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Abstract. Confined impinging jets (CIJs) are reactors used in processes that require fast mixing. In 

such equipment two fluids are injected from opposite sides of a chamber, impinging into each other 

and forming flow structures that enable an effective mixing and reaction. The turbulence analysis 

shows that the energy is injected from smaller scales, having approximately the injectors width, that 

feed larger scale structures up to larger vortices that occupy the entire mixing chamber width. This 

energy distribution has an inverse energy cascade, i. e. it is an inversion of the traditional description 

of homogeneous 3D turbulence. The typical flow scales of 2D CIJs are clearly shown in this work to 

be linked to the 2D turbulence energy spectrum and to integral scales of turbulence. Moreover, the 

turbulence mechanisms in 3D CIJs at transitional flow regimes are shown to be similar to 2D CIJs. 

This is to our knowledge the first demonstration of 2D turbulence in an industrial mixer/reactor. 

Keywords: Confined Impinging Jets (CIJs), 2D turbulence, mixing, inverse energy cascade, 

Computational Fluid Dynamics (CFD). 
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INTRODUCTION 

Inverse energy cascade 

2D turbulence is characterized by an inverse energy cascade where the energy is injected from 

the small scales that will feed larger eddies 1. This is an inversion of the traditional description 

of homogeneous turbulence, in 3D, where the energy of the large scales is transferred to 

smaller scales down to the viscous dissipation 2. In 3D turbulent flows there is vortex 

stretching, whereas in 2D turbulent flows the freedom of movement in a third dimension of 

the flow is constrained, which prevents this mechanism. This leads to the scenario described 

by Kraichnan 3 of the conservation of enstrophy (mean squared vorticity) and the existence of 

two energy cascades: an inverse energy cascade where energy is transferred to larger 

lengthscales, and an enstrophy cascade where the energy is transferred to smaller 

lengthscales, both cascades have the energy injection at the same lengthscale, 𝜆𝑖𝑛𝑗
−1  4. 

Whereas the inverse energy cascade dominates the flow for the scales larger than 𝜆𝑖𝑛𝑗
−1 , for 

smaller scales the enstrophy cascade dominates the flow 1, 4. Batchelor 5 predicted the 

existence of a cascade of mean-square vorticity at large Reynolds number and an equilibrium 

range in the vorticity spectrum. Later, Amarouchene and Kellay 6 confirmed Batchelor’s 

theory with experimental work, indicating an exponent of − 5 3⁄  for the scaling law of the 

power spectrum in the inertial subrange, when the scalar field is affected by both inverse 

energy and enstrophy cascades, and an exponent of −1 when the passive scalar field is 

affected only by the enstrophy cascade. 

Up to date, the studied turbulent flows with 2D behaviour enabled to build an already 

considerable body of theory 1, although in most of the cases these flows have been too 

conceptual as far as Chemical Engineering practice is regarded. The two most studied cases 

are the flowing soap films 7-14 and the electromagnetic layers 7, 13, 15-26. These flows have the 
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turbulence restricted to 2D because they are restricted to a thin layer that prevents vortices to 

stretch in the normal direction to the flow. A 2D behaviour can also stem from additives, such 

as macromolecules that align with flow direction and lend it a strong dimensionality 4, or from 

the forcing of an inlet boundary condition that imposes a markedly 2D behaviour to the flow. 

Such is the case of small scale mixers with opposed jets, namely those where the inlet 

boundary condition extends throughout the entire reactor depth.  

 

CIJs 

Confined Impinging Jets (CIJs) are highly efficient mixing devices composed of a confining 

chamber, two opposed injectors near the closed top of the chamber and an outlet at the open 

end from where the fluid leaves the reactor 27. The flow in opposed jets is mainly affected by 

the dynamics in the plane of the jets, a plane defined by jets’ axis and mixing chamber’s axis. 

As a consequence, the flow in CIJs has been extensively studied from 2D physical models 

that were validated and compared with actual 3D physics in previous works of Santos et al. 28, 

29. 

The first opposed-jets mixers were cylindrical with two opposed round jets 30 a geometry 

typically referred to as Confined Impinging Jets mixers/reactors. The first studies on CIJs 

were focused in the mixing process for Reaction Injection Moulding (RIM) processes, where 

CIJs typically have chamber diameter 1 cm and diameter of the injectors from 1 to 3 mm. 

Malguarnera and Suh 30 studied the effect of the Reynolds number and the momentum ratio of 

the opposed jets on the flow, and they proposed that two conditions to obtain a better mixing 

of the two monomers (isocyanate and polyol) are: the Reynolds number should be larger than 

50 and the momentum of the opposed jets should be equal. Other authors have reached 

similar conclusions on the effect of the Reynolds and the jets’ momentum ratio effect on the 

flow 27, 31-43. The abrupt increase of mixing quality is due to a flow regime transition, which is 

mainly based on the jets Reynolds number, and the jets impose a strong dimensionality to the 
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flow in CIJs, making the strongest flow dynamics to occur mainly in the plane defined by the 

mixing chamber axis and the jets axis.  

 Later, with the advent of micro reactors, prismatic geometries of opposed jets reactors with 

opposed round or rectangular injectors became common 44-48. These geometries are referred to 

as T-jets reactors and can be regarded as passive lamination mixers when operating at low 

Reynolds numbers 49, or chaotic mixers for larger Reynolds numbers. Since in most T-jets the 

inflow extends through all chamber depth, there is a strong effect of dimensionality that lends 

these mixers dynamics a markedly 2D behaviour. 

In this paper, flow data for opposed jets mixer is obtained from 2D and 3D simulations, which 

results are analysed within the framework of the statistical description of 2D turbulence. 

Hydrodynamic lengthscales from turbulence energy spectra are compared with the actual 3D 

flow and are shown to be set from the CIJs dimensions.  

