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Abstract—This paper presents an efficient strategy to imple-
ment parallel and distributed computing for image processing
on a neuromorphic platform. We use SpiNNaker, a many-
core neuromorphic platform inspired by neural connectivity
in the brain, to achieve fast response and low power consump-
tion. Our proposed method is based on fault-tolerant fine-
grained parallelism that uses SpiNNaker resources optimally
for process pipelining and decoupling. We demonstrate that
our method can achieve a performance of up to 49.7 MP/J for
Sobel edge detector, and can process 1600 x 1200 pixel images
at 697 fps. Using simulated Canny edge detector, our method
can achieve a performance of up to 21.4 MP/J. Moreover, the
framework can be extended further by using larger SpiNNaker
machines. This will be very useful for applications such as
energy-aware and time-critical-mission robotics as well as very
high resolution computer vision systems.

1. Introduction

In the last decade there has been a growing interest
in bringing green technology into the high-performance
computing (HPC) domain. The Top500 Project report shows
that supercomputer performance is approximately doubling
every year, whilst power consumption is also rising [1]. The
energy efficiency of those supercomputers has increased,
but at a slower rate than performance. On the other hand,
the emergence of neuromorphic technology, i.e., computing
platforms inspired by the brain, offers a new paradigm
of computation. This technology differs from conventional
computer technology not only in its architectural descrip-
tion, but also in that it offers the interesting feature of lower
power consumption.

SpiNNaker (Spiking Neural Network Architecture) is
a neuromorphic computing system that was built with the
motivation to appreciate the marvelous work of the brain.
None of the human-made computing technologies can beat
the performance of a human brain in terms of communica-
tion+computing power. Even Sunway Taihulight, currently
the fastest supercomputer in the world [2], has an inferior
performance, when measured using the TEPS (Traversed
Edges Per Second) metric [3]. SpiNNaker, in contrast, aims
to provide relatively less computational power but highly-
efficient interconnectivity, similar to the brain itself.

Although initially intended for neuromorphic applica-
tions, SpiNNaker has also attracted attention from fields
such as robotics, due to its low power consumption. The
SpiNNaker chip is designed around an ARM968 proces-
sor, the primary market for which is low-power embedded
microcontroller applications. A SpiNNaker chip is able to
deliver 3600 MOPS (million operations per second) at only
1 Watt in 130nm UMC technology. However, the SpiNNaker
chip was designed to be optimal for spiking neural network
simulation, with little regard for applications outside of this
limited space. Consequently, common functionality that one
might expect to find on an general purpose CPU, such as
floating point hardware and memory management, are not
present. Despite this lack of focus outside of the neural
space, the unusual communications fabric and power effi-
ciency of SpiNNaker suggest that it could be an interesting
platform on which to evaluate other classes of algorithm. For
example, we foresee potential applications of SpiNNaker in
computer vision and robotics.

To begin our exploration in this field, in this paper we
propose an energy-efficient, high-performance approach to
image processing, and evaluate how SpiNNaker performs in
this domain. As exemplars that address different aspects of
image processing, we demonstrate three algorithms: Sobel
edge detector, image smoothing using Gaussian filtering, and
image sharpening using histogram equalization.

Our contributions can be summarized as follows:

1) We propose an efficient implementation of funda-
mental image processing algorithms on a neuromor-
phic computing platform.

2) We evaluate the efficiency of a scalable, parallel
and distributed algorithm running on SpiNNaker.

3) We provide a new benchmark for performance eval-
uation of many-core neuromorphic platforms.

The rest of this paper is structured as follows: In
Section 2 the SpiNNaker architecture and communication
network are introduced. In Section 3, we describe our novel
method to achieve scalable and efficient image processing
using SpiNNaker. Section 4 presents our evaluation of the
proposed method. The paper closes with the Conclusions
section.
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2. SpiNNaker Neuromorphic Platform

SpiNNaker is a distributed computing system designed
originally to simulate millions of neurons in a spiking neural
network model. As a neurally-inspired computing system, it
offers opportunities to explore new principles of massively
parallel computation which cannot easily be performed by
traditional supercomputers.

