to the
gravitational strength. While such a strong effect has not been
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previously detected, it seems evident that particles should crys-
tallise at pressures lower than bulk as more efficient packing leads
to lower gravitational energy. This result highlights the need for
a systematic investigation into the effect of gravitational strength
on colloidal crystallisation.

Fig. 12 Results for (a) the pressures P∗ and (b) gravitational length l∗g
at the PC-OOC transition for CSCs under gravity. The transition
pressures are presented relative to the transition pressures P∗bulk
observed in bulk. The results correspond to (i) the formation of the first
OOC layer on top of the flat wall (denoted by ’Flat substrate’), (ii) the
formation of an OCC layer on top of a previously formed OCC layer
(denoted by ’OCC substrate’), and (iii) the formation of the first OOC
layer on top of an artificially generated hexagonal layer of spheres
(denoted by ’Hex substrate’).

Next we examine the OOC-PC transition in Figure 12. Here we
have compared the transition pressure under gravity with the co-
existence pressure for whichever orientationally ordered phase is
stable in bulk. The OOC label covers any type of orientationally
ordered phase. This does not result in the most exact of com-
parisons, but considering that the orientationally ordered crystals
are all close in stability this approximation is reasonable. For this
transition there is no previously published work to compare our
results to, but instead one can make arguments for what to ex-
pect. By aligning the flat face of the CSC against the wall the ex-
cluded volume is reduced. This entropic effect ought to be more
pronounced as χ∗ decreases. Similarly, by aligning this way the
particle’s centre of mass is lowered, thus decreasing its gravita-
tional energy. Back to Figure 12 we can see that the transition oc-
curs at a much lower pressure in the presence of a flat wall as has
been suggested. Surprisingly though there appears to be a much
stronger effect for higher values of χ∗. This discrepancy may be
explained by also considering the effect of l∗g . For χ∗ = 0.95 the
transition happens at a very high gravitational strength. The dis-
crepancy is consistent regardless of which surface the transition
takes place on, suggesting that for this transition gravity is the
dominant driving force. It can also be seen in Figure 12 that an
OOC layer is almost as effective as a hexagonal template in pro-
moting the formation of an OOC layer, more so than when com-
paring how a PC layer and a hexagonal template promote the
formation of a PC layer. For example, Figure 11(a) shows that

for χ∗ = 0.85 the I-PC transition occurs at P∗ = 0.84 P∗bulk against
a PC layer and at P∗ = 0.69 P∗bulk against a hexagonal template;
while Figure 12(a) shows that the PC-OOC transition occurs at
P∗ = 0.96 P∗bulk against a PC layer and at P∗ = 0.93 P∗bulk against
a hexagonal template. On one hand this may be due to the ab-
sence of rotational freedom in the OOC layer; while on the other
hand, thermal motion is also supressed as the layer is sandwiched
in-between an OOC layer and a PC layer. It is also interesting to
note that a hexagonal template seems to destabilise OOC layers
for CSCs with χ∗ = 0.75. From the previous results showing how
gravity and a template will stabilise PC layers, it could be inferred
that the increased stability of the PC layer is what is causing the
OOC layer to have reduced stability. The results from Figures 11
and 12 are summarised in Table 5.

χ∗ Substrate Transition P∗ Transition l∗g
I - PC PC - OOC I - PC PC - OOC

0.95 flat 11.8(01) 176 (04) 0.69(01) 0.045 (01)
hex 8.77(10) 264 (55) 0.77(01) 0.025 (05)
PC 9.96(11) N/A 0.63(01) N/A
OOC N/A 266 (12) N/A 0.021 (01)

0.85 flat 13.7(02) 44.7(06) 0.59(01) 0.1775(25)
hex 9.66(12) 60.6(06) 0.70(01) 0.109 (01)
PC 11.8(03) N/A 0.51(01) N/A
OOC N/A 62.6(17) N/A 0.0925(25)

0.75 flat 29.3(11) 31.7(13 ) 0.27(01) 0.25 (01)
hex 12.1(02) 42.5(14) 0.55(01) 0.155 (05)
PC 25.3(09) N/A 0.27(01) N/A
OOC N/A 47.9(08) N/A 0.1425(25)

Table 5 Summary of the structures formed by CSCs under gravity.
Results for the pressure P∗ and l∗g at the PC-I and OOC-PC layering
transitions are also tabulated. Errors in the last two significant figures
are indicated in the brackets.

