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Stochastic Geometric Analysis of
Energy-Efficient Dense Cellular Networks

Arman Shojaeifard, Member, IEEE, Kai-Kit Wong, Fellow, IEEE, Khairi Ashour Hamdi, Senior Member, IEEE,
Emad Alsusa, Senior Member, IEEE, Daniel K. C. So, Senior Member, IEEE, and Jie Tang, Member, IEEE

Abstract—Dense cellular networks (DenseNets) are fast becom-
ing a reality with the large scale deployment of base stations (BSs)
aimed at meeting the explosive data traffic demand. In legacy
systems, however, this comes at the cost of higher network inter-
ference and energy consumption. In order to support network
densification in a sustainable manner, the system behavior should
be made ‘load-proportional’, thus allowing certain portions of
the network to activate on-demand. In this work, we develop
an analytical framework using tools from stochastic geometry
theory for the performance analysis of DenseNets where load-
awareness is explicitly embedded in the design. The proposed
model leverages on a flexible cellular network architecture
where there is a complete separation of the data and signaling
communications functionalities. Using this stochastic geometric
framework, we identify the most energy-efficient deployment
solution for meeting certain minimum service criteria and analyze
the corresponding power savings through dynamic sleep modes.
According to state-of-the-art system parameters, a homogeneous
pico deployment for the data plane with a separate layer of
signaling macro-cells is revealed to be the most energy-efficient
solution in future dense urban environments.

Index Terms—Network densification, load-proportionality,
spatial-correlations, optimal deployment solution, power savings,
sleep modes, stochastic geometry, Monte-Carlo simulations.

I. INTRODUCTION

Ultra-dense deployment of base stations (BSs), relay nodes,
and distributed antennas is considered a de facto solution for
realizing the significant performance improvements needed to
accommodate the overwhelming future mobile traffic demand
[2]. While legacy wireless communication systems are fast
approaching the information-theoretic capacity limits, dense
cellular networks (DenseNets) can push data rates further
by shortening the transmitter-receiver distance and serving
fewer users per cell [3]. The extremely populated topology
of DenseNet, a.k.a. heterogeneous cellular network (HetNet),
raises several technical challenges, including managing the
interference and keeping the energy expenditure in check [4].

Understanding the interference behavior in DenseNets is
challenging due to the rapid, irregular, and overlapping place-
ment of nodes. In addition, in contrast to existing macro-cells
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where different parts of spectrum is allocated to neighbor-
ing cells, DenseNets employ an aggressive frequency reuse
strategy where different nodes can access the same spectrum;
thus highlighting the importance of interference management
for facilitating efficient spectrum utilization [5]. On the other
hand, legacy cellular networks and transmission technologies
are designed and dimensioned to meet the coverage and
capacity requirements in peak traffic conditions. This approach
threatens the commercial viability of deploying many more
network nodes which would substantially increase the total
capital, operational, and environmental expenditure [6]. An
extensive design overhaul towards a flexible cellular network
architecture with load-proportional energy consumption be-
havior is hence required going forward into the future [7].

In recent years, several collaborative initiatives, such as
the GreenTouch consortium [8], have focused on analyzing
the achievable spectral and energy efficiency performance of
network densification as well as other promising solutions,
using mostly system-level simulations. This approach is inline
with the traditional system planning where Monte-Carlo sim-
ulations are utilized for drawing conclusions on the cellular
network performance. However, due to the inherent character-
istics of DenseNets, the simulation-based investigations have
become extremely resource-intensive. In order to reduce the
underlying complexity associated with DenseNet planning,
tractable and computationally-efficient analytical models are
deemed necessary for depicting the fundamental bounds and
trade-offs. Tools from applied probability theory, in particular
stochastic geometry and point processes, are well-suited for
characterizing the key performance metrics of DenseNets with
random topologies, see [9], [10], and [11].

Despite insightful efforts, however, the common set of
assumptions for studying cellular networks using stochastic
geometry theory are benign, since rigorous analysis based on
a direct signal-to-interference-plus-noise ratio (SINR) prob-
ability density function (pdf) approach is challenging [12],
[13]. Most existing works thus resort to a limiting Rayleigh
fading channel model which makes it possible to derive the
SINR pdf [14], [15]. In [12], the authors utilize the non-direct
moment-generating-function (MGF) methodology from [16] to
characterize the average rate of always-full-buffer multi-tier
cellular networks over arbitrary fading interference channels.
However, neglecting network load by assuming that every de-
ployed BS is always-transmitting leads to an unrealistic fully-
loaded interference field which severely limits the achievable
gains jointly in terms of throughput, deployment cost, and
energy efficiency [17], [18], [19].
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In [20], the authors provided a comprehensive stochastic
geometry-based framework for the study of coverage prob-
ability and energy efficiency in HetNets using a full traffic
load model with random BS switching. The authors in [17],
however, showed that a significant gain in coverage probability
performance can be achieved through conditional thinning
of the interference field as a function of the users’ density.
Recently, in [19], a generalization of the interference-thinning
approach for the modeling of load with multiple resource
blocks was proposed. Moreover, the work in [21], with a focus
on energy-efficient design, investigated the optimal deploy-
ment density in load-dependent two-tier cellular networks by
numerically fitting the Poisson-Voronoi cell sizes using the
Gamma function. A similar modeling approach based on the
Gamma approximation of the random cell sizes was in addition
adopted for the analysis of energy efficiency in HetNets in
[22], and for the study of the energy-rate region in single-
tier cellular deployments in [23], respectively. Besides the
lack of a formulation for the exact distribution of the cell
sizes, the impact of SNR operating regions, artificial-bias, and
non-Rayleigh fading on the achievable performance was not
investigated in [21]. Furthermore, the dynamic switching of
nodes (sleep mode mechanism) utilized in the existing works
such as [20], [21], and [22] is limited due to the global cover-
age constraint associated with the inflexible traditional cellular
network architecture in which the BSs must simultaneously
provide coverage and capacity.

Recently, a major design overhaul in the cellular network
architecture with a complete separation of the control and data
infrastructures has been proposed through the Beyond Green
Cellular Green Generation (BCG2) project within the Green-
Touch consortium [24], [25]. The control (signaling) network
is responsible for providing continuous global coverage so that
communication services can be requested by users at any given
time and location. A sparse overlay of large signaling-only
cells with extended range is considered to be the preferred
solution in terms of network deployment and energy expendi-
ture costs for this functionality. The data (capacity) network,
on the other hand, is in charge of delivering communication
services by intelligently activating resources on-demand based
on an optimal selection of the access device which can meet
the service requirements at minimum energy cost. The network
layout for the capacity plane can in general be heterogeneous
but pinpointing the optimal deployment solution is challenging
and largely remains an open problem.