2.1. SpiNNaker Chips and Machines

The main element of SpiNNaker machines is the SpiN-
Naker chip. The SpiNNaker chip is a multicore system-on-
chip that comprises 18 ARM-968 processor cores. Inside the
chip, those cores are surrounded by a light-weight, packet-
switched asynchronous communications infrastructure that
makes the SpiNNaker machine as a globally asynchronous
locally synchronous (GALS) system. Each chip also has
a 128 MByte SDRAM (Synchronous Dynamic Random
Access Memory), which is physically mounted on top of
the SpiNNaker die.

The ARM cores on the SpiNNaker chip do not have
floating point unit (FPU), but they can use emulated floating
point operation provided by compilers such as GCC (GNU
C-compiler). Running such an emulated operation on a core
using GCC compiler will yield a performance of up to 9.4
MFLOPS (Million Floating-point Operations Per Second)
at a clock frequency of 200MHz. Higher performance can
be achieved, theoretically up to 100 MFLOPS, by taking
advantage of the special features of the ARM architecture.
The work by Iordache [4] gives a good example of how to
achieve high performance emulated floating point operation
on an integer processor without FPU.

The chip does not employ cache coherence. Instead,
each core incorporates two tightly-coupled static memories
(SRAM) in a Harvard architecture. As is common in ARM
processors, SpiNNaker cores can run in ARM or THUMB
mode. Programs written in ARM mode are slightly faster
than their THUMB counterpart, however, programs written
in THUMB mode have higher code density. Table 1 shows
the SpiNNaker ARM core performance benchmarked using
Dhrystone, measured in DMIPS (Dhrystone million instruc-
tion per second).

TABLE 1. THE SPINNAKER’S DHRYSTONE BENCHMARK AT 200MHZ.

Mode Unoptimized Optimized
THUMB 52.7 DMIPS 121.1 DMIPS
ARM 57.5 DMIPS 138.8 DMIPS

As a general purpose computing engine, SpiNNaker is
a machine with a large number of homogeneous processing
elements. In this paper, we use the term node to refer to a
single SpiNNaker chip. The actual number of working cores
might be different from chip to chip due to defects during
chips fabrication process. During the boot process, any
malfunctioning core is excluded from the list of available
cores. This is a part of fault tolerance mechanisms in SpiN-
Naker that take place in several levels to ensure reliability

against system failure [5]. In our work, we also applied an
additional mechanism such that malfunction cores can also
be detected during run time by monitoring their activities.
This monitoring task is assigned to the leading core in
each node, and the faulty cores will be excluded during the
workload distribution to ensure the integrity of the image
processing algorithm.

The SpiNNaker architecture is scalable and SpiNNaker
machines are classified by the number of processor cores.
Table 2 shows the nomenclature used for SpiNNaker ma-
chines, where the “10x” machine has approximately 10x

processor cores. Currently, the largest machine in operation
consists of 5 105-machine and contains 518400 cores. Fig. 1
shows the SpiNNaker 103 machine used in this paper.

TABLE 2. SUMMARY OF SPINNAKER MACHINE NAMING CONVENTION.

Name Features
103 machine*) A 48-node board (864 ARM cores) with two 100Mbps

Ethernet ports, six 3.1Gbps serial transceivers, and one
SpiNN-link port. It requires 12V 6A supply.

104 machine A single frame incorporating 24 pieces of 103-
machine. It has 10,368 ARM processor cores and
consumes approx. 1kW of power.

105 machine A 19” rack cabinet incorporating 5 frames of 104-
machine. It has 103,680 ARM processor cores, and
requires a 10kW (approx.) power supply.

106 machine+) It comprises 10 cabinets (each a 105-machine). It will
have 1,036,800 ARM processor cores, and will require
a 100kW (approx.) power supply.

*)used in this paper +)under construction

Figure 1. SpiNNaker 103 machine, also known as a SpiNN-5 board.

2.2. SpiNNaker Communication Network

SpiNNaker machines are networks of SpiNNaker chips.
A SpiNNaker chip has six bidirectional, inter-chip links that
allow the creation of networks with efficient topologies,
such as the preferred 2D-torus interconnect. The key com-
ponent of the SpiNNaker communication infrastructure is its
packet-switched network that can distribute short packets in
an energy-efficient manner. Packet routing is managed by
the asynchronous Network-on-Chip (NoC) which extends
seamlessly to the interchip links [6].

Each chip contains a bespoke multicast router with a
configurable 3-state, CAM-based look-up table which can
send a copy of a packet to any subset of the 18 on-chip
cores and the 6 external links concurrently. Thus, an efficient



massively distributed computing system can be developed by
properly configuring the routing table.