3.2.2 Nature of the phase transitions

In addition to identifying the transitions exhibited by CSCs under
gravity, we have also analysed the nature of the phase transitions
of the layers. First we refer to previous experimental work on
the phase transitions of hard spheres under gravity against a flat
wall and a hexagonal template103. Hard spheres will undergo a
continuous layerwise transition when in contact with a hexagonal
template. Against a flat wall however the first two layers simul-
taneously undergo a first order phase transition. Here we are in-
terested to see how introducing particle anisotropy will affect this
behaviour, and whether this can shine some light on phenomena
which are not well understood. Our results corroborate previous
findings observed in hard spheres, but also reveal an additional
example of a first order phase transition unique to anisotropic
particles. In this work we identify first order phase transitions by
discontinuous changes in order parameters, and the appearance
of hysteresis; conversely second order transitions are marked by
continuous changes in order parameters and a lack of hysteresis.
A more comprehensive analysis of the order of phase transitions
is outside the scope of this paper.

First and second order phase transitions are observed for both
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Substrate phase 1 phase 2 order n layers

flat I PC 1st order multiple
PC OOC 2nd order single

hex I PC 2nd order single
PC OOC 2nd order single
PC OOC 1st order multiple

PC I PC 2nd order single

OOC PC OOC 2nd order single
PC OOC 1st order multiple

Table 6 Overview of the different phase transitions of CSC layers under
gravity. The surface or layer upon which the transition takes place is
indicated, along with the order of the transition and whether a single
layer is involved or multiple layers simultaneously undergo a phase
transition.

the I-PC and the PC-OOC transformation. Figure 9 shows the
order parameters for the first three layers of CSCs for χ∗ = 0.85
against a flat wall, with phase transitions indicated by T1 to T4.
At T1 the first two layers undergo a first order I-PC phase transi-
tion against a flat wall. At T2 the third layer undergoes a second
order I-PC phase transition while in contact with a PC layer,
which is the same type of transition one sees for CSCs in contact
with a hexagonal template (results not shown). At T3 the first
layer undergoes a second order PC-OOC transition against a flat
wall. Finally, at T4 the second and third layers simultaneously un-
dergo a first order PC-OOC phase transition. This final example,
to our knowledge, is a new phenomenon where two layers si-
multaneously transform as CSCs from one layer form dimers with
CSCs from the other layer in a cooperative event. Though not
explicitly shown, hysteresis is only observed for transitions with
discontinuous changes in order parameters.

A summary of all the phase transitions observed in this work is
shown in table 6. First order phase transitions are observed for
fluid-crystal transitions at a flat wall, and for transitions where
two layers form dimers between them. It is clear why two layers
crystallise simultaneously to form dimers as this is a cooperative
event, though it is not evident why two layers of CSCs or hard
spheres crystallise simultaneously at a flat wall. In the case of the
flat wall, as discussed in the previous section, CSCs will crystallise
against a flat wall at a pressure close to that of coexistence in bulk,
while they will crystallise against a PC layer at a lower pressure.
The first layer to crystallise acts to an extent like a hexagonal tem-
plate and enables the formation of the second layer at the same
time. Second order transitions appear to occur when particles can
individually make a transition from one state to the other without
otherwise disturbing the local structure, such as: a single particle
aligning up-down in a PC layer; or a single particle occupying
a lattice site in a hexagonal template. This results in transitions
where the equilibrium concentration of particles in one state or
the other can smoothly vary. Conversely, first order phase transi-
tions appear as a feature of emergent behaviour, where particles
move co-operatively.

