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ABSTRACT 

 

Combining time-dependant structural loading with dynamic crack propagation is a 

problem that has been under consideration since the early days of fracture mechanics. 

Here we consider a method to deal with this issue, which combines a set-valued 

opening-rate-dependant cohesive law, a quasi-explicit solver and the eXtended Finite 

Element Method of representing a crack. The approach allows a propagating crack to 

be mesh-independent while also being dynamically informed through a quasi-explicit 

solver. Several well established experiments on glass (Homolite-100) and Polymethyl 

methacrylate (PMMA) are successfully modelled and compared against existing 

analytical solutions and other approaches in 2D up until the experimentally observed 

branching speeds. The comparison highlights the robustness of ensuring energy is 

conserved globally by treating a propagating phenomenological crack-tip implicitly, 

while taking advantage of the computational efficiency of treating the global 

dynamics explicitly.  

 

Keywords: elastodynamics; cracking; cohesive zone; XFEM; quasi-explicit scheme; 

velocity hardening 

 

1. INTRODUCTION  

 

The kinetics of crack propagation is of considerable importance in a large variety of 

areas from predicting crack arrest length in engineering structures, earthquakes and 

bone fracture, to impact fragmentation protection in spacecraft and military armour. 
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The majority of modelling approaches to date have assumed that the material 

response is independent of crack propagation [1,2,3]. This is equivalent to considering 

structures as time-independent continua subject to instantly applied changes in 

boundary conditions.  In reality, materials behave differently at different length 

scales. This length-scale dependency ultimately leads to an element of discreetness at 

some material specific scale. The result is a delay in displacement propagation from 

application of boundary loading, to an incident point of interest, such as a crack tip. 

This is where the field of dynamic fracture mechanics aims to bridge the gap between 

material (continuum) dynamics and crack propagation (an extension of a 

discontinuity) by considering dynamically-loaded cracks, inertia and rate-dependent 

material behaviour [2].  

 

The first analytical treatise of dynamic fracture was made by Mott, who amended the 

Griffith’s energy balance for a central crack in an infinite plate with the kinetic energy 

of a fracture event. His modified expression for the strain energy release rate in an 

elastic continuum reads: 

 

                  𝐺 𝑡 = !"
!"
− !!!

!"
− !!!

!"
,                                              (1)              

 

where a is the crack length, F is the work done by external forces, UE is the elastic 

strain energy given by: 

  

𝑈! = 𝑈!! −  !!
!!!!
!

,                                                 (2) 

 

and EK is the kinetic energy, given by: 

𝐸! =
!
!
𝑘!𝜌𝑎!𝑎! !

!

!
.                                           (3) 

 

In Eqns. (2) and (3), σ is the remotely applied stress normal to the crack, ρ and E are 

the density and Young’s modulus of the material, 𝑎 is the crack speed, and k is the 

wave constant. From Eqns. (1)-(3), Mott derived a time-dependent strain energy 

release rate [4]: 
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!
!
!"

! !!!
!

− !
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𝜌𝑎!𝑎! !

!
= 2Γ                             (4) 

 

where Γ is a constant specific surface fracture energy. When compared to a material 

parameter, i.e. critical strain energy release rate Gc, Eq. (4) provides a criterion for 

crack stability: for G(t) < Gc the crack will remain stationary, otherwise it will extend. 

This can be recast into a more familiar criterion based on comparison between (time-

dependent) stress intensity factor, K!(t), and plane stain fracture toughness KIc, which 

is related to Gc via: 

 

𝐺! = 𝐾!!
! !!!!

!
.                                           (5) 

 

Equation (4) is derived with two limiting assumptions: the crack travels at a steady-

state speed; and this speed is small compared to the shear wave speed within the 

material.  However, due to the increased kinetic energy, dynamic fracture can occur 

below this critical limit for non-steady state speeds. Thus, KIc can be seen as a 

function of the crack velocity, which may not exceed a limiting value - the Rayleigh 

surface wave speed cr. Kanninen and Popelar [5] have shown that: 

 

𝑎 = 𝑐!  1− !!"
!!

                                                 (6) 

 

where 𝑎 is the macro-crack speed.  If KIc is assumed a material constant, i.e. fracture 

toughness is assumed independent of strain rate, then Eq. (6) will stand up to 

quantitative comparison with experimental data at low propagating speeds. Through 

extensive experiments on Homolite-100 by Ravi-Chandar and Knauss [6], it was 

observed that a propagating crack does not exceed ~0.7cr due to multiple yet not fully 

explained dynamic fracture features which dissipate the fracture energy beyond this 

limit. They also observed the crack propagation process for a fast brittle crack 

contained a large diffuse zone of micro-cracks ahead of the tip. This process produced 

an oscillating macro-crack profile, slowing down the crack, leading in some cases to 

macro-crack branching [6, 7].  
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The assumptions used by Mott for deriving Eq. (4) allow for two possible scenarios 

for modelling dynamic fracture: 

  

• When a crack in a body subjected to a slowly varying load reaches a point of 

instability and propagates rapidly, leading to sudden unloading along a crack 

path. This is closer to a quasi-static situation, where the crack has a long time 

to dissipate energy relative to the fast propagation.  

 

• When a body with a stationary crack is subjected to a rapidly varying load 

such as an impact, giving rise to high stress levels near the crack tip. This high 

stress level does not allow sufficient time for plastic deformations to develop 

before fracture, hence, energy must be dissipated by other mechanisms, e.g. 

micro-cracking. Therefore, energy is released within a short time frame 

leading to rapid crack propagation, possible sub-branching and or, macro-

crack branching. 