The current addressing scheme in SpiNNaker allows up
to 64K chips to be connected in a network, and currently
the SpiNNaker machine is targeted to hold up to 57K chips
that will comprise 1,036,800 processor cores and 7TeraBytes
of RAM. With this setup, it is arguable that SpiNNaker
machine has a promising feature for a high performance
computing machine. Currently, a half million-core SpiN-
Naker machine has been built and goes under intensive
hardware testing in the University of Manchester.

There are four types of data packet that can be circulated
in a SpiNNaker machine using the chip-to-chip interconnect:
nearest-neighbor (NN) packets routed to any subset of the
six neighbor chips, point-to-point (P2P) packets routed by
destination addresses, multicast (MC) neural packets routed
by source addresses, and fixed-route (FR) packets routed by
the contents of a register set on a chip by chip basis. Of
these, only the MC and P2P packet types are of interest to
applications, the former being the principal mechanism for
cores to exchange small pieces of data and the latter acting
as the layer upon which long messages (including traffic to
and from the host) are sent using a special protocol called
SDP (SpiNNaker Datagram Protocol), to be described next.

Table 3 summarizes the use of those packets for the
proposed strategy in our work.

TABLE 3. SUMMARY OF SPINNAKER PACKET TYPES AND THEIR
USAGE IN OUR PROPOSED METHOD.

Type Features Usage
P2P/SDP direct point-to-point, con-

vey large payload, slow
receive/send data/frames
from/to host-PC

MC/FR multiple destination, convey
small payload, very fast

coordination among cores,
workload distribution

In supercomputers, the network is generally designed to
handle the transfer of large bursts of data. The communica-
tion between nodes is managed using standard protocol such
as MPI (Message-Passing Interface). In contrast, SpiNNaker
is optimized for the energy-efficient transmission of short
messages. The current SpiNNaker kernel, however, does not
support MPI. The SpiNNaker Datagram Protocol (SDP) was
designed for the inter-chip transmission of data blocks. If an
MPI-style communication is required, SDP can be used to
mimic such a protocol.

An SDP packet can be embedded in a UDP/IP packet,
with appropriate SDP header information, as shown in
Fig. 2. In our work, the main use of SDP is for transfer-
ring image data between the host-PC and the SpiNNaker
machine.

3. Strategies for Scalability and Efficiency for
Image Processing

High-performance computer vision using parallel pro-
cessing on machines with general purpose microprocessors
has been investigated since 1950 [7]. In general, high-
performance image processes exploit the fact that many

Figure 2. SDP packet format and its usage for transferring image pixels
from host-PC to the SpiNNaker.

image processing operations are inherently parallelizable.
The parallel computations are performed using local neigh-
borhood operations, which are almost always independent.
However, their implementation is often criticized due to
the inappropriate organization of the algorithms that leads
to significant communication overhead between the parallel
jobs [8]. In recent years, the advancement of graphic card
technology has contributed even more to the growth of high
performance image processing. Parallel processing using
GPGPU (General Purpose computing on Graphics Process-
ing Unit) often produces impressive results that cannot be
obtained using conventional multi-core computers [9], [10].
Although the implementation of parallel image processing
on multi-core computers and on modern GPUs bears little
resemblance to each other, they still share the same burden:
they consume a considerable amount of power.

As we have described in Section 2, the strength of the
SpiNNaker machine lies not only in its low-power cores, but
also in its bespoke energy-efficient networking. The success-
ful implementation of any parallel-and-distributed system
depends on the strategy for distributing the computation
load. Hence, the challenge of using SpiNNaker for high-
performance computing lies mainly on how to optimize the
use of its communication network.

In our image processing work, we use MC packets to
distribute pixel values as well as for coordination among
neighborhood operations. An MC packet contains an 8-bit
header and a 32-bit key information. It can be extended
with a 32-bit payload. Fig. 3 shows the structure of this
MC protocol and how we manipulate it to carry messages
or useful commands in our algorithms.

Figure 3. MC neural packet format and its usage for image processing.

The experiments reported in this paper were executed in
a SpiNNaker 103 machine. Fig. 4 shows the configuration
of the experimental setup. Sending and receiving images
to/from the SpiNNaker machine are performed using SDP
messages, whilst distributing images and processing them



inside the SpiNNaker machine use MC packets. SpiNNaker
103 machines use the 100 Mbps Ethernet link for commu-
nication with the host-PC, and we send and receive images
through this link. We can also use a bespoke asynchronous
SpiNNaker link, with much higher throughput than the Eth-
ernet link, to send the resulting image directly to a monitor
via an external FPGA board.

