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Abstract—Many FPGA-based accelerators are constrained
by the available resources and multi-FPGA solutions can be
necessary for building more capable systems. Available PCIe
solutions provide only FPGA-to-Host communication. In this
paper we present JetStream, an open-source1 modular PCIe 3
library, supporting not only fast FPGA-to-Host communication,
but also allowing direct FPGA-to-FPGA communication which
fully bypasses the memory subsystem. The direct mode saves
memory bandwidth for multicast modes and permits to connect
multiple FPGAs in various software defined topologies. We show
the benefits of JetStream with a large FIR filter spanning four
FPGA boards, achieving throughputs of up to 7.09 GB/s per link.
Utilizing direct FPGA-to-FPGA transfers reduces the required
memory bandwidth by up to 75%.

I. INTRODUCTION

Many FPGA-based accelerators need to communicate with
other devices, either because the logic does not fit on a single
FPGA (i.e. Catapult [2]) or since the data calls for pre- or post-
processing for which another platform is better suited (e.g. a
GPU in a heterogenous compute environment). PCI Express
(PCIe) is a natural choice for linking FPGAs to other devices;
it is prevalent, the first choice for PC extension cards, and
many FPGA prototyping boards are designed to support PCIe
at high speed. There are many applications (e.g., linear algebra,
neural networks, and signal processing) that can substantially
benefit from multi-FPGA solutions and commercial systems
like Microsoft Catapult [2] and the MPC-X series from Max-
eler [3] are designed for this scenario.

Nevertheless, the IP provided by FPGA vendors still re-
quires complex additional logic to manage packets and a user-
supplied driver before the PCIe connection can be actually
used. There are several commercial and academic solutions
available that provide drivers and wrap the vendor-supplied IP
with stream interfaces.

All these solutions have chosen different trade-offs regard-
ing speed, size and feature set as revealed in Section II. While
we include commercial solutions for completeness, these are
not suited for many projects due to their monetary cost and
limited adaptability for fine tuning as they are not open source.

1Available at https://maltevesper.github.io/JetStream/

To overcome this, we present JetStream [1], a PCIe 3
solution, which adds direct FPGA-to-FPGA communication,
a feature we have not found in any other solution. In addition,
we incorporated several performance tweaks commonly not
considered. Furthermore, our solution supports PCIe 3 on an
8-lane link. Currently, ffLink is the only other open-source
solution we have found that supports PCIe 3 on 8 lanes despite
most FPGA boards supporting 8 lanes. All other PCIe 3
solutions support only 4 lanes, limiting them to half the speed.
A distinctive feature of JetStream is support for direct FPGA-
to-FPGA transfers. We use direct FPGA-to-FPGA transfers
to implement broadcasts, allowing us to reduce the required
memory bandwidth by up to 75 %.

JetStream allows to build Multi-FPGA solutions that can
be beneficial since large capacity FPGAs can cost over-
proportional more money per available resources. Another rea-
son for using multiple smaller FPGAs can be if this improves
the aggregated capacity and/or throughput of the memory over
all boards. Finally, there could be power constraints that may
prevent using large capacity FPGAs. For example, when not
considering optional power connectors, an x8 PCIe half height
card is bound to 10W and up to 25W for a full height card in
high power mode, according to the PCIe specification [4].

The rest of the paper is organized as follows: Section II
gives an overview of related work and other available so-
lutions, Section III gives a brief introduction to PCIe fun-
damentals. Afterwards we present the internal hardware in
Section IV and follow with a description of the hard- and
software-API provided (Section V). Performance results are
collected in Section VI and Section VIII concludes the paper.