 

These two different scenarios have often been treated separately in fracture modelling 

due to the difficulty in integrating time-dependent and decaying discontinuities such 

as a crack in Figure 1 (a) into oscillating continuum systems under an external 

vibratory loading as in Figure 1(b). This is because the strain waves produced by a 

propagating crack are often within the same order of magnitude as the global 

oscillating potential, making the resolution of a propagating crack within a model 

numerically stiff.  While the separation of these scenarios is useful for analytical 

treatments, in reality they maybe realised simultaneously and there is no reason to 

keep them separate when dynamic fracture is modelled numerically. 

 

This paper offers a framework for numerical modelling of dynamic fracture where 

both scenarios are taken into account. As a first application of the framework, the 

dynamic crack propagation is followed up until the crack branching point, which is 

defined by the limit presented by Eq. (6). The post-branching behaviour is a subject of 

on-going work to be presented later. The developed modelling approach ensures 

energy conservation by allowing the energy released during crack propagation to be 

resolved by the global system through a quasi-explicit solver and a velocity dependent 
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cohesive law implemented via the eXtended Finite Element Method. The strategy is 

tested on two well-established experiments and discussed in relation to other available 

approaches to modelling dynamic fracture. The first experimental comparison allows 

the crack to arrest before reflected strain waves interact. The second experimental 

comparison includes the interaction of reflected strain waves with the propagating 

crack, allowing for consideration of the effects of the interacting strain waves on a 

propagating crack. 

 

   
(a)                                                                          (b) 

Figure 1 – (a) Primary and secondary waves produced during dynamic 

propagation (locally). The Dilation waves have a higher velocity than the shear 

waves and Stonely waves which are caused by crack lips contacting; (b) A 

schematic showing the combination of shear and longitudinal waves energy 

dissipation within a finite geometry including the reflected waves from a 

previous propagation step and or external vibratory loading (globally) [1, 3]. 

 

 

2. MODELLING 

 

The proposed modelling approach has three components: 

 

1. An implicitly treated velocity dependent ‘phenomelogical’ cohesive law to 

represent the crack tip, implemented along the main crack path only; 

2. A quasi-explicit solver to resolve the crack globally ensuring energy 

conservation; 
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3. A propagation algorithm using the eXtended Finite Element Method (XFEM) 

to represent the crack independent of a mesh. 

 

The combination of these allows a propagating Fracture Process Zone (FPZ) to be 

integrated into a global continuum dynamic model and the energy from reflected 

waves to influence a propagating crack in an energetically conservative manner; 

effectively bypassing any numerical stiffness.  

 

2.1 PHENOMELOGICAL RATE DEPENDENT COHESIVE ZONE  

 

Cohesive zone models have been used in modelling dynamic fracture [8, 9, 10, 11] 

however, they often lead to different results, particularly when the cohesive law 

contains elastic branch prior to damage initiation. This is because, the initial elastic 

traction-separation behaviour does not allow for resolving the cohesive zone without 

affecting the wave speed. To overcome this, Zhou et al. [12] have suggested a more 

phenomenological crack-opening-rate-dependent cohesive law, which accounts for 

rate/velocity effects. This is introduced on the main crack path only, rather than for 

the micro-cracking process in the FPZ. The law has been derived from multiple 

experimental observations, summarised in Fig. 2. Specifically, irrespective of 

component geometry it has been observed that the dependence of Gc on the crack 

velocity, 𝑎!, is monotonically increasing and described with reasonable accuracy by a 

simple empirical expression [13]: 

 

𝐺! 𝑎! = 𝐺! 𝑙𝑜𝑔
!!

!!!!!
,                                       (7) 

 

where 𝑎! is the limiting crack velocity, and G0 is the strain energy release rate at 

𝑎! = 0. The proposed equation is clearly an approximation to the real toughness-

velocity relation at the two limits: Gc approached zero as crack velocity 𝑎! 

approaches zero (i.e. the material is very brittle compared to fast fracture); Gc 

approached infinity as crack velocity approaches the limiting value. The rapid 

increase of Gc with 𝑎! is explained with a velocity-toughening effect of the material 

[14]. 
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Figure 2 – Geometry independent velocity toughening curve of Gc in Equation 7 

and the indicated points where dynamic fracture phenomena are observed [12]. 

 

To avoid the problem introduced by initial elastic traction-separation behaviour, we 

have considered a initially rigid-softening behaviour, schematically shown in Fig. 3, 

with toughness-velocity dependence based on Eq. (7). Since the critical stress is 

assumed to be independent of crack velocity, the illustrated behaviour is called 

opening-rate-dependent cohesive law. A fracture process zone with this law has been 

previously used to study crack branching [1].  

 

 
Figure 3 – An initially ridged opening-rate-dependent phenomenological 

cohesive law [1, 9]. 

 

Evident from the figure is that for a stationary crack (or very slow propagating crack) 

one needs to specify two material parameters, e.g. fracture energy and critical stress, 

which are related to the third, e.g. failure displacement, via  

 

𝐺! =
!
!
𝜎!𝛿!.                                                    (8) 
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For high crack velocities, the micro-cracks developing in the fracture process zone 

lack time to unload each other [9]. As a result the dynamic fracture process happens 

in an enlarged damage zone, which dissipates more energy. With the assumption for 

velocity-independent critical stress, the velocity dependence of the fracture energy is 

equivalent to a velocity dependence of the failure displacement, given by: 

 

𝛿! 𝑎 = 𝛿! log
!!

!!!!!
.                                             (9) 

 

A cohesive zone crack representation is associated with a cohesive critical length, 𝑙!, 

which is dictated by the materials elastic and failure properties; at zero velocity this is 

[8]: 

 

 𝑙!(𝑣 = 0) = 𝑀 !!!
!!!(!!!!)

