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Abstract

Workflows have found adoption in scientific domains particularly due to their automation and provenance features. Using
workflows scientists can repeat analyses with different input parameters to later use provenance to access and compare results
based on respective parameters. An assumption that is often made is that by designing an analysis as a workflow, we get parameter-
to-result traceability for free with workflow provenance. This assumption holds for cases of coarse-grained traceability, where
an entire workflow is subjected to repetition and all workflow parameters contribute to all results. On the other hand for cases
requiring finer grained traceability, where a workflow is configured with collections of parameters and analyses within a workflow
are repeated with combinations of parameters from collections, this assumption is not guaranteed to hold. In this paper we identify
two dimensions that affect fine-grained traceability as: 1) the level of granularity supported by a workflow system in modelling
parameters/data in workflows and in provenance, which we name as the level of support for Factorial Design, and 2) the practice
of scientists in successfully encoding Factorial Design into workflows. Taverna is a workflow system that provides extensive
features for factorial design, meanwhile it provides an uncontrolled approach to workflow design; meaning scientists may create
workflows, which, when run, could break traceability in provenance. Using a real-world Taverna workflow we show how broken
traceability manifests in provenance and how it can render provenance practically useless for accessing workflow outputs derived
from particular input parameters. In order to prevent broken traceability from occurring, we describe a rule-based static analysis
technique, which operates over workflow descriptions and anticipates patterns in provenance. Our rules exploit the well-defined
execution behaviour in the Taverna system. In order to understand Factorial Design support in workflow systems in general, we
provide a comparative survey. We conclude that other workflow systems also provide constructs for Factorial Design, and, similar
to Taverna, they too are prone to broken traceability.

Keywords: scientific workflows; provenance; annotation; static analysis

1. Introduction

Workflows systems have enjoyed notable adoption in many
scientific disciplines as a means for encoding computational
analyses, offering three key benefits:

• They ease the exploitation of diverse scientific resources by
providing a readily available resource-access infrastructure
while still honouring the original codes and their native host-
ing environment. Workflow systems are often utilised as front-
ends to access web services, command-line tools or commu-
nity databases, which are often third party and are black-box
analysis capabilities.

• They bring transparency into analyses by capturing them as
explicit processes and monitoring and documenting process
executions as workflow provenance [1]. Provenance is a trail
of activity executions, their input/output, and the causal re-
lations among activities and data. Such trails vary in their
granularity - that is the detail that the processes and data
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Khalid.Belhajjame@dauphine.fr (Khalid Belhajjame),
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are documented; for example, file level, record in file level or
item in record level. To date such trails have been used chiefly
in debugging workflows, verifying analytical processes or as
proof of execution to support veracity of results for scientific
audit and peer-review.

• They enable automation and repeatability by encoding anal-
yses as executable processes. In particular workflows are a
powerful means for exploring (also known as “sweeping”) a
parameter space for an analysis. Scientists (re)run activities
while carefully permuting key factors that vary the workflow
set-up, such as input datasets and/or parameters, expecting
to conduct a meta-analysis by comparing and contrasting the
results of each activity. It is this class of workflows that con-
cerns this paper.

Adoption of workflows has proliferated computational anal-
yses and data obtained through such analyses. Consequently, a
need for result management has emerged [2] . Scientists require
result data to be indexed with respective analysis parameters,
configurations or input data, so that a number of post-execution
activities such as result access, comparison, meta-analysis and
reporting can occur. A recent survey [2] shows that although
scientists receive ample tool support for the design and enact-
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ment of analyses, they receive less support for post-execution
activities. Hence, established but ad-hoc techniques of result
management prevail; such as naming output files with parame-
ter values, embedding parameters into data files or using folders
to hold results from the sweep of a particular parameter.

Given the automation and execution trailing features of work-
flows, it is often assumed that by simply designing an analysis
as a workflow, the parameter-to-result traceability comes for
free with provenance. In a simplistic coarse-grained viewpoint,
where a workflow’s entire outputs dependent on its entire in-
puts, the above expectation can be met. However, the following
features of scientific workflow systems complicate the picture:

• Workflow languages allow the modelling of parameter collec-
tions, where each collection represents the changeable factors
of a scientific analysis and the various possible combination
of parameters. Workflow languages also allow the modelling
analysis repetitions over input parameter combinations. In
this paper we refer to these capabilities as a workflow sys-
tem’s constructs for Factorial Design (FD)

• Workflow systems collect provenance via add-on components,
which can lead to a discrepancy of the granularities with which
parameters/data are represented in workflows and in prove-
nance. For example, in Kepler [3] an array structure is a sin-
gle one blob in provenance, and in Vistrails [4] activities can
be repeated, but it appears as if the repetitions consume one
piece of data, while in fact they consume individual elements
of an array.

• In order to trace diverse scientific computations, workflow
systems make no assumptions on the inner workings of ac-
tivities and simply record activities as black-boxes with in-
puts and outputs in provenance. As a consequence, once a
black-box activity is recorded provenance lends itself min-
imally to inference of more refined or finer-grained causal
relations among that activitys inputs and outputs.

As a result, it becomes non-trivial to assess whether for a
particular workflow, with multiple input factors and blackbox
steps, its execution provenance will yield parameter-to-result
traceability.

In this paper we observe that such traceability is in fact not
a guaranteed side-effect of having workflows, specifically for
those executing factor and data sweeps. The way workflows are
designed are key in shaping their provenance and therefore the
starting point to achieve traceability is to ensure that the work-
flow design process is informed with anticipated provenance
characteristics. We also observe that the workflow system it-
self, such as Taverna [5], can be exploited to support a static
analysis to identify pre-hoc potential concerns in parameter-to-
result traceability.

In this paper we make the following contributions:

• Using a real-world Taverna workflow we illustrate Factorial
Design (that is, workflows designed to examine specific fac-
tors) and show how this can break. We show how a particu-
lar configuration in the workflow design leads to the n-by-m

pattern in provenance, where all n input parameters of the
workflow are traceable to all m results.

• We show how Taverna’s well-defined behaviour in preparing
parameter combinations and task repetition allows us to an-
ticipate patterns in provenance without running workflows.
Based on a formal representation of Taverna workflows and
execution behaviour we provide a set of rules that are predi-
cated on the elements of a workflow to predict the provenance
characteristics of that workflow.

• We provide a survey of scientific workflow systems to under-
stand their level of support for Factorial Design and whether
provenance from these systems could potentially lead to have
the n-by-m pattern.

Parameter-to-result traceability is a prerequisite for build-
ing tools that can exploit workflow provenance for result man-
agement. The value proposition of our approach is that for a
prevalent class of parameter-sweep type workflows, we provide
a technique that targets this traceability requirement.

The paper is organised as follows. We begin in Section 2
by introducing an example Taverna workflow and its prove-
nance. Using the same example, in Section 3 we present a high
level characterisation factorial design and how it can be broken,
we also show the negative impact of broken factorial design on
provenance queries. In Section 4 we provide an abstract model
for static analysis of Taverna workflows, and in Section 5 we
discuss the model’s implementation in Datalog. We review re-
lated work on workflow and programme analysis in Section 7.
In Section 6 we present the comparative survey of workflow
systems. We conclude and outline future work in Sections 8
and 9 respectively.

2. Taverna Workflows and Provenance

In this section we illustrate some of the constructs enabling
FD in the Taverna workflow system. We also observe the gran-
ularity characteristics of Taverna provenance.

Taverna workflows are comprised of tasks, input/output ports
of tasks, and the dataflow dependencies among ports. Fig-
ure 1 displays a workflow [6] that has been developed by the
AMIGA research group [7] that studies the interstellar medium
of galaxies to understand its impact on galaxy shapes (mor-
phologies). The workflow has been developed as part of the
Wf4Ever project [8], which has devised tools to support sci-
entific workflow preservation. Our example workflow accepts
as input a set of galaxy names (list cig name), and gener-
ates extinction values of galaxies as output (data internal
extinction). The workflow contains tasks for data retrieval from
the remote Sesame and Leda data repositories (Steps 1& 2), cal-
culation of galaxy properties with local tools (Step 3), and data
adaptation (unnumbered steps in between). In addition to the
core constructs, Taverna supports the following:

• Simple and Collection data types for ports (of tasks and work-
flows). Collection types allow the modelling of (nested) data/-
parameter collections. In our example the list cig name work-
flow input is defined to be a collection of string values.
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• Iteration (or looping) constructs to model task repetition. Tasks
in Taverna are accompanied with iteration strategies that pre-
scribe how to perform repetition in case the task encounters
a collection of inputs (to be swept over) rather than a single
input. The Sesame task (Step-1) has a single input port, hence
it will simply be repeated per item for an incoming input col-
lection. In case a task has multiple inputs as illustrated with
Leda task (Step-2) in Figure 1, which has two inputs, then the
task’s iteration strategy outlines how to pick input combina-
tions from incoming collections. Iteration strategies, which
we formally describe in Section 4, are recipes based on Dot
and Cross product operations over collections. Briefly Cross
product creates input combinations through a cartesian pair-
ing of items in input lists, whereas Dot product pairs items
from equal sized lists on a one-to-one basis.

Figure 1: Sample workflow from Astronomy developed by the Wf4Ever
project.

In Figure 2 we illustrate a particular execution of the work-
flow of Figure 1 with two input galaxies. During execution
some tasks are exposed to collections rather than single inputs
of defined type, therefore they are iterated as per respective
strategies. The iteration begins at the Sesame task, which is
invoked two times, once for each galaxy. The iterated exe-
cution of Sesame results in a list of xml-based coordinate in-
formation regarding each galaxies. The iteration of Sesame
creates a ripple effect and causes the follow-on adapter tasks
Extracting RA, and Extracting DEC to also iterate. By defi-
nition these tasks extract lists of coordinate fragments from in-
put XML data. As extractors iterate, they result in a nested list,
rather than a single list of coordinate fragments. The workflow
contains two flattening tasks that by definition coalesce a given
nested list (of strings) into a single-depth list. The scientist has
included these flatteners to bundle coordinate fragments for all
galaxies into single lists of coordinate fragments. Note that the
flattener tasks do not iterate as they encounter a single input that
is of their expected input type (a nested list). The Leda task it-
erates and at each iteration consumes same indexed coordinate
fragments from the two incoming lists. Galaxy information re-
turned from the Leda task is then subjected to filtering to be
used in the follow-on steps of the workflow.

The information illustrated in Figure 2 makes up the core

Figure 2: A fragment of execution illustrated for the Astronomy workflow.

of workflow provenance. Workflow systems utilise standard
provenance vocabularies such as OPM [9] and PROV [10] to
represent execution trails as graph structured information com-
prised of nodes denoting activities (task invocations) and data,
and causal links among nodes denoting an activity’s consump-
tion of input and generation of output data and the lineage
among an activity’s inputs and outputs. In Taverna, workflows
and provenance are in consistent granularities. Meaning that
for a port defined as a collection type in the workflow, the data
appearing at that port will be recorded as a collection in prove-
nance. Each item in this collection will be recorded as a distinct
artefact in provenance. Similarly given a task with an iteration
strategy in the workflow, each invocation of task will be docu-
mented distinctly in provenance.

We shall note that recent research on provenance have intro-
duced the notion of “provenance patterns/templates” [11] [12].
Templates denote fragments of provenance that are expected
to be collected by a system, and they are commonly repre-
sented in standard models such as OPM or PROV. Combined
with conformance checking mechanisms, templates can act as
an explicit schema for provenance and can be used to guaran-
tee certain patterns. In our case we do not have a template for
the provenance to be collected, however, we have peripheral
information: workflow description and workflow execution se-
mantics, which can be used to infer anticipated provenance pat-
terns. We will return to the discussion on provenance templates
in the conclusions of this paper, where we discuss alternatives
to our approach.
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3. Factorial Design in Taverna

The support for factorial design in a workflow system is the
ability to define an input parameter/data space for an analy-
sis, and the ability to run the analysis over each point in that
space. In our example in Figure 1 the input list of galaxy
names (list cig name) defines a one dimensional parameter
space, and Taverna’s iteration capability allows performing the
analyses involved in the workflow for each galaxy. Taverna
supports process/data granularities that are consistent in both
the workflow description and provenance. As a consequence
factorial design as encoded in a Taverna workflow can be re-
flected to the workflow’s execution provenance. This makes
Taverna provenance a potential index to access result data by
specifying input parameters used to generate that data. How-
ever, in order for this index to be effective, provenance should
link-up parameters and results discretely. Let I denote a col-
lection of input (parameter) nodes in a workflow provenance
graph P, and let descendants(i) be a function that returns the
set of data nodes that descend from the given node. We state
that the trace P has factorial design for I if for each i ∈ I
descendants(i) are mutually disjoint sets. We refer to the case
otherwise as broken-factorial design, i.e. if for i, j ∈ I the set
descendants(i)∩descendants( j) is non-empty.