II. AVAILABLE PCIE SOLUTIONS

Northwest [5] and Xillybus [6] provide PCIe solutions
commercially. The Northwest core, which is also used by
Xilinx in their reference design, supports 8 lanes. Xillybus
on the other side supports only 4 lanes (and is accordingly
slower). Their latest update improves the speed from less than
25 % of the theoretical limit to the full speed possible. IBM
provides CAPI [7], which is a hardware solution providing



Driver Platform Peak Bandwidth

Read
[MB/s]

Write
[MB/s]

EPEE [11] Linux 3 2 3 3 3 3280 3198
ffLink [8] Linux 3 3x8 3 3 ≈63301 7060
DyRACT [10] Linux 3 2 3 3 1474 1452
RIFFA 2.2 [9] Linux/Windows 3 3x4 3 3 3040 3040

Xillybus Linux/Windows 3x4 3 3 3 35002 35002

Northwest Logic3 Linux/Windows 3x8 ? ? ? ? ? ? 5573 5981

JetStream Linux 3 3x8 3 3 3 3 3 3 3 3 6446 7051
1 Measured from graph in [8].
2 According to estimate limit in [6].
3 Driver is closed source, thus analysis is not possible.

TABLE I: FPGA PCIe framework comparison.
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coherent memory between the FPGA and a host. Its advantage
is that no software stack is involved in transfers, hence,
reducing latency. However, this requires a special interface at
the processor on the host side, currently only found in IBM’s
Power8 processors. For this reason, we will not consider CAPI
any further.

On the academic side ffLink [8] and RIFFA 2.2 [9] support
third generation PCIe. While ffLink is built from a chain of
Xilinx-supplied AXI IP-blocks and supports 8 lanes, RIFFA
provides software APIs for several languages and a windows
driver. However, RIFFA only supports 4 lanes.

DyRACT [10], EPEE [11], FlexWAFE [12], Speedy [13]
as well as the implementation of Kavianipour et al. [14], are
PCIe solutions supporting generation 2. Kavianipour is slow,
peaking at 52 % of the theoretical bandwidth. EPEE focuses
on the idea of a PCIe library; besides streaming interfaces,
it allows for a user register file and user generated interrupts.
DyRACT is a stripped-down version of the system level FPGA
driver presented in [15]. Both systems focus on the idea to
provide partial reconfiguration over PCIe, allowing the user to
swap modules during runtime and to set the clock frequency
for the user logic. FlexWAFE is a framework to stitch image
processing nodes together for stream processing. It uses PCIe
to configure the FPGAs (not partially) and to stream the data
through the FPGAs. It uses multiple FPGAs on one board: one
is used as the PCIe router that is not reconfigured, and the rest
as processing FPGAs that are linked to the PCIe router FPGA
by an FPGA-to-FPGA connect.

Table I gives an overview over the features and performance
of the different solutions. The last row of the table lists the
features of JetStream.

III. PCI EXPRESS FUNDAMENTALS

The PCIe 3 protocol stack [4] is organized in three layers:
transaction layer, data link layer and physical layer. The user
application generates packets on the transaction layer consist-
ing of a 12 B/16 B header (the latter is for 64-bit addresses), the
payload of 0...4096 B, and an optional 4 B ECRC checksum.

STP
4 B

Header
12. . .16 B

Payload
0. . .4096 B

[ECRC]
0. . .4 B

LCRC
4 B

Fig. 1: PCIe Memory Packet.

The data link layer adds a 4 B LCRC checksum and handles
flow control with ack messages to confirm successful transfers.

The link CRC (LCRC), secures the link layer. However,
since the LCRC is computed over parts of the header that
change during routing, it is recomputed in switches, thus
potentially masking errors introduced in the switch. The end-
to-end CRC (ECRC) on the other hand is computed over the
invariant parts of the header and the payload. It adds another
(optional) layer of data integrity control.

The link layer also provides a credit system. The credit
system keeps track of the buffer-space on the receiving end.
The physical layer adds a frame around each packet and
applies 128 b/130 b coding to it (which is 18 % more efficient
than the 8 b/10 b coding used by PCIe 2). The frame is 4 B
for transaction layer packets (TLP), and 2 B for data link layer
packets (DLLP) used for flow control. In total the minimum
overhead per packet of 20 B/24 B is composed of a 4 B frame,
a 12 B/16 B header and a 4 B LCRC checksum as shown in
Figure 1.