.                                       (10) 

 

Equation (10) provides an inverse measure of material’s toughness: the smaller 𝑙!, the 

more brittle the material and is also related to the size of a fully developed fracture 

process zone under a peak load at initiation, which from Rice’s model has scaling 

factor [10, 14]:  

 

   𝑀 = !!
!"
≈ 0.88                                              (11) 

 

This limit represents the limit of the material topography resolution and therefore the 

limit where dynamic instability may occur. The validity of using an approach for fast 

fracture, where the bulk material properties accuracy breaks down at a fixed value 𝑙!, 

comes from understanding of the effects of the microstructure at a lower scale on 

velocity hardening and crack tip momentum observed in Fig. (2). Freund suggested 

that the macroscopically perceived fracture energy represents the maximum rather 

than the average of the fine-scale resistance produced by the microstructure [2]. This 

is to say that if the fracture energy, Γ, in Eq. (4) has a periodic variation due to the 

microstructure, then the maximum variation of this governs the crack growth 

behaviour for speeds near 𝑎=0 (initiation), but the average of the variation governs 
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behaviour for speeds approaching the material speed limit in Eq. (6). This suggests 

that for very fast cracks the microstructure significance diminishes, but becomes 

increasingly important as the driving force decreases. The limit 𝑙! then allows for the 

G, K, COD equivalency to be satisfied through Eqns. (6) and  (9), for a propagating 

dynamic macro-crack:   

 

   𝐺!"# = −𝐺!"!!"#$! =
!!!!

!
𝐾!! + 𝐾!!! + !

!!
𝐾!!!! = 𝜎!𝛿               (12) 

 

where G is the Linear elastic J integral [2]. The relation in Eqn. (12) allows 

computationally for a contour integral of G to be related to the toughness of a material 

through K (stress intensity factor) and then discretised through δ to integrate a 

discontinuity (crack) into a continuum model, using a quasi-explicit solver. 

 

2.2 QUASI-EXPLICIT SOVLER 

 

The difference between an implicit and an explicit time scheme comes from which 

part of a second-order non-linear equation, which describes a crack tips motion, is 

used to integrate a continuum solution. Implicit solutions are based on quantities 

calculated in the previous time step (backward Euler time scheme), which means even 

for large time steps the solution remains stable (unconditionally stable). There is a 

disadvantage to this however, this requires the calculation of the inverse stiffness 

matrix as it directly solves for the displacement vector, which is computationally 

intensive, especially with non-linear features present (material heterogeneity/strain 

waves), because the stiffness matrix itself will become a function of displacement. 

There is also the risk that such a highly non-linear computation may fail to converge, 

leading to a lack of robustness. For an explicit analysis, instead of solving for 

displacement, a solver resolves the solution through acceleration, bypassing the need 

for the stiffness matrix inversion and instead inverting the mass matrix. The mass 

matrix is also ‘lumped’ meaning the solution is easily obtained through a single step 

of inverting the matrix diagonals. This requires low-order elements that are preferred 

by explicit solvers. An explicit solver such as the Central Differences Method, 

illustrated by Eq. (13), is useful when resolving crack speeds from the perspective of 

the materials response to its propagation.  
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   𝑈!
! = !!!!!!!!!!!

!!!
           and          𝑈!

! = !!!!!!!!!!!!!!!!

!!!
 .             (13) 

 

This overcomes the difficulty of resolving crack velocities that may have the same 

order of magnitude as the waves produced in the solid, requiring a small time-step; 

leading to computational savings compared to resolving velocities implicitly. 

However, an explicit solver alone does not conserve energy and requires a forcing 

term, 𝐿! 𝑡! , from an initial implicit calculation to maintain the shifted energy 

polynomial [16]: 

 

𝜀!!! − 𝜀! = !
!
𝐿! 𝑡!!! + 𝐿! 𝑡! ,𝑈!!!! − 𝑈!! .                 (14) 

 

Explicit methods are also subject to a stability condition known as the Courant-

Friedrichs-Lewy Condition (CFL) due to not using an Reverse Euler time scheme 

such that ∆𝑡 ≤  ∆𝑡! [18]. In comparison with implicit analyses, the number of time-

steps for dynamic fracture is increased with an explicit time scheme, but the explicit 

inversion of the diagonal mass matrix makes the computational cost per time step 

much lower [16]. The critical time-step for stability should be smaller than the mesh 

resolution such that: 

 

∆𝑡!!"#$ = ∆!!!"#

!
= !!"#

!!
,                                     (15) 

 

where hmin is the length of the smallest element length and cd is the dilation wave 

speed. The time condition is half of that for a standard FEM solution to resolve the 

Heaviside function as XFEM crosses an element (discussed in the next section) [18]. 

This combination allows for a crack to be implicitly energetically stable, while an 

explicit solver handles the highly non-linear nature of a dynamically propagating 

crack in an oscillating complex geometry.  
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2.3 CRACK PROPAGATION ALGORITHM 

 

The propagation algorithm, illustrated in Fig. 4(a), follows a quasi-implicit 

formulation of a set-valued linear-softening cohesive law introduced by Doyen et al 

[16] and shown in Fig. 4(b). It first computes a potential crack surface, for which it 

introduces a rigid cohesive zone with full adherence to avoid non-physical opening. 

This is then followed by the insertion of the velocity dependent cohesive law, shown 

in Fig. 3, to represent the velocity hardening, Eq. (7). At each time step of the 

calculation the interface forces are treated implicitly, particularly due to the tangential 

forces being discontinuous with respect to tangential opening. The tractions are then 

resolved explicitly by computing the intersection of the set-valued law through a 

Central Differences Method. This is achieved through Newton-Raphson Iterations of 

a Lorentz Path Following Method to resolve each intersection point of the law (Fig. 

4(b)) [9]. The opening-rate-dependence of the cohesive zone model introduces a 

second time-scale, which is smaller than for the crack-tip speed and therefore requires 

smaller time steps to be resolved [1, 9].  

 

                              
              (a)                                                                      (b) 

Figure 4 – (a) Algorithm of crack propagation; (b) Analytical determination of 

tractions in an implicit cohesive law with an explicit time discretisation. The line 

crossing through the law is the intersection resolved by the Lorentz Path 

Following Method [9, 16]. 