 

PROBLEM DESCRIPTION 

Geometry  

Opposed Jets Reactors consist of rectangular (2D case – see Fig. 1a), prismatic or cylindrical 

(3D case – see Fig. 1b) mixing chambers with two directly opposite injectors, which are 

placed near the closed top of the chamber. The chamber has an open bottom from where the 

fluid leaves. The chamber considered in this work has a diameter or width, depending if it is 

3D or 2D, of 𝐷 = 10 × 10−3 m and a height 𝐻 = 5𝐷 = 50 × 10−3 m. The injectors have a 

diameter or width 𝑑 = 1.5 × 10−3 m and are placed at 𝐷 2⁄  from the chamber top. The origin 

of the coordinate axis is defined at the intersection of the injectors axes and the mixing 

chamber axis: this point is defined as the impact point. The contact or impingement point is 

the actual place where the opposed jets contact, and due to the jets bending in 2D geometries 

this point is displaced to a distance 𝑑 from the axis of the injectors towards the outlet. The 
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placement of the contact point can be seen in Fig. 2a with the streamlines and vorticity sign 

for the 2D case, and in Fig. 2b from the vorticity sign for the 3D case.  

 

Boundary Conditions 

At the injectors, it was considered a parabolic velocity profile, that occurs in fully developed 

velocity profiles in rectangular (2D case) and cylindrical (3D case) domains, according to  

𝜐(𝑥) =
3

2
𝜐𝑖𝑛𝑗 (1 − (

𝑥

𝑑 2⁄
)

2

)  (1) 

𝜐(𝑟) = 2𝜐𝑖𝑛𝑗 (1 − (
𝑟

𝑑 2⁄
)

2

),  (2) 

respectively for the 2D and 3D cases, having at the inlet jets an average velocity 𝜐𝑖𝑛𝑗. A 

constant and uniform pressure was imposed at the outlet boundary, and at walls (chamber top 

and sides) it was considered the no-slip boundary condition. 

The fluid density is 𝜌 = 103  kg m3⁄  and the dynamic viscosity was set 𝜇 = 0.02 Pa ∙ s, in 

order to have a Reynolds number 𝑅𝑒 = 𝜌𝜐𝑖𝑛𝑗𝑑 𝜇⁄ = 300. This viscosity value is 

representative of some RIM formulations, although in the lower end of the viscosity range 

used in industry. Furthermore, there is a considerable body of experimental data using these 

fluids from previous works 27, 29, 40, 42, 43, 50. 

The initial condition, was a symmetric and steady state solution, obtained with a no shear wall 

set at the symmetry plane/axis, for 2D/3D case respectively. 

 

CFD model  

The 2D domain (Fig. 1a) was discretized with a structured and orthogonal mesh of 

quadrilateral elements, which maximum edge length is 50 × 10−6 m, leading to a total 

number of 2 × 105 elements. The 3D domain (Fig. 1b) was discretized with a unstructured 

mesh, which maximum edge length is 100 × 10−6 m, with a total number of 2 × 106 

elements. 
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The commercial finite volume CFD software ANSYS FluentTM was used to solve the 

transient pressure-velocity problem modelled by the continuity (mass conservation) equation  

∇ ∙ 𝒖 = 0  (3) 

and the momentum conservation equation 

𝜌 (
∂𝒖

∂t
+ 𝒖 ∙ ∇𝒖) = −∇𝑝 + μ∇2𝒖  (4) 

The pressure-velocity coupling was done with the COUPLED scheme. The PRESTO! scheme 

has been chosen to discretize the pressure gradient terms, and the Second Order Upwind 

scheme to discretize the advective terms of Eq. 4. The convergence criterion for the maximum 

normalized residuals of continuity and momentum conservation equations is 10−4. 

During a period equal to the mean residence time of the fluid in the mixing chamber, 𝑡 = 𝜏, 

the flow evolves from the steady state to a fully developed chaotic flow, and so these data 

were ignored. The turbulence analysis is made for a flow time equal to 15𝜏. 

The time step for the unsteady flow simulations was defined from the Courant number, 𝐶 =

𝜐𝑚𝑎𝑥𝛿𝑡 𝛿𝑥⁄ ≤ 1, assuming the maximum velocity at the injectors centre and the elements size 

as the reference length. The velocity at injectors centre, is 𝜐𝑚𝑎𝑥 = 1.5𝜐𝑖𝑛𝑗 = 6 m s⁄  for the 

2D case and 𝜐𝑚𝑎𝑥 = 2𝜐𝑖𝑛𝑗 = 4 m s⁄  for the 3D case, and so 𝛿𝑡 ≤
25

3
× 10−6 s and 

𝛿𝑡 ≤ 2.5 × 10−5 s, for 2D and 3D simulations, respectively. The 2D time step was set to 

8.333 × 10−6 s whereas for the 3D case the time step is 2.5 × 10−5 s. 

The kinetic energy injected into the system is 

〈𝜅𝑖𝑛𝑗〉 =
1

𝑑
2 ∫

1

2
𝜐2𝑑𝑥

𝑑 2⁄

−𝑑 2⁄
=

6

5
𝜐𝑖𝑛𝑗

2   (5) 

and the turbulent kinetic energy at each point is defined as 

𝜅 =
1

2
(𝑢′2 + 𝜐′2)    (6) 

where 𝑢′ and 𝜐′ are the fluctuating velocity terms, 𝑢′ = 𝑢 − 𝑢̅ and 𝜐′ = 𝜐 − 𝜐̅. The results of 

the turbulent kinetic energy are normalized as 𝜅∗ = 𝜅 〈𝜅𝑖𝑛𝑗〉⁄ , and the time averaged value, 𝜅∗̅̅ ̅, 
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is computed over 1000  evenly sampled time steps from the simulated 15 mean residence 

times. 

The energy dissipation rate is also calculated at each time step as 

𝜀 = 2𝜈(𝑠𝑖𝑗 ∙ 𝑠𝑖𝑗)  (7) 

where 𝑠𝑖𝑗 =
1

2
(

𝜕𝑢𝑖
′

𝜕𝑥𝑗
+

𝜕𝑢𝑗
′

𝜕𝑥𝑖
) is the fluctuating rate of strain tensor, and 𝜈 = 𝜇 𝜌⁄  is the kinematic 

viscosity. The energy dissipation rate results are time averaged over the 1000 sampled time 

steps. The sampling period for this data is 15𝜏/1000, which corresponds to a sampling 

frequency of 𝑓 = 1600 Hz. The flow frequencies of the jets oscillations and of the vortices 

passages are around 240Hz (𝑓𝑣𝑜𝑟𝑡𝑒𝑥 =
𝑑𝜐𝑖𝑛𝑗

2𝐴𝑣𝑜𝑟𝑡𝑒𝑥
, with the vortex diameter equal to 

4

5

𝐷

2
) and 

80Hz (𝑓𝑣𝑜𝑟𝑡𝑒𝑥 =
𝑑𝜐𝑖𝑛𝑗

𝐴𝑣𝑜𝑟𝑡𝑒𝑥
, with the vortex diameter equal to 𝐷), thus the sampling is not in 

phase with the flow and thus the sampling period is not introducing a bias in the results.  