Figure 4. The experiment setup for image processing on SpiNNaker. The
host-PC sends image’s pixels to SpiNNaker via SDP. The root-node receives
the SDP packets, converts them into MC packets, and broadcasts them to
all nodes. When the processing is done, each node will send the resulting
part via SDP directly to either the host-PC or the external FPGA board.

The overall process of the image processing implemen-
tation in our experiment is shown in Algorithm 1.

3.1. Parallel Algorithm for Image Processing

In general, image processing can be performed in dif-
ferent levels: from the lowest level that works with image
pixels to the highest level that exploits hidden features in
an image to gain knowledge such as object recognition and
semantic description. In this paper, we demonstrate two
important aspects of low-level parallel processing. We use a
task graph representation to describe the mechanism and the
behavior of our method. In this task graph formalism, we
regard a node as a vertex in the graph that is responsible for
carrying out an atomic task. Hence, we can represent our
whole algorithm as a DAG (Directed Acyclic Graph).

Based on locality, parallel image processing can be
loosely classified into two categories: processing with lo-
cally independent neighborhood operations, and processing
with global dependency of neighborhood operations. In the
first category, the neighborhood operations, which usually
employ a processing window of size 3 x 3 or 5 x 5, can be
performed completely in parallel and asynchronously with-
out one operation affecting the others. We give two examples
of this category: image smoothing using Gaussian filtering,

Algorithm 1 Overall image processing experiment
1: Each node counts how many cores are available
2: Host-PC sends image size to SpiNNaker
3: Each core in SpiNNaker computes its working load
4: Distribute image in SpiNNaker:
5: for all available cores in the root-node do
6: for all color channels do
7: fetch pixels data from SDP packets
8: compute gray scaling
9: broadcast grayscale pixels to all nodes

10: end for
11: end for
12: Perform image processing:
13: for all working cores do
14: fetch pixels from SDRAM via DMA
15: convolute pixels
16: put the result to SDRAM via DMA
17: end for
18: Send result:
19: for all nodes do
20: for all lines do
21: fetch lines from SDRAM via DMA
22: put into SDP packets and send them out
23: end for
24: end for
25: return SpiNNaker processing time

and edge detection using Sobel and Laplace operators. In the
second category, the operations might need synchronization
due to global linkage to a certain attribute. We present image
sharpening using histogram equalization as an example of
this category.

In addition to these examples, we also consider the
parallelizing strategy for image retrieval and pre-processing,
specifically for grayscale processing. Although our methods
also work for color (RGB) images, we emphasize grayscale
processing because it is adequate for many high-level image
processing and computer vision task, such as in the object
recognition.

3.1.1. Sending and pre-processing images. The sending
and pre-processing of images can be performed in a parallel
fashion as follows: images are sent from the host-PC to the
root node, (i.e., the node with ID-0 at coordinate 0, 0), and
are pre-processed there using the following four tasks:

1) T1 - retrieving RGB pixel data by extracting them
from SDP packets sent by host-PC.

2) T2 - calculating the grayscale values for the re-
trieved RGB pixels.

3) T3 - distributing the grayscale pixels as MC packets
to other nodes in the system.

4) T4 - computing the number of occurance for the
grayscale pixels that will be used later for histogram
equalization.

To optimize the performance, these tasks are arranged as
a pipeline, and use several available cores in the root node.



Fig. 5 shows the pipeline mechanism using five cores. Using
this mechanism, sending images over the Ethernet link can
achieve a throughput close to 80 Mbps (the maximum of 100
Mbps cannot be achieved due to SDP-related overheads).

Figure 5. Pre-processing pipeline for sending image, grayscaling, distribu-
tion, and computing pixels histogram.

A similar pipeline mechanism is implemented in other
nodes on the SpiNNaker board, but without tasks T1 and
T3. Also, task T2 is modified so that the cores on those
nodes will not compute the grayscale values again, but only
store the retrieved pixels broadcast by the root node.