 

Ferté et al [9] improved on this formulation by integrating this scheme into XFEM, 

enabling a dynamic crack to cross elements, effectively making the crack mesh-

independent. This is to say that, if an additional length scale is provided to a model as 

the typical distance between two cohesive surfaces, the results become insensitive to 

the mesh size [8]. In essence, the macro crack is informed from the meso-scale 
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dynamic material effects.  Hence, as long as hmin < lc the cohesive zone can be 

resolved - typically 5 or more elements in the zone. If the opening between two 

cohesive surfaces is such that δc >> hmin ≤ lc then the crack path can be considered 

independent of the mesh. It is also important to point out that the shape of the 

cohesive law does not significantly affect the final crack shape, meaning that the 

internal cohesive forces are independent of the mesh [8, 14, 15]. 

 

XFEM represents a crack through exploiting the partition of unity concept and is 

based on a set of nodal shape functions, whose sum is equal to one at each point in the 

field considered: 

 

𝑢 𝑥 = 𝑎!  𝑁!(𝑥)! + 𝑏!  𝑁! 𝑥  𝐻 𝑥 = 1!  ,            (16) 

  

where u(x) is the approximated function for one element, H(x) is the Heaviside 

function (discontinuous part), Ni(x) is the standard finite element function for node i, 

ui is the unknown part of the standard finite element function, Mi is the local 

enrichment of node i and ai is the unknown enrichment at node i [8]. This is where 

basis step functions are added to standard polynomial basis functions (enriched), at 

nodes that are intersected by a crack; to provide the crack opening displacement, as 

can be seen in Figure 5(a) [13]. The approach considered here is a quasi-explicit one, 

which treats a cracks FPZ as a cohesive zone implicitly, at the meso-scale, and then 

for the component dynamics to be resolved explicitly, at the macro-scale, through 

lumping the mass matrix in XFEM [9, 16]. The cohesive zone is inserted with XFEM 

level-sets through a smeared crack tip as in Figure 5(b). This is then used to compute 

the stress intensity factors and therefore the cohesive parameters through the G, K, 

COD equivalency in Equation 12. 

 

																																		  
(a)                                                                             (b) 
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Figure 5 – (a) An XFEM representation of a crack not aligned to the mesh. The 

green triangle nodes are enriched with discontinuous function (Heavy-side), and 

red square nodes are the classical FEM part; (b) Smeared crack-tip allowing for 

the insertion of the cohesive zone. 

 

2.4 ALTERNATIVE MODELLING APPROACHES 

 

A number of different methods have been used to date to model time dependent 

fracture, some use discrete elements or finite volumes, but the majority use the Finite 

Element Methods (FEM). Classic FEM approaches such as the Nodal Release Method 

(NRM), Fig. 6(a), or the Element Deletion Method (EDM), Fig. 6(b), involve a 

significant level of mesh dependency due to the application of material degradation 

laws or fracture criteria, which control the process of crack initiation, propagation 

and/or arrest. Most modern approaches stem from either NRM or EDM and try to 

overcome the limitations of how closely a material’s physics is represented. These 

approaches generally come in the form of rigid cohesive elements, Fig. 6(c), or 

material damage laws to represent the fracture process, and, adaptive meshing 

techniques such as mesh-refinement or mapping through error estimation, to 

overcome mesh dependency [1, 19, 20]. Cohesive elements are also limited in use by 

requiring predefined crack paths along element boundaries, with fixed crack opening 

jumps, leading to non-physical crack path representation [21]. 

 

Furthermore, time continuity is important in dynamic fracture problems, with crack 

advances often over large parts of a mesh, so re-meshing would need to be performed 

many times. Even when modelling stationary discontinuities, these methods can be 

quite cumbersome because construction of a mesh that adheres to the discontinuity 

surfaces can be difficult. Alternative approaches using discrete elements, which try 

and bypass this such as the Element Free Galerkin Method (EFG) or Peridynamics, 

Fig. 6(d), often struggle with application of boundary conditions meaning they require 

millions of elements to resolve discontinuities [7, 22].  This therefore makes 

eXtended Finite Element Method (XFEM) a more sensible choice than other 

approaches by bypassing the need re-mesh. 
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                (a)                               (b)                           (c)                               (d) 

Figure 6 – (a) NRM crack representation (b) EDM crack representation; (c) 

Cohesive zone crack representation through a cohesive law; (d) Peridynamic 

crack representation of a crack through an elastic bond between two discrete 

elements. 

 

To examine the applicability of the quasi-explicit CZM approach proposed here for 

dynamic macro-crack propagation it is compared to the following previously 

discussed approaches [22, 23]: 

 

1. Peridynamics (PD), 

2. Dynamic Cohesive Zone Modelling (CZM),  

3. Element Deletion Method (EDM),  

4. eXtended Finite Element Method with a damage parameter (XFEM),  

5. eXtended Finite Element Method – Cohesive Nodal Method (XFEM-CNM) 

 

The main difference of the approach used in this work compared to previous CZM 

approaches is that XFEM enrichment is used to insert a crack along a pre-defined path 

with a phenomenological cohesive law, meaning that the crack definition is no longer 

purely along element boundaries. It is anticipated that the new approach will provide 

further insight into the nature of modelling dynamic fracture. 

 

The examples considered in the next sections are from experiments, where the cracks 

were observed to follow straight paths prior to branching. Hence, in this initial 

application of the proposed modelling strategy, a pre-defined straight crack path is 

used and no external branching criterion is applied. Notably, branching criteria have 

been used in previous works for fine-tuning the crack profiles. In the present work 
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without branching criterion, the crack propagation is followed until the onset of 

branching/bifurcation. 