 

RESULTS 

Turbulence dynamics in 2D 

The velocity dynamics at the impact point of an opposed jets mixer has a complex quasi-

oscillatory behaviour that is described with detail in previous works 29, 33, 36, 42. The flow in 

opposed jets at chaotic flow regimes, where the Reynolds number is still in the laminar range, 

has been mainly assessed from the frequencies of flow oscillations 29, 33, 51-55. The frequency 

of the jets oscillations is set from the rate of formation of the vortices 29 that issue from the 

jets impingement point creating a vortex street throughout the mixing chamber. Fig. 3 shows a 

short sequence of flow maps from 2D simulation over a period of 0.24𝜏, which is long 

enough to show the evolution of a vortex over a distance larger than one chamber width (>D). 

From the flow maps sequence it is seen the vortices moving towards the outlet maintaining 

approximately their shape, which only evolves due to wall shearing and from interaction with 
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neighbouring vortices. Immediately bellow the inlet jets a pair of vortices is formed, one 

vortex on each side of the chamber, that will evolve into vortices having diameter 𝐷. The 

formation of these vortices and detachment towards the outlet is associated with the rate of 

oscillation of the flow at the opposed jets contact region. Fig. 3 shows an image sequence of 

the evolution of the jets contacting region with the surrounding vortices, namely the jets 

contacting angle: the vortices grow and push the contact point and after when the vortices 

detach the jets are pulled. This dynamics of vortex formation promotes a flapping of the jets 

in the impingement region.  

A similar flow dynamics is observed for 3D geometries, see Fig. 4, where z-vorticity 

isosurface maps give an indication of the sense of rotation of the flow. Two maps covering a 

period equal to 0.02𝜏 show the flapping of a pancake like structure, described by Wood et al. 

33, that stems from the jets impingement point. The mechanisms promoting oscillations of the 

flow in 3D are also associated with the vortices formation dynamics 29. The complex patterns 

that the fluid follows after issuing from the injectors are seen from the streamlines in Fig. 4. 

The vortices engulf both flow streams, as can be seen from the fact that streamlines from 

opposite injectors (red and black) end up meandering together throughout the mixing 

chamber. 

The flow dynamics in opposed jets mixers has been described from the typical values of the 

flow oscillation frequencies 29, 33, 36, 51, 53, 56-58. Nevertheless, the velocity dynamics data show 

far more features than the dominant oscillation frequencies, which are associated with the 

several flow scales in the mixing chamber. The complete information from the velocity 

dynamics data is obtained from the power spectrum, which is shown in Fig. 5a for 𝑅𝑒 = 300 

at the impact point. The power spectrum from the velocity data in Fig. 5a has a large amount 

of high frequency noise that can difficult its analysis. To ease the analysis of the power 

spectrum of Fig. 5a, the high frequency noise was eliminated using a Hamming window 

function, 𝑊, 
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𝐸𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑(𝜆𝑖) =

∑ 𝑊(𝑗)𝐸(𝜆𝑖+𝑗)

𝑛−1
2

𝑗=−
𝑛−1

2

∑ 𝑊(𝑗)
𝑛−1

2

𝑗=−
𝑛−1

2

, 𝑊(𝑗) = 𝛼 − 𝛽𝑐𝑜𝑠 (
𝑗

𝑛−1
2𝜋) (8) 

where 𝜆𝑖 is the wavenumber. The filtered power spectrum is shown in Fig. 5b. All power 

spectra reported hereafter are filtered using the Hamming window and considering 𝑛 = 41 

and 𝛼 = −𝛽 = 1 2⁄ . 

The power spectra of velocity data along the flow is set from the turbulence scales. In the 

opposed jets chamber the length of the vortex street issuing from the jets impingement point 

is limited, and so a long simulation period is necessary to generate a data series long enough 

for the turbulence analysis. From the time series a power spectrum in the frequency domain is 

obtained. The time scale is converted into a wavelength using a reference velocity equal to the 

average velocity at the mixing chamber outlet, 𝜐𝑜𝑢𝑡 = 1.2 m s⁄ , and so the frequency 𝑓 is 

converted to wavenumber as 𝜆 = 𝑓 𝜐𝑜𝑢𝑡⁄ . 

Vortices with different diameters occur at different locations, leading to different velocities. 

From 𝑥 = 𝑑 to 𝑥 = 𝑑 + 𝐷 2⁄ , vortices with diameter approximately 𝐷 2⁄ − 𝑑 are formed, as 

can be seen in Fig. 2a from the vorticity sign. These vortices have an area 𝐴𝑣𝑜𝑟𝑡𝑒𝑥 ≈

𝜋((𝐷 2⁄ − 𝑑) 2⁄ )2 and are fed by one injector with flow rate 𝑞 = 𝑑𝜐𝑖𝑛𝑗, and their formation 

frequency is 𝑓𝑓𝑜𝑟𝑚 ≈ 𝑞 𝐴𝑣𝑜𝑟𝑡𝑒𝑥⁄ . The velocity of these vortices can be approximated from 

their formation frequency and diameter 𝜐𝑣𝑜𝑟𝑡𝑒𝑥 ≈ 𝐷𝑣𝑜𝑟𝑡𝑒𝑥𝑓𝑓𝑜𝑟𝑚 ≈ 2.2 m/s. Near the chamber 

exit the larger vortices have a diameter similar to the chamber width and area 𝐴𝑣𝑜𝑟𝑡𝑒𝑥 ≈

𝜋(𝐷 2⁄ )2. These vortices, are fed by both injectors with flow rate 

𝑞 = 2𝑑𝜐𝑖𝑛𝑗, and have formation frequency 𝑓𝑓𝑜𝑟𝑚 ≈ 𝑞 𝐴𝑣𝑜𝑟𝑡𝑒𝑥⁄  yielding a velocity 𝜐𝑣𝑜𝑟𝑡𝑒𝑥 ≈

𝐷𝑣𝑜𝑟𝑡𝑒𝑥𝑓𝑓𝑜𝑟𝑚 ≈ 1.5 m/s. 