The trace given in Figure 2 illustrates broken factorial de-
sign. Through iteration the workflow execution generates coor-
dinates (with the Sesame activities), and coordinate fragments
(with the Extracting RA, Extracting DEC activities) exclusively
for each input galaxy. At the Flatten List 2 and Flatten List,
activities however, factorial design breaks, as a single activity
invocation bundles all coordinate fragments for all galaxies into
a single list, which becomes a descendant of both input galaxy
ids M31 and M33. By inspecting the follow-on structure of
execution we understand that the workflow designer has inad-
vertently created this design mishap as the follow on Leda is
iterated over these bundled up lists, so are all remaining steps
of the workflow. So if the designer did not include the list flat-
tening steps and iterated Leda directly over the outputs of ex-
traction steps, mutual disjointness of galaxy id’s would have
been preserved.

Note that factorial design is defined in terms of a particular
input collection. Therefore, for a workflow with multiple input
collections, the provenance trace may have factorial design for
some of the input collections, whereas have broken factorial de-
sign for others. This is illustrated with the trace in Figure 3. The
workflow is comprised of a Pair-up task that performs string
concatenation, followed by a List To String task that coalesces
lists of strings into a single string. The workflow is ran with two
input collections one a list of characters ( “A”, “B”, and “C”)
and the other a list of input numbers ( “1” and “2”). The iter-
ation strategy for Pair-U p prescribes the the exploration of all
possible input combinations. Consequently Pair-U p is invoked
6 times consuming input pairs created from a cartesian (cross)
product of input lists. The output is a nested list, where the top
level list contains 3 elements, each a list, containing items that
commonly descend from the same indiced item in the list of
characters (e.g. all items in list [“A-1 A-2”] descend from “A”).

Figure 3: A trace that has broken factorial design for only one of its input
collections (numbers).

Meanwhile items in those lists descend from different items in
the list of numbers. The List To String task is invoked 3 times
in each iteration consuming each one of three lists producing
a single string representation of them. This trace has factorial
design for the input list of characters, whereas it has broken
factorial design for the input list of numbers, because each in-
vocation of List To String consumes items that descend from
distinct numbers.

Broken factorial design manifests in provenance with either
the n-by-1 or n-by-m patterns denoting a single activity con-
suming n inputs (descending from n distinct parameters), and
respectively producing a single output or a collection of m out-
puts. The trace in Figure 2 illustrates n-by-m, whereas the trace
in Figure 3 illustrates n-by-1. What renders provenance an in-
effective index for result access is the particular case of n-by-m,
where the size of m is positively correlated with size of n as il-
lustrated in the flattening activities in Figure 2, where the output
list is based on the input list. To illustrate we ran a sample query
to retrieve all outputs that belong to a particular galaxy (M31).
We realise this query by identifying the galaxy name workflow
input with designated value, and then obtaining all descendants
of that input node in the provenance graph. Due to broken fac-
torial design, all galaxy ids have common descendants beyond
the flattening step. Hence, the precision of provenance-based
result selection is reciprocal of the input size: 1

n (depicted in
Figure 4).

Given the black-box nature of workflow provenance. Once
broken factorial design occurs in provenance there is no action-
able information to remedy it. Therefore one strategy, which
we take in this paper, is to prevent this pattern from occurring
in the first place through an analysis of workflows at design
time. When designing workflows scientists may compromise
factorial design:

• either intentionally, by integrating external analytical resources
(databases, tools, web services) coarsely into workflows. Sci-
entists may submit data from multiple parameters to an exter-
nal resource all at once to reduce resource access overhead.
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Figure 4: A trace that has broken factorial design for one of its input collections.

• or inadvertently, by error, as it was the case with the example
in Figure 1.

A crucial requirement, then, is the ability to anticipate breaks
in factorial design by inspecting workflow descriptions. Results
from such an analysis can be provided as feedback to work-
flow designers in order for them to understand whether they
will later be able to use provenance for result access. For in-
stance, for the astronomy workflow the feedback would be “The
extinction results from this workflow are not discretely trace-
able to the corresponding galaxy ids, discreteness is broken at
the Flatten List step”. Such feedback could be useful in re-
factoring workflows designs (where possible).

4. Static Analysis Model for Taverna Workflows

We will now provide the core contribution of this paper, the
Taverna workflow analysis model. This section is comprised of
six sub-sections:

• In Section 4.1 we outline how Taverna workflow descriptions
are formally represented.

• In Section 4.2 we discuss how task compositions drive itera-
tion in Taverna. We discuss different types of compositions
and iteration.

• In Section 4.3 we outline the information model that our anal-
ysis supports. We outline formally Taverna’s execution be-
haviour for the most basic case of iteration (a single-input
task) and provide a core set of rules that make predictions on
the provenance characteristics of a given workflow.

• In Section 4.4 we illustrate two dot and cross product, which
are key enablers of Taverna’s support for factorial design. We
show the role of these operations in the complex case of iter-
ation (that of multi-input tasks).

• In Section 4.5 we formalise Broken Factorial Design in terms
of the information model given in Section 4.3.

• In Section 4.6 we outline Taverna’s behaviour for multi-input
iteration and provide corresponding prediction rules.

Throughout Section 4 we utilise and extend a formalisation
provided by Missier et al [13] for representing Taverna work-
flows and their execution behaviour.

4.1. Modelling Taverna Workflow Descriptions
Taverna allows for structuring of data artefacts as nested

collections. More specifically;

Definition 1. (Taverna type designators) Tname denotes the set
of possible type designators for data processed in Taverna work-
flows. Tname is comprised of derivations of the following syntax
rule:

τ ::= s|L(τ) where;

s denotes the basic string type and L(τ) denotes list types. s,
L(s), L(L(s)) ∈ Tname are example type designators. We denote
nesting of lists with a superscript numbered shorthand; L(L(s))
is denoted as L2(s). We use T to denote the set of data values
that conform to any type in Tname.

Definition 2. (Taverna workflow) is denoted with the triple
w = 〈PRO,POR,LINK〉 and the functions in, out, src and snk
where;
PRO is the set of processor names,
POR is the set of port names,
LINK is the set of dataflow links among ports,
in : PRO→ 2POR×N×Tname and out : PRO→ 2POR×Tname are two
interface functions that maps processors to their ordered inputs
and to their outputs with type designators. Each port within a
signature of a processor has a unique name. For a particular a
input/output port ∈ POR of a processor proc∈ PRO we use the
combination of proc.port to refer to it.
src : LINK→ PRO×POR and snk : LINK→ PRO×POR are
two functions that map links to their source and sink ports.
We extend the core workflow model with the following func-
tions:
procFun : PRO→ S, where S⊆ T denotes the set of strings, is
a function that maps processors to their underlying functions.
Multiple processors in a workflow may be underpinned by the
same function (recall multiple list fattening processors in the
case study workflow).
lhb : PRO→E is a list handling behaviour function which maps
processors to their corresponding iteration strategy expressions
obeying the following syntactic rule:

ε ::= (ε⊗ ε)|(ε� ε)|〈portname〉

Expressions can be specified using binary Cross (⊗) and Dot
(�) product operators and port names. Each port appears once
in the expression and expressions can be comprised of subex-
pressions. Iteration strategy expressions encode crucial infor-
mation on how a processor is to be executed with multiple input
collections.

Example 1. (Workflow) In the left hand side of Figure 5 we
depict two sample processors with their defined input and out-
put types. The concat4Str processor accepts four inputs each of
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Figure 5: Two sample Taverna processors, their port types and list handling
behaviour.

type s, and produces one output of type s. The List To String
processor accepts an input of type L(s) and returns s created by
coalescing all items in the input list. The specification of the
workflow fragment in Figure 5 would be:

PRO = {concat4Str,List To String}
POR = {str1,str2,str3,str4,outstr, inlist}

LINK = {l1}

in(concat4Str) = {〈str1,1,s〉,〈str2,2,s〉,〈str3,3,s〉,〈str4,4,s〉}
out(concat4Str) = {〈outstr,s〉}
lhb(concat4Str) = {(str1⊗ (str2� str4))⊗ str3}

in(List To String) = {〈inlist,1,L(s)〉}
out(List To String) = {〈outstr,s〉}
lhb(List To String) = (str1)

src(l1) = {concat4Str,outstr}
snk(l1) = {List To String, inlist}

In right hand side of Figure 5 and throughout the rest of
this paper we denote processor’s iteration strategy expressions
with an intuitive diagrammatic view using a List Handling Be-
haviour (LHB) formula tree. Note that the tree-based represen-
tation in Figure 5 is compact in the sense that operators are not
binary, they have multiple parameters. This compact form can
be expanded into a binary-operator-only tree through addition
of nesting in a left associative manner.

4.2. Overview of Task Composition and Iteration Types
Dataflow links among processors is the mechanism of pro-

cessor composition in Taverna. At the design interface Tav-
erna allows the composition of processors with mismatching
nesting-levels of input/output types. At the workflow specifi-
cation backend Taverna automatically infers the dataflow ad-
justments required for a successful execution of the workflow.
These adjustments can be informally described as follows:

• Simple Composition: This is the straightforward case where
the input of a processor is of depth expected by the processor,
requiring no adjustment.

• Wrapped Composition: Represents the case when the data
supplied to a processor is of a lesser depth than expected. In

this case Taverna infers that a wrapping dataflow adjustment
is necessary, and prepends as many outer lists as necessary
around a processor’s inputs so that during execution inputs
will be of depth acceptable by the processor.

• Iterated Composition: Represents the case where the input
supplied is of depth greater than expected, here Taverna re-
quires information in the LHB to determine how to consume
inputs. There are two sub cases of iterated composition.

– Single-Input Iterated Composition: This is the case where
the processor has a single input. List To String processor
in Figure 5 is an example. In this case Taverna is prescribed
to traverse down the input list structure until the it encoun-
ters an item that is of depth acceptable by the processor.

– Multi-Input Iterated Composition: When a processor ac-
cepts multiple collections as inputs, Taverna gives the pos-
sibility of creating input combinations configurable with
list Dot and Cross product operations. concat4Str proces-
sor in Figure 5 is an example.

In iteration because the processor is exposed to inputs with
depth greater than expected, the output(s) will also be of greater
depth than defined. The impact of depth differences of inputs
to the output depends whether iteration is a single or multi
input one, and also depends on the structure of the LHB for-
mula. When one processor iterates it could potentially lead
to other downstream processors to iterate.

Example 2. (Processor Composition) In Figure 6 we illustrate
how the processors given earlier in Figure 5 are composed as
part of a larger workflow. The workflow has 4 input ports which
are connected with dataflows to inputs of the concat4Str pro-
cessor. Note that three of workflow’s input ports are of type
L(s), as a result dataflows from these ports to concat4Str cor-
respond to iterated composition, with adjustment consequences
for the output of this processor. The amount of depth adjust-
ment for the output of concat4Str (the calculation of which we
will show later) is 2. Hence while a single invocation of this
processor results in a single string (as by its definition), in its
composed occurrence in the workflow the overall (iterated) ex-
ecution of this processor will result in a list of list of strings,
L2(s) at output port outstr, designated with call-out in Figure 6.
As a ripple effect the iteration of concat4Str will cause iteration
of List To String, which will be exposed to an input of depth
L2(s), greater than its defined type L(s). As a result of itera-
tion List To String will generate an output of type L(s) instead
of s. Note here that as a result of iteration of List To String, its
downstream processor List To String 2 will encounter an input
that matches exactly its defined input type, henceforth this task
will not be iterated and will be executed just once.

We will now present the abstract model for representing in-
formation generated through workflow analysis. We formally
specify the iteration behaviour of Taverna (for the simple single-
input case), and outline a set of rules for making predictions of
iteration and the (list) depths of data generated from iterations.

6



Figure 6: Depth adjustments and iterated compositions inferred for a workflow
description.