In [18], we incorporated the notion of inherent spatial-
correlations and load-proportionality in the design and analysis
of multi-tier cellular networks. A computationally-efficient
stochastic geometry-based framework for calculating the aver-
age rate of a typical user in the HetNet paradigm was accord-
ingly provided. It was shown that the average rate performance
of realistic correlated load-aware HetNets is significantly more
optimistic that the state-of-the-art results which consider BSs
to be either always or independently transmitting. In this paper,
we extend the work in [18] to identify the most energy-
efficient combination of BS densities and the corresponding
power savings through dynamic BS switching in multi-tier
cellular networks. It should be noted that stochastic geometry

Coverage Plane

Capacity Plane

Fig. 1: Green cellular architecture based on the separation of the
control and data networks.

theory cannot provide insight into the precise locations of
the network nodes. The proposed methodology can however
give us valuable information concerning the optimal type and
number of BSs needed to satisfy certain user requirements.
This approach can also be used to identify how many BSs can
be switched off for the purpose of energy savings under the
fluctuations in traffic volume.

Here, we focus on the green cellular network architecture
in Fig. 1, where global coverage is provided by sparse large
signaling-only cells and capacity is injected on-demand using
dense data-only BSs. This allows for greater flexibility in
utilizing sleep modes in the capacity plane which is no
longer constrained by the global coverage constraint. Con-
sidering randomly-deployed cellular networks, we incorporate
the notion of load-proportionality and correlated interfering
sources by optimally and exclusively associating every user
equipment (UE) to a data-only BS which provides the greatest
reward under arbitrary shadowing characteristics. Closed-form
expressions for the statistics of the received signal power and
aggregate network interference over Nakagami-m fading chan-
nels are accordingly provided towards efficient computation of
the average rate. An optimization problem for computing the
optimal deployment solution that minimizes the total energy
expenditure whilst satisfying a minimum rate requirement
under a given network load is hence formulated and tack-
led using exhaustive search algorithms. For the special case
of homogeneous interference-limited DenseNets, we provide
new closed-form bounded solutions of the average rate and
optimal BS density. Strategic sleep modes are then utilized for
realizing power savings according to the temporal fluctuations
in the traffic volume. The validity of the proposed analytical
framework and its advantages in terms of preserving energy
over the state-of-the-art fully-loaded and interference-thinning-
based models are demonstrated via Monte-Carlo trials.

Several useful design guidelines are concluded from our
findings. In general, we illustrate that the minimum de-
ployment density required to satisfy the traffic requirements
is significantly smaller in realistic load-proportional cellular
networks compared to most existing results which typically as-
sume independence among the BS activities. Furthermore, we
show that on the contrary to the fully-loaded and interference-
thinning approaches, our analytical model closely matches
the actual optimal deployment density. The implications of
these trends on the overall energy consumption and efficiency
of the radio access network are accordingly depicted. In
addition, the results confirm the promising potential of network
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densification towards effective offloading of traffic from large-
cells onto small-cells. The artificial-expansion of the small-
cells coverage range, on the other hand, is shown to only
further improve the performance when experiencing lower
network loads. In addition, we demonstrate the limitations
of large-cells in interference-dominant operating regions; a
similar trend is also observed for small-cells in noise-dominant
regions. Under anticipated traffic and rate requirements for
dense urban cellular environments in the year 2020, the opti-
mal deployment solution for the capacity plane is calculated
to be a homogeneous pico network, capable of delivering peak
power savings of near 15 kW/km2 over a conventional macro-
only cellular data network.

The remainder of the paper is organized as follows. The
system model and mathematical preliminaries are described in
Section II. In Section III, a computationally-efficient analytical
framework for the evaluation of the average rate is provided. In
Section IV, an optimization problem for identifying the opti-
mal deployment solution is formulated and the corresponding
power savings with dynamic switching of BSs is discussed.
In Section V, theoretical and simulation studies are conducted
towards unveiling network design pointers. Finally, the paper
is concluded in Section VI.

Notation: Ex{.} denotes the expectation operator with re-
spect to random variable x; P(x) is the probability of event
x; Px(.) represents the pdf of random variable x; Mx(z) =
Ex{exp(−zx)} is the MGF of random variable x; |.| is
the modulus operator; ‖.‖ corresponds to the Euclidean dis-
tance; Γ(x) =

∫ +∞
0

exp(−s)sx−1 ds is the Gamma function;
Γ(y, x) =

∫ +∞
x

exp(−s)sy−1 ds is the (upper) incomplete
Gamma function; 2F1(a, b; c; d) =

∑+∞
x=0

(a)x(b)x
(c)x x! d

x, where
(n)x = n(n + 1)...(n + x − 1), is the Gauss hypergeometric
function.

II. SYSTEM MODEL AND MATHEMATICAL PRELIMINARIES

Consider the downlink capacity plane comprising UEs
and T different classes of load-proportional BSs respectively
distributed on the two-dimensional Euclidean grid according
to stationary homogeneous Poisson point processes (PPPs)
Φ(u) and Φ

(b)
t with spatial densities λ(u) and λ

(b)
t , where

t ∈ T = {1, 2, ...T}. We consider a co-channel deployment
with universal frequency reuse where each operating BS
equally allocates resources in terms of time or frequency slots
to its associated UEs [26], [27]. This implies that there is no
interference from transmissions associated with the same BS.
For the sake of analytical tractability, we assume all tier-t BSs
to have equal transmit power P txt , artificial-biasing weight βt,
and path-loss intensity αt. Let ‖Yt,l,k‖, Ht,l,k, χt,l,k, and P rxt,l,k
denote the Euclidean distance, fading power gain, shadowing
power gain, and received signal power at the k-th UE from the
l-th tier-t BS, respectively. In addition, the constant additive
noise power is denoted by η. Note that the framework can
be extended to the case where all nodes are equipped with
multiple antennas, see, e.g., [28], [29].