The power spectra for several points along the chamber and for Re = 300 are shown in Fig. 

6. The main scales of the flow are marked in each power spectra. The smallest scale is the 

inlet jets width, 𝑑, with the corresponding wavenumber 𝜆 = 1 𝑑⁄ ≈ 6.7 × 102 m−1. This 
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injection scale is larger than the Kolmogorov scales, which will be shown to be 𝑙𝐾 ≈ 75 μm 

for Re=300 in the section on integral scales in this paper. The largest scale is the diameter of 

the larger vortices that extend throughout the entire chamber width, 𝐷, and the corresponding 

wavenumber is 𝜆 = 1 𝐷⁄ = 102 m−1. Vortices with approximately half the diameter of the 

chamber width, i.e. 𝐷 2⁄ , occur in a region from the jets contact point, which is approximately 

at 𝑥 = 𝑑, to 𝑥 = 𝑑 + 𝐷 2⁄ . The mixing chamber height, 𝐻, is also marked in the plots. 

The power spectra at the region where the jets impinge  𝑥 = 𝑑, to 𝑥 = 𝑑 + 𝐷 2⁄  have a clear 

concentration of energy at a scale associated with the vortices having diameter 𝐷 2⁄ − 𝑑, 

which defines the energy containing range in this flow region. From the large scales to a wave 

number 𝜆 ≈ 1.200 × 103 m−1 the energy transfer between scales is at equilibrium, i.e. 𝐸 ∝

𝜆−5 3⁄ . The energy injection scale is identified by the slope change to a lower value than 

− 5 3⁄ , which occurs at 𝜆 ≈ 1.200 × 103 m−1, different from the expected value 𝑑−1 ≈

6.67 × 102 m−1. If the wavenumber is obtained considering for the reference velocity the 

vortices velocity (with diameter 𝐷 2⁄ − 𝑑) 𝜐𝑣𝑜𝑟𝑡𝑒𝑥 ≈ 2.2 m/s, the wavenumber value is circa 

𝑑−1, 𝜆 ≈ 6.5 × 102 m−1. 

The injection scale of energy, 𝑑−1 ≈ 6.67 × 102 𝑚−1, is transferred to the larger scale 𝐷 2⁄ , 

inverting the turbulent energy cascading, which in this case is transferred from the smaller to 

the larger lengthscales 1, 3. The energy cascade is not at equilibrium in this region because the 

relation 𝐸 ∝ 𝜆−5 3⁄  is not verified in the inertial subrange from 𝜆 = 2𝐷−1 to 𝜆 = 𝑑−1. The 

flow at this region is also not isotropic as can be seen from the different energy for the 𝑥 and 

𝑦 flow directions in the power spectra of Fig. 6. 

At 𝑥 = 𝑑 + 𝐷 2⁄ , two vortices with a diameter 𝐷 2⁄  evolve and will merge into larger vortices 

downstream of 𝑥 = 𝑑 + 𝐷. At the point 𝑥 = 𝑑 + 𝐷 2⁄  there is an equilibrium of the energy 

transferred from the injection scale, 𝑥 = 𝑑, to the energy containing scale, 𝐷 2⁄ . The 

equilibrium condition is seen in Fig. 6f with a scaling of 𝐸 ∝ 𝜆−5 3⁄  in the inertial subrange. 
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The turbulence at this point is isotropic, the strong dimensional biasing of the flow that is 

caused by the jets around the impingement is no longer observed at 𝑥 > 𝑑 + 𝐷 2⁄ .  

Until 𝑥 = 𝑑 + 𝐷 2⁄ , the energy containing scales are around 𝐷 2⁄ , which is the diameter of 

the two vortices that are formed downstream the jets impingement point. These vortices 

engulf each other evolving to vortices with a diameter that extend throughout the entire 

mixing chamber width, 𝐷. The 𝐷 2⁄  vortices engulfment occur from 𝑥 = 𝑑 + 𝐷 2⁄  to 𝑥 = 𝑑 +

𝐷, and in this region the energy containing scales shift from 𝜆 = (𝐷 2⁄ )−1 to 𝜆 = (2𝐷)−1, as 

can be seen from Fig. 6f and Fig. 6g. While the vortices with diameter 𝐷 2⁄  cause a 

wavenumber of (𝐷 2⁄ )−1, in the vortex street where the vortices diameter is 𝐷, the 

wavenumber of the energy containing scale is (2𝐷)−1, i.e. it is given by twice the vortices 

diameter. In this case, each wavelength is associated to the passage of a pair of counter-

rotating vortices, and thus 𝜆 = (2𝐷)−1. In the power spectra are seen local maxima around 

𝜆 = (𝐷 2⁄ )−1 and 𝜆 = (2𝐷)−1, with a decreasing relevance of the 𝜆 = (𝐷 2⁄ )−1 energy peak. 

This is coherent with the fact that the smaller vortices engulf each other around this region, 

and at downstream positions only the vortices with diameter 𝐷 generate observable turbulent 

dynamics. The energy injection scale is also seen at these downstream positions from the 

slope inflection in the power spectrum. The energy transfer is now from the small scale 

𝜆−1 = 𝑑 to the large scale 𝜆−1 = 2𝐷 closely matching the equilibrium condition 𝐸 ∝ 𝜆−5 3⁄ . 

Near the mixing chamber outlet, the larger vortices occupy the whole chamber width, and 

have velocity 𝜐𝑣𝑜𝑟𝑡𝑒𝑥 ≈ 1.5 m s⁄  as referred above. It should be noticed that due to the 

alternate rotation direction of the vortices the wavenumber measured from velocity data 

corresponds to a pair of vortices. These vortices with diameter 𝐷 should be detected by 

wavenumber 𝜆 = (2𝐷)−1 = 50 m−1. This value is very close to the local maximum value 

associated to the energy containing scale in Fig. 6i. The energy injection scale is not 

identifiable at the locations further downstream in the mixing chamber. 
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The strong spatial evolution of the turbulence dynamics shows that in this 2D mixer the 

turbulence is not homogenous. In the regions where there is a transition between lengthscales 

there is anisotropy, while in the regions where the flow scales are not evolving the turbulence 

is isotropic. 