3.1.2. Image Smoothing and Edge Detection. Image
smoothing and edge detection can be performed using con-
volution. For edge detection, we use the Sobel operator with
two 3 x 3 kernels that are convolved with the input image.
The two kernels represent derivative approximations: Gx for
horizontal changes, and Gy for vertical ones. These two
kernels are as follows [11]:

Gx =

−1 0 1
−2 0 2
−1 0 1

 ,Gy =

 1 2 1
0 0 0

−1 −2 −1

 (1)

Image filtering is commonly used in edge detection pre-
processing to smooth the image by filtering out noise that are
usually related to high-frequency components of the image.
We used a Gaussian filter with a 5 x 5 kernel size and
σ = 1.0. The discretized form of this Gaussian kernel is as
follows [11]:

G =
1

256


1 4 6 4 1
4 16 24 16 4
6 24 36 24 6
4 16 24 16 4
1 4 6 4 1

 (2)

In our implementation, the processes are executed in
parallel and independently from each node. After pixels
broadcasting is completed, the leading core in the root node
will broadcast an MC packet to all nodes. For this purpose,
we configure the routing table in each node such that the
node will propagate the message to its adjacent node, and we
have to make sure there is no duplication of this message.
The resulting routing flow, for an example network with 13
nodes, is shown in Fig. 6. Each node is labelled according
to its position in the board, as shown in Fig. 4. Once a node
has completed its operation, it sends an MC packet back to
the root node using the same route.
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Figure 6. Messages propagation for image filtering and edge detection. The
convolution operation in each node is independent from other nodes. The
route is optimized such that the message travels on a shortest path.

3.1.3. Image Sharpening. Unlike the smoothing and edge
detection processes, image sharpening using histogram
equalization cannot be performed directly using convolution.
Each node computes only the histogram that corresponds to
its working load, and the network needs to know the global
knowledge about these partitioned histogram. To collect
the histogram partitions from all nodes, we employ SDP
communications in a binary tree structure shown in Fig. 7.
Intermediate nodes aggregate partions on their way to the
root node. For example, nodes 7 and 8 send their histogram
partition to node 3, which merges those incoming histogram
partitions with its own, and then propagates the combined
result to node 1. This process continues until nodes 1 and
2 propagate their histogram partitions to the root node. The
root node merges the incoming histogram with its own, and
then broadcasts back the unified histogram to all nodes using
MC packets. Once a node receives a complete histogram it
starts normalizing its own workload. Each node then sends
an MC packet back to the root node using the route in
Fig. 6 to report the completion of the histogram equalization
process.
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Figure 7. Messages propagation for histogram equalization. In this process,
we have to use two communication protocols: SDP (red) for propagating
histogram partitions, and MC (green) for broadcasting final histogram data.

4. Evaluation and Discussion

For the experiment, we sent images of various sizes
ranging from VGA to UXGA resolution and measured
SpiNNaker performance and power consumption for each
image processing task. Regarding power consumption,
SpiNNaker chips have frequency scaling capability, with



cores operating reliably up to 255 MHz. Spiking Neural
Network (SNN) simulations are usually run at a core clock
frequency of 200MHz, which is adequate to meet their real-
time deadline and keeps power consumption low. In our
experiments we measure power consumption at two different
frequencies, 200MHz and 250MHz, to evaluate the different
performance/power consumption scenarios.
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Figure 8. Power consumption of a SpiNNaker chip. During boot, (a),
the SpiNNaker chip consumes 370mW. Without any application running,
(b), the SpiNNaker chip consumes 250mW. When our image processing
program is loaded, (c), it consumes only 320mW. When the program starts
intense computation, (d), the power rises to 930mW. During this execution,
the power consumed by the SDRAM is only 25mW.

In normal (SNN) operation at 200MHz, after system
boot and without any program running, a SpiNNaker chip
consumes only 250mW. Increasing the clock frequency
to 250MHz, will raise the power consumption to about
300mW. When the application is loaded the processor cores
start to draw more power. During an intense computation,
if all cores are used, the total power consumed by the chip
can rise up to 950mW. Fig. 8 shows the power consumption
profile of a SpiNNaker chip when we run the experiment
with edge detection processing on a single node.

Figure 9. Edge detection performance.

We evaluate the computation speed of our programs
with respect to the number of nodes and the core clock
frequency. Fig. 9 shows the performance of SpiNNaker
103 when running the edge detection program. It shows
the performance for different clock frequencies and image
resolutions. It can be seen that performance scales linearly
with the number of nodes used. However, for VGA and
SVGA resolutions, performance stops increasing at 30 and
37 nodes, respectively. This is the result of a constraint in

our algorithm: each line of the image will be processed
by one core as a maximum. Hence, an image with VGA
resolution of 640 x 480 pixel, can only utilize 480 cores,
which can be provided by 30 nodes. Thus, nodes 31 to 48
will not be used, and the performance will be steady at this
position.