After the packets have been assembled, they are transferred
over the link. A link is composed of 1. . .32 lanes, each lane
consists of two differential pairs, one to and another one from
the endpoint. Since PCIe 3 operates at 8 GT/s2, an 8 lane
PCIe 3 (PCIe 3x8) link provides a theoretical bandwidth of
8 GBs.

Not accounting for flow control and assuming a maximal
payload of 4096 B and a 12 B header this results in a theo-
retical throughput of 7.84 GB/s (97.98 %) for a 8 lane link.
However, in practice the PCIe root complexes3 found on

2Gigatransfers per second
3Toplevel node in the PCIe hierarchy, interfaces to the host CPU and main

memory.
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Fig. 2: System overview. Note that user modules can utilize channels as needed. The green dotted arrow represents a sink
channel.

Size Header&Coding
GB/s %

128 6.81 85.16%
256 7.31 91.33%
4096 7.84 97.98%

TABLE II: Theoretical throughput.

consumer CPUs do not allow for unlimited credit, making flow
control mandatory and limit the maximum payload to 128 B
or 256 B. Table II gives an overview of the relevant theoretical
limits. For further details on estimating theoretical throughput
we refer to [16]. To understand possible discrepancies between
theoretical and practical performance see [17].

PCIe differentiates between two transaction types: posted
and non-posted transactions. Posted transactions are transac-
tions that are considered complete by the sender by the time
the last byte is dispatched, i.e. a memory write transaction.
Non-posted transactions on the other hand warrant a reply, i.e.
memory read transactions. The transaction does not complete
after the request header has been sent, but only when the
requested data arrives (or when the transaction times out).

IV. JETSTREAM HARDWARE

In this section we present the JetStream hardware imple-
mentation, starting with the system overview in Figure 2 and
explaining details for separate modules and our performance
tweaks towards the end.

The Xilinx IP core [18], around which our design is built,
has four AXI interfaces for data transfers: CompleterComple-
tion, CompleterRequest, RequesterCompletion, and Requester-
Request. The interfaces form two pairs: the Completer*-
interfaces handle transactions initiated by the host, while the
Requester*-pair is used for transactions initiated by the FPGA.

The Completer- and RequesterEngine are connected to the
corresponding interface pair. The engines create/decode the
headers and realign the data, as it arrives DWORD-aligned
and we return it address-aligned on a 256 bit interface.

The register file, into which the host programs the address
and size for DMA transfers, is connected to the Completion-

Engine. Since the number and kind of channels provided is
parameterizable, we have registers to reflect this information
so that the driver can autoconfigure itself. Furthermore, we
have a channel register group for every channel. This group
contains FIFOs that serve as size- and address-registers al-
lowing the host to issue multiple commands as well as a
channel control register. The completion counter, which tells
the host how many operations have completed, is actually a
part of the register file itself. This way, multiple counters can
be combined into one register, requiring the host driver to
read less registers when checking for command completion.
While JetStream does not give the user direct access to the
register file (ensuring that single modules cannot break the
system) we provide a register file interface that maps read-
and write-addresses in a configurable range to the user logic.
This allows users to implement their own registers. However,
this user register file is global. If per module register files are
desired, it is the user’s responsibility to divide the user address
space accordingly.

The arbiters are responsible for picking valid commands
and arbitrating between them. We implemented one arbiter
for send-commands and another arbiter for receive-commands,
as PCIe is a full-duplex system. Each arbiter is split into two
parts, the command logic and the arbitration logic. The former
determines the size of potential transfers by looking at the
commands stored in the register file and the available data. It
also updates the transfer’s start address and remaining size, if it
has to be split into multiple transfers, due to PCIe’s payload or
request size limitations [4]. The command logic also manages
the multiplexing of data between the user modules and the
request engine. It generates a vector indicating which channels
currently have valid requests available which is fed into
the arbitration module. The arbitration module contains the
arbitration logic, which returns a one-hot encoded vector,
indicating which channel is arbitrated. By default, this is a
priority encoder, but it can be swapped easily by the user
since it is implemented in a separate module.