 

4. APPLICATION 1 - PMMA  

The first application investigated with quasi-explicit CZM is based on an experiment 

conducted by Fineberg and Sharon on a 440 by 380mm piece of Poly(methyl 

methacrylate) (PMMA), which is considered to have a noticeable rate-dependent 

fracture toughness and crack jump, Fig. 7(a) [22, 25, 26].  Furthermore, PMMA has a 

very high toughness, KIc or Gc, meaning that the observation of crack branching will 

occur at lower speeds (see Fig. 3).  PMMA is also the main material used by Zhou et 

al [12] to produce the velocity dependent cohesive law, and ideal experiment to 

consider a quasi-explicit CZM crack without influence of reflected waves or external 

oscillatory loading.  

In the experiment, an initial very small 4mm low constraint notch was introduced to 

the centre of one of the longer sides. The PMMA sheet was then loaded statically just 

below the critical limit of fracture and a sharp razor was then used to trigger 

propagation. The size of the geometry was considered such that the dissipated energy 

from the fast fracture event did not have enough time to reflect back to interact with 

the propagating crack before it arrested meaning the crack was purely driven by the 

rate-dependent fracture energy. When modelling this experiment using the quasi-

explicit CZM approach, the initial material properties were chosen to be the ones used 

previously such that: E = 3.24 GPa, Mass Density ρ = 1190 kg/m3, with the Rayleigh 

Wave speed considered to be cr= 930 ms-1 [15, 23]. The initial parameters for the 

cohesive law were also selected to be those used previously by Song et al. and 

Camacho and Ortiz [10, 15, 23]: σc = 75MPa and Gf  = Gc = 500Jm-2.  
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(a)                                              (b)                                               (c)   

Figure 7 – (a) Schematic of the small blunt pre notch PMMA plate; (b) Contour 
stress plot of the initial small notch; (c) Contour stress plot of the finally crack. 

The contor stress plots for the initial notch and final crack are shown in Fig. 7(b-c). 

Evidently, the waves produced by the crack do not interact with the sides of the plate 

and the kinetic energy is dissipated away from the propagating crack. The simulated 

crack velocity versus time is plotted in Fig. 8, together with the experimental results 

and simulations with other modelling approaches, including: XFEM, Peridynamics 

and fixed jump CZM.  

It can be seen in Fig. 8 that using quasi-explicit CZM approach, with Gc= 500 Jm-2, 

agrees very well with the experimental crack velocity, particularly at later stages 

where the crack-tip acceleration is low just before macro-crack branching which was 

observed in the experiment at around 80µs. This good correlation is obtained despite 

following an assumed straight crack path. The closest of the previous methods is 

XFEM with an external damage parameter, but the proposed quasi-explicit CZM 

approach is seen to perform better, because by being dynamically informed the crack 

velocities are more realistic and mesh independent. The oscillations in the 

experimental crack speed are due to the large strain rate crack jumps which tapper out 

at lower gradients as observed by Song et al [23]. 

 

The key difference between the quasi-explicit CZM approach and the standard CZM 

is that the former uses rigid-softening cohesive law, while the latter uses elastic-

softening law.  Song et al [23] argued that the pre-damage elastic branch was 

appropriate to introduce some hardening that accounts for initial plasticity due to 

crack initiation. However, in a propagating dynamic crack there is little time for the 
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material to respond plastically before the next fracture event. Hence, the initial elastic 

branch appears to be less realistic at higher fracture speeds seen just after initiation, 

and this is illustrated by the good correlation between experiment and simulations 

with rigid-softening cohesive law (quasi-explicit CZM). 

 

 
Figure 8 – Comparison graph of crack displacement-time profiles including: 

experimental data, XFEM, fixed jump CZM, Peridynamics and quasi-explicit 

CZM for Gc= 500 Jm-2 and Gc = 3000 Jm-2. 

 

The other modelling approaches can be seen to clearly over-estimate the crack 

velocity early on in the crack onset while trying to capture the micro-cracking profile, 

which is almost straight throughout the propagation. Also, just after the crack 

initiation is where the strain-rate-dependency of the fracture toughness of PMMA will 

be significant due to it being a polymer. Previously, Song et al suggested that 

PMMA’s experimentally measured fracture toughness maybe six times larger, i.e. at 

Gc= 3000 Jm-2, after fitting the model to the experimental results [23]. The quasi-

explicit CZM result with this fracture energy is also shown in Fig. 8 and fits better at 

the onset of the crack where there is greater energy dissipation and therefore a more 

rate-dependent crack jump. The profile then converges with the previous 

experimentally observed critical fracture toughness of Gc= 500 Jm-2. This 

demonstrates that PMMA’s fracture may have some strain rate dependency, which 

cannot be accounted for by an increased static loading when using Gc= 500 Jm-2. As 

demonstrated by Fig. 8, the other approaches are not able to capture this behaviour. 
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4. APPLICATION 2 - PRE-NOTCHED GLASS  

 

The second application considered by this quasi-explicit CZM approach, is based on 

an experiment by Ramul and Kobayashi and has been used for many model 

comparisons previously, Fig. 9(a) [9, 23, 27]. In the experiment, a piece of Homolite-

100 in a Double Cantilever Beam (DCB) configuration, Fig. 9(b), with an initial high 

constraint blunt notch, was exposed to a loading and the subsequent fracture patterns 

observed. Homolite-100 has a low fracture toughness KIc/Gc meaning that crack 

branching will be observed at much higher speeds (see Figure 3), closer to its cr than 

PMMA as the crack-tip has less momentum. This application allows for strain waves 

to interact with the propagating crack to observe further the rate-dependent effects of 

interacting strain waves.  

 

The initial material properties for this were known to be: a Young’s modulus of 

E=32GPa, a Poisson's ratio υ = 0.2, a mass density of ρ = 2450 kg/m3 and also an 

applied loading in the materials y-axis direction of σy = 1 MPa. 