The 2D turbulence dynamics was studied for different Reynolds numbers. Fig. 7 shows the 

power spectra at point (0, 𝑑 + 𝐷 2⁄ ) for Reynolds number 200, 250, 300, 400 and 500. For 

all the simulated Reynolds numbers the turbulence energy transfer between scales is at 

equilibrium when 𝐸 ∝ 𝜆−5 3⁄  from 𝜆 ≈ (𝐷 2⁄ )−1 to 𝜆 ≈ (𝑑 2⁄ )−1. The injection scale is seen 

from the shift in the power spectra slope from 𝐸 ∝ 𝜆−5 3⁄  to 𝐸 ∝ 𝜆−𝑚 where 𝑚 > 5 3⁄ . For all 

the Reynolds numbers the injection of energy is observed circa 𝜆 ≈ (𝑑 2⁄ )−1 ≈ 1.333 ×

103 m−1. This wavenumber value, obtained by the division of frequency 𝑓 by 𝜐𝑜𝑢𝑡 =

1.2 m s⁄ , would be approximately 𝑑−1 if the reference velocity was the velocity of the 

vortices that are formed after the injectors, 𝜐𝑣𝑜𝑟𝑡𝑒𝑥 ≈ 2.2 m s⁄ . The energy containing range 

is also in the same range of wavelengths for all Reynolds numbers, i.e. 𝜆 ≈ (𝐷 2⁄ )−1. The 

main effect of the Reynolds number is the decrease of the local maxima of energy around 𝜆 ≈

(𝐷 2⁄ )−1. This decrease is associated to an increase on the range of vortices sizes or an 

increase on the vortices shape distortion, which makes the energy associated with these 

vortices not so concentrated and so the energy in these maxima spreads around the 𝜆 ≈

(𝐷 2⁄ )−1. 

The simulated Reynolds numbers swept the range of typical operation regimes for opposed 

jets reactors, particularly for micro sized T-jets and RIM. In this range the distribution of 

energy, namely the wavelengths or wavenumber for the inertial sub-range are kept constant, 

and thus the flow scales do not change within these Reynolds numbers. For fully turbulent 

flows, the 2.5 fold increase in Reynolds number should promote a decrease in the smaller 

turbulence scales of approximately twofold, 𝑙𝐾 ∝ Re−3 4⁄ , where 𝑙𝐾 is the Kolmogorov 
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lengthscale. In this flow the smallest observable scale is defined by the jets and keeps constant 

in the range 200 ≤ Re ≤ 500. 

 

Turbulent kinetic energy and dissipation in 2D 

 The distribution of the normalized turbulent kinetic energy 𝜅∗̅̅ ̅ along the chamber axis 

was analysed, as well as its evolution with Re. It can be seen in Fig. 8 that the shape of the 

turbulent kinetic energy distribution is analogous for all the studied cases. In the impact point 

there is low kinetic energy with an increase until circa 𝑥 = 𝑑 + 𝐷 16⁄ , which is close to the 

opposed jets contact point. This local maximum is due to the onset of the vortices with 𝐷 2⁄  

diameter that are being formed immediately downstream of the injectors. Further downstream 

the kinetic energy diminishes until 𝑥 ≈ 𝑑 + 𝐷 4⁄ , probably due to the fact that the vortices 

with 𝐷 2⁄  are formed in pairs, side by side, and thus the flow in the chamber axis is not so 

affected by the vortices formation dynamics in this region of the mixing chamber. From 𝑥 ≈

𝑑 + 𝐷 4⁄  to  𝑥 ≈ 𝑑 + 2𝐷 the vorticity increases again due to the growth of the energy 

containing vortices from a lengthscale of 𝐷 2⁄  to 𝐷. After 𝑥 ≈ 𝑑 + 2𝐷, the turbulent kinetic 

energy decreases due to viscous dissipation. 

 The mean value of turbulent kinetic energy dissipation rate, 𝜀,̅ is also analysed along 

the mixing chamber axis. It can be seen in Fig. 9 that the location of the maximum dissipation 

is similar for all the Re, circa 𝑥 = 𝑑 + 𝐷 8⁄ . This maximum 𝜀 ̅ is associated to the region of 

maximum shearing, which is the point where the two opposed jets contact. From this point on, 

the turbulent kinetic energy dissipation rate decreases towards, the outlet. This decrease is 

steeper from 𝑥 ≈ 𝑑 + 𝐷 4⁄  to 𝑥 ≈ 𝑑 + 𝐷 in a region where the vortices scales are evolving. 

From the average values of the turbulent kinetic energy dissipation rate in the flow domain, 

the Kolmogorov turbulence lengthscale is 𝑙𝑘 = √𝜈3/𝜀
4

≈ 75 𝜇m, where 𝜈 is the kinematic 

viscosity. This scale is smaller than the flow structures identified from the flow maps, see 

Figure 2, or from the spectral analysis of 2D turbulence, see Figure 6. 
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Lengthscales in 2D 

The turbulent kinetic energy 𝜅 and rate of dissipation of turbulent kinetic energy 𝜀 were 

computed from 1000 time steps equally spaced along 15𝜏. 

The integral lengthscale of turbulence is obtained from the turbulent kinetic energy 𝜅 and rate 

of dissipation of turbulent kinetic energy 𝜀 values, as 𝐿 = 𝜅3 2⁄ 𝜀⁄ . To calculate the turbulent 

lengthscale 𝐿 for each particular Re, the space average values of the turbulent energy were 

computed as 〈𝜅̅〉 = ∬ 𝜅̅ 𝑑𝑥 𝑑𝑦
Ω

∬ 𝑑𝑥 𝑑𝑦
Ω

⁄  and 〈𝜀〉̅ = ∬ 𝜀 ̅𝑑𝑥 𝑑𝑦
Ω

∬ 𝑑𝑥 𝑑𝑦
Ω

⁄ , where 𝜅̅ =

𝜅̅(𝑥, 𝑦) and 𝜀̅ = 𝜀(̅𝑥, 𝑦) are the time-averaged values at each control volume of the mesh, and 

Ω is the 2D domain. The 1000 samples of the flow dynamic solution used to compute the 

values of 𝜅̅, 𝜀,̅ and the lengthscales were divided into 5 subsets of 200 time steps, 

corresponding to 3𝜏 each subset. From the five subsets it is computed the standard deviation 

value for these quantities. 