Furthermore, a receive command needs to actually send
a request before receiving data, causing send and receive



commands to interfere with each other. This is resolved by the
requester which tries to keep a minimum number of requests
in flight, to ensure that both directions of the link are fully
utilized.

The user modules can be filled with custom logic,
given that they are able to receive/create at least
min(MAX_Payload,MAX_command_size) data at wire speed
and announce the amount they can currently provide/receive.
This policy prevents slow modules from blocking the entire
system by clogging a central buffer and allows for further
optimization. Firstly, if one implements a module that
requires data in a RAM anyway, there is no need to have a
buffer-FIFO in between. Secondly, modules with one input
and one output, which are able to process data at wire-speed,
only require a buffer at one end.

To ease the implementation of user logic, we provide
parameterizable buffer-FIFOs for the latter case, as well as
a buffer for the send- and another FIFO for the receive-side.
For convenience we also provide a send- and receive-buffer
for the common case of modules which employ one input and
one output stream. The FIFOs of our buffers provide AXI
stream interfaces [19] to the user, while the arbiter has a data,
valid, and amount interface. The arbiter interface handles back
pressure on a per transfer basis via the amount signal.

While the general purpose channels are managed by the
FPGA to provide DMA access from the CPU’s view and thus
go through the RequestEngine, sink channels are connected
directly to the CompletionEngine. The main purpose of sink
channels is to serve as endpoints for direct FPGA-to-FPGA
transfers. In case of such a transfer, one FPGA will be
the master controlling the transfer and the other FPGA will
inevitably receive the data on its completer interface.

Even though, our implementation does not limit the number
of channels, a larger arbiter might not meet timing. This can
be circumvented by hierarchical arbitration, at the expense of
latency.

To make our library universal we allow master mod-
ules which enable user logic to generate send- or receive-
commands. Master modules are connected to the arbiter in-
stead of a channel register group and provide the size and
address of the next command. This can be used to create
DMA-engines, or to implement direct FPGA-to-FPGA trans-
fers without host intervention.

While the arbiter generates interrupts to signal command
completions automatically, we provide 31 user interrupts for
custom signaling.

In summary, the user can configure the number of channels
and their types by providing a list of channel types. Providing
this list is sufficient to start implementing user logic. Apart
from instantiating an appropriate buffer module, no further
work is required. Interrupts can be triggered by the user logic
by asserting bit lines in a vector and a global register file can
be created easily by filling in a provided template.

The arbitration logic can be adjusted by generating a one hot
encoded signal from a vector of available channels. Additional
predefined modules are available that can either be used

CPU

System Memory

PCIe Root Complex

FPGA . . . GPU

Fig. 3: Direct transfer (green, dashed) between two PCIe
devices vs indirect DMA transfer (gray).

directly or used as a template. The predefined modules include
a partial reconfigurator, which allows partial reconfiguration
over PCIe through the internal configuration access port
(CAPI).

A. Direct FPGA-to-FPGA communication

Back pressure for transfers between host and FPGA is
handled by the FPGA. When the driver programs a command
into the register file, it already set aside sufficient memory
on the host side. The arbiter in the FPGA then checks for
each transfer that it has enough data available before starting
the transfer of each packet. However, for FPGA-to-FPGA
transfers, there are limited buffers on both ends. Since we do
not want to block the PCIe core, which would stall all other
channels as well, we cannot rely on the PCIe credit system.
Therefore, one of the two communicating FPGAs needs to tell
the other FPGA when sufficient buffer space is available.

JetStream uses a mechanism where the target FPGA sends
requests for data to the source whenever it has sufficient buffer
space available. The requests are sent to the source-FPGA,
where a master module generates an according send-command.
The arbiter then ensures that the send is not started before
sufficient data is available. The target receives the data via
its completer-interfaces. The data is routed to the correct sink
channel based on the destination memory address. We chose to
implement FPGA-to-FPGA transfers this way since it requires
only an extension of the CompleterRequest side (the package
arrives as a request from the source).