4.3. Analysis Information Model and Predictions for Single-
Input Iteration

Definition 3. (Predicted Provenance Model) Analysis-based pre-
dicted provenance PP for a workflow w is denoted is with the
quadruple PP = 〈w,D,M,R〉 where;
D represent relations outlining iteration characteristics of pro-
cessors and predictions on depths of processor input/outputs.
M represent relations on predicted patterns in provenance.
R denotes a set of rules that populate relations in D and M using
relations in w, D and M.

Definition 4. (Depth Predictions Model) The information model
D for representing depth predictions is comprised of the follow-
ing relations:
de f inedDepth : 〈PRO×POR〉 → N is a function that maps a
processor port to the depth-wise size of the data structure that
it is defined to consume/produce as per its type designator. De-
fined depth is a numerical characterisation of type designators
of ports. Given 〈p, t,n〉 ∈ de f inedDepth we denote this with
dDep(p.t) = n.
predictedDepth : 〈PRO×POR〉 → N is a function that maps a
processor’s port to the depth-wise size of the data structure that
the port is predicted to hold during workflow execution. Given
〈p, t,n〉 ∈ predictedDepth we denote this with pDep(p.t) = n.
∆Depth : 〈PRO×POR〉 → N is a function that maps a proces-
sor’s port to the difference (delta) between the predicted and
defined depths. Given 〈p, t,n〉 ∈ ∆Depth we denote this with
∆Dep(p.t) = n.
∆Proc : PRO→ N is a function that designates whether a pro-
cessor is predicted to iterate or not. Given 〈p,v〉 ∈ ∆Proc, v = 0
denotes that p is predicted to execute once, v > 0 denotes that p
is predicted to iterate. We denote this tuple with ∆Proc(p) = v.
∆Link : LINK→Z is a function that designates the kind of com-
position that a dataflow link represents. Given 〈l,v〉 ∈ ∆Link,
v = 0 denotes simple, v < 0 denotes iterated, and v > 0 denotes

Figure 7: Explicit and Implicit provenance in an iterated processor execution.

wrapped composition. We denote this tuple with ∆Link(l) = v.

Example 3. (Depth Predictions) Consider processor List To String∈
PRO the interface definition of which were given earlier in Ex-
ample 1. Depth predictions for List To String due to its com-
position with other processors in the workflow were illustrated
in Figure 6. Using Definition 4 a subset of predictions (the com-
putation of which we will discuss later) is denoted as follows:

dDep(List To String.inlist) = 1
pDep(List To String.inlist) = 2
∆Dep(List To String.inlist) = 1

We will now move on to illustrating how the exposition of
Taverna’s execution behaviour allows for the definition of rules
to populate PP. We denote Taverna execution behaviour (as
exemplified in Equation 1) using the functional notation in [13].
Key functions are numbered 1 through to 5 in Section 4 and are
also summarised in Table B.1 of the Appendix. The notation
for these functions has the following characteristics:

• Behaviour is given in terms of recursive definition that are
comprised of a conditional body. The conditions are com-
prised of 1) a base case and 2) a recursive case.

• Conditional test expressions of each case are given with the
infix notation.

• Body of each case is a function call given with the prefix
notation similar to most functional programming languages.

• The recursive case involves the use of map function, well-
known from functional programming languages. For any other
utility function used in the body we provide inline definitions.

Taverna achieves iteration by encapsulating processor func-
tions within a recursive evaluator.

Definition 5. eval : N× S×T → T is a function that applies
a designated processor function over a given input data value.
The specification of eval is as follows:

(evall f v) =
{

(map (evall f ) v) |v|> l
( f v) |v|= l (1)

eval uses the following utility function in its conditional ex-
pressions:
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Definition 6. (| |) depthwiseSize : T → N is a function that
returns the depth-wise size of a data value that is of type T .
We denote this function with “| |” as a shorthand. Example
applications would be as follows:

| [“a”,“b”,“c”] |= 1
| [[“x”,“y”, ], [“z”,“t”]] |= 2

| “a” |= 0

When executing a single input processor p ∈ PRO with in-
put i∈POR Taverna instantiates the eval with l, f , and v, where
l = de f inedDepth(〈p, i〉), f = procFun(p) and v is the data
value appearing at port i. eval traverses down the input list
structure until it encounters an item that is of a depth that is ac-
ceptable by the processor, given with l. A sample execution of
the List To String processor with eval would be as follows:

(eval1 List To String [[“11”,“12”], [“21”,“22”], [“31”,“32”]]) =
(map(eval1 List To String) [[“11”,“12”], [“21”,“22”], [“31”,“32”]]) =

[ (eval1 List To String [“11”,“12”]),
(eval1 List To String [“21”,“22”]),
(eval1 List To String[“31”,“32”]) ] =

[(List To String [“11”,“12”]),
(List To String [“21”,“22”]),
(List To String [“31”,“32”])] =

[“11−12”,“21−22”,“31−32”] =

During execution each invocation of the processor function
(the base case of eval in Equation 1 ) fires an event, which gets
caught by Taverna’s provenance framework and gets logged.
For the iterated List To String processor, there will be three
such event logs, that record explicitly the lineage between the
inputs and outputs of the processor function (depicted with solid
lines in Figure 7). Note that Taverna does not explicitly record
lineage among output lists created in response to traversing down
input lists (the recursive case of eval in Equation 1). In Figure
7 we illustrate explicitly recorded lineage with solid lines and
implicit lineage (among traversed lists) with dashed lines.

Observation on eval. The exposition of how a processor is ex-
ecuted (Equation 1) and how iteration occurs allows us to antic-
ipate the structural characteristics of data and lineage before a
workflow gets executed. Because the evaluator is recursive and
exploits the map function, this gives us a rule of thumb stating
that:

i for each enclosing list structure that we travel down (to
find inputs that are of depth acceptable by a processor) a
corresponding output list will be generated. As a result
each extra (delta) depth for the input will become an extra
(delta) depth for the output.

ii each enclosing output list (generated due to a correspond-
ing one in input), will have the same size (number of
items) as the corresponding input list.

We will now provide the formal encoding of these rules.
Throughout Section 4 we denote rules in the form of “if... then

...” statements where each statement is a Horn clause (a con-
junction of literals implying a single literal) [14]. Each lit-
eral represents information in relations of Predicted Provenance
Model (Definition 3). In Section 5 we present how these rules
are implemented in Datalog.

Definition 7. (Delta Depth Calculation Rules) Given a port r
of processor p the following apply:

If dDep(p.r) = n, pDep(p.r) = m then ∆Dep(p.r) = m−n
If dDep(p.r) = n, ∆Dep(p.r) = d then pDep(p.r) = d +n.

The delta depth of a port is the difference between its predicted
and defined depths. The delta depth calculated for an input port
of a processor can be used to determine the iteration of that
processor and its output depth, which is given in the following
rules.

Definition 8. (Depth Prediction Rules - Single Input Proces-
sor) For a single input processor p, where in(p) = {〈i,1, t〉}
executed with eval the following apply:

If ∆Dep(p.i) = n then ∆Proc(p) = n.

A value n > 0 denotes that processor p will be iterated.

Definition 9. (Depth Prediction Rule - Processor Output) Us-
ing the delta depth of a processor we can predict the depth of
its outputs. For each output of processor p, 〈o, t〉 ∈ out(p) the
following holds:

If ∆Proc(p) = n, dDep(p.o) = m then pDep(p.o) = m+n.

A delta depth associated with a processor becomes a delta depth
its outputs.

Definition 10. (Depths, Depth Mappings) The information model
M for representing predicted patterns in execution provenance
of a workflow w is comprised of the following relations:
Depths D ⊆ PRO× POR×N+ is the set of possible nesting
levels for lists that appear at a designated port during workflow
execution. We denote a particular depth 〈p,r,m〉 ∈ D as dp.r

m ,
where m denotes a depth index. m can range over values in
[1..k] where pDep(p.r) = k. Depth indices start from 1, which
corresponds to the nesting level of 0. A depth with index 1
refers to the top level collection at nesting level 0, whereas a
depth with index 2 refers to all collections at nesting level 1.
Depth Mappings DM⊆D×D is the set of predictions on the ex-
istence of discrete lineage relations among list items within col-
lection structured data to appear at designated ports. We denote
a depth mapping 〈dp1.r1

m1 ,dp2.r2
m2 〉 ∈ DM with dp1.r1

m1 → dp2.r2
m2 . If

there is such a mapping we can be assured that for any execution
of workflow w there will be discrete lineage relations among list
items at nesting levels designated by each depth.

Example 4. (Nested Lists) Intuitively, if we were to think of
list structured data of type Ln(s) as an n-dimensional array, a
depth would correspond to a particular dimension of that array.
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Imagine a processor p with input port in where pDep(p.in) =
2. During a particular execution of that workflow data of type
L2(s) (as predicted) would appear at port in. An example such
value could be:

v1 = [ [“11”, “12”], [“21”, “22”], [“31”, “32”] ]

The depth dp.in
1 would refer to the 1st dimension of this ar-

ray. dp.in
1 is an address for lists at nesting level 0, which for

v1 is a single list comprised of the set of items {[“11”, “12”],
[“21”, “22”], [“31”, “32”]}. Meanwhile dp.in

2 is the second di-
mension, an address for all lists at nesting level 1, for v1 these
are 3 particular lists, first comprised of items {“11”, “12”}, sec-
ond comprised of items {“21”, “22”} and so on.

Definition 11. (Depth Definition Rule) For a processor p with
input/output port r:

If pDep(p.r) = n, i ∈ N, 1 < i≤ n then dp.r
i .

The number of possible depths for a port is bound by the pre-
dicted depth of that port. Whenever the predicted depth of a
port is calculated this is used to define individual depths with
indices ranging from 1 up to the port’s predicted depth.

Our earlier observation on eval allows us to model antici-
pated implicit lineage relations among collections in the form
of mappings among depths.

Definition 12. (Depth Mapping Rule - Single Input Processor
Evaluation) For a single input processor p executed with eval,
where in(p) = {〈i,1, t1〉} out(p) = {〈o, t2〉} the following ap-
ply:

If ∆Dep(p.i) = m, k ≤ m, k ∈ N+, dp.i
k , dp.o

k then dp.i
k → dp.o

k .

This rule creates mappings among same indiced depths of input
and output ports from 1 up to delta depth of the input.

Intuitively this rule states that lists at depth n of the proces-
sor’s output will be shaped by corresponding lists at depth n of
the input. In other words, if there is such a mapping between
two depths, we can be assured that there are discrete lineage
relations among each item within lists at corresponding depths.
This assurance brought by the existence of depth mappings
provides the foundation of our static analysis.

Example 5. (Depth Mapping) Using rule in 12 a single depth
mapping will be inferred for the List To String processor, which
is din

1 → dout
1 (we omit processor name prefix for brevity). We

know that this mapping implies similar structure so if the work-
flow were to be run with an input list of (three) items, where
each item is itself a list (of two). Then as per rules outlined thus
far we can expect the output to be a list of (three) items, where
each list item will be string with depth 0 equal to the defined
depth of List To String.outstr.

Missier et al [13] have provided the pioneer insight into the
impact of Taverna’s iteration on provenance. This insight has
allowed us to anticipate implicit lineage (among lists) with the

notion of depth mappings. Meanwhile Missier et al [13] have
used it to anticipate explicit lineage relations, with a mechanism
they call Index Projection. Such that, for a given prospective
location of an output data item, the location of the contributing
input item can be calculated. Note that, both depth mapping
and Index Projection calculations would be independent from
any particular input data size, or data value.

To this end we have analysed processors with single inputs,
where the processor did not have an associated LHB formula.
We will now move onto multi-input processors with LHB for-
mulas. We start by illustrative examples in the following sec-
tion.

4.4. Overview of Multi-Input Iteration

As exemplified in Section 4.6 LHB formulas are built with
Dot and Cross product operations. Both operations creates tu-
ples out of items they encounter in lists, which could them-
selves be tuples. Note that in a repeated application of these
operations, n-ary tuples will be generated. Note however in the
formal representation of Taverna workflows there is no separate
type for tuples. To adhere to this restriction we assume that Dot
and Cross product operations are underpinned by functions that
accept and return string types, where the result is a string based
representation of a tuple.