4 Conclusions
In conclusion, we have mapped the phase diagram for convex
spherical caps with aspect ratio χ∗ over the range 0.25≤ χ∗ ≤ 1.0.
Our results contribute to demonstrate the strong effect of changes
of shape anisotropy in non-centrosymmetric CSC particles on
the complexity of the ordered structures. Rather like how hard
spheres may form FCC, HCP or random HCP crystals, CSCs also
exhibit configurational degeneracy whereby at a given state point
several crystal phases may exist separated by small differences in
chemical potential. At intermediate densities CSCs prefer con-
figurations where they have rotational freedom, such as plastic
crystals; while at high densities they prefer close-packed struc-
tures, indicating the competition between packing entropy and
rotational entropy as driving forces. The phase transitions of CSCs
in bulk occur at densities and pressures higher than that of hard
spheres. At these densities CSCs are less mobile and rotational
freedom is constrained which frustrates crystallisation. This ef-
fect is more pronounced as shape anisotropy is increased, result-
ing in only a small part of the phase diagram being accessible
via spontaneous self-assembly from compression of the isotropic
phase. The additional existence of closely metastable states as in-
dicated by free energy calculations suggests that it is difficult to
control the nucleation of a single type of crystal. We further inves-
tigated the self-assembly of convex spherical caps driven by the
sedimentation of the particles onto different substrates. We have
observed an enhancement of the spontaneous formation of other
crystals beyond the PC phase, but it is still difficult to control the
final crystal structure. Moreover, we observed that a gravitational
field does not help crystallisation of CSCs with high anisotropy.
Nonetheless, the reasons for the improved self-assembly that we
observe may be threefold. First, a template, whether it be a flat
wall, a hexagonal template or a crystal surface, will help the sys-
tem to overcome the nucleation free-energy barrier. Second, grav-
ity and a template act together to increase the stability of the
crystal structures so they crystallise at lower pressures; this cor-
responds to crystallising at lower densities where particles have
increased mobility. And third, it is suggested that phase transi-
tions for hard particles at high densities may favour second order
phase transitions like epitaxial growth on a surface66. To further
understand the crystallisation of these systems, analysis of nucle-
ation kinetics is required.
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A Free Energy
Free energy calculations are used in this work to pinpoint the lo-
cation of phase transitions, and to determine the relative stability
of crystals. The free energy F(ρ) of a system at density ρ is cal-
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culated by integration of the equation of state from a reference
state of density ρ0 and free energy F(ρ0) as

β

N
F(ρ) =

β

N
F(ρ0)+

∫
ρ

ρ0

dρ
′
(

βP(ρ ′)

ρ ′2

)
, (10)

where β = 1/(kBT ). Equation 10 is only valid if the system
does not cross a first order phase transition. For fluids the free
energy of the reference state is obtained using the Euler equa-
tion, F(ρ0)/N = µ(ρ0)− P(ρ0)/ρ0, where the chemical poten-
tial at density ρ0 is obtained using the Widom particle insertion
method70,71. For solids the free energy, F(ρ0) is obtained us-
ing the Einstein crystal method68,69,104,104. The Einstein crystal
method involves constructing a reversible thermodynamic path
from the real solid to a non-interacting harmonic crystal. For the
case of an orientationally ordered crystal (OOC), this is achieved
by coupling both positions and orientations to the lattice positions
using the potential energy functions UEin,OOC given by

UEin,OOC = ∑
i< j

φ
hb
i j +ζ

[
λr

N

∑
i=1

(ri−r0,i)
2+λu

N

∑
i=1

(1−cos(θi0)

]
(11)

where φ hb
i j is the hard-core interaction, λr and λu are the constants

coupling the particles to their lattice positions and orientations,
respectively, ζ is the parameter turning the springs on or off, i.e.
0 ≤ ζ ≤ 1, r0,i is the lattice position of particle i, θi0 is the angle
between the orientation of particle i and its lattice orientation.
The choice of potential for constraining orientations is dependent
on the geometry of the particle. The values of λr and λu are cho-
sen such that the particles do not interact at ζ = 1. In practice the
system is considered non-interacting if the probability of particles
overlapping is less than 0.01%, which is achieved using values of
up to λr = λu = 106. The reference free energy FEin,OOC of an
orientationally ordered Einstein crystal is given by

β

N
FEin,OOC =−3(N−1)

2N
ln
(

π

βλr

)
− ln

(
1− e−2λu

λu

)

+ ln
(

Λ

σ3

)
+ ln

(
σ3

V N1/2

)
+ ln(V) (12)

where Λ is the thermal de Broglie wavelength, and V =

(h2β/2πI), where I is the moment of inertia. The free energy of
the real solid F(ρ) is calculated using thermodynamic integration

βF(ρ) = βFEin,OOC−
∫ 1

0
dζ

〈
∂UEin,OOC(ζ ,λr,λu)

∂ζ

〉
N,V,T,ζ

(13)