In this work, we employ a cellular association and load-
balancing strategy where every active user exclusively con-
nects to the closest BS of a certain tier which provides

the strongest shadowed received signal power. This can be
mathematically formulated as(

t∗∈T , l
∗
∈Φ

(b)
t

)
= arg max

(
βtP

tx
t,j,kχt,j,k‖Yt,j,k‖−αt

)
,

∀t ∈ T ,∀j ∈ Φ
(b)
t ,∀k ∈ Φ(u) (1)

subject to: ϕt,j,k ∈ {0, 1} , ∀t ∈ T ,∀j ∈ Φ
(b)
t ,∀k ∈ Φ(u)

(2)∑
t∈T

∑
j∈Φ

(b)
t

ϕt,j,k = 1 , ∀k ∈ Φ(u) (3)

where ϕt,l,k is a binary decision variable depicting whether or
not the k-th UE is served by the l-th tier-t BS and constraints
in (2) and (3) ensure that each UE is exclusively associated
with exactly one BS. Accordingly, the optimal binary decision
variables of all UEs are selected.

The corresponding SINR of the k-th UE served by the l∗-th
tier-t∗ can hence be expressed as

γt∗,l∗,k =
P rxt∗,l∗,k
η + Iagg,k

(4)

where

P rxt∗,l∗,k = P txt∗ Ht∗,l∗,kχt∗,l∗,k‖Yt∗,l∗,k‖−αt∗ (5)

and

Iagg,k =
⋃

c∈Φ(u)/{k}

ϕt,l,c
∑
t∈T

∑
l∈Φ

(b)
t \{l∗}

P txt

×Ht,l,kχt,l,k‖Yt,l,k‖−αt . (6)

Based on the results from [30] and considering identical
distribution across links, shadowing effects can be interpreted
as random displacements in the original BSs locations using
new transformed PPPs Φ

(b)
t,s with

λ
(b)
t,s = λ

(b)
t E

{
χ

2/αt
t

}
, (7)

iff E
{
χ

2/αt
t

}
< ∞, ∀t ∈ T . As an application example,

we consider Log-Normal shadowing with mean µt (dB) and
standard deviation σt (dB), where t ∈ T . Note that small scale
fading does not impact cell selection as it can be averaged
or equalized using narrowband partitioning schemes such as
orthogonal-frequency division multiplexing (OFDM). In this
work, we consider independent unit-mean Nakagami-m fading
for intended and interfering links. In this case, the pdf and
MGF of the normalized channel power gain between the l-th
tier-t BS and k-th UE are respectively expressed as [31]

PHt,l,k(h) =
mmt
t hmt−1

Γ(mt)
e−mth (8)

and

MHt,l,k(z) =

(
1 +

z

mt

)−mt
(9)

where mt, t ∈ T , is the Nakagami-m fading parameter which
can fit a wide-range of stochastic fading models.

The ideal energy consumption behavior of a cellular net-
work is load-proportional where the whole system power
usage varies linearly according to the network load, i.e., from
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R(.) = log2(e)
∑
t∗∈T

∑
l∗∈Φ

(b)

t∗

ϕt∗,l∗,k

∫ +∞

0

∫ +∞

0

MIagg,k|R(z)
[
1−MP rx

t∗,l∗,k|R(z)
]e−zη

z
P‖Ŷt∗,l∗,k‖(R) dz dR (11)

P‖Ŷt∗,l∗,k‖(R) =
2πRλ

(b)
t∗

ϕt∗,l∗,k
E
{
χ

2
αt∗
t∗

}
e
−π
∑
t∈T λ

(b)
t E

{
χ

2
αt
t

}(
βtP

tx
t

βt∗P
tx
t∗

) 2
αt
R

2αt∗
αt

(12)

ϕt∗,l∗,k = 2πλ
(b)
t∗ E

{
χ

2
αt∗
t∗

}∫ +∞

0

re
−π
∑
t∈T λ

(b)
t E

{
χ

2
αt
t

}(
βtP

tx
t

βt∗P
tx
t∗

) 2
αt
r

2αt∗
αt

dr
(a)
=

λ
(b)
t∗ E

{
χ

2
αt∗
t∗

}
∑
t∈T λ

(b)
t E

{
χ

2
αt
t

}(
βtP txt
βt∗P

tx
t∗

) 2
αt

(13)

Homogeneous Micro DenseNet

Micro BS UE

Fig. 2: Poisson-Voronoi tesellations in a single-tier micro DenseNet,
5× 5 km2 area, λ(b)

m = 6 BSs/km2, λ(u) = 15 UEs/km2, P txm = 6.3
W, µm = 0 dB, σ2

m = 1 dB, αm = 4.

operating at maximum power under full-load to almost zero
when there is no traffic. The importance of this concept can
be depicted using illustrative examples. Consider the topology
of a single-tier micro DenseNet in Fig. 2, where the capacity
regions are formed according to the closest BS-UE distances,
resulting in a classical Poisson-Voronoi tessellation. Based
on the impractical fully-loaded assumption, which is widely
used in the literature for the sake of analytical tractability, all
deployed nodes are transmitting. It can however be seen from
Fig. 2 that even though the UEs density is relatively large,
there are certain BSs that are inactive. A similar trend can
be observed for the multiplicatively-weighted Poisson-Voronoi
tessellation topology of a two-tier macro/pico DenseNet in Fig.
3. By making the network behavior load-proportional, BSs are
only turned on when needed thus substantially enhancing the
energy efficiency of the system. Note that the practical feasibil-
ity of adopting this approach is facilitated through separating
the cellular network signaling and data infrastructures.

Heterogeneous Macro/Pico DenseNet

Macro BS Pico BS UE

Fig. 3: Multiplicatively-weighted Poisson-Voronoi tessellations in a
two-tier macro/pico DenseNet, 5×5 km2 area, λ(b)

M = 0.1 BSs/km2,
λ
(b)
p = 8 BSs/km2, λ(u) = 15 UEs/km2, P txM = 20 W, P txp = 0.13

W, βM = 0 dB, βp = 18 dB, µM = µp = 0 dB, σ2
M = σ2

p = 1 dB,
αM = αp = 4.

III. AVERAGE RATE PERFORMANCE

In this section, we provide a framework for calculating the
average communication rate achievable by an arbitrary user in
the DenseNet paradigm. The Shannon channel capacity for-
mula, i.e., log2(1 + SINR) b/s/Hz, is applicable here assuming
capacity-achieving codes are used for the operating instanta-
neous SINR. Note that the model can be easily adjusted to
capture other modulation/coding schemes by adding a SINR
gap to the instantaneous rate formula, i.e., log2

(
1 + SINR

Γ

)
b/s/Hz, where Γ (≥ 1) denotes the SINR gap.