Cross product is a cartesian product function that adheres
to the nested structure of the lists, similar to the recursive eval-
uator given earlier, when the cross product encounter lists it
will traverse down to find items of appropriate depth. So unlike
the traditional cartesian product, which creates a list out of two
lists, the Cross product will create an output of type L2(s) when
applied over two inputs of type L(s) as exemplified below:

(cross [“a”, “b”, “c”] [“1”, “2”]) =
[[“a×1”, “a×2”], [“b×1”, “b×2”]], [“c×1”, “c×2”]]

Dot product is similar to the zip function found in many
programming languages. It will pair up items at same positions
in each list. Similar to Cross product the Dot product also obeys
the nested structure of lists. So the Dot product of two inputs of
type L2(s) will result in an output of type L2(s) as exemplified
below:

(dot [[“x”, “y′”], [“z”, “t”], [“u”, “v”]] [[“1”, “2”], [“3”, “4”], [“5”, “6”]]) =
[[“x×1”, “y×2”], [“z×3, “t×4”], [“u×5”, “v×6”]]

In the previous section we saw that the driver of iteration is
the depth difference, delta, between the expected and encoun-
tered depth of input i of a processor p. An intuitive way to
think about delta depth is to think of it as a space of dimension
∆Depth(p.i) to be explored. In the case of multiple inputs, the
application of the processor to input lists is preceded by oper-
ations (e.g. dot/cross product) that are responsible for creating
an overall input space from individual spaces supplied for each
input . This process of input space creation is informed by the
LHB formula. We provide the intuition for parameter spaces
with two examples. Later in Section 4.6 we will formally spec-
ify this process and corresponding prediction rules.
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Example 6. (Cross Product Based Input Space) Consider the
case in Figure 8. concat3Str is defined to be a processor that
has three input ports, each accepting singleton strings (input
port type s), and returns their concatenation. In this example
each input port is instead exposed to a list of strings L(s). Each
such list represents a 1-dimensional space for respective input
parameters. The LHB formulas are left-associative in Taverna
the Cross product of three lists will be created by first creat-
ing the cross product of the first two lists and then crossing the
result with the third. As a result a 3-dimensional input space
(a nested list of depth 3), comprised of input triples, will get
generated. These triples represent all possible combinations of
inputs from respective input lists. Once the input space is pre-
pared Taverna will explore this space by using the recursive
evaluator given earlier in (1) and will generate an output per
input in this space. The mappings between the dimensions of
individual inputs and the output depends on the order of in-
puts in the LHB formula, and the operator that combines them.
For concat3Str the mappings that will be inferred based on the
analysis of workflow description will be : dal phabet

1 → dresult
1 ,

dsymbols
1 → dresult

2 , dnumbers
1 → dresult

3 .

Example 7. (Cross and Dot Product Based Input Space) We
exemplify the use of Dot product in Figure 9. As discussed be-
fore, this operator expects its inputs to be of same depthwise
size, and returns an output same size as the inputs. Here the
LHB prescribes a Dot product of input spaces for str2 and str4.
The delta for both of these inputs is 1, hence a Dot product is
possible, which creates a single input space that is representa-
tive for both inputs. This space is then combined with the input
space for str1 with a cross product. Note that the formula also
prescribes how input spaces for str3 should contribute to the
overall space. However, as the input for the ports is of expected
depth, i.e. has no delta depth. There is no input space to be ex-
plored for str3. As a result each input quadruple in the overall
input space will have the same value for str3. The inferred depth
mappings will be as follows: dstr1

1 → dresult
1 , dstr2

1 → dresult
2 ,

dstr4
1 → dresult

2 .

In both examples in Figures 8 and 9 the defined depth for
the output of (string concatenation) processors is 0 (each invo-
cation produces a single string). As a result the application of
the processors will result in an output list structure that is of
the same depth as the dimension of the overall input parameter
space.

4.5. Modelling Broken Factorial Design
So far we outlined the elements of workflow analysis on a

per processor basis. Our ultimate goal is to perform the anal-
ysis over a workflow comprised of multiple processors. As il-
lustrated in Section 3 broken factorial design corresponds to an
activity record in execution provenance where the activity con-
sumes data descending from distinct workflow input parame-
ters. In this section we illustrate and formalise this pattern as a
discontinuation of depth mappings.

Example 8. (Broken Factorial Design) In Figure 10 there are
two processors, composed by a dataflow link. concatStr pro-

Figure 8: Illustration of input space resulting from Cross product of three pa-
rameters.

Figure 9: Illustration of input space using a combination of Cross and Dot over
four parameters.
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Figure 10: A broken factorial design illustrated with discontinued depth map-
ping at the List To String step.

cessor explores an input space of 2-dimension (based on the
cross product of its inputs). As per rules that will be given in
Section 4.6 ∆Proc(concatStr) = 2. Two depth mappings will
be created for this processor.

• For concatStr: dal phabet
1 → doutStr

1 , dnumbers
1 → doutStr

2

As per rules that will be given in Section 4.6 when the data
from the output of one processor is transferred to the input port
of a follow on processor via a dataflow link, depth mappings
will be created among the link source and sink.

• For the dataflow link: doutStr
1 → dinList

1 , doutStr
2 → dinList

2

Based on the predicted output depth of concatStr processor,
List To String will be exposed to L2(s), greater than its defined
input type L(s), hence we’ll have ∆Dep(List To String.inlist)=
1 and ∆Proc(List To String) = 1. Note that as the delta for
this processor is 1, it will traverse down only one level to find
data of acceptable depth. One such input item is [“X1′′,“X2′′],
which results in the output “X1−X2′′. With such an invoca-
tion List To String consume data all at once from the second
dimension (depth) of the output of concatStr. As per the rule in
Definition 12 the following mappings will be generated:

• For the List To String processor: dinlist
1 → doutStr

1

Note here that we are unable to create a mapping for dinlist
2

as this depth is beyond the delta depth for inlist. In other words
this depth is part of the data we consume, rather than a dimen-
sion we explore. This inability to map an input depth (which is
the target of a prior mapping) to any output depth represents the
break in factorial design, which can be defined as follows:

Definition 13. (Broken Factorial Design) Let reachesDepths :
D→ 2D be a function that accepts an input depth and returns the
set of depths that are reachable from the given depth by travers-
ing the depth mapping relations in w. We state that workflow
w has broken factorial design for depth dp.t

i if the set {dq.r
j ∈

reachesDepths(dp.t
i )| j > ∆Depth(〈q,r〉)} is non-empty.

4.6. Predictions for Multi-Input Iteration

To this end we only illustrated how input spaces look like in
several multi-input iteration scenarios, and what the depth map-
pings would be. We will now outline a high-level model for the
process that Taverna follows to prepare input spaces, to apply
processors onto these input spaces and to carry data among data

Figure 11: Illustration of iterated execution of concat4Str over multiple input
lists with respect to its LHB definition.

links. After that we will provide (in functional terms) the for-
mal specification of each step of this process. Based on these
specifications we will provide depth and depth mapping predic-
tion rules.

A convenient way to model the process that Taverna adopts
in executing workflows is to break it down to a set of known
computations. We illustrate these for the execution of concat4Str
processor in Figure 11. There are different four types of com-
putations involved:

• the carrying of data through a dataflow link. Depicted with
link boxes in Figure 11.

• the initialisation of a processor’s (multiple) inputs and identi-
fying whether there exists an input space to be explored or a
single input. Depicted with init boxes in Figure 11.

• the build up of the space of input tuples from the individual
input spaces using the LHB formula as a guideline. Depicted
with dot and cross boxes in Figure 11.

• applying the processor to each input tuple in this space. De-
picted with the eval box in Figure 11.

Taverna’s execution behaviour for a dataflow link is given
with the link function.
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Definition 14. link : 〈N× T 〉 → T is a function accepts an
input value and a target depth and returns an output data value
with depth wise size equal to the target depth. link ensures that
the nesting level of the result is equal to the target depth by
wrapping the input with as many enclosing lists as necessary
and returns. The specification of link is as follows (bracket [ ]
represents list constructor):

(linkd v) =
{

(v) if d ≤ |v|
(linkd [v]) if d > |v| (2)

When realising a dataflow link l ∈ LINK, where src(l) =
〈p1,o〉 and snk(l) = 〈p2, i〉, Taverna instantiates the link func-
tion with the data value v appearing at the link source, port
o of processor p1, and the defined depth of the link’s target
port d = de f inedDepth(〈p2, i〉). In Figure 11 each four links’s
targets correspond to input ports of the multi-input concat4Str
processor.

Definition 15. (Depth Prediction and Mapping Rules - link)
For a dataflow link l ∈LINK, where src(l)= 〈p1,o〉 and snk(l)=
〈p2, i〉 realised with the link function (as per Definition 14) and
the following apply:

If pDep(p1.o) = n, dDep(p2.i) = m then ∆Link(l) = m−n

Difference between the link target’s defined and link source’s
predicted depth is the delta for the link. It’s value determine the
type of composition for the link.

If ∆Link(l) = d, dDep(p2.i) = m, d > 0 then pDep(p2.i) = m.
If ∆Link(l) = d, pDep(p1.o) = n, d ≤ 0 then pDep(p2.i) = n.

A positive delta represents wrapped composition and the pre-
dicted depth of target would be the same as its defined depth. A
negative delta represents iterated, a zero delta represents simple
composition. In these latter cases no wrapping occurs hence
the predicted depth of the link’s target would be the same as its
source.

If ∆Link(l) = d, d > 0, dp1.o
n , dp2.i

n+d then dp1.o
n → dp2.i

n+d .
If ∆Link(l) = d, d ≤ 0, dp1.o

n , dp2.i
n then dp1.o

n → dp2.i
n .

If the link represents wrapped composition, then each depth of
the source map to depths of the target with an index shift factor
equal to delta of the link. For simple or iterated composition,
no wrappings are made, so all depths of source map to same
indiced depths of target.

Definition 16. init : N× T → T is a function that replaces
items (that are of a designated depth) within a (nested) input
collection with their string-based representation. init can be
realised using eval by passing makeStr (defined next) as the
processor function parameter.

(initl v) = (evall makeStr v) (3)

Definition 17. makeStr : T → S is a function that returns the
string-based representation of a given input value. If the input

is a string than the result is simply equal to the input. If the
input is a (nested) collection than we assume the result is some
string-based representation of this collection.

Note that init is single input processor and depth predictions
and mappings for given eval in Definition 12 also apply to init.

The purpose of init is to truncate depths within data collec-
tion that correspond to data values that will be consumed by
the follow-on processor evaluation step (eval in Figure 11), for
which an input space is being prepared. We assume such a be-
haviour for our convenience as it simplifies depth mappings for
follow-on (Dot and Cross product) steps. As a result of trunca-
tion, depth wise size of init’s output represents the dimension
of the input space for an individual one of multiple inputs that
will be consumed by the by the follow-on processor evaluation
step.

Definition 18. makeTuple : S×S→ S is a function that accepts
two strings representing data values or tuples of values and re-
turns a string representation of a tuple of the two input values.
Example tuples created while preparing the input space for the
concat4Str are given in Figure 11.

Definition 19. cross : T ×T → T is a cartesian product func-
tion for nested lists. The functional specification for cross given
below is comprised of a two phased evaluation based on the use
of an additional function cross2 : S×T → T .

(cross b a) =
{

[(map (cross b) a)] if |a|> 0
[(map (cross2 a) b)] if |a|= 0

(cross2 a b) =
{

(makeTuple a b) if |b|= 0
[(map (cross2 a) b)] if |b|> 0

(4)

In the first phase we traverse down the first input collec-
tion until a string item is reached. Afterwards the second phase
(cross2) starts, where using the item located in the first phase
we traverse down the second collection until a string item is
reached. A tuple is created out of the two string items located.

Definition 20. (Depth Prediction and Mapping Rules - cross
product) For a two-input processor p, realised with cross having
in(p) = {〈a,1,s〉,〈b,2,s〉} and out(p) = {〈c,s〉} the following
apply:

If ∆Dep(p.a) = n, ∆Dep(p.b) = m then ∆Proc(p) = n+m.

The sum of the delta depths on the two inputs of cross becomes
a delta for the cross product step.

If dp.a
j , dp.c

j then dp.a
j → dp.c

j .

The depths of the first input will map to same indiced depths
of its output.

If ∆Dep(p.a) = n, dp.b
j , dp.c

j+n then dp.b
j → dp.c

j+n.