Figure 3 highlights the advantages of direct point-to-point
transfers. While a DMA transfer (gray arrow) causes an addi-
tional memory write and an additional read, a direct transfer
bypasses the main memory thus saving memory bandwidth.
Furthermore, PCIe is not a bus but rather a fully switched
point-to-point network. On a normal mainboard, all PCIe links
can be active at the same time.

To implement broadcasts we daisy chain the data from
one FPGA to the next. This reduces the required memory
bandwidth tremendously as we will show in Section VI.

B. Performance optimizations

Figure 4 shows the impact of performance optimizations
that we investigated. We consider the unoptimized implemen-
tation shown on the left as a baseline and add optimizations
successively. The first optimization was to adjust the maximum
payload from 128 B to 256 B, which yielded a performance
increase of nearly 20 %. For receive, the gain is even bigger
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Fig. 4: Speed gain by successively adding optimizations.

since the request size rises from 128 B to 512 B, reducing the
number of requests needed by a factor of four. If the system
does not have enough credits, the system has to wait for credits
before it can dispatch further requests. This can lead to gaps
in the data stream, resulting in a 300 % increase for receive.
However, since the remaining optimizations had little effect
on receive operations, they are not shown here.

Our dispatch queues, which allow to have multiple requests
in flight, increased performance by another 8 %. With only one
request in flight there is always a small gap between successive
requests, since the next request can’t be dispatched to the
FPGA before the interrupt is handled by the host. However,
as the graph shows, there is little benefit in deeper dispatch
queues if operations can be orchestrated in sufficiently large
chunks.

The last optimization is related to the state machine. The
Xilinx PCIe core requires a 256 bit interface running at
250 MHz when using 8 PCIe lanes. Consequently the data
can be supplied at 8 GB/s. A 256 B packet needs 9 cycles to
transfer (8 data beats and half a beat for the header), which
means that each cycle lost per packet reduces throughput by
11 %. By modifying our state machine to dispatch the next
packet in the same cycle as the previous one completes, we
were able to achieve optimal performance. We found that our
fastest measured send rate was 7.09 GB s which is below the
theoretical 7.31 GB/s reported in Table II. The cause for this
stems from the used Xilinx IP core. Because the core can not
accept multiple packets on the RequesterRequest interface, it
needs 9 cycles per packet. At 250 M cycles, this results in
27.7M 256 B-packets or 7.1GB/s.

V. JETSTREAM API
The JetStream C++ API provides three transfer modes as

depicted in Figure 5. The modes differ in their speed and
complexity: zero copy DMA, single buffering and double
buffering. The modes differ in how the driver ensures that
the data ends up in a DRAM area that is accessible by PCIe.

driver PCIe
userspace kernel space FPGA

swap

swap

Fig. 5: Different DMA modes. From top to bottom: zero
copy DMA, single buffering, and double buffering.

The buffering modes copy the data from the user memory
space into a bounce buffer allocated by the driver. The FPGA
then operates on this buffer for host-to-FPGA transfers. The
direction and order of the copy operations is reversed for
transfers from the FPGA to the host. Whereas single buffering
works with only one buffer and has to wait for the FPGA to
finish before copying data between the user and the buffer,
double buffering employs two buffers. While the FPGA copies
data into/out of one buffer, the driver can already transfer data
between the user program and the other buffer.

The buffering methods imply an extra copy of the data; the
data is copied between the programs memory and the buffer.
Zero copy DMA on the other hand supplies the program with
memory that is FPGA accessible (i.e. a pinned down memory
region in the address space accessible by the FPGA). This way
it is unnecessary to copy the data around in main memory
reducing data movement to a minimum.

The C++-API provided by JetStream is built around four
objects: FPGA, Buffer, Channel and Operation. FPGA is
the only object that can be constructed directly by the user,
Channel- and Buffer-objects are subsequently obtained from
the FPGA-object. For brevity, only the send case is described,
receiving data works analogous.