                                                                           
(a)                                                                                  (b) 

Figure 9 - (a) Experimental image from Ramul and Kobayashi [26]; (b) DCB 

schematic showing the initial blunt notch. 

 

After a period of self-similar crack growth it was observed in the experiment that the 

crack branched (tb~39µs). This has been believed to be due to the crack reaching a 

speed of approximately 0.72Cr such that the excess energy dissipates through a 

secondary crack. In modelling terms, this point represents the limit between internal 

energy driven fracture and the fast transient simulations above this limit where excess 

external energy exists in the system. The aim of this second problem is to probe this 
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experiment using the method described previously to consider the effect of rate 

dependent loading on the prediction of the crack branching time. To do this, three 

model arrangements are considered: firstly a model under static loading which has an 

analytical solution to accompany it, secondly a double crack configuration to observe 

the effects of crack arrest due to the presence of a second dynamic crack or reflected 

waves and finally, under a step-loading similar to that used by Song et el for a non-

opening-rate-dependent (standard) CZM previously [23, 28]. 

 

4.1 STEADY-STATE DCB ANALYTICAL SOLUTION 

 

The first loading regime used a static load of 1 MPa in the y-axis direction of the 

DCB in Fig. 9(b). This regime is known to produce a steady-state dynamically 

propagating straight crack (after an initial acceleration) and was considered 

analytically by Freund [28] who provided one of the first full analytical solutions to 

dynamic crack propagation. It is based on taking invariant contour integrals of a 

cohesive zone model of a known geometry, which allows for the calculation of the 

global energy state. The solution is based on a low constraint sharp crack under linear 

elastic fracture assumptions and considers the crack to be a point particle traveling 

through the materials phase-space which interacts with reflected waves. The solution 

follows the 1D string problem while considering the crack-tip to be a collection of 

excitations, which decays in the materials phase space, i.e. a quasi-particle.  

 

The propagation of a sharp crack in a DCB is described by a second order differential 

equation: 

                                 𝑎 = !
!
!!

!
+ !"#

!
!"
!"

!
!!
− !"

!"
!!

!!!!"
 ,                                     (17) 

 

where G = Γ is the assumed crack growth criterion, A is the DCB area, and I is the 

DCB’s Moment of Inertia (𝐼 = !!!

!"
) and Γo being the strain stored per unit length 

given by [10]:  
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 ,                                      (18) 

where D is the plates thickness. When considering the strain energy release rate to be: 
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    𝐺 = !!!!!"
!!!

 ,                                                   (19) 

 

and that this is equal to nΓ, 𝑛 being a dimensionless coefficient accounting for some 

initial bluntness of the crack tip then, Equation (17) can be reduced to find the 

equilibrium point of crack arrest length at 𝑎 = 𝑎 = 0 to approximately be [28, 29]: 

 

      𝑎 = 𝑎!𝑛
!
!,                                                       (20) 

 

where a0 is the initial notch length. The initial blunting parameter, n, in this case is a 

measure of the actual pre-propagation energy in excess of the minimum pre-

propagation energy for a sharp crack [30].  

 

 

3.2 STATIC QUASI-EXPLICIT CZM RESULTS 

 

The material properties used for the model are σc = 28MPa and Gc= 3Jm-2 which is 

equivalent to Song et al; δc being determined by the initially fully adherent part of the 

velocity dependent cohesive law, Eq. (8) [15, 25]. Figure 10 shows the stress plots for 

a DCB under static loading (σmax = σc) for Homolite-100, where Fig. 10(a) is the 

initial state of the notch just prior to propagation and Fig. 10(b) is just before the first 

reflective wave off the top and bottom loading edges of the DCB interact with the 

propagating crack tip, showing the initial rapid crack growth.  

 

   
(a)                                                                    (b) 

Figure 10 - (a) A contour stress plot of the DCB initially; (b) and of crack just 

before the first reflected wave interacts with the propagating crack. 
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If the propagating crack is considered without the additional energy from the 

interacting strain waves then after a period of rapid growth the crack will eventually 

decay until rest. This can be seen as the ‘analytical solution’ in Fig. 11(a) [23]. 

However, when correcting the analytical velocity to include the strain wave increase 

of G and therefore crack velocity the profile reaches the experimentally observed 

steady-state crack velocity. This can be seen as the ‘analytical solution - corrected’ in 

Fig. 11(a) [23]. 

 

Within Fig. 11(a) the dot-dash line is where the maximum crack velocity is assumed 

at 0.72cr where cr is the materials Rayleigh Wave speed ~2121 ms-1. It is evident that 

the quasi-explicit CZM crack velocity does not reach the branching point under a 

static loading. This point is depicted by the intersection between the maximum crack 

velocity and the vertical solid black line, which is the time when macro branching is 

observed. The quasi-explicit CZM results are also plotted against a conventional 

CZM model undertaken by Song et al which used a fixed δc and is known to agree 

with the corrected analytical solution and experimentally observed steady state crack 

speed of 0.32cr [27, 28].  

 

Under a static loading, the deflection of the upper arm of the DCB can be plotted in 

time as shown in Fig. 11(b).  It can be seen that the opening-rate-dependence even 

under the static loading regime produces a significantly longer crack than the quasi-

static solution, which can be calculated from the static DCB deflection relationship 

[31]:  
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This also suggests that the maximum deflection of the arm is at least 2.5 times larger 

than if the DCB is considered under a quasi-static regime. 
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      (a) 

 
                                                                       (b) 

Figure 11 - (a) A comparative graph of the DCB under static loading, including 

CZM by Song et al and the analytical solution by Freud [23, 28]; (b) The time 

displacement of P in the DY direction with the quasi static and dynamic points of 

arrest. 
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The global behaviour of the DCB is illustrated in Fig. 12 using the time evolution of 

select displacements. Firstly, Fig. 12(a) shows the opening displacements of several 

equidistant points along the initial notch’s arm. The results show distinctly the energy 

dissipation features of a component under non-linear dynamic loading from a 

propagating crack (compare to Fig. 1). The sharp peak is the Rayleigh surface wave, 

which is immediately followed by the shear bulk wave (secondary waves) and 

preceded by the dilation wave (primary waves). This is further demonstrated in 

Fig.12(b), where the displacements of the furthest point away from the notch, point Q 

in Fig. 8(b) are plotted. The pressure wave in the x-axis direction is ahead of the 

Rayleigh wave peak, which occurs when there is a perturbation in the y-axis. These 

waves are also followed by Stonely waves due to the crack surfaces contacting each 

other.  