The average rate in b/s/Hz of an arbitrary UE k assumed to
be located at the origin can be mathematically formulated by

R
(
λ(u), T, λ

(b)
t , P txt , βt, η, αt,mt, µt, σt

)
=
∑
t∗∈T

∑
l∗∈Φ

(b)

t∗

ϕt∗,l∗,kE{log2(1 + γt∗,l∗,k)} (10)
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where ϕt∗,l∗,k is used to denote the probability of UE k being
tagged to the l∗-th tier-t∗ BS, and E{log2(1 + γt∗,l∗,k)} is the
average rate of UE k conditioned on its association to the l∗-th
tier-t∗ BS, respectively.

In [16], Hamdi showed that the capacity evaluation of
wireless communication systems can be greatly simplified by
expressing the averages like E

{
log2

(
1 + X

Y+1

)}
in terms

of the MGFs of the independent random variables X and
Y , i.e.,

∫ +∞
0
MY (z)[1−MX(z)] e

−z

z dz. Through extend-
ing this result to a stochastic geometry-based settings, the
average rate expression in (10) can be expressed as in (11)
where P‖Ŷt∗,l∗,k‖(R) is the pdf of the random distance, and
MP rx

t∗,l∗,k|R and MIagg,k|R denote the conditional MGFs of
the intended signal power and aggregate network interference,
respectively. The pdf of transmitter-receiver distance and tier

connection probability can be respectively calculated through
the analytical expressions in (12) and (13) [18] where (a)
follows from cases with equivalent path-loss exponent across
all different tiers. The MGF of the intended signal power over
Nakagami-m fading channels can be readily computed using
the following expression

MP rx
t∗,l∗,k|R(z) = EHt∗,l∗,k

{
e−zP

tx
t∗Ht∗,l∗,kR

−αt∗
}

=

(
1 +

zP txt∗ R
−αt∗

mt∗

)−mt∗
. (14)

Furthermore, we can derive a closed-form bounded expression
for the aggregate network interference MGF - considering
the inherent spatial-correlations in the activities of load-
proportional BSs - as in the following lemma.

Lemma 1. The aggregate network interference MGF in spatially-correlated load-proportional heterogeneous DenseNets over
Nakagami-m fading interference channels is given by

M̃Iagg,k|R(z) = e

−π
∑
t∈T

λ
(b)
t E

{
χ

2
αt
t

}
At

(15)

where

At =
Γ
(

1− 2
αt

)
Γ
(
mt + 2

αt

)
Γ(mt)

(
zϕtP

tx
t

mt

) 2
αt

+

(
βtP

tx
t R

αt∗

βt∗P txt∗

) 2
αt

(
mmt
t

(
zϕtP

tx
t βt∗P

tx
t∗

βtP txt R
αt∗

+mt

)−mt
− 1

)

− mmt+1
t

(zϕtP
tx
t )

mt
(
mt + 2

αt

)(βtP txt Rαt∗
βt∗P txt∗

)mt+ 2
αt

2F1

(
mt + 1,mt +

2

αt
;mt +

2

αt
+ 1;

−mtβtR
αt∗

zϕtβt∗P
tx
t∗

)
(16)

and

ϕt = 1− e

−λ(u) ϕt,l,k

λ
(b)
t E

{
χ

2
αt
t

}
. (17)

In the case of Rayleigh fading interference channels, At reduces to

At = Γ

(
1− 2

αt

)
Γ

(
1 +

2

αt

)
(zϕtP

tx
t )

2
αt − 1

1 + βtR
αt∗

zϕtβt∗P
tx
t∗

(
βtP

tx
t R

αt∗

βt∗P txt∗

) 2
αt

− 1

zϕtP
tx
t (1 + 2

αt
)

(
βtP

tx
t R

αt∗

βt∗P txt∗

)1+ 2
αt

2F1

(
2, 1 +

2

αt
; 2 +

2

αt
;
−βtRαt∗

zϕtβt∗P
tx
t∗

)
. (18)

For the special case of αt = 4, ∀t ∈ T , the above can be further simplified to

At =
√
zϕtP

tx
t

(
arctan

(
R2

√
βt

zϕtβt∗P
tx
t∗

)
− π

2

)
. (19)

Proof: See Appendix A.

It should be highlighted that adopting the proposed gener-
alized analytical framework allows for the efficient computa-
tion of average rate bound R̃(.) in spatially-correlated load-
proportional multi-tier cellular networks over Nakagami-m
fading channels through double integral operations. The com-

mon direct pdf-based approach, on the other hand, involves
manifold integral computations and is hence significantly more
resource-intensive. For homogeneous DenseNet deployments,
the average rate bound R̃(.) expression can be reduced to a
single-integral format when considering interference-limited
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Rayleigh fading channels, as illustrated in the following
lemma. Note that the tier index t is accordingly removed from

the system parameters for single-tier deployment scenarios
whenever the context is clear.

Lemma 2. The average rate bound for interference-limited homogeneous DenseNets over Rayleigh fading channels can be
expressed as

R̃(.) = log2(e)

∫ π
2

0

2α2(α+ 2) tan(t) cos2α(t)(
ϕ sinα(t) + cosα(t)

)(
α sinα+2(t) 2F1

(
1, 1 + 2

α ; 2 + 2
α ;− tanα(t)

)
+ π

2 (α+ 2) csc
(

2π
α

)
cosα+2(t)

) dt

(20)

where csc
(

2π
β

)
= β

2πΓ
(

1− 2
β

)
Γ
(

1 + 2
β

)
. The above integral can be further simplified for the special case of path-loss

exponent being equal to four as

R̃(.) = log2(e)

∫ +∞

0

4

(1 + ϕs2)(2s− 2 arctan(s) + π)
ds (21)

or alternatively

R̃(.) = log2(e)

∫ +∞

0

4

2(1 + ϕs2)
(
s+ arctan( 1

s )
) ds (22)

where

ϕ = 1− e

−λ(u)

λ(b)E
{
χ

2
α

}
. (23)

Proof: See Appendix B.

IV. OPTIMAL DEPLOYMENT SOLUTION

From the mobile operators point of view, the commercial
viability of network densification depends on the underlying
capital and operational expenditure [32]. While the former cost
may be covered by taking up a high volume of customers,
with the rapid rise in the price of energy, and given that BSs
are particularly power-hungry, energy efficiency has become
an increasingly crucial factor for the success of DenseNets
[33]. Generally, there are two main approaches to enhance the
energy consumption of cellular networks: (1) improvement in
hardware and (2) green system architecture design. Evidently,
improving the power consumption of hardware is important.
The potential gain, however, will be similar to the business-as-
usual case. Hence, the majority of improvement would have
to come from green cellular network design.