12



The depths of the second input will map to depths of the output
with an index shift factor equal to the delta depth of the first
input.

Definition 21. dot : T × T → T is a zip function for nested
lists. The functional specification for dot is as follows (note in
the recursive case, we map dot onto two lists).

(dot a b) =
{

(makeTuple a b) if |a|= |b|= 0
[(map dot a b)] if |a|= |b|> 0

(5)

Definition 22. (Depth Prediction and Mapping Rules - dot prod-
uct) For a two-input processor p with in(p)= {〈a,1,s〉,〈b,2,s〉}
out(p) = {〈c,s〉} realised with dot function the following ap-
ply:
If ∆Dep(p.a) = n, ∆Dep(p.b) = n then ∆Proc(p) = n.

The delta depths on the two inputs of dot becomes a delta for
the dot product step.

If dp.a
j , dp.c

j then dp.a
j → dp.c

j .

If dp.b
j , dp.c

j then dp.b
j → dp.c

j .

In terms of depth mappings depths of both the first and second
input will map to same indiced depths of the output.

Once the input space is prepared then we apply the proces-
sor by using a single input recursive evaluator eval, for which
depth predictions and mappings were given in Definition 12.
This evaluator will simply traverse down each list until it finds
non-list items (tuples), then invokes the function associated with
the multi-input processor (e.g. concat4Str) using this tuple. As
eval is preceded with the preparation of the overall input space.
In terms of depth mappings each depth in the input space will
be mapped to same indiced depth of the output of processor
evaluation.

5. Implementing Analysis With Datalog

We adopt a declarative logic programming approach, more
specifically Datalog [14], for implementing the static analy-
sis of workflows. The analysis is static, as it is performed
solely over the workflow description, without running the work-
flow. An analysis program is comprised of 1) the extensional
database (EDB), which is a collection of facts, and 2) the in-
tensional database (IDB), which is a set of rules used to deduce
facts. A detailed description of rule implementations and illus-
tration of their execution is given in Appendix A.

A modular overview of our Datalog implementation is given
in Figure 12. We represent the Workflow Description as a set
of EDB facts. For illustration Table 1 provides a fragment of the
facts representing the workflow in Figure 6. With our facts we
represent, workflows, processes (tasks) and their input/output
ports. For each processor we also have facts that represent the
LHB formula tree. The EDB also provides the defined depths
for all ports. In order to kickstart depth prediction rules, the

Figure 12: Modules of rules used for our analysis and their dependencies.

EDB also contains the predicted depth for the workflow input
ports, which equal their defined depths.

We implement the rules given in Section 4 with three main
modules (“Depth Prediction”, “LHB Formula” and “Reaching”
in Figure 12). Their functionalities are described briefly here
with details given in Appendix A.1, Appendix A.2 and Ap-
pendix A.3 respectively.

Depth Prediction rules, which, starting from the workflow’s
input’s, will make the following predictions:

• delta and predicted depths of ports,

• the kinds of composition each dataflow link represents and
the implied depth mapping index shift factors for wrapped
composition,

• the size of the input space of processors, and based on that,
the predicted depths of a processor’s outputs. In order to cal-
culate the input space size Depth Prediction Rules utilise facts
produced by the LHB Formula rule module.

The LHB Formula rules encapsulate size calculation for
dot and cross product operations and a traversal logic for com-
puting the overall space size of a given LHB formula tree. This
module also calculates depth mapping shift factors for each
depth of processor’s input ports.

We allow users to define an input parameter space of a work-
flow based analysis as a Context. A context is an extensional
fact, a named combination of a workflow input port and a depth,
which represents an input data/parameter collection that drives
iteration within a workflow. An example of a context is the list
of galaxy names in the Astronomy workflow (list cig name in
Figure 1). A context therefore represents those parameters col-
lections, which are later to be used in provenance queries as an
index to reach results of interest. We provide Reaching Rules,
which, starting from a given context, compute depth mappings
throughout the dataflow links and processors of a workflow.
Reaching rules use the depth mapping adjustment factors com-
puted by the Depth Prediction and LHB Formula modules. In
this module we also broken factorial design, by flagging those
processor input ports where depth mappings are discontinued.

We have developed a tool that converts Taverna workflow
descriptions represented with the abstract Wfdesc [8] model
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workflow(w1).
workflowInput(w1,alphabet). workflowInput(w1,symbols).
workflowInput(w1,cons). workflowInput(w1,numbers).

definedDepth(w1,alphabet,1). predictedDepth(w1, alphabet,1).
. . . . . . . . . . . . . . . . . . . . . . . . . . .
process(concat4Str).
processInput(concat4Str,str1). processInput(concat4Str,str2).
processInput(concat4Str,str3). processInput(concat4Str,str4).
processOutput(concat4Str,outstr).

dataLink(dl1,w1,alphabet,concat4Str,str1).
dataLink(dl2,w1,symbols,concat4Str,str2).
dataLink(dl3,w1,cons,concat4Str,str3),
dataLink(dl4,w1,numbers,concat4Str,str4).

%LHB FORMULA TREE STRUCTURE
hasLhbRoot(concat4Str,uid1).

lhbNode(uid1, cross, concat4Str).
lhbNode(uid21, str1, concat4Str).
lhbNode(uid22, dot, concat4Str).
lhbNode(uid23, str3, concat4Str).
lhbNode(uid31, str2, concat4Str).
lhbNode(uid32, str4, concat4Str).

hasChild(uid1, uid21, 0).
hasChild(uid1, uid22, 1).
hasChild(uid1, uid23, 2).
hasChild(uid22, uid31,0).
hasChild(uid22, uid32,0).

Table 1: EDB Facts for representing a workflow.

into a set of EDB facts in DLV Datalog syntax [15]. The source
for the converter tool, the rule modules and the complete EDB
for the Astronomy workflow in Section 2 can be found at [16].

6. Factorial Design in Workflow Systems

In this section we survey state of the art workflow systems
to understand their level of support for factorial design. Survey
includes Taverna, Wings/Pegasus, Galaxy, Vistrails, Kepler, as
these systems have documented provenance capabilities. First
we give brief overviews (except for Taverna as it was intro-
duced earlier), then we provide a comparative discussion. (The
narrative follows from Table 21.)

Wings [17] is a “semantic” workflow system that operates
with resources (data and analytical components) made part of a
catalogue prior to use in workflows. During cataloging Wings
collects semantic descriptions and constraints about resources.
A semantic description could state that a task performs a par-
ticular function, a constraint could state that the input and out-
put data of some task should be about the same study subject.
Wings utilises semantic descriptions to validate task composi-
tions during workflow design, and to propagate attributes of in-
puts to results during workflow execution.

Galaxy [18] is a web/cloud-based data analysis platform
used widely in biomedical disciplines. Galaxy combines of
command line tools with data in workflows. Similar to Wings,
Galaxy operates over controlled resources and is similarly backed

1We use a full circle to denote enhanced, half circle to denote partial and
empty circle to denote minimal/no support for Factorial Design

System Process
Granularity

Data
Granularity

FD.
Support

Prone
to
n-by-m

Taverna Processor
Iteration
Sub-workflow

Fine Y

Kepler Actor
Ramp, Repeat,
Loop
Sub-workflow

Coarse Data,
Coarse Parameter

N

Kepler
(COMAD)

Actor
Data Bindings

Coarse Parameter,
Fine Data

Y

Galaxy Steps Coarse Data,
Coarse Parameter

N

Wings Component
Component Col-
lection

Coarse parameter,
Fine Data

Y

Vistrails Modules
Parameter
exploration,
map/fold
sub-workflow

Fine Parameter,
Coarse Data

N

Table 2: Comparative Table of Workflow Systems’ Support for Factorial De-
sign.

by a catalogue. During catalogue introduction, Galaxy expects
scientists to supply domain-specific, structured descriptions de-
noting data types or tool functions. Galaxy combines these de-
scriptions with execution traces to publish them online as work-
flow execution (histories).

Vistrails [4] system is specialised for visualisation work-
flows. Vistrails embodies a comprehensive library of visuali-
sation tools, which operate over a common information model.
An inherent characteristic of visualisation workflows is that they
are produced via a long and exploratory design process and Vis-
trails uses provenance to support this process. Vistrails keeps
track of all intermediate workflow designs and allows scientists
to compare and contrast execution results of design alternatives,
as well as different parameter values.

Kepler [3] system, used in several scientific domains, is
based on the Ptolemy II framework, which adopts a Dataflow
Architecture of computing [19]. Each flavour of dataflow com-
putation is manifested in Kepler as a Director, that dictates the
mechanics of dataflow among analytical steps. Kepler utilises
provenance to perform smart workflow re-runs [20], where sub-
parts of a workflow can be selectively re-executed using cached
outputs of upstream portions of a workflow.

6.1. Constructs for Factorial Design

A common aspect of provenance collection for all systems
is that processes are recorded at the granularity of tasks in a
workflow. Tasks are called Processors in Taverna, Actors in
Kepler, Modules in Vistrails, Components in Wings and Steps
in Galaxy. Furthermore, provenance collection in all systems
can see into control constructs, be they iteration, or sub-workflows
and record the provenance of tasks within those control con-
structs. Meanwhile, there is variation in the granularity of mod-
elling data and this is a critical factor in determining a system’s
support for factorial design.
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As discussed earlier in Section 2 Taverna supports fine-
grained modelling of data consistently at the workflow and prove-
nance level. Collections are the main driver of iteration in Tav-
erna. Differences in the expected and defined cardinality of in-
put determine whether a Processor is to iterate or not. Taverna
gives the scientists the flexibility of defining multi-dimensional
parameter spaces with dot and cross product and complex iter-
ation strategies. Taverna does not differentiate between param-
eters and data, which means both data/parameter sweeps are
built using the same language constructs. Henceforth Taverna
fully supports factorial designs.

Wings permits fine-grained modelling of input data as Files
and FileCollections and supports (coarse-grained) parameter
definition. Granularity of representation for data is uniform
across workflows and provenance. Wings provides Component
Collections for task iteration and uses this feature to sweep a
pre-configured analysis over multiple input datasets. Unlike
Taverna, comprehensive parameter spaces cannot be implemented
as parameters are coarse entities and iterations are not config-
urable. Hence Wings provides partial support for factorial de-
sign

Vistrails system has a fixed parameter exploration capabil-
ity built-in. More specifically, given n input parameter collec-
tions, Vistrails builds an n-dimensional parameter space based
on a cartesian product of these collections, upon which the en-
tire workflow is iterated. Vistrails also supports structured data
types with lists. Iteration (within a workflow) over lists is achieved
with higher-order modules such as map and f old that encap-
sulate analytical modules and the lists that the analysis should
be applied on. While parameter collections get distinctly rep-
resented in provenance list types appears as coarse data nodes.
Due to lack of controllable parameter space build-up and coarse
data modelling Vistrails is categorised to have partial support
for factorial design.

Kepler’s capabilities depend on the different Directors used.

• Kepler with its default set of Directors provides weak support
for encoding factorial design. Kepler supports structured data
types with arrays, however, similar to Vistrails, such struc-
tured data gets modelled coarsely in execution provenance.
Kepler supports the modelling of parameters as distinct de-
sign elements, however collection-typed parameters are not
supported. Kepler provides iterated analyses via ramp, repeat
and f eedback− loop constructs, however as both data and
parameters are modelled coarsely, this capability is insuffi-
cient on its own to represent factorial designs.

• The Collection-Oriented Modelling and Design (COMAD)
director of Kepler [21] provides improved, yet partial sup-
port for factorial designs. COMAD allows finer-grained data
modelling with nested collections of datasets to be recognised
as first class design elements in workflows. COMAD lacks
control constructs for task iteration, meanwhile alternative
mechanisms, called data bindings are in place. In this ap-
proach inputs, intermediary and final output data is to kept in
one single hierarchical data structure that is passed through
every task in the workflow in an assembly line manner. Each
task has a data binding specification (somewhat similar to an

XPATH query over XML) that specifies the data of interest
for that task. When a binding specification adresses multiple
data sub-hierarchies this can be used to sweep a particular
analysis over data collections. While data is modelled at a
fine-granularity, parameters are coarsely represented, hence
parameter explorations cannot defined and managed within
workflows.

Galaxy system does not provide support for encoding fac-
torial design into workflow descriptions. Here data/parameters
are modelled coarsely both in the workflow description and in
execution traces. Galaxy also lacks control-constructs such as
iteration or sub-workflows.