Anisotropic particles which form plastic crystals will still in-
teract when fixed to lattice positions due to their orientational
freedom. To overcome this problem the hard potential is re-
placed with a penetrable step potential, φ

pen
i j = γA. The inter-

action strength is controlled by γ, and A is an arbitrary constant
set to A = 0.1. The choice of A determines the γmax at which the
potential approximates a hard-core interaction. Thus φ

pen
i j varies

between non-interacting at γ = 0 and a hard-core interaction at
γmax = 250.32 The free energy of plastic crystals is then evaluated
as:

βF(ρ) = βFEin,PC−
∫ 1

0
dζ

〈
∂UEin,PC(ζ ,λr,γ)

∂ζ

〉
N,V,T,ζ ,γ

+
∫

γmax

0
dγ

〈
∂UEin,PC(ζ ,λr,γ)

∂γ

〉
N,V,T,ζ ,γ

(14)

where

UEin,PC(r
N ,uN ,λr,γ) = φ

pen
i j +ζ λr

N

∑
i=1

(ri− r0,i)
2 (15)

and

β

N
FEin,PC =−3(N−1)

2N
ln
(

π

βλr

)
+ ln

(
Λ

σ3

)

+ln
(

σ3

V N1/2

)
+ ln(V)

(16)
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30 K. Milinković, M. Dennison and M. Dijkstra, Phys. Rev. E,
2013, 87, 032128.

31 K. Muangnapoh, C. Avendaño, F. A. Escobedo and C. M.
Liddell-Watson, Soft Matter, 2014, 10, 9729–9738.

32 M. Marechal and M. Dijkstra, Phys. Rev. E, 2010, 82, 031405.
33 M. Marechal, R. J. Kortschot, A. F. Demirörs, A. Imhof and

M. Dijkstra, Nano Lett., 2010, 10, 1907–1911.
34 D. J. Ashton, R. L. Jack and N. B. Wilding, Soft Matter, 2013,

9, 9661–9666.
35 G. Cinacchi and J. S. van Duijneveldt, J. Phys. Chem. Lett.,

2010, 1, 787–791.
36 G. Cinacchi, J. Chem. Phys., 2013, 139, 124908.
37 G. Cinacchi and A. Tani, J. Chem. Phys., 2014, 141, 154901.
38 S. Torquato and Y. Jiao, Nature, 2009, 460, 876–879.
39 S. Torquato and Y. Jiao, Phys. Rev. E, 2009, 80, 041104.
40 U. Agarwal and F. A. Escobedo, Nat. Mater., 2011, 10, 230–

235.
41 P. F. Damasceno, M. Engel and S. C. Glotzer, Science, 2012,

337, 453–457.
42 V. Thapar, T. Hanrath and F. A. Escobedo, Soft Matter, 2015,

11, 1481–1491.
43 J. de Graaf, R. van Roij and M. Dijkstra, Phys. Rev. Lett.,

2011, 107, 155501.
44 S. Atkinson, Y. Jiao and S. Torquato, Phys. Rev. E, 2012, 86,

031302.
45 W. Qi, J. d. Graaf, F. Qiao, S. Marras, L. Manna and M. Dijk-

stra, Nano Lett., 2012, 12, 5299–5303.
46 M. P. Arciniegas, M. R. Kim, J. de Graaf, R. Brescia, S. Mar-

ras, K. Miszta, M. Dijkstra, R. Van Roij and L. Manna, Nano
Lett., 2014, 14, 1056–1063.

47 H. Löwen, J. Phys.: Condens. Matter, 2001, 13, R415.
48 S. V. Savenko and M. Dijkstra, Phys. Rev. E, 2004, 70,

051401.
49 M. Schmidt, M. Dijkstra and J.-P. Hansen, J. Phys.: Condens.