Fig. 10 shows the evolution of the turbulent lengthscale 𝐿 normalized by the chamber 

diameter 𝐷 with the Reynolds numbers with the respective standard deviation. The obtained 

value for the normalized lengthscale is around 2 for the lower Reynolds numbers, due to the 

fact that pairs of counter rotating vortices with diameter 𝐷 are the dominant flow structure in 

this flow. This lengthscale increases with the Reynolds number, i.e. the larger scales of 

turbulence are growing with Re. The flow scales are not changed in the studied Re range, as 

seen from the energy spectrum of turbulence in Fig. 7, although the energy distribution 

around each flow scale becomes more spread through a range of lengthscales. This spreading 

of energy is clear in Fig. 7 from the decrease of the energy value of the local peak 

corresponding to the energy containing scales, (𝐷/2)−1, thus this increase in the 𝐿 scale is 

due to a larger interplay between the vortices. 
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The turbulence integral time scale 𝜏𝑡 = 𝜅 𝜀⁄  can be transformed into a lengthscale by 

multiplication with a velocity. Fig. 10 shows the evolution of the lengthscale 𝜏𝑡𝜐𝑜𝑢𝑡 with the 

Reynolds number. It can be seen that the values of 𝜏𝑡𝜐𝑜𝑢𝑡 are mainly concentrated between 

1.5𝐷 and 2𝐷. Similar results were already obtained from the analysis of 𝐿. The values for the 

turbulence integral time scale, 1.5𝐷 to 2𝐷, are easily related with the larger vortices, while 

the lengthscales identified with 𝐿 between 1.75𝐷 and 3𝐷 are not so physically sounded.  

Turbulence integral lengthscale can also be obtained from two-point cross-correlation of 

velocity. The cross correlation of dynamic velocity data reveals the scale of the flow 

structures. The longitudinal integral scale is defined by 

𝐿11(𝑥) = ∫
〈𝑢(𝑥+𝑟,𝑡)𝑢(𝑥,𝑡)〉

〈𝑢(𝑥,𝑡)𝑢(𝑥,𝑡)〉
𝑑𝑟

∞

0
 (9) 

where 〈𝑢(𝑥 + 𝑟, 𝑡)𝑢(𝑥, 𝑡)〉 is the two-point correlation. The 𝐿11 is a characteristic lengthscale 

of the larger eddies 2. Fig. 11 shows the evolution of the normalized 𝐿11 along the chamber 

axis, for several Re. It can be seen that near 𝑥 ≈ 𝑑 + 𝐷 2⁄ , the larger eddies identified by 𝐿11 

have a diameter equal to half chamber width. These structures evolve to larger vortices having 

the same diameter as the chamber width, for 𝑥 > 2𝐷.  

 

Comparison between 2D and 3D CIJs turbulence dynamics 

The analysis of the turbulence scales is also made in a 3D CIJ, which consists of a cylindrical 

mixing chamber with two opposite injectors placed near the top of the chamber and the outlet 

in the bottom, as can be seen from Fig. 1b. The CIJ used in this paper has a diameter 𝐷 =

10 × 10−3 m and height 𝐻 = 5𝐷 = 50 × 10−3 m. The injectors with diameter 𝑑 = 1.5 ×

10−3 m are placed at 𝐷 2⁄  from the top of the mixing chamber. 

CFD simulation of 3D CIJs was made for a Reynolds number Re = 𝜌𝜐𝑖𝑛𝑗𝑑 𝜇⁄ = 150, which 

is immediately above the transition from steady to chaotic flow regimes that occurs at Re =

125 in 3D CIJs. This Reynolds number of 150 for 3D geometries is closely related in terms of 
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flow regimes with the 2D case where Re=300. On the comparison of 2D and 3D transition 

Reynolds numbers in opposed jets mixers see Santos et al. 28.  

In Fig. 4, isosurfaces of the 𝑧 vorticity component are used to show the overall rotation of the 

flow in the CIJ. The imaging of 3D flows is quite complex, and so only some information on 

the 3D flow can be obtained from Fig. 4. A more detailed description will be made from 

previous knowledge on this reactor 29, 33, 36, 37, 59-62. Upon the opposed jets impingement the 

fluids spread radially forming a pancake like flow structure. In this structure with circular 

shape and diameter approximately 𝐷, the two reactants contact on a surface with area 𝜋𝐷2 4⁄ , 

this represents a fortyfold increase from the initial contact area of the opposed jets: 𝜋𝑑2 4⁄ . 

The increase of the contact area of the fluids leads to a decrease of the mixing lengthscales of 

the inverse order, so the initial scale of the jets is reduced by at least one order of magnitude 

upon the jets impingement 63. Downstream of the impingement point, vortices engulf this 

pancake like structure causing oscillations of the flow in the jets impingement point. These 

vortices form laminas of fluid from the opposed jets that are oriented in the perpendicular 

direction to the main flow direction towards the outlet as can be seen in Fig. 12 27. The 

thickness of the laminas is around 3 × 10−6 m 63. The vortices formed around the jets, can be 

seen in Fig. 4, at least the part of the vortices rotating perpendicularly to the 𝑧-direction below 

and above the jets. The complete annular vortex around the jet is only seen from other 

vorticity components that are not shown in Fig. 4.  

In the 3D case, one chamber diameter downstream from the injectors the flow has a parabolic 

profile, whereas in the 2D case the vortices with diameter 𝐷 evolve throughout the chamber 

until the outlet at 4.5𝐷 from the impact point.  

Despite the differences between 3D CIJ and the 2D CIJ flows, the flows are quite similar 

regarding their dynamics. Fig. 12 shows the power spectrum for the 3D CIJ at 𝑥 = 𝑑 + 𝐷 2⁄ , 

obtained from Re = 150 CFD simulation. The wavenumbers were obtained considering the 

vortices velocity that is calculated from the vortices formation frequency rate and 
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lengthscale, 𝜆 = 𝑓 𝜐𝑣𝑜𝑟𝑡𝑒𝑥⁄ . The frequency with higher energy for the 3D CIJ is ≈ 40 s−1, 

which is associated with the larger vortices seen from PLIF in Fig.12 having diameter 

approximately 𝐷 2⁄ . At this location, each vortex is fed from one injector with flow rate 𝑞 =