Systems that support factorial design within workflows, such
as Taverna, Wings, Kepler (COMAD) and Vistrails bear the
potential of yielding parameter-to-result traceability in prove-
nance. However, having support for factorial design can be-
come a double-edged sword when factorial design is broken.
In Wings, Taverna, Kepler (COMAD) the encoding of factorial
design is left to the user, and there are no restrictions in place
that would prevent the user from creating a design that would
lead to the n-by-1 or n-by-m pattern in provenance. Meanwhile
in Vistrails the control of factorial design is not left to the user,
instead the workflow system is in charge of factorial design, al-
beit providing it in a restricted manner (only allowing cartesian
(cross) product of inputs, and iterating the entire workflow).

6.2. Exploiting Factorial Design

In the introduction to this paper we discussed that work-
flows are beneficial to scientists in analysis automation; partic-
ularly in settings where analyses are swept over data/parameter
sets with the intent of performing post-execution activities such
as result comparison, parameter calibration or checking for cor-
relations among parameters and results. We also mentioned the
imbalance in the level of tool support; ample for the develop-
ment and execution of workflows, weak for the post-execution
phase. Among the systems surveyed earlier, the only one that
exploits provenance for post-execution result access is Vistrails.
Figure 13 displays Vistrails’ result comparison (spreadsheet)
interface, a typical example fine-grained workflow provenance
in action, where Vistrails capitalises on its tightly controlled
approach to factorial design and the resulting provenance with
guaranteed parameter to result traceability. Note that this does
not mean that scientists using other workflow systems are un-
able to perform the aforementioned post-execution activities;
instead they resort to custom-built solutions that rely on adhoc
(or self-collected) provenance (file names, data values, folder
structures) rather than workflow execution provenance (with
potentially broken factorial design).

Self provenance collection is illustrated in the workflow in
Figure 14 . The workflow decorates a given set proteins (de-
noted with accession numbers ENSP....) with their universal
identifiers pulled from a designated repository (SWISSPROT )
under a designated taxonomy (9606). The workflow contains
several tasks for accessing the repository for data retrieval as
well as a final task, build mapping table for recording prove-
nance in the form of a mapping table that traces collected uni-
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Figure 13: Comparing results derived from different parameter values in Vis-
trails.

versal identifiers to corresponding accession numbers and other
parameter settings. Such a traceability table might as well have
been generated by workflow tooling using provenance, under
the condition that provenance reflects factorial design, which
for this particular workflow is not the case as the scientist con-
figures the workflow with a single coalesced string of access-
ing numbers, instead of a collection. One disadvantage of self
provenance collection, as illustrated here, is that it obfuscates
the ultimate analytical intent of the workflow by mixing up an-
alytical and reporting tasks. On the other hand adhoc prove-
nance as in file names etc., has the advantage of being easily
portable as provenance is co-located with data. Moreover, once
adhoc provenance is created, it can be read/written by tools that
operate over data.

Figure 14: Combination of analytical processing and adhoc provenance collec-
tion in a Taverna workflow.

An immediate question that springs to mind is: “how com-
mon is broken factorial design in real-world datasets and how
often scientists rely on self provenance collection”. In a pre-
vious empirical study [22] we surveyed 260 publicly shared
workflows2 to understand the high-level nature of data process-
ing within them. The survey revealed that a minority 30% of
tasks perform the scientific heavy lifting in a workflow (analy-
ses, data collection, visualisation), whereas the remainder 70%
are dedicated to data adaptation. Furthermore among those

2Developed with Taverna, Wings, Galaxy and Vistrails systems; belong-
ing to 10 domains, including Life Sciences, Astronomy and Earth Sciences
amongst others.

adapters, 20% perform a Flattening/Merging function, where
collections of data, or data coming from different workflow
branches are combined into single items, typically for the pur-
pose of reporting (self provenance collection). On the other
hand 5% of all adapters perform Splitting, which is the inverse
of Flattening. These numbers tell us that, at a localised level,
the n−by−1 or the n−by−m pattern is commonplace in real-
world provenance traces. We know, from examples, that some
of those local patterns do indeed amount to broken factorial de-
sign at a global (whole-workflow) level. We do not state the
exact rate of the co-occurrence of n− by−m and broken fac-
torial design in public workflows, as this would require run-
ning the static analysis over each workflow configuring each
run with extensive domain-specific knowledge to determine in-
put parameter(s) of interest, for which the health of factorial
design shall be assessed.

In fairness, the difference in the level of tool support be-
tween Vistrails and other workflow systems is due to their op-
erating assumptions. Vistrails targets a specific domain (visu-
alisation) with a controlled resource environment (a local li-
brary of tools and a common information model). As a result
Vistrails can afford to restrict users in implementing factorial
design. On the other hand, other workflow systems, such as
Taverna or Kepler, cater for a range of domains and therefore
assume an uncontrolled/open resource environment. These sys-
tems have to 1) accommodate heterogeneous domain formats,
which, for instance, may expect parameters and data sets to be
bundled; or 2) integrate remote resources, which, due to access
overhead, discourage scientists from a fine-grained integration,
such as the iterated invocation of a web service. In short, it is
more difficult to enforce factorial design in workflow systems
with uncontrolled resource environments.

7. Related Work

As mentioned earlier Missier et al [13] have provided the
initial insight that, for Taverna workflows, we can pre-compute
anticipated lineage based on locations of data in nested input
and output collections, as Taverna provides us with its itera-
tion semantics. This work exploits the definitions of the cross
product and the iterative processor evaluator to provide a loca-
tion mapping formula among indices of prospective input/out-
put data collections. Authors have shown that the cost of an-
swering lineage queries using location-mappings would be re-
silient to increases in workflow size, when compared to the
naive query answering based on traversal of lineage. In [23]
Dey et al describe a similar approach for the Kepler workflow
system’s Synchronous Dataflow (SDF) Director [3]. In Kepler’s
SDF workflows activities consume/produce data tokens to/from
containers (similar to ports) with defined rates. Dey et al pro-
vide a location-based lineage computation formula based on to-
ken consumption/production rates associated with each activity.
Similar to Missier et al, Dey et al demonstrate that location-
based provenance provides benefits in lineage query answering
in settings where the workflow size increases.

The benefit of both Missier’s [13] and Dey’s [23] location-
based provenance approaches is demonstrated in cases where
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workflows are very large (100+ steps) and all workflow steps
are iterated over respective input collections. As a result authors
demonstrate gains with synthetic datasets. In our approach we
have focused on what can go wrong in querying the provenance
of real-world workflows. Our case study has shown that when
the iteration structure is not sustained it significantly effects the
accuracy of provenance query results. Therefore we have fo-
cused on eliciting the case to the contrary of Dey and Missier.

Within a workflow the flow of data among modules is ex-
plicit. Recent research in provenance explores the use of static
analysis and/or dynamic instrumentation techniques in cases
where the flow is implicit in programmes or scripts. One mo-
tivation is obtaining a provenance abstraction capturing data’s
flow or the process’s dependencies. In noWorkflow [24] au-
thors analyse Python scripts to extract function-call hierarchies,
which they use to create a view over provenance traces collected
by run-time instrumentation of the functions’ reads and writes
to the file system. In [25] authors employ a taint tracking frame-
work, which instruments programme executions and records
which computations are affected by tainted data sources. Here
the authors use names of files read by programmes as taint
marks and show how such an approach can create fine grained
lineage among files, where the programme during its execu-
tion writes to one file the data read from another file. In [26]
authors apply source code analysis to programmes that under-
pin each analytical activity in workflows. The motivation here
is obtaining provenance that is of finer-granularity than what is
available in standard black-box workflow provenance. Through
such analysis authors create a record of prospective provenance
where each statement in a programme is modelled as a trans-
formational process and the variables read and updated by the
transformation are its inputs and outputs. The focus of these
works is having some basic provenance for a system that has not
been designed with such features. As the focus is on collecting
provenance, these works do not focus how that provenance can
be used or what the patterns or anti-patterns in provenance can
be. Whereas in our work, we have a provenance capability, and
we focus on patterns to increase the fitness of provenance for a
particular querying scenario.

Several researchers have previously used Datalog for prove-
nance representation and querying [27] and consistency check-
ing [28]. In the field of workflow verification there exists re-
search on modelling workflows with well-studied process for-
malisms such as Petri Nets [29] or π-calculus [30] and using
temporal-logic based analyses over these process representa-
tions. We have opted for Datalog for modelling analysis rules
as the broken factorial design pattern we were trying to detect
does not have a temporal dimension.

A technique used in optimising compilers, named data-flow
analysis [31], is method-wise similar to our approach. Data-
flow analysis is a systematic way of collecting information about
a program’s states (possible variable values) for distinct points
in the control-flow graph. Compilers utilise a number of well-
know data-flow analysis types such as “Reaching definitions”
or “live variable analysis”. Here programme statements are
associated with transfer functions that encapsulate if/how the
statement alters programmes state information (e.g. variable

definitions). A join operation is defined to compute state, when
multiple programme branches come together. The outcome of
data-flow analysis is used to optimise compilation, as in dead-
code elimination, which excludes from compilation those state-
ments that assign to a variable, which is never read afterwards.

8. Conclusion

In this paper we focused on a particular pattern that pre-
vents workflow provenance from being useful for post execu-
tion activities, such as result comparison, parameter calibration,
all of which rely on discrete traceability in provenance among
parameters and corresponding results. Using Taverna as an ex-
ample we showed workflow systems can sweep analyses over
parameter/data collections using constructs for Factorial Design
(FD). We observed, however, that having these constructs is not
a guarantee for having parameter-to-result traceability in prove-
nance. We identified the underlying reasons as the following:

1. granularity discrepancies between workflows and prove-
nance in modelling parameters/data,

2. workflow design practices that may lead to broken parameter-
to-result traceability in provenance.

In order to understand the level of support that workflow
systems provide for factorial design and their modelling granu-
larities, we provided a survey. We observed that workflow sys-
tems range over a spectrum in their support. There are systems
that do not support FD constructs, thereby mandating scientists
to handle the parameter sweeps and associated result organisa-
tion through external means [18]. There are those providing
FD constructs yet fall short of modelling data and parameters
with fine-granularity in provenance, thereby hampering its ex-
ploitation [3]. Finally, there are systems that support both the
constructs and their fine-grained modelling in provenance, how-
ever they are prone to the broken factorial design problem [5]
[17].

Due to black-box activities workflow provenance provides
no additional information to add resolution to an existing ac-
tivity execution trace. We therefore adopted a prehoc preven-
tive approach to tackle the challenge of broken traceability. We
provided a rule-based a static analysis technique operating over
the Taverna language to detect whether a particular workflow
design leads to broken traceability in provenance. Through an
exposition of Taverna’s operation we showed that that if Tav-
erna iterates over a collection of input items, it creates a cor-
responding output collection and that this correspondence be-
tween collections is an assurance of discrete traceability among
parameter and result collections.

A notable aspect of our approach is that it anticipates an
n-by-m or n-by-1 pattern globally, at the workflow level, rather
than locally at the individual activity level. If we are to inspect
an individual activity in provenance by looking at the immedi-
ate inputs/outputs it may as well exhibit n-by-m . On the other
hand such an activity does not pose a threat for factorial de-
sign if all its n inputs descend from the same workflow input
parameter (factor).
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Furthermore, broken factorial design may not always con-
stitute a problem to be fixed. The Flatten List processor in our
case study workflow, which presented the break point (in fac-
torial design) is a commonly used data adapter step in Taverna
workflows. The nested collections created through iterations
are represented as nested folder structures in the file system,
Taverna’s data storage layer. In order to reduce the complexity
of this physical representation, scientists often create coarser
grained data items by flattening nested lists into a single list or
a single string to facilitate easier integration of data into textual
reports or experimental bundles. In cases where the flattening
is a terminal/final task in a workflow, which is intended for re-
porting, it would not have a derogatory affect on provenance
queries. On the other hand, as discussed in our survey, such re-
porting tasks obfuscate the analytical process in the workflow.