Due to the recent advances in hardware technology, it has
been made possible for wireless transceivers to consume vary-
ing power levels under different operational modes [34]. These
include BS sleep, idle, transmit, and receive modes which can
be accordingly adjusted based on the daily fluctuations in the
traffic volume for the purpose of preserving energy. Defining a
quantitative BS power model is however challenging given that
one needs to take into consideration the particular components
configurations. The following linear power model is however
shown to be a reasonable approximation [35]

Pt =

{
Ct = ∆

(p)
t P txt + P

(e)
t BS in transmit mode

P
(s)
t BS in sleep mode

(24)

where for tier-t BSs, ∆
(p)
t is the reciprocal of the power

amplifier drain efficiency, P (e)
t is the circuit power, and P (s)

t

is the power in sleep mode. This linear power model accounts
for the different specifications and architectures of long-term-
evolution (LTE) BSs including macro, micro, and pico types.
The sleep mode power consumption (when there is nothing
to transmit) is also included in this model to reflect upon a
promising energy savings mechanism associated with future
BSs. A set of power values for a default operating scenario
can be found in [35, TABLE 2]. Note that the inclusion
of backhauling constraints complicates the analysis here and
is therefore left for future work. The reader is referred to
[36] for a comprehensive study on modeling and tradeoffs of
backhauling in HetNets using stochastic geometry.

In the remaining parts of this correspondence, we utilize
the proposed stochastic geometric framework in order to
pinpoint the most energy-efficient deployment solution and
hence analyze the achievable gain in energy efficiency by
incorporating dynamic sleep modes. The radio planning task
under consideration is concerning a service provider interested
in figuring out the most energy-efficient deployment solution
for providing a minimum average rate to its users. Note that
we assume global coverage is maintained through deploying,
or utilizing the already in place, legacy macro-cells; the
reader is referred to [32] for information on the operational
characteristics and energy savings procedures in the separated
coverage plane.

In order to compute the optimal combination of BS densities
towards minimizing total energy expenditure, we formulate the
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following optimization problem

min.
λ

(b)
t ,t∈T

∑
t∈T
Ctλ(b)

t (25)

s. t.: R̃
(
λ(u), T, λ

(b)
t , P txt , βt, η, αt,mt, µt, σt

)
≥ R0 (26)

where R0 is the minimum rate requirement and Ct is the
energy expenditure associated with tier-t BSs in active (trans-
mission) mode. Note that R is a strictly increasing monotonic
function in λ

(b)
t (a proof is provided in Appendix C), hence,

the optimization problem under consideration has a unique
solution. However, R is a highly complex function which
involves for each tier two improper integrals and an infinite
series sum. As a result, an exact closed-form solution cannot
be obtained. The optimization problem under consideration
should therefore be tackled numerically.

Exhaustive search algorithms are well-suited for tackling
the problem considering the rate function derivative is not
available analytically and its accurate evaluation (e.g., using
finite differences) is resource-intensive. In the case of homo-

geneous DenseNets, the dimension of freedom is reduced to
one and the optimization task is equivalent to finding the
root of a univariate function. Hence, Brent’s algorithm [37]
is a reasonable method of choice which at its best (worst)
provides super-linear (linear) convergence to the solution. On
the other hand, the non-linear constrained multidimensional
optimization problem in the case of heterogeneous DenseNets
can be tackled using heuristic downhill simplex method [38]
with penalty function. The algorithm is typically solvable
in exponential time [39]. The reader is referred to [40] for
detailed descriptions of the above algorithms operation and
code in C language.

In order to gain an analytical insight into the effect of
different operational settings on the most energy-efficient
deployment solution, we focus on the problem of finding the
optimal BS density in homogeneous DenseNets. Specifically,
we show that it is possible to develop lower-bound and
upper-bound closed-form expressions of the average rate for
interference-limited cases with the path-loss exponent being
equal to four.

Lemma 3. The lower-bound and upper-bound closed-form expressions of the average rate in interference-limited homogeneous
DenseNets over Rayleigh fading channels with path-loss exponent being equal to four are respectively given by

R̃ = 2 log2(e)

(
π2ϕ

3
2 + (π − 2)π

√
ϕ− 2 ln(πϕ) + ln(4)

)
+ 2πϕ+π−4√

π(8−π)

(
2 arctan

(√
π

(8−π)

)
− π

)
(
π2ϕ2 + (π − 4)πϕ+ 4

) (27)

and

R̃ = log2(e)
πϕ

3
2 + 2

3
√

3
π(1− 2ϕ)− log(ϕ)

ϕ2 − ϕ+ 1
. (28)

Proof: See Appendix D.

For the above case, we derive closed-form solutions for
the minimum number of BSs per unit area λ(b)∗ needed to
satisfy the service requirement based on the numerical roots

of high-order polynomial functions. The results, capturing the
worst- and best-case scenario of the deployment solution, are
respectively presented in the following lemma.

Lemma 4. The bounded solutions of the optimal BS density in interference-limited homogeneous DenseNets over Rayleigh
fading channels with path-loss exponent being equal to four are expressed as

λ(b)∗ ≤ λ(u)E
{
χ

2
α

}/
− ln

(
1− positive real root of

{√
π(8− π)

(
4
(
−x2 − πx+ 1

)
+ 2π2x

(
x2 + 1

)
− ln(2)R0

(
πx2

(
π
(
x2 + 1

)
− 4
)

+ 4
)

+ ln(16)− 4 ln(π)
)
− 4
(
2πx2 + π − 4

)(
π − 2 arctan

(√
π

8− π

))}2
)

(29)

and

λ(b)∗ ≥ λ(u)E
{
χ

2
α

}/
− ln

(
1− positive real root of

{
9

(
π

(
x3−

(
4

3
√

3
+

1

π

)
x2 +

2

3
√

3

)

− ln(2)R0

(
x4 − x2 + 1

))}2
)
. (30)
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Proof: See Appendix E.

It is important to note from the best and worst BS de-
ployment density expressions, respectively derived in (29)
and (30), that the optimal network density λ(b)∗ is directly
proportional to the network load λ(u). The tightness of the
developed bounded expressions is analyzed and compared to
theoretical (using exhaustive search algorithms) and Monte-
Carlo simulation results in the next section. Note that the
analytical tractability of the techniques used to derive these
bounds quickly diminishes considering multi-tier deployments.
For heterogeneous DenseNets with equivalent operational pa-
rameters across different tiers, i.e., equal energy cost, biasing
weight, and transmission power, however, we respectively
arrive at similar bounded optimal network density expressions
with λ(b)∗ →

∑
t∈T λ

(b)
t

∗
.