𝜋(𝑑 2⁄ )2𝜐𝑖𝑛𝑗, and has volume 𝑉𝑣𝑜𝑟𝑡𝑒𝑥 ≈ 𝜋𝐷𝑣𝑜𝑟𝑡𝑒𝑥
2 𝑑2 6⁄  where 𝑑2 = 𝐷 2⁄  29. From 𝑓 =

𝑉𝑣𝑜𝑟𝑡𝑒𝑥 𝑞⁄  the vortex diameter is 𝐷𝑣𝑜𝑟𝑡𝑒𝑥 ≈ 6 × 10−3 m, which is quite close to the size of the 

vortices seen from PLIF image in Fig. 12. The velocity of these larger vortices can be 

estimated from both diameter and frequency: 𝜐𝑣𝑜𝑟𝑡𝑒𝑥 = 𝐷𝑣𝑜𝑟𝑡𝑒𝑥𝑓 ≈ 0.24 m s⁄ . The frequency 

of the injection scale, that occurs at 𝑓 ≈ 120 s−1, can be related to a lengthscale through 

𝛿 = 𝜐𝑣𝑜𝑟𝑡𝑒𝑥 𝑓⁄ ≈ 1.9 × 10−3 m, which yields a value close to the injectors diameter 𝑑 =

1.5 × 10−3 m. 

The wavenumber in Fig. 12 is obtained from the frequency normalized by the average 

vortices velocity, 𝜐𝑣𝑜𝑟𝑡𝑒𝑥 = 0.24 m s⁄ . From the plot in Fig. 12 it is seen the same 

fundamental mechanism of energy transfer between scales that was seen for 2D turbulence: 

there is an injection scale of energy that is smaller than the energy containing scales, and so 

energy transfer is inversed in the inertial subrange from the smaller scale, 𝑑, to the larger 

scale, 𝐷 2⁄ . Nevertheless, the mixing scales, which start from 𝛿 = 𝑑, are always reduced, 

even when the turbulence scales grow, as can be seen in Fig. 12. And so, although the 

turbulence scale grows to 𝐷 2⁄ = 5 × 10−3 m the mixing scales are reduced from 𝛿0 = 𝑑 =

1.5 × 10−3 m by a factor of 40 in the impingement region to ≈ 𝛿0 40⁄ = 37.5 × 10−6 m 63. 

After the flow develops into a parabolic profile where the shear rate is 𝛾̇ ≈ 2𝜐𝑜𝑢𝑡 (𝐷 2⁄ )⁄  over 

a mixing chamber distance of 4𝐷, and thus 𝛾̇𝑡 ≈ 𝛾̇(4𝐷 𝜐𝑜𝑢𝑡⁄ ) = 16 and so the mixing scale 

further reduces to 𝛿 = 𝛿0 (40𝛾̇𝑡) ≈ 37.5 × 106 16⁄ ≈ 2 × 10−6 m⁄ . 

The main difference of the 3D CIJ flow and 2D CIJ flow is on the jets contacting. In the 3D 

CIJs the opposed jets impinge each other and after the fluid spreads radially from the 

impingement point, while in the 2D CIJs the jets bend towards the outlet before contacting 

and so there is no deceleration of the jets upon impinging each other 28. The radial spreading 
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of the jets in the 3D CIJs causes the flow dynamics to dissipate at a distance D from the 

impingement point, after which point the flow is fully developed with a parabolic velocity 

profile. In the 2D CIJs the fact that the flow is constrained in one dimension hinders 

dissipation mechanisms promoting a dynamic evolution of vortices throughout the mixing 

chamber at least up to the outlet of simulated domain, 4.5 D. So, the 3D CIJs have a faster 

reduction of scales when the jets impinge, but the flow dynamics dissipates in a shorter region 

of the mixing chamber. Despite these differences in the flow spatial evolution the dynamics of 

2D and 3D CIJs have the common aspect of being caused by the evolution of a shorter scale 

jet, d, that feeds larger vortices, 𝐷 or 𝐷 2⁄ . Due to this fact both 2D and 3D flow dynamics are 

well described within the framework of 2D turbulence as seen from the power spectra of both 

Fig. 7 and Fig. 12 where the power spectra from both geometries is plotted. The larger 

concentration of turbulent kinetic energy in the 2D CIJs is also clear from the power spectra 

comparison in Fig. 12. Similar flow regime to the one simulated with the 2D model have been 

experimentally observed with PLIF in prismatic mixing chambers if the depth was at least 

𝐷 2⁄  48, 64. 

CONCLUSIONS 

2D turbulence was studied from the 2D CFD simulation of an opposed jets mixer. This mixer 

is a simplification of actual industrial reactors used for example in crystallization and polymer 

processing 52, 65-68. The following observations are made from the energy distribution of 

turbulence for 2D flow:  

 the energy is injected at a small scale, which is the smallest observable 

coherent structure from the flow maps, the injectors’ width; 

 the energy is transferred from the injection scale to a larger hydrodynamic 

scale through the inertial subrange, where the size of the larger scales is the 

diameter of vortices that occupy the entire section of the mixing chamber; 
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 for scales below the injection scale turbulence energy is dissipated by 

viscosity;  

 in the flow region dominated by the jets contacting there is an equilibrium of 

energy transfer from the jet scale to the vortices scale. 

From the energy budget of kinetic and turbulent energy dissipation the integral scales of 

turbulence were computed, and had approximately the dimension of a pair of counter-rotating 

vortices, 2𝐷. The scales obtained from the power spectrum of velocity at a point and from the 

cross correlation between points at different locations, in this case the longitudinal integral 

scale, yielded approximately 𝐷. 