Our work has shown that workflow design processes need
to become provenance-aware, if provenance is later to be ex-
ploited for result access. As we’re positioning our work in the
workflow design process it relates to other design-focused tech-
niques for collecting provenance. PrIME [32] is a methodol-
ogy for “adapting” existing applications to make them prove-
nance aware. This “adaptation” involves identification of in-
put/output data of interest and possible provenance inquiries
over that data, followed by iterative exposure and documen-
tation of an application’s actors (sub-modules) and their data
interactions with “interaction graphs” (similar to workflows).
Application modules identified in interaction graphs are then
refactored (wrapped) to collect provenance from their execu-
tions. The PrIME methodology is concerned with revealing
main data derivation paths in an application, and the granularity
of exposure is determined with the requirements of provenance
queries. On the other hand, PrIME does not specifically ad-
dress collection-typed data and the fine-grained lineage among
collections. Our work can be considered as complementary to
PrIME as it focuses on the aspect of fine-grained provenance.

9. Future Work

We have identified two immediate directions for future work.
First one is the exploration of how the static analysis can

assist the workflow design process. We plan to investigate how
analysis outcomes can turn into design feedback as 1) high-
lights on problematic parts of the workflow and 2) suggested
fixes. Our approach would be informed by empirical realities
of workflows: how often does broken factorial design occur in
workflows and whether it is the result of an intentional decision
or an accidental design mishap. Note that suggestions of fixes
would require more information than what is available in the
workflow description. Consider the Astronomy workflow given
earlier, where list flattening, which is a data adapter step was
causing the break in factorial design. By augmenting the work-
flow description with semantic descriptions denoting the types
of the inputs and outputs of activities, one may infer the input
and output types of adapter steps, due to composition [33], and
one can suggest that a step such as list flattening, which con-
sumes and produces same typed data, while on the other hand
breaks factorial design, may as well be eliminated.

The analysis rules presented in this paper are ultimately
specific to Taverna. The second direction of future work is
to understand 1) to what extent our work can be applied to
other systems and 2) whether there can be alternative system-
independent approaches. To proactively prepare for wider ap-
plicability, we designed our rules to operate over Wfdesc [8],
an abstract model of workflows with extensions capturing Tav-
erna’s iteration features. At the time of writing of this paper,
the Wfdesc model is being taken as a base for the development
of a Common Workflow Language (CWL) [34] for the bioin-
formatics domain. Once the CWL specifications are released,
the immediate next step for us would be to check whether our
rules can be adapted to CWL, which potentially would have bi-
lateral mappings with languages of different systems including
Taverna and Galaxy. In our approach we started with infor-
mation about a particular system’s workflow specification lan-
guage and execution semantics to infer resulting provenance
patterns. An alternative approach could be taking the reverse
direction. Starting with desired provenance patterns and de-
ducing the workflow that would generate those patterns. This
would require the specification of anticipated provenance pat-
terns, a thread of research which is currently being explored
with two research groups [12] [11]. Here a standard provenance
language such as PROV is being enriched with variables to rep-
resent patterns abstracted from any particular data or process
identity. There are already common patterns for describing sci-
entific experiments in some domains (e.g. “crossover” or “par-
allel group” designs in “omics-based” studies [35]) or generic
patterns such as the parameter-to-result traceability identified in
this paper. In case such patterns can be represented as abstract
provenance graphs then (workflow) system specific techniques
can be devised in order to map patterns to workflows that can
generate such patterns. We shall note that the current specifi-
cations for abstract provenance [11] [12] are still under devel-
opment as this research is very recent. We conjecture that ab-
stract provenance representations would potentially require ex-
tending with models to represent data collections and constraint
languages to represent patterns, such as traceability among col-
lections, or patterns that depend on data values.
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[3] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. B. Jones,
E. A. Lee, J. Tao, Y. Zhao, Scientific workflow management and the
kepler system, Concurrency and Computation: Practice and Experience
18 (10) (2006) 1039–1065.

[4] S. P. Callahan, J. Freire, E. Santos, C. E. Scheidegger, C. T. Silva, H. T.
Vo, Vistrails: Visualization meets data management, in: In ACM SIG-
MOD, ACM Press, 2006, pp. 745–747.

[5] P. Missier, S. Soiland-Reyes, S. Owen, et al., Taverna, reloaded, in: SS-
DBM, 2010, pp. 471–481. doi:10.1007/978-3-642-13818-8_33.

[6] S. S. Exposito, Workflow: Calculating the internal extinction with data
from leda, myExperiment Repository, http://www.myexperiment.
org/workflows/2920/versions/2.html (2012).

[7] A. R. Group, Analysis of the interstellar Medium of Isolated GAlaxies,
http://amiga.iaa.es/p/1-homepage.htm (2012).

[8] K. Belhajjame, J. Zhao, D. Garijo, M. Gamble, K. Hettne, R. Palma,
E. Mina, O. Corcho, J. M. Gomez-Perez, S. Bechhofer, G. Klyne,

18

http://dx.doi.org/http://doi.acm.org/10.1145/1376616.1376772
http://dx.doi.org/10.1371/journal.pone.0021101
http://dx.doi.org/10.1371/journal.pone.0021101
http://dx.doi.org/10.1007/978-3-642-13818-8_33
http://www.myexperiment.org/workflows/2920/versions/2.html
http://www.myexperiment.org/workflows/2920/versions/2.html
http://amiga.iaa.es/p/1-homepage.htm


C. Goble, Using a suite of ontologies for preserving workflow-centric
research objects, Web Semantics: Science, Services and Agents on the
World Wide Web 32 (0) (2015) 16 – 42.

[9] L. Moreau, B. Clifford, J. Freire, J. Futrelle, Y. Gil, P. Groth, et al., The
open provenance model core specification (v1.1), Future Gener. Comput.
Syst. 27 (6) (2011) 743–756. doi:10.1016/j.future.2010.07.005.

[10] P. Groth, L. M. editors, PROV-Overview: An Overview of the
PROV Family of Documents, W3C, http://www.w3.org/TR/2013/
NOTE-prov-overview-20130430/ (2013).

[11] D. Michaelides, T. D. Huynh, L. Moreau, PROV-TEMPLATE: A template
system for PROV documents, Unofficial draft specification: https://
provenance.ecs.soton.ac.uk/prov-template/ (June 2014).

[12] V. Curcin, S. Miles, R. Danger, Y. Chen, R. Bache, A. Taweel, Imple-
menting Interoperable Provenance in Biomedical Research, Future Gener.
Comput. Syst. 34 (2014) 1–16. doi:10.1016/j.future.2013.12.001.
URL http://dx.doi.org/10.1016/j.future.2013.12.001

[13] P. Missier, N. W. Paton, K. Belhajjame, Fine-grained and efficient lineage
querying of collection-based workflow provenance, in: Proceedings of the
13th International Conference on Extending Database Technology, EDBT
’10, ACM, New York, NY, USA, 2010, pp. 299–310. doi:10.1145/
1739041.1739079.

[14] S. Abiteboul, R. Hull, V. Vianu, Foundations of Databases: The Logical
Level, Addison-Wesley, 1995.

[15] N. Leone, G. Pfeifer, W. Faber, The DLV Project - A Disjunctive Datalog
System (and more), http://www.dbai.tuwien.ac.at/proj/dlv/.
URL http://www.dbai.tuwien.ac.at/proj/dlv/

[16] P. Alper, Taverna Workflow Analysis with Datalog, Source Code, GitHub
repository at: https://github.com/pinarpink/phd-sources/
workflow2datalog (Dec. 2015).

[17] Y. Gil, V. Ratnakar, J. Kim, P. A. González-Calero, P. T. Groth, J. Moody,
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aging Data Provenance Across Collection-Oriented Scientific Workflow
Runs, in: Data Integration in the Life Sciences, Vol. 4544 of Lecture
Notes in Computer Science, Springer Berlin Heidelberg, 2007, pp. 122–
138. doi:10.1007/978-3-540-73255-6_12.

[22] D. Garijo, P. Alper, K. Belhajjame, Ó. Corcho, Y. Gil, C. A. Goble, Com-
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Appendix A. Datalog Rule Modules

The rules given as part of our predicted provenance model
PP (Definition 3) map to a number of rules in the Datalog im-
plementation (Given in Table A.1). In the following section we
discuss Datalog rules in rule blocks that make-up each module.

Datalog programs are collections of rules, which are Horn
clauses or if-then expressions [14]. A Datalog program consists
of a finite set clauses of the form:

A0 :− A1, ... ,Am (m≥ 0)

where each Ai is a positive atom of the form r(t1, ..., tk)
where each ti is a variable or a constant. “: −” is read as “i f ”.
There can be two forms of clauses:

• facts, that correspond to the case when m = 0

• rules, that correspond to the case when m > 0

A rule is comprised of a head and a body. The RHS of the
rule clause is the body, the LHS is the head. Rule Head is an
atom and the body is comprised of the conjunction (AND) of
zero or more atoms. The rule implies that atom A0 is true if
atoms A1 to Ak are true.

Appendix A.1. Depth Prediction Rules

Depth prediction, the rules of which is given in Table A.2
occurs incrementally, through dataflow links and processors.
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Rule Definition in Section 4 Rule Block
7.(Delta Depth Calculation Rules) DP3
8.(Depth Prediction Rules-Single Input Processor) LHB1
9.(Depth Prediction Rules-Processor Outputs) DP4
11.(Depth Definition Rule) R1
12.(Depth Mapping Rule-Single Input Processor Eval.) LHB2, R4
15.(Depth Prediction and Mapping Rules-link) DP1, DP2, R2
20.(Depth Prediction and Mapping Rules-cross product) LHB1
22.(Depth Prediction and Mapping Rules-dot product) LHB1
13.(Broken Factorial Design) R3

Table A.1: Mappings from Abstract Model Rules to Datalog Rule Blocks.

• Rule Block DP-1: As the predicted depths of workflow input
ports have been provided as part of the EDB, this will initiate
the rules that determine the composition types of links from
these input ports to processors’ input ports. As per depth pre-
diction rules given earlier (Definition 15), what determines a
composition (link) type is the difference between the defined
depth of the link’s target and the actual depth encountered at
the source (i.e. the predicted depth of the source). The facts
inferred for our example workflow are depicted in Figure A.1,
the predicates wrapped, iterated and smooth are used to as-
sert the composition type of each dataflow link.

• Rule Block DP-2: The kinds of composition for each dataflow
link informs what the predicted depth of the target of the
dataflow link will be. For iterated and simple composition the
predicted depth of the target will equal the predicted depth of
source. For wrapped composition a depth adjustment occurs
so that the predicted depth of target is equal to the defined
depth of target.

• Rule Block DP-3: When we have information on the pre-
dicted depths of a processor’s input ports, then we can deter-
mine per rules outlined earlier (Definition 7) whether an in-
put port is initialised with a single input or a space of inputs.
The deltaDepth facts deduced for each port of concat4Str is
given in Figure A.1.

• Rule Block DP-4: In order to make a prediction for the output
port of a processor, we need to sum up two pieces of informa-
tion (recall Definition 9). First is the defined depth of the pro-
cessor’s output port, this information is available in the EDB.
The second is the size of the overall input space, this informa-
tion is produced by rules in the LHB Formula module. There
are two rules in Rule Block DP-4 (see Table A.2). One is de-
signed to handle the cases with processors that have inputs,
and the other is designed for processors without inputs. For
the latter case the defined depth of the output becomes also
the predicted depth. Rules in block DP-4 infer the predicted
depth for output outstr of concat4Str as 2 (see Figure A.2) as
the defined depth of outstr is 0, and the size of input space is
2 (we will present the rules for its calculation next).

Appendix A.2. List Handling Formula Rules

List Handling Behaviour (LHB) Formula rules, which are
given in Table A.3 perform two computations, 1) the calcula-

Figure A.1: Illustration of Deductions of the Depth Prediction rules.

tion of the overall size of the input space, and 2) the calcula-
tion of the mappings from depths in individual input parameter
spaces to the depths in overall input space. We make use of
the LHB Formula tree for each processor given in the EDB as
guidelines to perform these computations. Equations (20) and

DP-1: Determine the kind of composition for data links.

wrapped(ID,D):-
dataLink(ID,SRC_PRO, SRC_POR,SNK_PRO, SNK_POR),
predictedDepth(SRC_PRO,SRC_POR,Z),
definedDepth(SNK_PRO,SNK_POR,Y), Z<Y, D=Y-Z.

iterated(ID,D):-
dataLink(ID,SRC_PRO, SRC_POR,SNK_PRO, SNK_POR),
predictedDepth(SRC_PRO,SRC_POR,Z),
definedDepth(SNK_PRO,SNK_POR,Y), Z>Y, D=Z-Y.

smooth(ID):-
dataLink(ID,SRC_PRO, SRC_POR,SNK_PRO, SNK_POR),
predictedDepth(SRC_PRO,SRC_POR,Z),
definedDepth(SNK_PRO,SNKPOR,Y), Z=Y.