Every program using JetStream will start with the
creation of an FPGA-object, either explicitly requesting
an FPGA by inspecting the list of FPGAs available
(FPGA::list()) or implicitly grabbing one that is currently
not used. For bounce buffer transfers, all that is needed
is FPGA().bufferedSend(channelId, start*, size,
n=2). The parameter n defines the amount of buffers used,
1 is bounce buffering, and 2 selects double buffering (more
buffers can be used for i.e. triple buffering). The user can
check for completion of a transfer in several ways. Calling
finished() tests if the transfer is finished in a non-blocking
way, while wait() blocks until the transfers are finished.
These methods can either be called on FPGA-, Channel-,



Buffer- or Operation-objects. In each case these functions
check if all operations on the object have finished. For in-
stance, FPGA.finsihed() checks if there are any transfers
outstanding for the FPGA, while Operation.finished()
simply checks if a particular operation has completed.

Apart from Operation objects, all other objects wait()
when they are destroyed. For Channel and Buffer objects
this synchronization can be suppressed by calling noSync().
The FPGA object will ensure that the buffers persist until all
transfers are completed before the program terminates.

For zero copy transfers, the mechanism is only slightly
different. The first step is to allocate zero copy memory by
calling FPGA.malloc() which returns a buffer. After filling
the memory belonging to the buffer with data, the buffer is
passed either to the FPGA’s send() function or transferred by
calling send() on the Buffer. This brings us to the difference
between Channel.send, Buffer.send and FPGA.send. As
a matter of fact, all three methods perform the same operation,
however they need different parameters since their objects
contain different information. While FPGA.send needs to
know the channel and buffer, Channel.send only requires
the buffer to operate on. While Buffer.send does not require
any particular parameters for convenience, it should be stated
that a buffer is independent from an FPGA or channel. Thus,
one can specify these in Buffer.send() to send a buffer
to a different FPGA. The sync* versions of the transfer
functions are blocking, while the other transfer functions
execute asynchronously.

The JetStream driver handles multithreading, ensuring that
it is save to operate on the same FPGA from different
threads or processes. While this has to be requested by
creating the FPGA object with the exclusive flag set to
false, it also brings one problem: Consider a filter that
should be shared. To share this accelerator, one has to en-
sure that the result arrives back at the source of the cor-
responding input. To ensure this we can either lock() the
FPGA and issue a corresponding send/receive pair, or make
use of FPGA.transaction. FPGA.transaction returns a
Transaction-object that works like std::lock_guard, i.e.
access to the FPGA is exclusive while the object exists.

The JetStream API also provides functions to access the
register file (readRegister(), writeRegister()), and to
handle user generated interrupts. The user can either check
whether an interrupt has occurred in the past, block until one
occurs, or register an asynchronous callback.

A. A FIR Filter with JetStream

The following shows how a FIR filter can be implemented.
We assume that the filter itself is already implemented; the
next step is to connect the FIR filter to JetStream. The
FIR filter has one input channel and one output channel.
Therefore, we set the CHANNELS parameter in JetStream to
2, and specify the CHANNEL_TYPES as {CHANNEL::INPUT,
CHANNEL::OUTPUT}. Next we create a module to be instanti-
ated by JetStream. As ports we specify the signals for one send
channel and one receive channel. To fulfill JetStreams buffer

1 int main() {
//allocate the next available FPGA
FPGA fpga();

5 //allocate a buffer
Buffer buffer = fpga.malloc(1024);

// fill the buffer with data

10 {
//lock the FPGA
Transaction fpga.transaction();
fpga.channel[0].send(buffer);
Operation receive =

15 fpga.channel[1].syncReceive(buffer);
}

//receive.sync();
}

Fig. 6: FIR code example.

requirement, we instantiate the two way buffer provided by
JetStream. This creates a buffer for the input and onther one
for the output channel and connects the FIR filter to these
buffers.