Matter, 2004, 16, S4185.
50 M. Marechal and M. Dijkstra, Phys. Rev. E, 2007, 75, 061404.
51 M. Marechal, M. Hermes and M. Dijkstra, J. Chem. Phys.,

2011, 135, 034510.
52 M. Marechal and M. Dijkstra, Soft Matter, 2011, 7, 1397–

1408.
53 J. Henzie, M. Grünwald, A. Widmer-Cooper, P. L. Geissler

and P. Yang, Nat. Mater., 2012, 11, 131–137.
54 J.-M. Meijer, D. V. Byelov, L. Rossi, A. Snigirev, I. Snigireva,

A. P. Philipse and A. V. Petukhov, Soft Matter, 2013, 9,
10729–10738.

55 E. M. Furst, Soft Matter, 2013, 9, 9039–9045.
56 C. Avendaño, C. M. Liddell-Watson and F. A. Escobedo, Soft

Matter, 2013, 9, 9153–9166.
57 I. D. Hosein and C. M. Liddell, Langmuir, 2007, 23, 8810–

8814.
58 E. K. Riley and C. M. Liddell, Langmuir, 2010, 26, 11648–

11656.
59 E. Y. K. Fung, K. Muangnapoh and C. M. Liddell Watson, J.

Mater. Chem., 2012, 22, 10507–10513.
60 S. J. Ivell, R. P. A. Dullens, S. Sacanna and D. G. A. L. Aarts,

Soft Matter, 2013, 9, 9361–9365.
61 S.-H. Kim, A. D. Hollingsworth, S. Sacanna, S.-J. Chang,

G. Lee, D. J. Pine and G.-R. Yi, J. Am. Chem. Soc., 2012,
134, 16115–16118.

62 S. Torquato and Y. Jiao, Phys. Rev. E, 2012, 86, 011102.
63 E. Riley, E. Fung and C. M. Liddell-Watson, J. Appl. Phys.,

2012, 111, 093504.
64 A. C. Stelson, C. Avendano and C. M. Liddell-Watson, J. Appl.

Phys., 2016, 119, 023110.
65 A. C. Stelson, E. K. Riley and C. M. L. Watson, J. Opt. Soc.

Am. B, 2016, 33, 1588–1593.
66 A. van Blaaderen, R. Ruel and P. Wiltzius, Nature, 1997, 385,

321–324.
67 R. Eppenga and D. Frenkel, Mol. Phys., 1984, 52, 1303–

1334.
68 D. Frenkel and A. J. C. Ladd, J. Chem. Phys., 1984, 81, 3188–

3193.
69 C. Vega, E. Sanz, J. L. F. Abascal and E. G. Noya, J. Phys.

Condens. Matter, 2008, 20, 153101.
70 D. Frenkel and B. Smit, Understanding molecular simulation:

from algorithms to applications, Academic press, 2001, vol. 1.
71 B. Widom, J. Chem. Phys., 1963, 39, 2808–2812.
72 R. Najafabadi and S. Yip, Scr. Metall., 1983, 17, 1199–1204.
73 L. Filion, M. Marechal, B. van Oorschot, D. Pelt, F. Smallen-

burg and M. Dijkstra, Phys. Rev. Lett., 2009, 103, 188302.
74 J. de Graaf, L. Filion, M. Marechal, R. van Roij and M. Dijk-

Journal Name, [year], [vol.],1–14 | 13



stra, J. Chem. Phys., 2012, 137, 214101.
75 P. J. Steinhardt, D. R. Nelson and M. Ronchetti, Phys. Rev.

Lett., 1981, 47, 1297–1300.
76 P. J. Steinhardt, D. R. Nelson and M. Ronchetti, Phys. Rev. B,

1983, 28, 784.
77 J. Vieillard-Baron, Mol. Phys., 1974, 28, 809–818.
78 A. Patti and A. Cuetos, Phys. Rev. E, 2012, 86, 011403.
79 S. Dorosz and T. Schilling, J. Chem. Phys., 2012, 136,

044702.
80 D. R. Nelson and B. Halperin, Phys. Rev. B, 1979, 19, 2457.
81 M. P. Allen and D. J. Tildesley, Computer simulation of liquids,

Oxford university press, 1989.
82 T. Biben, R. Ohnesorge and H. Löwen, Europhys. Lett., 1994,

28, 665.
83 G. van Anders, D. Klotsa, N. K. Ahmed, M. Engel and S. C.

Glotzer, Proc. Natl. Acad. Sci. U.S.A., 2014, 111, E4812.
84 A. Donev, F. H. Stillinger, P. M. Chaikin and S. Torquato,

Phys. Rev. Lett., 2004, 92, 255506.
85 P. Pfleiderer and T. Schilling, Phys. Rev. E, 2007, 75, 020402.
86 K. W. Wojciechowski, D. Frenkel and A. C. Brańka, Phys. Rev.
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