DP-2: Propagate predicted depth through a dataflow link, there is only an
adjustment in the case of wrapped composition.

predictedDepth(SNK_PRO, SNK_POR,RES):-
dataLink(ID,SRC_PRO, SRC_POR,SNK_PRO, SNK_POR),
wrapped(ID,D),
predictedDepth(SRC_PRO,SRC_POR,Z),
RES=D+Z.

predictedDepth(SNK_PRO, SNK_POR,Z):-
dataLink(ID,SRC_PRO, SRC_POR,SNK_PRO,SNK_POR),
iterated(ID,_),
predictedDepth(SRC_PRO,SRC_POR,Z).

predictedDepth(SNK_PRO, SNK_POR,Z):-
dataLink(ID,SRC_PRO, SRC_POR,SNK_PRO,SNK_POR),
smooth(ID),
predictedDepth(SRC_PRO,SRC_POR,Z).

DP-3: Calculate the delta depth for a port.

deltaDepth(PRO, POR,Z):-
definedDepth(PRO, POR,DEFD),
predictedDepth(PRO, POR, PREDD),
Z= PREDD-DEFD.

DP-4: Calculate the predicted depths for outputs of an activity using the total
size of the input space.

predictedDepth(PRO,O_POR,Z):-
hasLhbRoot(PRO,R),sizeCumulative(R,RT),
processOutput(PRO,O_POR),
definedDepth(PRO,O_POR,DD),Z=DD+RT.

predictedDepth(PRO,O_POR,DD):-
hasLhbRoot(PRO,null),
processOutput(PRO,O_POR),
definedDepth(PRO,O_POR,DD).

Table A.2: Rules predicting iterations and corresponding depth adjustments.
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(22) given earlier for cross and dot product provide the formu-
las for what the size of their output will be depending on the
size of input. Normally, if we apply these formulas bottom up
to the LHB tree, the output size of the top node will be the size
of the overall input space. Note that the equations also provide
us with a formula to compute mappings from depths of inputs
these operators to outputs. In order to compute the input space
size and the mappings simultaneously for a formula tree, our
rules (Rule Block LHB-1) in Table A.3 prescribe a depth-first
pre-order traversal of the LHB tree as illustrated in Figure A.2.

We use two predicates to accumulate the input space size
throughout the traversal, these are sizeLhs and sizeCumulative
predicates. sizeLhs represents the size of the input space as
defined by the portion of the formula to the left of the node.
sizeCumulative represents the size of lefthand side combined
with the size of space of the current node. The first child of
each node inherits sizeLhs from their parent. Note that the (leaf)
port nodes represent an individual input space that is of size
deltaDepth computed for that port. When sizeLhs reaches a
port node sizeCumulative is inferred by adding sizeLhs with the
deltaDepth for the (port) node.

sizeLhs for a non-first child is computed with information
from its left sibling depending on the parent operator node the
siblings belong.

• Recall from Definition 20 that the size of output of binary
cross product is the sum of the sizes of its inputs. There-
fore, in our rules if the parent is a cross product then the
sizeCumulative of the left sibling becomes the sizeLhs of the
right sibling to reflect the additive nature of cross product.

• Recall from Definition 22 that the size of output of binary dot
product is equal to the individual size of either input. There-
fore in our rules if the parent is a dot product then the sizeLhs
of the left sibling becomes the sizeLhs of the right sibling.

Finally the sizeCumulative of some parent (operator) is com-
puted when sizes for all its children have been computed. The
maximum size computed for a child becomes the sizeCumulative
of parent. As a result of traversal, the sizeCumulative for the top
operator node becomes the size of the overall input space.

The sizeCumulative that we have computed for each leaf
(port) node is also an indicator of its depth mapping. With the
rules in Rule Block LHB-2 we make this information more ex-
plicit using depthMapping predicate. Note that if the deltaDepth
for a port is zero then the input is comprised of a single value
and when a space of tuples is built up from multiple inputs the
same value for this input will be used for the entire set of tuples.
So this input maps to the entire input space. We denote this as-
serting that its depthMapping is 0. If deltaDepth is greater
than zero then its dimensions (depths) will map to depths in
the input space. The value of sizeCumulative for a port node
denotes the size of the input space inclusive of that port node
exclusive of others that come after it in a formula. Therefore we
can deduce that the depth with indice deltaDepth for the indi-
vidual input pace maps to the depth with indice sizeCumulative
in the overall space. Depth mapping information are used in
reaching rules, which we describe next.

Figure A.2: Illustration of Deductions of the List Handling Formula rules.

Constant definitions.

#const dotnode = dot. #const crossnode = cross.

LHB-1: Computing the overall size of input space.

sizeLhs(R,0):- hasLhbRoot(P,R), R != null.

sizeLhs(FIRSTCHILD,VAL) :-
lhbNode(PARENT,_,_),
hasChild(PARENT, FIRSTCHILD, 0),
sizeLhs(PARENT,VAL).

sizeCumulative(NODEID,Z) :-
lhbNode(NODEID, NAME, PROC),
NAME != dotnode,
NAME != crossnode,
sizeLhs(NODEID,VAL),
deltaDepth(PROC, NAME, NDEL),
Z=NDEL+VAL.

sizeLhs(SIBLING2, VAL):-
lhbNode(PARENT,dotnode,_),
hasChild(PARENT, SIBLING1, N),
hasChild(PARENT, SIBLING2, NEXT),
sizeLhs(SIBLING1,VAL), NEXT= N+1.

sizeLhs(SIBLING2, VAL):-
lhbNode(PARENT,crossnode,_),
hasChild(PARENT, SIBLING1, N),
hasChild(PARENT, SIBLING2, NEXT),
sizeCumulative(SIBLING1,VAL), NEXT= N+1.

sizeCumulative(PARENT, VAL):-
hasChild(PARENT, LASTCHILD, X),
#max{V : hasChild(PARENT,_,V)} =Y,
sizeCumulative(LASTCHILD,VAL), X==Y.

LHB-2: Computing depth mappings from each individual input to overall
input space.

depthMapping(PROC, PORT, 0):-
lhbNode(NODEID,PORT,PROC),
sizeCumulative(NODEID, VAL), deltaDepth(PROC, PORT, 0).

depthMapping(PROC, PORT, VAL):-
lhbNode(NODEID,PORT,PROC), sizeCumulative(NODEID, VAL),
deltaDepth(PROC, PORT, ND), ND>0.

Table A.3: Rules calculating the overall size of input space and the depth ad-
justments per input based on LHB formula.
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Appendix A.3. Context and Reaching Rules

We use a predicate named context to allow users define ex-
perimental contexts in the EDB. A context can be seen as a
named depth definition. For our running example let us as-
sume that we define each input item (parameter) in lists of al-
phabet and symbols to be contexts (Each item is of type s,
therefore of depth 0). This represented with the ground facts
context(ctxA,w1,al phabet,0). and context(ctxS,w1,symbols,0).

Figure A.3: Illustration of Deductions of the Reaching rules.

By building on such definitions the reaching rules presented
in Table A.4 can be described as follows:

• Rule Block R-1: We use context definitions to kickstart the
computation of the reach of contexts. By default a context
reaches the port it is defined on. As illustrated in Figure A.3
context ctxA reaches depth indiced 1 at the workflow input
port al phabet and similarly ctxS reaches depth indiced 1 at
workflow input port symbols.

• Rule Block R-2: We propagate reaching from the source of
a dataflow link to its target by taking into account the com-
position types of links. For simple and iterated composition,
reaching propagates to the same indiced depths at the target
port. For wrapped composition reaching propagates to depths
of target with a positive indices shift equal to the amount of
the wrapping adjustment made by the link.

• Rule Block R-3: When a context reaches a processor in-
put port depending on the depth it reaches we can determine
whether it will reach processor outputs. Recall that while per-
forming depth prediction we calculated depthMappings for
each depth in the input spaces of individual input ports. So
at this stage we need to check whether the depth that a con-
text reaches is a depth within the input space. If it is within
input space it will be preserved (or mapped to outputs), if it
reaches a depth beyond the delta depth it will be truncated
i.e. discontinued. In Figure A.3 both ctxA and ctxS reach
respective processor input ports at depth indice 1, note that
this is an indice within the boundary of the deltaDepth for
the input ports, which is also 1, therefore both contexts will

be preserved at the processor concat4Str, and they will be
propagated to this processor’s output ports.

• Rule Block R-4: We determine to which depth in a proces-
sor’s output port a context reaches by using the depthMapping
information associated with input ports. Note that for the in-
put port str1 the depthMapping is 1, therefore ctxA reaches
depth 1 in the port outStr. On the other hand the mapping for
str2 is 2, hence ctxS is forwarded to depth 2 in outStr. Note
now our example contexts are mapped to different depths at
the same port.

R-1: Kickstart reaching definition.

reaches(CTX,PRO, PORT,Z):-
context(CTX,PRO,PORT,RMPOS),
predictedDepth(PRO,PORT,PRED_DEP),
Z=PRED_DEP - RMPOS.

R-2: Propagate the reach of a context through a dataflow link.

reaches(CTX,SNKPRO, SNKPOR,Z):-
reaches(CTX, SRCPRO, SRCPOR, Z),
smooth(DL1),
dataLink(DL1, SRCPRO,SRCPOR, SNKPRO, SNKPOR).

reaches(CTX,SNKPRO, SNKPOR,Z):-
reaches(CTX, SRCPRO, SRCPOR, Z),
iterated(DL1,_),
dataLink(DL1, SRCPRO,SRCPOR, SNKPRO, SNKPOR).

reaches(CTX,SNKPRO, SNKPOR,Y):- reaches(CTX, SRCPRO, SRCPOR, Z),
wrapped(DL1,X),
dataLink(DL1, SRCPRO,SRCPOR, SNKPRO, SNKPOR),
Y=X+Z.

R-3: Determine whether a context reaching a processor input will reach an
output depth or is discontinued.

contextTruncated(CTX,PRO, PORT,Z):-
processInput(PRO,PORT),
reaches(CTX, PRO, PORT, CTX_POS),
deltaDepth(PRO, PORT, LMPOS),
CTX_POS > LMPOS, Z= CTX_POS - LMPOS.

contextPreserved(CTX,PRO, PORT,Z):-
processInput(PRO,PORT),
reaches(CTX, PRO, PORT, CTX_POS),
deltaDepth(PRO, PORT, LMPOS),
CTX_POS <= LMPOS, Z= LMPOS - CTX_POS.

R-4: Propagate the reach of a context from inputs ports of of an activity to
its output ports.

reaches(CTX,P1, OUT1,Z):-
processInput(P1,IN1),
processOutput(P1,OUT1),
contextPreserved(CTX,P1,IN1,CDEL),
depthMapping(P1,IN1,FFAC),
Z= FFAC-CDEL.

Table A.4: Rules for inferring the reach of a context throughout workflow.

The case when reaching cannot be propagated occurs when
a context reaches a depth that is beyond the input space, which
denotes that it is not a driver of iteration but a part of data
value to be consumed by one invocation of processor. At the
List To String step in Figure A.3 ctxS reaches depth 2 of the
input port. Meanwhile deltaDepth for this port is 1, in other
words List To String will iterate over a list inputs it can con-
sume. As a result ctxS get truncated at the List To String step.
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Appendix B. Overview of Functions Used

Function Description
(1) eval Recursive evaluator that applies a designated named function (for a pro-

cessor) over string values in a designated (nested) list structure, where
strings represent tuples of processor inputs.

(2) link Performs a wrapping adjustment on a given data value depending whether
the data has the designated nesting level.

(3) init Replaces data items that are of a designated nesting level in a designated
input list with their string-based representation.

(4) cross Creates a cartesian product of two designated (nested) lists by creating
tuples out of string items in lists.

(5) dot Creates a zip product of two designated (nested) lists by creating tuples
out of same indiced string items in lists.

Table B.1: Brief descriptions of key functions that make up Taverna’s execution
behaviour.
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