In order to estimate the optimal energy savings from load-
proportional network behavior in a given cellular environment,
we utilize the established theoretical framework to identify the
number and type of BSs that maintain the rate requirement for
the users’ density over different times of the day. The power
savings in Watts using dynamic sleep modes at a given time of
the day can then be computed by utilizing the linear hardware
model as follows

S =
∑
t∈T

(
λ

(b)
t,f

∗
− λ(b)

t,p

∗)(
∆

(p)
t P txt + P

(e)
t − P (s)

t

)
(31)

where λ(b)
t,f

∗
and λ(b)

t,p

∗
, t ∈ T , are the optimal tier-t network

densities under full and partial (depending on the hour) net-
work loads, respectively. It is important to note that although
this framework cannot determine an optimal topology for a
given area, it can provide useful information on how many
BSs can be switched off with the temporal variations in the
traffic volume.

V. PERFORMANCE EVALUATION

The aim of this section is to evaluate the average rate,
optimal deployment density, and power savings of DenseNets,
considering different combinations of large-cell macro and
small-cell micro and pico BSs. We aim to quantify the im-
pact of network-wide decisions which helps unveil important
design pointers for optimal network management. In regards
to the power model, we use the practical hardware values
captured in [35]. To analyze the accuracy of the established
theoretical model, we perform load-dependent Monte-Carlo
simulations (see Appendix F).

A. Framework Validation and Impact of System Parameters

The performances of a mixed micro/pico system under
different SNR and load levels using the interference-thinning
model, proposed green framework, and Monte-Carlo simula-
tions are shown in Fig. 4. A key point to observe is that
the former approach, while being an improvement over the
long-standing fully-loaded model, produces pessimistic perfor-
mance values, particularly under light and moderate network
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Fig. 4: Average rate under different network load and noise power
values, λ(b)

m = λ
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Fig. 5: Transmission probability as a function of network load, λ(b)
m =

0.3 BSs/km2, λ(b)
p = 0.7 BSs/km2, P txm = 6.3 W, P txp = 0.13 W,

βm = βp = 0 dB, SNR = 20 dB, mm = mp = 1, αm = αp = 4.

loads. Furthermore, our proposed analytical model correctly
provides a tight lower-bound fit of the actual performance
curve. The gap between different evaluation tools is negligible
under both heavy traffic, due to the full-loaded interference
field, and low SNRs, due to noise power dominance over
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interference. To further illustrate the shortcomings of the
uncorrelated interferers assumption, we plot the transmission
probability of the micro and pico tiers in a heterogeneous
DenseNet as a function of network load in Fig. 5.

The implication of the above trends on network cost is
depicted in Fig. 6, where we calculate the optimal network
density of an interference-limited macro-only system as a
function of minimum rate demand using the interference-
thinning model, the proposed green framework, Monte-Carlo
trials, and the bounded approximations derived in eqs. (29) and
(30). The applicability of our proposed bounded framework in
capturing realistic scenarios is further confirmed as it provides
a tight fit to the Monte-Carlo trials. The interference-thinning
model, on the other hand, requires a much larger BS density
to meet a particular rate requirement. E.g., from Fig. 6, to
satisfy R0 = 2.4 b/s/Hz, the interference-thinning model
requires 10.7%, 82.0%, and 159.0% larger network density
over the closed-form upper-bound solution, proposed green
framework (with exhaustive search algorithms), and Monte-
Carlo trials, respectively. Henceforth, the analysis is carried
out using the proposed framework as we have extensively
shown its advantages over the state-of-the-art models.

Next, we depict the impact of network densification us-
ing small-cells with different biasing values on average rate
performance in Fig. 7. Firstly, we observe that performance
improves nearly linearly by adding unbiased pico BSs, further
confirming the promising potential of small-cells in offloading
traffic from large-cells in congested areas. However, deploying
small-cells with low artificial-bias deteriorates performance.
The reason lies on the added intra-tier interference experienced
by pico BSs without a significant reduction in the inter-tier
interference from the micro BSs. We can thus infer that the
performance gain from artificial expansion of small-cells range
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urban environment.

is negative or otherwise negligible under relative moderate and
heavy traffic loads.

B. Optimal Deployment Solution

Here, we investigate the optimal deployment solution under
traffic and rate requirements anticipated for the year 2020.
Based on the study of mature markets within GreenTouch [41]
the peak traffic volume in the busy hour of a dense urban
region in 2020 is 702 Mbits/sec/km2. Further, a discrete daily
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TABLE I Optimal densities of BSs in a mixed micro/pico deploy-
ment under relative load values, P txm = 6.3 W, P txp = 0.13 W,
P

(e)
m = 53 W, P (e)

p = 6.8 W, ∆
(p)
m = 3.1, ∆

(p)
p = 4, SNR = 60 dB,

mm = mp = 2, µm = µp = 0 dB, σ2
m = σ2

p = 6 dB, βm = βp = 0

dB, αm = αp = 4, R0 = 2.4 b/s/Hz.

Relative Load (%) λ
(b)
m

∗
(Micro BSs/km2) λ

(b)
p

∗
(Pico BSs/km2)

20 0.292901 7.32528
30 0.446714 11.1706
40 0.585807 14.6506
50 0.732258 18.3132
60 0.878703 21.9760
70 1.02517 25.6385
80 1.17162 29.3012
90 1.31799 32.9648

100 1.46450 36.6269
110 1.61097 40.2894
120 1.75743 43.9520
130 1.90388 47.6147
140 2.05033 51.2774

traffic profile ranging from 20% to 140% of the average load in
dense urban environments is utilized [41], see Fig. 8. Using the
above parameter values, the active UEs density at 100% load
level is calculated to be 84.87 UEs/km2. The recent Ofcom
Market Report states that the average rate requirement for
users on fourth-generation (4G) services in 2020 is expected
to reach 2.4 b/s/Hz. Moreover, typical propagation values
in dense urban environments are selected with Nakagami-
m fading with m = 2 (i.e., two-antenna transmit diversity
Rayleigh), Log-Normal shadowing with µt = 0 and variance
σ2
t = 6, and path-loss exponent αt = 4.
The optimal BS densities, which meet users demand under

different relative load levels in high and low SNR operating
regions, of two different single-tier micro and pico DenseNets
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Fig. 10: Optimal pico BSs density in heterogeneous DenseNets over-
laid with different deployment densities of legacy macro-cells under
relative load levels, P txM = 20 W, P txp = 0.13 W, βM = βp = 0
dB, mM = mp = 2, µM = µp = 0 dB, σ2