The same methodology of flow analysis is applied to an actual 3D geometry, equal to mixers 

with industrial applications. In these mixers the flow is extremely conditioned by the fact that 

energy is injected in a narrow section of the mixing chamber defined by the opposite 

injectors, and so the flow is mainly defined in the plane containing the mixing chamber axis 

and the axes of the injectors. The flow at the 3D CIJ was at a transition flow regime and has 

some of the same features than the 2D flow, namely the injection of energy at a smaller scale 

and its transport through the inertial subrange towards the energy containing scales. Thus, the 

flow dynamics at 3D CIJs under transitional flow regimes is well-described within the 

framework of 2D turbulence as described by Kraichnan 1, 3. This is to our knowledge the first 

demonstration of 2D turbulence in an industrial mixer/reactor. These mixers have been used 

in industry, namely for reactive polymerization in RIM processes, where the viscosity range 

of operation makes it impossible to design equipment for turbulent mixing under the classic 

scenario of scale reduction by vortex stretching. The 2D turbulence mechanism of injecting 

energy at a smaller scale that evolves to larger flow scale, was shown to be associated in these 

flows with a fast reduction of mixing scales that is a necessary condition for chemical reaction 

to take place. The 2D turbulence description is a useful tool for the assessment of the design 
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of CIJs because the energy spectra is linked to all the flow scales involved in the mixing 

process. 
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NOTATION 

Roman letters 

𝐴𝑣𝑜𝑟𝑡𝑒𝑥 - vortex area [m2], 

C - Courant number [−], 

𝑑 - injectors width, for 2D CIJ, or diameter for 3D CIJ [m], 

𝐷 - mixing chamber width, for 2D CIJ, or diameter for 3D CIJ [m], 

𝐷𝑣𝑜𝑟𝑡𝑒𝑥 - vortex diameter [m], 

𝐸 - power energy spectrum [m2], 

𝑓 – frequency [s−1], 

𝑓𝑓𝑜𝑟𝑚 - vortices formation frequency [s−1], 

𝐻 - mixing chamber length [m],  

𝑙𝐾 - Kolmogorov lengthscale [m], 
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𝐿 – integral lengthscale of turbulence [m], 

𝐿11 – longitudinal integral scale [m], 

𝑛 - Hamming window function width [−], 

𝑝 – pressure [Pa], 

𝑞 - flow rate [m3s−1], 

𝑟 - radius (radial coordinate) [m], 

Re - Reynolds number [−], 

𝑠𝑖𝑗 - fluctuating rate of strain tensor [s−1], 

𝑡 – time [𝑠], 

𝒖 - velocity vector [m 𝑠⁄ ], 

𝑢 - x-component of the velocity [m 𝑠⁄ ], 

𝑢̅ - x-component of the average velocity [m 𝑠⁄ ], 

𝑢′ - x-component of the fluctuating velocity [m 𝑠⁄ ], 

𝜈 - kinematic viscosity [m2 𝑠⁄ ], 

𝑉𝑣𝑜𝑟𝑡𝑒𝑥 - vortex volume [m3], 

𝑤 - z-component of the velocity [m 𝑠⁄ ], 

𝑊 - Hamming window function [−], 

𝑥 - x-coordinate [m], 

𝑦 - y-coordinate [m], 

𝑧 - z-coordinate [m], 

 

Greek letters 

𝛼 - Hamming window function parameter [−], 

𝛽 - Hamming window function parameter [−], 

𝛾̇ - shear rate [s−1],  

𝛿 - mixing scale [m], 
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𝛿0 - mixing scale next to the injectors [m], 

𝛿𝑡 - time step [s], 

𝛿𝑥 - mesh element size (edge length) [m], 

𝜀 - turbulent kinetic energy dissipation rate [m2s−3], 

𝜀 ̅- time average turbulent kinetic energy dissipation rate [m2s−3], 

〈𝜀〉̅ - space and time average turbulent kinetic energy dissipation rate [m2s−3], 

𝜆 - wavenumber [m−1], 

𝜆𝑖𝑛𝑗
−1  - energy injection scale [m], 

〈𝜅𝑖𝑛𝑗〉 - space average kinetic energy injected to the system [m2s−2], 

𝜅̅ - time average turbulent kinetic energy [m2s−2], 

〈𝜅̅〉 - space and time average turbulent kinetic energy [m2s−2], 

𝜅∗ - normalized turbulent kinetic energy [−], 

𝜅∗̅̅ ̅ - normalized time average turbulent kinetic energy [−], 

𝜇 - dynamic viscosity [Pa ∙ s], 

𝜌 - fluid density [kg m3⁄ ], 

𝜏 - passage time [s],  

𝜏𝑡 - turbulence integral time [s], 

𝜐 - y-component of the velocity [m 𝑠⁄ ], 

𝜐′ - y-component of the fluctuating velocity [m 𝑠⁄ ], 

𝜐̅ - y-component of the average velocity [m 𝑠⁄ ], 

𝜐𝑖𝑛𝑗 - injectors (inlet) average velocity [m 𝑠⁄ ], 

𝜐𝑚𝑎𝑥 - maximum velocity (at the injectors centre) [m 𝑠⁄ ], 

𝜐𝑜𝑢𝑡 - outlet average velocity [m 𝑠⁄ ], 

𝜐𝑣𝑜𝑟𝑡𝑒𝑥 - vortex velocity [m 𝑠⁄ ], 

Ω – domain. 
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Figure 1. Geometries and dimensions of: (a) CIJ 2D reactor and (b) CIJ 3D reactor. 
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Figure 2. Streamlines and vorticity sign (blue for negative values) (a) CIJ 2D reactor 

and (b) CIJ 3D reactor. 
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Figure 3. Streamlines and vorticity sign (blue for negative values) in a CIJ 2D reactor 

simulation over a period of 0.24T. 
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Figure 4. Streamlines (a and c) and third component of vorticity isosurfaces (c and d) 

in a CIJ 3D reactor for a 

numerical simulation in two different moments separated by 0.02T. 
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Figure 5. Power spectrum at impact point, i.e., (x,y)5(0,0) in CIJ 2D reactor: (a) 

original and (b) filtered with the 

Hamming function. 
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Figure 6. Power spectra of velocity components (grey for u0 and black for v0) at 

several locations on y50 axis of 

CIJ 2D reactor, with Re5300. 
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Figure 7. Power spectra at (0,d1D/2) from the 2D CFD simulations for several Re. 
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Figure 8. Normalized turbulent kinetic energy on y50 

axis, for several Re, in CIJ 2D reactor. 
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Figure 9. Turbulent kinetic energy dissipation rate on 

y50 axis, with several Re, in CIJ 2D reactor. 
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Figure 10. Normalized lengthscales L/D and T_t v_out /D 

on y50 axis, with several Re in the 2D CIJ. 
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Figure 11. Normalized turbulence wavelength (L_11/D) 

obtained from 1000 time steps equally 

spaced through simulation along y50 axis. 
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Figure 12. Power spectrum at x5d1D/2 in CIJ 3D reactor for Re5150 numerical 

simulation, of u0 (black), v0 (dark 

grey), and w0 (light grey), and in CIJ 2D reactor for Re5300. 