  
(a) 
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(b) 

Figure 12 - (a) Time plots of Y displacement at equidistant points along the 

upper edge of the initial DCB notch as highlighted in Figure 9(b); (b) The x and 

y components of the displacement plots for point Q in Figure 2(b). 

 

The global dynamic features from the dynamic loading of a propagating crack are 

evident in Fig. 12. This suggests that the cohesive crack is integrated well into a 

macro/component model, including correct energy conservation between solid 

dynamics and a propagating crack.  

 

3.3 Straight Axial Mirrored Double Crack  

 

It has been previously noted by Freund [28] that after crack arrest predicted by Eq. 

(20) and Fig. 11(b) highlighted by the dot-dash line – the displacement still increases 

due to the time delay in displacement/reaction, the crack may still propagate due to 

the DCB now being in an oscillatory state from the rate-dependent crack growth 

impulse (without viscous damping). This will produce a period of ‘stop-start’ crack 

propagation where the crack may close and then propagate further. This is especially 

so when considering an un-damped system because the component is still in an 

oscillating state after initial crack arrest, as seen previously in Figure 12.  

 



 25 

For analysis of such an oscillatory propagation, a second geometry is considered in 

Fig. 13. This is a mirror reflection of the DCB, where the system has geometric and 

loading symmetry but with two dynamically propagating cracks. The setup produces 

double the Ek for each instance of crack increment. Each crack after a period of time 

(incubation time), is propagating through an undulating periodic potential due to 

pressure and shear waves from the other crack rather than the lower amplitude waves 

that reflect off the end of the DCB from a single crack. 

 

 
Figure 13 – A schematic of the mirrored double crack using the same parameters 

as in the previous DCB. 

 

Figure 14 shows the crack tip profiles along the axis for the double crack, single crack 

cantilever beam and the analytical solution for the single DCB. Under quasi-static 

analyses, the overall component stress state is instantly changed so that each crack 

affects the other instantaneously. However, in a dynamical system there is a time 

delay, so that the two cracks do not interact until the first wave reflection. This 

moment is shown by the dotted line in Fig. 14, where the analytical crack speed 

increases. After this point the crack tip in the single DCB breaks through the end of 

the beam and relaxes back to the equilibrium crack arrest position. The break-through 

should be accepted as complete rupture of the specimen, while the relaxation is 

reclosing the crack and producing Stonely Waves from the interacting crack surfaces 

(known as ‘chattering’), seen in Fig. 12(a). The region where the crack settles is 

bounded by arrest positions for sharp crack and fully blunt notch, which are depicted 

in the figure. Comparing this to the double crack system where the cracks do not 

significantly interact until they get close to each other (around 20 mm between them), 

it can be seen that the double crack does not break through completely before coming 
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to rest at the equilibrium arrest point. The arrest region is equivalent for both models 

due to the symmetry. However, the delay in energy propagation in the case of double 

crack makes the difference in the predictions: the component fully disintegrates by a 

single crack and remains intact by two cracks. This is because the energy produced by 

the dilatation waves reflecting of the DCB end for the single crack does not 

significantly alter the crack tip energy state, whereas the shear waves in the double 

crack system carrying the majority of the energy are enough to arrest the crack. 

Specifically, in the double crack system there is no free surface for the energy to 

dissipate over, whereas the single cracks shear wave energy is carried away by the 

Rayleigh wave at the surface.  

 
Figure 14 – Crack tip trajectories along the x-axis for the analytical solution 

(first wave reflection corrected), double crack and single DCB crack, 

highlighting the region where crack arrest is expected analytically. 

 

The physical realism of the results, with the discussion above, demonstrates that the 

quasi-explicit solver corrects the energy state between the local crack tip and global 

system. In particular, the model captures the difference between single and double 

crack DCB, reflecting the specifics in their boundary configurations. 
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3.4 Step loading 

 

After demonstrating that rate-independent loading produces experimentally verified 

and physically realistic crack speed and profile, the DCB has been subjected to a 

small step loading. This is from just below the σc to just above, similarly to the 

XFEM-CNM model and previous CZM model. The result for crack speed evolution 

up until the crack branching point is shown in Fig. 15, together with several 

previously published results [15, 23]. The crack branching time is depicted by the 

vertical dashed line and understood as the time when the first reflected strain wave 

interacts with the crack tip, causing an unstable decay of the crack energy state by 

splitting into two or more cracks. 

 

The quasi-explicit CZM approach predicts the crack branching point exactly as 

experimentally measured. The fixed-step CZM and Peridynamics models predictions 

are ~39µs, which is where the crack tip reaches the critical branching speed of 0.72cr. 

The small oscillations in quasi-explicit CZM are in line with Zhou et al [14] initial 

study on opening-rate-dependent cohesive zone models. These are more significant 

during the onset of the crack due to the crack jumps being quite large but decay as the 

crack starts to decelerate. The quasi-explicit CZM profile can be seen to follow the 

XFEM profile but predicts the branching time more accurately. This improvement is 

due to the crack being fully dynamically informed as it propagates leading to a 

branching time predication in line with the fully discrete particle Peridynamic model. 

It also improves on the XFEM-CNM model by overcoming some of the mesh 

dependency alluded to by Agwai [15] because this approach cannot cross elements. 