Overall, we can see that SpiNNaker performance is far
above the real-time processing requirement, which is 30
frames per second (fps) shown as the yellow line at the
bottom of the figure. Increasing the clock frequency is also
the main contribution to increasing performance. However,
as we explain below, using higher frequency consumes more
power.

Figure 10. Gaussian filter performance.

Fig. 10 shows the performance of SpiNNaker 103 when
running the Gaussian image filtering program. In this figure,
we plot SpiNNaker performance as processing time in mil-
liseconds. Similar to the edge detection result, performance
also scales up with the number of nodes. If this result is
plotted as fps, then we will get a plot similar to Fig. 9.
Indeed, the processing power for these two convolutional
processes is very similar, as we can see in Fig. 12.

Figure 11. Histogram equalization performance.

Fig. 11 shows the performance of SpiNNaker 103 when
running the histogram equalization program. The histogram
equalization requires less computation than the convolution
operation, hence, it can be performed faster than either the
Gaussian image filtering or the edge detection program.
Most of the processing time in Fig. 11 was contributed
by the propagation delay of the SDP messages that carry



histogram partitions from each node. Once the full his-
togram is received, the normalization computation using that
histogram runs very fast; it takes only 191 microseconds for
a 640 x 480 image and 798 microseconds for a 1600 x 1200
image.

Combining computation speed and power consumption,
we obtain the overall processing power of our image pro-
cessing programs on SpiNNaker 103. Based on the measured
speeds as presented before, we expect to see the trend of
increasing performance as the number of nodes used for
image processing increases. Fig. 12 shows a summary of
this trend.
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Figure 12. Computing power performance.

The performances of both image smoothing and edge
detection programs scale up linearly almost at the same
pace. But the performance of the image sharpening program
is far above those two. The reason is because image sharp-
ening, which employs histogram equalization, consumes far
less power than the other two programs, which require
image convolution. We also observe discontinuities at sev-
eral places, most significantly at 15 and 30 nodes. This
happens because the number of SDP message propagation
(see Fig. 7) changes at that point. As we described ear-
lier, SDP propagation takes a considerable amount of time,
whereas the equalization computation takes much shorter
time. Nevertheless, the image smoothing performance seems
to scale up almost linearly.

TABLE 4. PERFORMANCE ON VGA IMAGE USING 5 X 5 FILTER KERNEL

Platform frame per seconds (fps)
FPGA 344
CPU 400
GPU 3000
SpiNNaker-103 1923*) - 2976+)

*)current result +)estimation

For a comparison of processing speed with that of other
implementations we refer to the work by Asano et al. [12].
In their work, they used three different platforms: CPU,
GPU, and FPGA. For the CPU platform, they used an
Intel Core 2 Extreme QX6850 (3GHz, quad-cores). For the
GPU, they used a XFX GeForce 280 GTX 1024MB DDR3
(1.3GHz, 1.1GHz). And for the FPGA, they used a Xilinx
XC4VLX160 running at 100MHz. They reported that the

GPU implementation is superior to the other implemen-
tations in all kernel sizes (but decreases exponentially as
the size of the kernel increases), whereas the CPU and the
FPGA performance are comparable when the kernel size is
5 x 5. For a fair comparison with our work, we also use a
5 x 5 kernel and the results are shown in Table 4.

From the table, we can see that SpiNNaker 103 runs
faster than CPU and FPGA, but GPU is the fastest platform.
The current measured speed of SpiNNaker 103 is 1923 fps,
but we expect to achieve a speed of up to 2976 fps if we
modify our program to alleviate the current constraint that
each image line will be processed only by one core. If we
use, for example, two cores to process a single line, then we
will obtain faster response; eventually we can get 2976 fps.
However, we currently do not use this method but consider
it as a future extension.