We will now introduce how a user program can access the
FIR accelerator module running on the FPGA, as shown in
Figure 6. As shown in Section V, the API is built around the
FPGA-object. We start by accessing the first available FPGA
in the system (line 3), next we allocate a zero copy buffer
(line 6). After the buffer is filled, we send the data to the
FPGA (line 13) and setup the response from the filter (line
14). To ensure that no other thread reads our data, by issuing
a read before we can, we lock the FPGA (line 12) while setting
up the transfers. This gives us exclusive access to the FPGA
and ensures that no other process can queue an operation in
between our send and receive. As we specified the INPUT
channel first in the channel list, it will have the channel ID 0.
Therefore, we send our data to channel 0 and receive data from
channel 1. Since there won’t be enough data to receive before
the send operation completes, it is enough if we synchronize
on the receive operation. We can either synchronize on the spot
using syncReceive, or let the operation run asynchronously
(using receive) to perform other work before synchronizing
(indicated in line 18). Accounting for the main boilerplate
code, sending and receiving data can be done in only six lines
of code.

VI. PERFORMANCE HOST TO BOARDS

For our experiments, reported in this section, we used the
Xilinx VC709 development board in a host PC featuring an
Intel Core i7-5930K running at 3.5 GHz and 1-4 memory
channels with 64 GB of DDR4-RAM at 2133 MHz. This CPU
provides 40 PCIe 3 lanes, and allows for up to four 8-lane
links4.

4Three 8-lane links and one 16-lane link.
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Fig. 7: Resource usage comparison.

JetStream Northwest Riffa 2.2 Xillybus

LUT 8571 69500 49565 7053
LUTRAM 392 0 1552 377
FF 6955 0 57147 6634
BRAM 17 16 173 12

TABLE III: Resource usage comparison.

We tested three modes supported by our driver, bounce-
buffering, double-buffering and zero copy DMA, with one to
four boards.

The resource usage is shown in Figure 7 and Table III. As
can be seen, JetStream is very close to the smallest reference
solution (which is Xillybus), but provides almost double the
throughput of that solution (see Table I). The fine granularity
which allows the user to decide buffer sizes for each channel
helps in saving resources.

Figure 8 shows the bandwidth achieved per board, for
the case that multiple boards are sending at the same time.
Figure 9 shows the same for multiple FPGAs receiving at
the same time. In both figures it can be seen that the chosen
transfer type affects the result. While the per board bandwidth
stays constant for zero copy transfers, it drops significantly
for bounce buffer transfers after the second FPGA. This is
caused by the twofold increase in memory access compared
to zero copy DMA. For bounce buffer transfers the data has
to be read from the user space and copied to the DMA buffer
before the FPGA can actually read it. This requires three
times the memory bandwidth of the actual throughput. At
6.4 GB/s write speed this means 38.4 GB/s for two FPGAs and
57.2 GB/s for three FPGAs (close to the theoretical maximum
of 60 GB/s which our system provides). While zero copy DMA
is 3 fold more throughput efficient, we would hit the available
host PC memory bandwidth with four FPGA boards that
send and receive simultaneously. Even though, receive starts
out significantly faster at 6.85 GB/s it declines considerably
faster since it is limited to the same maximum main memory
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Fig. 8: Send bandwidth per board for one to four FPGAs.
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Fig. 9: Receive bandwidth per board for one to four FPGAs.

bandwidth.
Figure 10 shows the relation between transfer size and

speed. The speed seems to increase since larger transfers offset
the initial time of issuing the first command to the FPGA
better. Another explanation could be measuring inaccuracies,
since we did not offset for the time of the measuring code.

VII. PERFORMANCE BOARD TO BOARD

To show the performance benefits of direct FPGA-to-FPGA
transfers we implemented a large FIR filter. The FIR filter is so
large that it does not fit into a single FPGA board. Therefore,
we split the logic across four FPGAs and linked them using
JetStream. We implemented two variants: in the first variant,
the host PC supplies all the data to the FPGAs. In the second
variant the host PC only sends data to the first FPGA which
then daisy chains it to the next. The last FPGA in the daisy
chain returns the data to the host.