The XFEM-CNM model also does not include the rate-dependence of the crack 

opening within its cohesive law meaning that it does not quite reach the critical speed, 

as with the Peridynamic model.  Another improvement of the proposed approach, 

compared to the XFEM-CNM, is that extra nodes along element edges are not 

needed; their introduction may cause errors in the evaluated stress state. The ‘bond-

based’ Peridynamics model has problems with the direct application of the initial 

static loading conditions and with resolving compressive stresses accurately [22].  
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Figure 15 - Comparative graph of EDM, XFEM-CNM, Peridynamics against 

quasi-explicit CZM [24, 32] 

 

5. DISCUSSION 

 

In the applications presented above the crack paths were assumed straight for both 

experiments modelled. This was done because the cracks were observed to remain 

straight in the experiments before sub-branching and macro-crack branching was 

observed. 

 

In the application to PMMA, the bulk material properties were assumed constant, 

while the cohesive law used a velocity-independent critical stress, σc, and velocity-

dependent fracture energy, Gc, translating into velocity-dependent failure separation, 

δc. From another side, the material properties of PMMA are known to be strain-rate 

dependent. This has been shown to cause the onset of Mode-II induced sub-branching 

at some critical speed (around 0.4cr in PMMA) [26, 33, 34]. The quasi-explicit CZM 

approach only considered the first ~80µs up until the sub-branching point. Within its 

assumptions, it predicted the speed and time expected for sub-branching to occur. 

While highlighting where the strain-dependent properties may change the crack 

velocity evolution, it appeared that the constant bulk properties were sufficient to 

capture this evolution accurately. Furthermore, the possible 10-15% strength increase 

observed in ceramics by Zhou et al [35] when increasing the strain-loading rate by 

three orders of magnitude is minor compared to the fracture energy released by a 

propagating crack. This means that the overall macro crack momentum maintains a 
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straight crack path through this microstructural dominant process until interaction 

from reflecting strain waves globally. 

 

The application to Homolite-100, DCB subjected to step loading, allowed for the 

observation of the point at with macro-cracking may occur at the predicted crack 

speed and experimentally observed time. Also in the static double crack 

configuration, the observation of interacting strain waves arresting the crack 

demonstrated that the quasi-explicit set-valued cohesive law approach allows kinetic 

energy to be transferred between the crack-tip locally and oscillating system globally, 

while reducing the mesh dependency of the result using XFEM crack representation.  

 

The positions for which branching is predicted in each application can be seen as the 

point in time where the macro-crack reaches terminal velocity. This is also where the 

reaction of the material ahead of the crack to the impact of released strain energy is 

slower or equal to the macro-crack speed. Therefore this is the point where kinetic 

energy becomes more important than the observed texture from the undulating 

potential from the microstructure. From this, there are 5 distinct phases of dynamic 

macro-crack propagation including those discussed by Rabczuk et al [36]: 

 

• Phase 1 – Initiation (Local) – Microstructural texture is significantly noticed 

by a propagating crack at low kinetic energy in the system (a <<	ac). This is 

seen as the linear part in Fig. 3. 

 

• Phase 2 – Acceleration (Transition) – A period where the kinetic energy 

increases causing microstructural instability and sub-branching at a critical 

speed (a ≈ ac). This is seen as the onset of the non-linear part of Fig. 3. 

 

• Phase 3 – Terminal Velocity (Global) – A period of steady state crack 

growth where the crack is at approximately at its terminal velocity. When 

strain waves interact with the propagating crack, the strain-rate energy (G) 

available to the crack tip is increased and the crack velocity is pushed above 

the critical branching speed and macro-branching is observed. This excess 

energy can come from either reflected strain waves from the propagating crack 
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or due to a rate dependant loading of the system. This can be seen as the 

cracks G being temporarily increased and pushing it into the branching region 

of Fig.3 (a ≥ ac).  

 

• Phase 4 - Deceleration (Transition) – the crack looses momentum due to the 

interaction with strain waves de-constructively interacting more intensely due 

to the presence of a boundary, material defects or lower loading (a < ac). 

 

• Phase 5  - Arrest (Local) – As the crack slows the microstructural texture 

becomes more significantly noticed by the propagating crack, meaning a 

reduction in kinetic energy or the crack breaks through the boundary of the 

structure (a ≈ 0). 

 

5. CONCLUSIONS 

 

An approach to modelling phenomenologically accurate dynamic fracture up until the 

crack branching speed was presented. This used an initially rigid and fully adherent 

implicit opening-rate-dependent cohesive law, within an explicit time stepping 

scheme (quasi-explicit). The approach allowed for the law to be introduced into a 

global model through XFEM, minimising the mesh dependency often seen with 

standard CZM approaches. To demonstrate how the approach builds on previous 

work, two well-established applications in 2D were considered from experiments and 

compared to previous modelling approaches and available analytical solutions.  

 

The results from the two applications demonstrated that the quasi-explicit CZM, 

which represents the local micro-cracking process effects on the macro-crack, enables 

a more stable and energetically realistic crack velocity evolution to be followed up 

until the crack macro branching point. This could be the moment of sub-branching 

observed in PMMA (locally) or macro-branching due to strain waves in Homolite-100 

(globally). The method thus allowed the global system to be loaded in a more realistic 

manner and to observe the effects of primary and secondary waves. This is important 

for computationally efficient analysis of: dynamic fracture effects on a whole 

component scale; stress amplification remotely from an initial crack, which may 
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cause subsequent crack initiations; and propagating crack under external oscillating 

loading.  

 

The proposed approach brings meso-scale material phenomena into a global dynamic 

model enabling the analysis of fast fracture on stress amplification within structures. 

Further, work will look to extend this to consider flexural effects and dynamic effects 

on the macro crack shape in 3D and to consider the introduction of bifurcation and 

branching criteria due to micro-structural instability. 
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