M = σ2
p = 6 dB,

αM = αp = 4, R0 = 2.4 b/s/Hz.

are depicted in Fig. 9. The optimal network density is shown
to vary significantly in different hours, e.g., for the noise-
dominant case of the micro-only DenseNet, the optimal BS
density at 20% load corresponding to 4-6 am (morning time) is
90.14% less than the value at 140% load experienced between
4-10 pm (night time). Furthermore, because of the negligi-
ble impact of transmit power in the interference-dominant
cases, the optimal deployment density in the two different
micro-only and pico-only systems are almost the same. This
trend highlights the major disadvantage of deploying energy-
hungry large-cells in dense interference-dominant scenarios of
the future. On the other hand, in noise-dominant regions, a
greater number of pico BSs is required to meet the service
requirements, e.g., at 20% load, λ(b)∗ of the pico-only system
is 2.94 times greater than the optimal BS density of the single-
tier micro deployment.

We now turn to the more challenging problem of optimal
deployment solution in multi-tier DenseNets. Considering all
combinations of macro, micro, and pico BSs, we employ
an exhaustive search algorithm to compute the most energy-
efficient deployment solution, e.g., the ratio of the energy cost
in transmission mode of a micro BS over a pico BS is CmCp =

9.8085 and a macro BS over a pico BS is CMCp = 30.7514. Our
findings interestingly reveal that a small-cell deployment with
only pico BSs with the values previously provided in Fig. 9 is
the optimal solution for minimizing total energy expenditure.
For comparison purposes, we identify the second most energy-
efficient deployment solution as a heterogeneous sparse micro
and dense pico network with the values provided TABLE I.
E.g., under a relative load of 100%, with approximately 1.464
micro BSs/km2 BSs, the heterogeneous micro/pico DenseNet
requires 1.34 times fewer pico-cells for satisfying R0 = 2.4
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p = 6.8 W, ∆
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P
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m = 39 W, P (s)
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M = σ2
m = σ2

p = 6 dB, αM = αm = αp = 4, R0 = 2.4
b/s/Hz.

b/s/Hz over the optimal homogeneous pico DenseNet. Note
that by further reducing the noise power down to zero watts,
we record no significant changes to the optimal type and
number of BSs obtained.

Note that the practical feasibility of the above solutions is
justified given the already in place legacy cellular networks are
utilized for satisfying the global coverage constraint. However,
a “practically optimal” solution could arguably accommodate
the existence of legacy macro-cells in both data and control
planes. In Fig. 10, we depict the optimal pico BSs density
needed to satisfy the rate requirement in mixture legacy
cellular networks overlaid with different amounts of macro-
cells. We observe that the use of high-power macro-cells in
the data plane for dense urban environments has a detrimental
impact considering a higher amount of small-cells is needed to
meet the average rate constraint. For example, under a relative
maximum load of 140%, the optimal deployment density of
small-cells is around 3.43% lower in a homogeneous pico
system over a mix macro/pico DenseNet with λ

(b)
M = 0.1

BSs/km2. It can therefore be inferred that in such environments
the use of existing legacy cellular networks must be directed
solely towards providing global coverage.

C. Power Savings via Sleep Modes

Finally, we analyze and compare the total power consump-
tion and energy savings gain of different deployment scenarios
in the dense urban environment under consideration. Fig.
11 depicts the power consumed per unit area at different
times of the day considering different networks equipped
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with and without BS sleep modes. The results confirm the
optimality of the homogeneous pico DenseNet in terms of
total energy efficiency, e.g., at peak traffic level, the mixed
micro/pico deployment consumes more than 4.11% power
than the optimal solution. Both of these solutions, however,
are considerably more energy-efficient compared to any other
combinations of BS densities such as the mix macro/pico
system. E.g., the optimal pico DenseNet is capable of realizing
peak power savings of near 15 kW/km2 over a stand-alone
macro-cell deployment; additional 20 W/km2 and 40 W/km2

improvements compared to the heterogeneous micro/pico and
macro/pico DenseNets, respectively. It can also be seen from
Fig. 11 that due to the large difference in the power usage
of idle and sleep states, a significant reduction in total energy
consumption can be achieved by activating BSs on-demand.
Specifically, as shown in Fig. 12, by powering down BSs,
relative to operating under full-load, peak energy efficiency
gains of 35.36%, 36.57%, and 33.0% at night time, and
average daily gains of 11.78%, 12.19%, and 10.97% for the
pico-only, mixed micro/pico, and mixed macro/pico systems
are respectively recorded.

VI. CONCLUSIONS

We have provided a comprehensive theoretical framework
for performance evaluation and optimization of dense cellular
networks. By incorporating the notion of load-proportionality
in a flexible separated data/control plane cellular network
architecture, we identify the most energy-efficient deployment
solution for satisfying a minimum rate requirement under
a given traffic level. The validity of the proposed green
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framework and its advantages over state-of-the-art fully-loaded
and interference-thinning models in terms of pinpointing the
optimal deployment density required for meeting users’ de-
mands was confirmed through extensive Monte-Carlo trials.
Under a dense urban environment in the year 2020, the optimal
deployment solution for the capacity plane was found to be
a populated homogeneous pico network capable of realizing
power savings of up to near 15 kW/km2 compared to a
traditional stand-alone macro cellular network.
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APPENDIX A
AGGREGATE NETWORK INTERFERENCE STATISTICS

The MGF of the aggregate network interference, consider-
ing a disk of radius D around the reference user and then
taking the limit as D →∞, can be derived as in (A.1) where
(a) follows from applying Jensen’s inequality which leads to

ϕt = 1 − e

−λ(u) ϕt,j,c

λ
(b)
t,s , (b) is from the independence of the

tiers of BSs with N (b)
t being the total number of potentially

interfering tier-t sources and j being an arbitrary tier-t source,
(c) is from using a Binomial distribution with parameters
(κt, ρt) to characterize N (b)

t , using the uniformly-distributed
locations of the interfering sources

P‖Ŷt,j,k‖(r) =

{
2r

D2−D2
t

Dt < r < D
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(A.2)
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(d) can be derived by taking the limits as D → +∞, κt →
+∞, ρt → 0, and utilizing the Poisson limit theorem with
κtρt
πD2 = λ

(b)
t,s , finally, (e) is obtained by taking the average

with respect to the Gamma-distributed fading power gain of
the arbitrary interferer using
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APPENDIX B
SIMPLIFIED AVERAGE RATE EXPRESSION