Regarding the superiority of the GPU performance
shown in Table 4, one reason that can be inferred from the
work [12] is that the filter’s kernel was applied to each pixel
in the image independently without using shared variables.
Given that the GPU uses a very high frequency for both its
processing elements and its DDR3 memory, it is clear that it
will outperform the other platforms. As a comparison, each
SpiNNaker core runs at 250MHz and its SDRAM runs at
only 133MHz. In contrast, the GPU GeForce 280 GTX used
in [12] runs at 1.3GHz for its cores and at 1.1GHz for its
DDR3 memory. Furthermore, the power consumption is not
considered in their work, and we believe that the GPU power
consumption is also high.

TABLE 5. POWER CONSUMPTION COMPARISON

Image CPU GPU FPGA SpiNNaker 103
Resolution J J mJ mJ

512 x 512 4.2 0.5 1.6 21.9
1024 x 1024 14.8 1.5 6.4 50.7
1476 x 1680 39.8 3.4 15.0 121.3
3936 x 3936 229.0 15.0 93.6 723.5

To compare SpiNNaker 103 power consumption with
that of other platforms we refer to the work by Possa et al.
[11]. They also use three different platforms: CPU, GPU,
and FPGA. Unfortunately, they implemented the Canny edge
detection algorithm. Since we did not implement the same
edge detection algorithm, we use estimated values for the
comparison. To estimate our results for the Canny edge
detection we can combine our Gaussian filtering and Sobel
edge detection, given that both techniques are used by the
Canny edge detection. Hysteresis thresholding is an addi-
tional component of the Canny edge detection algorithm. It
is a simple operation and, given that we did not implement it,
we replaced it with the normalization operation used in our
histogram equalization program to complete the simulated
Canny edge detection. The result is presented in Table 5. We
can see that the power consumption of SpiNNaker is higher
than the FPGA, but it is much lower than the CPU and
the GPU. However, the difference on power consumption
between the FPGA and the SpiNNaker might be negligible



if we also take into account the power consumed by the
supporting peripherals in the FPGA board.

As a summary, we combine the measurement from the
processing speed and the power consumption of our simu-
lated Canny edge detector on SpiNNaker for several image
resolutions. The result is presented in Table 6. It seems that
the performance will be steady at about 21 MP/J for higher
resolution images.

TABLE 6. SUMMARY OF SPINNAKER PERFORMANCE.

Image Size 512x512 1024x1024 1476x1680 3936x3936
MP/J 12.0 20.7 20.5 21.4

5. Conclusions

This paper presented a strategy to use the SpiNNaker
neuromorphic computing platform for applications beyond
the spiking neural network simulations for which it was
originally designed and built. In particular, we developed a
method to implement massively parallel and distributed pro-
cessing for energy-efficient, high-performance image pro-
cessing. This novel method relies on the full utilization
of the SpiNNaker networking resources that allows our
program to optimally distribute the computation loads.

As indicated earlier, we used a SpiNNaker 103 machine,
with 48 nodes and 6 GB of SDRAM, to implement a series
of image processing experiments. We ran the SpiNNaker
machine at a moderate working frequency of 200 MHz, but
during processing the frequency may be altered up to 250
MHz adaptively. This scenerio will keep power consumption
between 0.25 and 0.9 Watt per chip. During the experiments,
we sent images of various sizes, from VGA to UXGA reso-
lution, and recorded the SpiNNaker performance executing
several image processing algorithms.

We presented three examples of image processing ap-
plications: image smoothing, edge detection, and image
sharpening. These three example applications demonstrated
the communication+computing power of SpiNNaker. For
the image smoothing, using a 5 x 5 Gaussian kernel with
σ = 1.0, SpiNNaker performance was measured at up
to 47.6 megapixels per second per Joule (MP/J). For the
edge detection, using a Sobel operator, the performance
was measured as 49.7 MP/J. For image sharpening using
histogram equalization, the performance was measured as
131.7 MP/J. We also implemented a simulated Canny edge
detector by combining several elementary processing and
the SpiNNaker achieves 21.4 MP/J for a 4K image.

In general, we conclude that the SpiNNaker delivers an
impressive performance, and offers an alternative solution as
a platform for massive image processing. Conceptually, we
can achieve higher performance by using larger SpiNNaker
systems, such as a 104 machine or even a 105 machine. We
believe that fast response and low power consumption, as
demonstrated by the SpiNNaker machine 103 in our exper-
iment, will be very useful for applications such as energy-
aware and time-critical-mission robotics. It can also be used

for extremely high-resolution computer vision systems such
as in astronomical image analysis. With these results, we
demonstrate that SpiNNaker systems have promising future
application as green neuromorphic-based supercomputers.
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