In the following experiment we run a benchmark to stress
the host memory and show the impact of host to FPGA
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Function
Stream result [GB/s]

FPGAs
0 1 2 3 4

Copy 30.593 28.120 26.200 24.087 21.686
Scale 30.529 28.281 26.417 24.182 22.730
Add 33.499 31.740 29.890 28.057 26.234
Triad 33.461 31.200 29.650 27.341 25.093

TABLE IV: Stream results with the host sending data to
each FPGA.

transfers. As these transfers also access the memory, they re-
duce the bandwidth available to the benchmark, thus reducing
performance as more FPGAs are transferring data. Since direct
FPGA-to-FPGA transfers do not go through the host memory,
they should have no impact on the benchmark.

We ran the benchmark Stream [20] with 640 million ele-
ments on 12 cores to measure the memory bandwidth on the
host. To show the scaling, we varied the number of FPGAs
involved in the FIR filter. As a baseline, we measured the
system memory bandwidth while the system was idle apart
from Stream. Table IV shows Stream results for the different
configurations where the host supplies the data to each FPGA
and Table V shows the results of the benchmark when direct
FPGA-to-FPGA transfers are used.

Interestingly, we found that the DMA speed barely suffered
from the running benchmark, although this might be caused by
the fact that we send chunks of 1 GB and have timing code in
between chunk transfers. This leaves gaps where the FPGAs
are idle. Table V shows a slight performance drop even for
direct FPGA-to-FPGA transfers compared to no active FPGAs.
This is because we have to send the data from the host to the
first FPGA.

VIII. CONCLUSIONS

Integrating FPGAs through PCIe is an ideal solution for
many acceleration solutions. PCIe is widely available through
various hardware platforms, it provides high throughput, and

Function
Stream result [GB/s]

FPGAs
0 1 2 3 4

Copy 30.593 28.120 28.215 29.040 28.761
Scale 30.529 28.281 28.151 28.645 29.217
Add 33.499 31.740 31.756 30.057 29.463
Triad 33.461 31.200 29.650 31.341 30.953

TABLE V: Stream results with the FPGAs using direct
FPGA-to-FPGA transfers.

PCIe does not occupy or need a CPU socket on a motherboard.
Unfortunately, the FPGA vendors often provide only very
rudimentary PCI support with only very limited features and
with poor performance.

In this paper we present the JetStream PCIe infrastructure
consisting of a PCIe core around the Xilinx vendor core, a
Linux driver, and application examples. JetStream does not
only provide high throughput (close to the theoretical maxi-
mum) but it also features a rich API that supports direct FPGA-
to-FPGA communication through PCIe without involving the
memory subsystem of the host PC. This distinct mode allows
connecting FPGAs together in arbitrary topologies that are
fully software definable. Such multi FPGA solutions provide
new opportunities for performance scaling, cost reduction,
fault tolerance, and energy management in larger compute
servers.

JetStream is open-source under GNU General Public Li-
cense (GPL) and was developed and tested for the popular
VC709 and the NetFPGA SUME Virtex-7 boards running
Linux kernel version 4.35. JetStream works with the Vivado
tool suite from Xilinx and user modules can be easily inte-
grated using standard AXI interfaces. JetStream is available
at [1].

For future work, we aim at successively testing further
boards and at providing corresponding reference projects. We
intend to stimulate a wider usage of FPGAs as compute
accelerators with this.

While we have not ported JetStream to Altera devices yet,
we are very confident that JetStream can be easily ported.
Xilinx provides two pairs of send and receive interfaces (one
for host- and one for FPGA-initiated transfers, see Section IV),
while Altera provides only one interface that is shared for host-
and FPGA-initiated transfers [21]. This requires to combine
the Completer- and the RequesterEngine. RIFFA [9] is a PCIe
solution that has been ported to Xilinx and to Altera FPGAs,
demonstrating the feasibility of a port.
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