Utilizing (14) and (15) in (11), considering η = 0 and
m = 1, the bounded average rate expression in single-tier
scenarios can be written in a double integral form as in (B.1).
By employing a change of variables with z = uα

ϕP tx and
hence converting from Cartesian to polar coordinates with
R = r sin(t) and u = r cos(t), (B.1) reduces to (B.2) By
using the following integral identity (where x > 0)∫ +∞

0

re−xr
2

dr =
1

2x
(B.3)

we arrive at the simplified average rate expression in (20).
For the special case of α = 4, with variable substitution s =
tan2(t) and some basic algebraic manipulations, (20) can be
further simplified to obtain (21). �

APPENDIX C
MONOTONICITY ANALYSIS OF THE RATE FUNCTION

Without loss of generality, consider a homogeneous
DenseNet with Rayleigh fading for the intended and inter-
ference channels and path-loss exponent being equal to four.
Recall that the average rate in nat/s/Hz of an arbitrary user in
this case can be expressed by

R(.) =

∫ +∞

0

4 ds(
1 +

[
1− e−

λ(u)

λ(b)

]
s2

)
(2s− 2 arctan(s) + π)

.

(C.1)

To investigate the behavior of the rate function with respect
to the deployment density, we differentiate using basic sub-
stitution the inside of the above integral with respect to λ(b)

as

d

dλ(b)

(
dR(.)

ds

)
=

4

(2s− 2 arctan(s) + π)(
d
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2
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(C.2)

where (C.2) follows given λ(u) only takes on positive values
and s−arctan(s)+ π

2 > 0 holds for positive values of s. This
proves that the average rate is a strictly monotone function for
BS deployment density. �

APPENDIX D
CLOSED-FORM AVERAGE RATE BOUNDS

By utilizing the following tight approximation

arctan(s) = arcsin

(√
s2

1 + s2

)
≥ s

1 + s
(D.1)

we can respectively obtain from (21) and (22)

R̃(.) = log2(e)
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By performing a partial fraction decomposition of the above
expressions we respectively obtain
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t Ht,j,k‖Ŷt,j,k‖−αt

}
+ 1− ρt

)κt

(d)
=
∏
t∈T

e

−πλ(b)
t,sEHt,j,k

Γ(1− 2
αt

)−Γ(1− 2
αt
,zϕtP

tx
t Ht,j,kD

−αt
t )

(zϕtPtxt Ht,j,k)
−2
αt

+D2
t

(
e−zϕtP

tx
t Ht,j,kD

−αt
t −1

)

(e)
= e

−π
∑
t∈T λ

(b)
t,s


Γ(1− 2

αt
)Γ(mt+ 2

αt
)

Γ(mt)

(
zϕtP

tx
t

mt

)−2
αt

+
m
mt
t

(
zϕtP

tx
t βt∗P

tx
t∗

βtP
tx
t R

αt∗ +mt

)−mt
−1

(
βtP

tx
t R

αt∗

βt∗P
tx
t∗

)−2
αt

−
2F1

(
mt+1,mt+

2
αt

;mt+
2
αt

+1;
−mtβtR

αt∗

zϕtβt∗P
tx
t∗

)

(zϕtPtxt )mt

m
mt+1
t (mt+ 2

αt
)
−1

(
βtP

tx
t R

αt∗

βt∗P
tx
t∗

)−mt− 2
αt


(A.1)

R̃(.) = log2(e)

∫ +∞

0

∫ +∞

0

e
−2πλ(b)

s

Rα+2
2F1

(
1,1+ 2

α
;2+ 2

α
; −R

α

ϕzPtx

)
(α+2)ϕzPtx

+
π csc( 2π

α )(ϕzPtx)
2
α

α


2πλ(b)RP tx

Rα + zP tx
dz dR (B.1)

R̃(.) = log2(e)

∫ π
2

0

∫ +∞

0

e
−2πλ(b)

s r2

(
sin2(t) tanα(t) 2F1(1,1+ 2

α
;2+ 2

α
;− tanα(t))

α+2 +
π csc( 2π

α ) cos2(t)

α

)
2παλ

(b)
s r cosα(t) tan(t)

ϕ sinα(t) + cosα(t)
dr dt

(B.2)

To continue, we present the following integral identities (where
α > 1

4 and ζ ≥ 0)∫ +∞

0
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1 + s+ αs2
ds =

π − 2 arctan
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ds =

π

2
√
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From (D.6), (D.7), and using the rules of integration by
parts, we arrive at the closed-form bounded expressions of
the average rate in (27) and (28). �

APPENDIX E
OPTIMAL DEPLOYMENT DENSITY

The closed-form bounded expressions of the average rate in
(27) and (28) are complex highly non-linear functions of the
ratio of the BS over the UE spatial densities. As a result,
it is not possible to directly derive an expression for the
optimal deployment solution. By taking the limits as λ(u) → 0
(sparse traffic) and λ(u) → +∞ (full traffic), it can be readily
deduced that 0 ≤ ϕ = 1 − λ(u)

λ(b) ≤ 1. Hence, we can apply

the lower-bound approximation ln(1 + ϕ) ≤ ϕ based on
Taylor series expansion in (27) and (28), in order to rearrange
R
(
λ(u), λ(b), P tx, η, α,m, µ, σ

)
= R0 and develop upper-

bound and lower-bound closed-form approximations for the
optimal network density λ(u)∗ based on the real positive real
roots of high-order polynomial functions in (29) and (30). �

APPENDIX F
MONTE-CARLO SIMULATIONS

1) Set the UEs density, and for each tier, select transmit
power, BSs density, path-loss exponent, Nakagami-m fad-
ing, and Log-Normal shadowing mean and variance.

2) Define a region of sufficiently large area around reference
UE situated at the origin.

3) Generate the statistical numbers of tiers of BSs and UEs.
4) Deploy Uniformly-distributed heterogeneous BSs and

UEs around the specified area.
5) Generate Nakagami-m fading and Log-Normal shadowing

gains for all links.
6) Optimally and exclusively associate every UE to a BS

which provides the strongest received shadowed power.
7) Search through all BSs and if a BS is associated with one

or more UEs it is active; otherwise is not transmitting.
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8) Compute the aggregate network interference experienced
by the reference UE using the sum of received signal
powers from only the interfering BSs.

9) Calculate the reference UE SINR and average rate.
10) Repeat steps (3) to (9) for a sufficiently large number of
times and take the average.


